

1 **One-year Continuous Observations of Near-Surface Atmospheric**
2 **Water Vapor Stable Isotopes at Matara, Sri Lanka**

3 Yuqing Wu ^{1,2}, Jing Gao ^{1,3,*}, Aibin Zhao ¹, Xiaowei Niu ¹, Yigang Liu ¹,
4 ², Disna Ratnasekera ^{4,5}, Tilak Priyadarshana Gamage ⁶, Amarasinghe
5 Hewage Ruwan Samantha ⁶

6 *1 State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment,*
7 *Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,*
8 *China*

9 *2 University of the Chinese Academy of Sciences, Beijing, 100049, China*

10 *3 Lanzhou University, Lanzhou 733000, China*

11 *4 China-Sri Lanka Joint Center for Education & Research, Guangzhou 510301, China*

12 *5 Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna,*
13 *Matara 81000, Sri Lanka*

14 *6 Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna,*
15 *Matara 81000, Sri Lanka*

16 ** Corresponding author: Jing Gao (gaojing@itpcas.ac.cn)*

17

18 **Abstract:**

19 Atmospheric water vapor stable isotopes are crucial for understanding
20 hydrological cycle processes under climate change. This study presents the results from
21 a year-long in-situ monitoring of atmospheric water vapor stable isotopes ($\delta^{18}\text{O}$, δD) at
22 Matara, Sri Lanka, from March 2020 to February 2021 to assess how oceanic sources
23 and moisture transport influence coastal atmospheric moisture isotopic composition.
24 We identified clear seasonal patterns in the isotopic composition, with $\delta^{18}\text{O}$, δD , and d-
25 excess showing substantial variation between the southwest and northeast monsoon
26 periods. The primary moisture sources were the Arabian Sea and the Indian Ocean
27 during the southwest monsoon (May to September), characterized by lower amplitude
28 values of $\delta^{18}\text{O}$ (-20.4‰ to -9.1‰). During the northeast monsoon, the northern Bay of

29 Bengal, the Indian subcontinent, and Southeast Asia were primary moisture sources,
30 resulting higher amplitude values of $\delta^{18}\text{O}$ (-23.9‰ to -7.5‰) and higher d-excess
31 values (up to 25 ‰). The study also identified significant influences of sea surface
32 temperature and sea surface relative humidity on the isotopic composition of water
33 vapor. Additionally, we could use outgoing longwave radiation (OLR) to gauge the
34 intensity of convective activity. Lower OLR values, indicative of stronger and deeper
35 convection, were associated with air masses that were more depleted in $\delta^{18}\text{O}$. These
36 findings facilitate a better understanding of how the monsoon and local meteorological
37 conditions affect water vapor isotope compositions in tropical region. Furthermore, we
38 present a new dataset that should enable improved water vapor isotopic modeling and
39 projections of atmospheric processes in coastal regions.

40 **Keywords:** Indian Summer Monsoon, Water Vapor Isotopes, Sea Surface Condition,
41 Convective Activity, Sri Lanka

42

43 **Short Summary**

44 Monitoring of atmospheric water vapor isotopes for one year at Matara, Sri Lanka,
45 yielded clear seasonal variations in $\delta^{18}\text{O}$, δD , and d-excess. The results showed lower
46 amplitudes of $\delta^{18}\text{O}$ during the southwest monsoon and higher amplitudes of $\delta^{18}\text{O}$ and
47 higher d-excess during the northeast monsoon. Sea surface evaporation and regional
48 convective activity significantly influenced isotopic compositions. Overall, our results
49 facilitate an improved understanding of the impacts of monsoon and local
50 meteorological conditions on tropical water vapor isotopic composition.

51

52 **1 Introduction**

53 The Indian Summer Monsoon (ISM), occurring from June to September, is a
54 pivotal component of the Asian climate system, serving as the primary transport of
55 moisture from the Indian Ocean to the Indian subcontinent and the Tibetan Plateau (TP).
56 Monsoonal precipitation plays a crucial role in agriculture and water resource
57 availability, affecting the welfare of over 1.9 billion people in surrounding countries

58 (Webster et al., 1998; Goswami et al., 2016). The Tibetan climate and hydrology are
59 profoundly influenced by the ISM, as it contributes significantly to the regional water
60 cycle by delivering substantial rainfall during the summer months. This rainfall is
61 essential for maintaining the glaciers and permafrost in the TP, a key water catchment
62 area for many of Asia's largest rivers (Bookhagen and Burbank, 2010). The ISM's
63 intensity and variability can lead to significant fluctuations in water availability,
64 affecting both agriculture and hydropower generation in the region (Singh and
65 Bengtsson, 2004; Gao et al., 2014). Furthermore, the interaction between the ISM and
66 the TP's topography creates unique climatic conditions that influence weather patterns
67 and extreme events in the region (Liu and Chen, 2000).

68 The seasonal precipitation and its origins over the TP are inextricably linked to
69 the dynamics of the ISM (Dai et al., 2021). Previous studies have provided evidence
70 that isotopic records derived from precipitation over the TP offer insights into the
71 climatic fluctuations and distinct moisture attributes associated with the ISM (Gao et
72 al., 2013; Guo et al., 2017). The summer monsoon brings significant moisture from the
73 Indian Ocean, leading to substantial rainfall over the TP primarily during the monsoon
74 months of June-September (Yao et al., 2012). This seasonal influx of moisture is critical
75 for maintaining the regional hydrological balance and supporting ecosystems.
76 Furthermore, the ISM's intensity and variability significantly influence the interannual
77 and decadal precipitation patterns over the TP, affecting the overall water availability
78 and climatic stability of the region (Kaushal et al., 2018).

79 The stable isotopic composition of river water (Bershaw et al., 2012; Li and
80 Garzjone, 2017), precipitation (Rahul et al., 2016a; Cai et al., 2017), and water vapor
81 (Risi et al., 2008; Steen-Larsen et al., 2013b; Rahul et al., 2016b; Lekshmy et al., 2022)
82 serves as a valuable tool for identifying the origins and understanding transmission
83 processes of atmospheric water vapor. Fractionation occurs during various phase
84 transitions, such as sea surface evaporation, condensation beneath clouds, re-
85 evaporation of raindrops, and diffusive exchanges between water vapor and raindrops
86 (Stewart, 1975; Benetti et al., 2018; Graf et al., 2019). The occurrence of fractionation

87 unveils investigable spatiotemporal distribution patterns in the water isotopic
88 composition, encompassing water vapor and precipitation. In this context, deuterium
89 excess (d -excess = $\delta D - 8 \times \delta^{18}\text{O}$) is a useful parameter for studying kinetic
90 fractionation effects (Dansgaard, 1964). Recent studies have significantly enhanced our
91 understanding of isotopic signals in convection regions, elucidating the complex
92 interactions between moisture processes and isotopic composition in tropical deep
93 convection. Around Barbados, during the winter trade winds, vertical transport and
94 large-scale circulation have been identified as primary drivers of isotopic variability at
95 the cloud base, acting over timescales from hours to days (Bailey et al., 2023; Villiger
96 and Aemisegger, 2024). Investigations into water vapor isotopes in the West African
97 troposphere reveal that both convection and mixing highlight the important role played
98 by large-scale atmospheric circulation processes in the variations of water vapor
99 isotopes (Diekmann et al., 2021; de Vries et al., 2022). The precise mechanisms by
100 which convective activity reduces the amount of stable isotopes in water vapor and
101 precipitation are still under debate. Some researchers have emphasized the significance
102 of condensation levels (Cai and Tian, 2016; Permana et al., 2016; Thompson et al.,
103 2017), while others suggested raindrop re-evaporation and raindrop-vapor isotope
104 exchanges during strong convection as crucial factors (Galewsky et al., 2016).
105 Additionally, unsaturated or mesoscale descending airflows that transport vapor
106 depleted in heavy isotopes to the lower atmosphere also contribute to lower isotope
107 values (Risi et al., 2008; Kurita, 2013). The influence of these processes varies with the
108 intensity of convective activity.

109 Evaporation at the ocean surface constitutes a significant component of the global
110 water cycle and is pivotal for the accurate modeling of climate change. Typically,
111 research on water vapor stable isotopes in the marine boundary layer aims to elucidate
112 the processes associated with evaporation isotopes as well as influencing factors (Craig
113 and Gordon, 1965). The d -excess of evaporated water vapor is mainly impacted by
114 dynamic fractionation associated with sea surface temperature (SST), the relative
115 humidity above the sea-surface (RH_{SST}, calculated relative to the saturation vapor

116 pressure at SST), and wind speed (rough or smooth) (Benetti et al., 2015; Benetti et al.,
117 2018). Investigations into the water vapor stable isotopic composition within the marine
118 boundary layer have been principally focused on regions such as the North Atlantic
119 (e.g., Greenland, Iceland, Bermuda) (Steen-Larsen et al., 2013a; Bonne et al., 2014;
120 Benetti et al., 2018; Bonne et al., 2019), Bay of Bengal (BoB) (Lekshmy et al., 2022),
121 and Arctic Oceans (Kurita, 2011). Several studies could confirm the existence of a
122 negative relationship between d-excess and RH_{SST} (Uemura et al., 2008; Steen-Larsen
123 et al., 2015), with wind speed and SST exerting a limited influence on this correlation
124 (Benetti et al., 2015). Observations from the North Atlantic support this theory (Benetti
125 et al., 2014). In addition, studies found significant variations in d-excess values in vapor
126 that originated at different moisture sources (Kurita, 2011; Steen-Larsen et al., 2013b;
127 Delattre et al., 2015). Subsequently, Benetti et al. (2015) introduced a multi-layer
128 mixing model, which is expected to improve the accuracy of d-excess and water vapor
129 isotope simulations. Due to the impact of dynamic fractionation on sea surface water
130 evaporation, some studies have focused on simulating observed d-excess under the
131 closure assumption (Bonne et al., 2019). Others have used isotope atmospheric
132 circulation models to assess mixing and transport processes within the marine boundary
133 layer (Benetti et al., 2015). Owing to the minor influence of transport-induced
134 fractionation, d-excess in the marine boundary layer is typically employed to deduce
135 moisture sources (Benetti et al., 2018).

136 Amidst the backdrop of global climate change, observing stable isotopes in
137 atmospheric water vapor is vital for monitoring and understanding climate shifts in low-
138 latitude areas (Rahul et al., 2016b). Such research is instrumental for providing a deeper
139 understanding of near-surface water vapor dynamics, pinpointing vapor sources and
140 transport routes, and differentiating between different contributions of atmospheric
141 water vapor to the water cycle.

142 Located in the northern Indian Ocean, Sri Lanka is impacted by both the southwest
143 and northeast monsoons (Fig. 1a, b) and has been identified as an important origin
144 region for monsoonal water vapor over the TP. However, only few studies have focused

145 on the Indian Ocean, and even fewer on the area around Sri Lanka. This knowledge gap
146 underscores the need to explore isotopic signals in this region and place them into their
147 appropriate context, e.g., with findings by Risi et al. (2008). For instance, more recent
148 studies on water stable isotopes in the South Indian Ocean and South Asian region have
149 uncovered connections between local processes and large-scale atmospheric circulation,
150 shedding light on sea-surface dynamics (Midhun et al., 2013; Rahul et al., 2016b;
151 Bonne et al., 2019). Unlike, in precipitation and surface water, in atmospheric water
152 vapor stable isotopes can be monitored continuously regardless of season, weather, or
153 location (Angert et al., 2008). This potentially full temporal and spatial coverage allows
154 for a more comprehensive and continuous monitoring of atmospheric water vapor
155 dynamics and transport, which should in turn facilitate a deeper understanding of
156 isotope transformation processes within the water cycle. Therefore, investigating the
157 dynamics of near-surface atmospheric water vapor stable isotopes at coastal stations is
158 not only pivotal for identifying monsoonal water vapor source regions but will facilitate
159 a better understanding of precipitation processes over the Indian Ocean. Oceanic
160 evaporation represents the first of many phase transitions that occur during the global
161 water cycle. The primary objective of researching water vapor stable isotopes is to
162 comprehend the processes and controlling factors of water isotopic variations.

163 In this study, we present the results from continuous observations of near-surface
164 atmospheric water vapor stable isotopes in Matara, Sri Lanka, collected from March 1,
165 2020, to February 28, 2021. We analyze the observational data to gain a better
166 understanding of the variations in moisture sources and main transmission processes in
167 tropical coastal regions. Furthermore, we explore how sea surface processes, convective
168 activity, and local meteorological factors affect near-surface atmospheric water vapor
169 stable isotopes at a coastal station, across daily, monthly, and seasonal (monsoonal) time
170 scales. Section 2 gives an overview of the study site and presents the meteorological
171 and water vapor observations, calibration protocols, and analysis methods. In Section
172 3, we illustrate the variability of isotopic and meteorological parameters, analyze
173 moisture sources, assess the impact of sea surface processes on water vapor isotopes,

174 and explore the relationship between water vapor isotopes, convective activity, and
175 local meteorological observations.

176

177 **2 Study Site, Data, and Methods**

178 **2.1 Study Site and Meteorological Data**

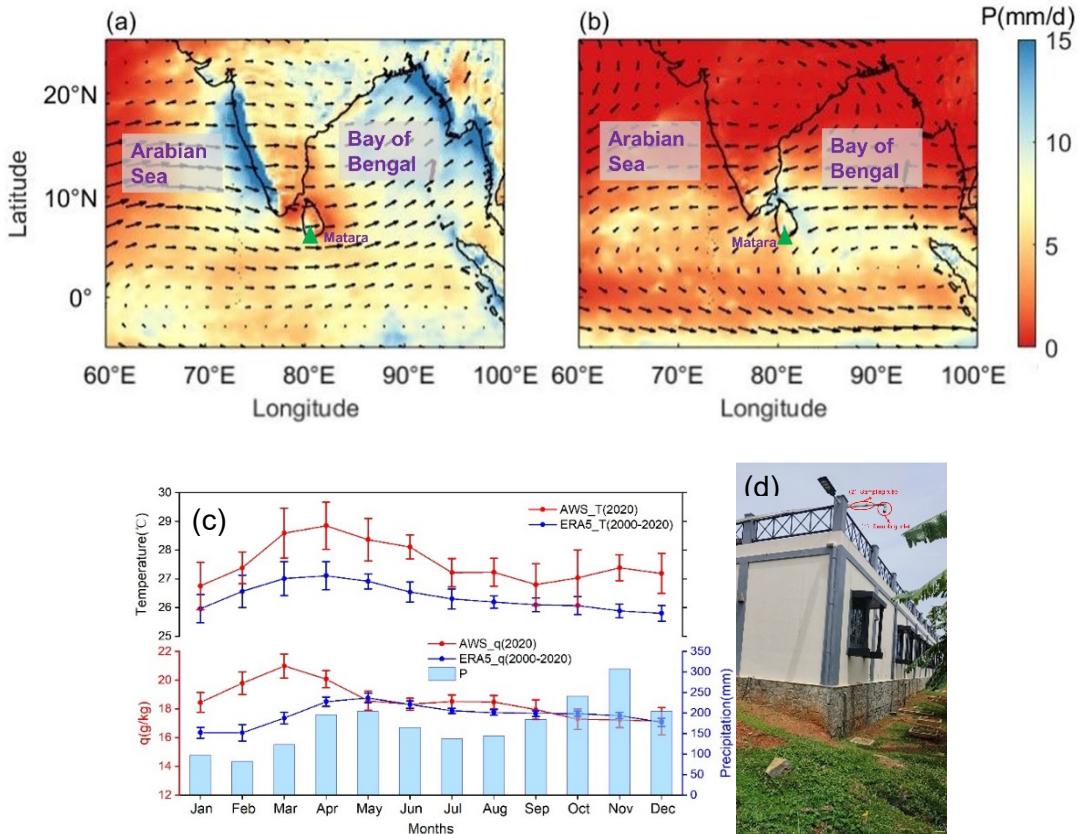
179 Sri Lanka (located between approximately 6°N to 10°N and 79° to 82°E) is the
180 southernmost country on the Indian subcontinent and a key region for identifying the
181 moisture source of the south Asian summer monsoon (Ravisankar et al., 2015).
182 Featuring a tropical climate, Sri Lanka experiences four distinct monsoon seasons
183 annually: the northeast monsoon from December to February, the first inter-monsoon
184 from March to April, the southwest monsoon from May to September, and the second
185 inter-monsoon from October to November (Malmgren et al., 2003; Jayasena et al.,
186 2008). For the analyses, we combined the first and second inter-monsoon periods into
187 a single “non-monsoon period”. Most of the precipitation in Sri Lanka comes from the
188 southwest and northeast monsoon systems, accounting for over 78% of the total annual
189 precipitation (Fig. 1c). Precipitation formation in Sri Lanka primarily relies on
190 organized convection associated with the Intertropical Convergence Zone (ITCZ) and
191 low-pressure systems (Gadgil, 2003), while the associated moisture primarily originate
192 in the Indian Ocean and BoB (Bandara et al., 2022). The southwest monsoon transports
193 moisture from the Indian Ocean to southwestern Sri Lanka (Fig. 1a) where it leads to
194 increased rainfall (Bavadekar and Mooley, 1981). In contrast, the northeast monsoon
195 carries water vapor from the BoB to northern and northeastern of Sri Lanka (Fig. 1b)
196 (Dhar and Rakhecha, 1983; Wang, 2006).

197 An automated weather station (AWS) was installed at the University of Ruhuna,
198 Matara (located at 5.94°N, 80.57°E) on the southern coast of Sri Lanka (Fig. 1d). It
199 collected real-time meteorological observations, including air temperature,
200 precipitation, relative humidity, air pressure, wind speed, and wind direction, from
201 March 1, 2020, to February 28, 2021. Based on the measured air temperature, relative
202 humidity, and air pressure, we can compute the lifting condensation level (LCL) using

203 (Dirmeyer et al., 2013):

$$\log E = -7.90298 \times \left(\frac{373.16}{T_{\text{obs. air}}} - 1 \right) + 5.02808 \times \log 10 \left(\frac{373.16}{T_{\text{obs. air}}} \right) - 1.3816 \times 10^{-7} \times \left(10^{\left(11.344 \times \left(1 - \frac{T_{\text{obs. air}}}{373.16} \right) - 1 \right)} + 8.1328 \times 10^{-3} \times \left(10^{\left(-3.49149 \times \left(\frac{373.16}{T_{\text{obs. air}}} - 1 \right) \right)} - 1 \right) + \log 10(1013.246) \right) \quad (1)$$

$$E_{\text{true}} = E \times RH \quad (2)$$


$$W = 0.622 \times \frac{E_{\text{true}}}{P - E_{\text{true}}} \quad (3)$$

$$T_{\text{dew}} = \frac{B}{\log \left(\frac{A \times 0.622}{W \times P} \right)} \quad (4)$$

$$LCL = 125 \times (T_{\text{obs. air}} - T_{\text{dew}}) \quad (5)$$

204 where E is the saturated vapor pressure, obtained from the improved Goff-Gratch
205 formula (Goff and Gratch, 1946); E_{true} is the actual water vapor pressure; RH and W
206 are relative humidity and mixing ratio, respectively; $T_{\text{obs. air}}$ and T_{dew} are the air
207 temperature measured directly by the AWS and dew point temperature, respectively; P
208 is the air pressure. The constants A and B have values of 2.53×10^8 kPa and $5.42 \times$
209 10^3 , respectively.

210 Meteorological data are compared with water vapor isotopic data measured during
211 the same period. Based on the European Centre for Medium-Range Weather Forecasts
212 (ECMWF, <https://cds.climate.copernicus.eu/eu/>) reanalysis dataset (ERA5), the annual
213 average precipitation and air temperature for the period from 2000 to 2020 is 2085 mm
214 and 27.6 °C, respectively (Fig. 1c) (Hersbach et al., 2020).

215

216

217 **Figure 1: Mean wind vectors (arrows) at 850 hPa during the (a) 2020 southwest monsoon and**
 218 **(b) 2020/2021 northeast monsoon seasons, along with mean precipitation (P, base colors) from**
 219 **ERA5 averaged for the same period. (c) Monthly mean temperature and specific humidity (q)**
 220 **obtained from the automated weather station at Matara (January and February are from 2021**
 221 **while March – December from 2020), with monthly average temperature, specific humidity,**
 222 **and precipitation from ERA5 (averaged for the years 2000-2020) plotted for comparison. (d)**
 223 **Photograph of the roof-mounted weather station at the University of Ruhuna, Sri Lanka.**

224 In this study, we used daily and monthly averages of outgoing longwave radiation
 225 (OLR, <https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html>)
 226 to quantify the convective activity. In addition, we used hourly data of 2m air
 227 temperature, 2m dew temperature, air pressure, precipitation, SST, atmospheric
 228 boundary layer height (BLH), wind speed, and wind direction, obtained from ERA5 for
 229 years 2000 to 2021, with a spatial resolution of $0.25^\circ \times 0.25^\circ$ and a temporal resolution
 230 of one hour. Studies have shown that ERA5 data provide good representations of the
 231 Matara equatorial climate and can be used in lieu of missing observational data

232 (Bandara et al., 2022). Due to weather conditions and instrument trouble, specific
233 humidity measured by the isotopic measurement instrument and computed by the AWS
234 are missing from March, 2020 to April, 2020. Therefore, we chose to present both
235 variables obtained from ERA5 as they complement each other, providing a clearer
236 picture of humidity changes at Matara station.

237 For the atmosphere above open sea regions, RH_{SST} is obtained using (Bonne et al.,
238 2019):

$$RH_{SST} = RH_{2m\ air} \times \frac{q_{sat}(T_{2m\ air})}{q_{sat}(SST)} \quad (6)$$

239 where RH_{2m air} is the relative humidity 2m above the ocean surface, q_{sat}(T_{2m air}) is
240 the specific humidity at a saturated condition for a given 2m air temperature, and
241 q_{sat}(SST) is calculated for seawater with a salinity of 35 practical salinity units (PSU)
242 (Curry and Webster, 1999).

243 The formulas to calculate air saturation specific humidity q_{sat}(T_{air}) and sea
244 surface saturation specific humidity q_{sat}(SST) (sea surface salinity of 35 PSU) are:

$$q_{sat}(T_{air}) = \frac{0.622 \times E}{P} \quad (7)$$

$$q_{sat}(SST) \text{ (sea surface salinity of 35 PSU)} = 0.98 \times q_s \text{ (sea surface salinity of 35 PSU)} \quad (8)$$

245 q_s (sea surface salinity of 35 PSU) represents specific humidity and is calculated in the
246 same way as q_{sat}(T_{air}). E is the saturated water vapor pressure, obtained from the
247 improved Goff-Gratch formula (Goff and Gratch, 1946) and P is atmospheric pressure.
248 Sea surface pressure is calculated using atmospheric pressure.

250 **2.2 In-situ Observations of Atmospheric Water Vapor Isotopic 251 Composition**

252 Near-surface atmospheric water vapor isotope measurements at Matara were
253 collected using a sampling frequency of 1Hz with the instrument located approximately

254 5m from the AWS. We used a Water Vapor Isotope Analyzer (Los Gatos Research (LGR)
255 Inc.) in conjunction with an LGR Water Vapor Isotope Standard Source (WVISS) model.
256 The LGR instrument employs a mirrored sampling chamber in which the laser traverses
257 the sample volume thousands of times, effectively amplifying the water vapor
258 absorption signal which facilitates the detection of low concentrations of D and ^{18}O
259 (Liu et al., 2015). Compared to traditional methods, this spectroscopic technique offers
260 three advantages: (i) it is compact and portable, enabling real-time field monitoring; (ii)
261 it can simultaneously measure $\delta^{18}\text{O}$ and δD ; and (iii) it has lower measurement costs
262 and requires less operator expertise.

263 The instrumental setup was situated approximately 100 m from the sea shore (5.94°
264 N, 80.57° E, 10 meters), and consisted of four primary components: (1) A sampling
265 inlet, positioned approximately 5 m above the ground (Fig. 1d), equipped with a
266 stainless-steel mesh to prevent interference from insects and facing downward to avoid
267 direct impacts from rain. (2) A 1/4-inch outer diameter stainless steel sampling tube,
268 insulated with heating tape and a 2-cm thick pipe for thermal insulation. (3) The
269 calibration unit to generate a constant flow of water vapor with known isotopic
270 composition and at different humidity levels. (4) A water vapor isotope analyzer,
271 delivering a measurement precision for $\delta^{18}\text{O}$ and δD of 0.25‰ and 0.5‰, respectively
272 (a concentration of 2500 ppmv). This setup has been designed to minimize external
273 influences and maintain the integrity of the sampled water vapor.

274 The spatial proximity between the water vapor analyzer and AWS ensures a high
275 level of synchronicity between the isotope and meteorological measurements. We
276 define wind directions from 60° to 330°N as oceanic, while those from 330° to 60°N as
277 terrestrial winds (Fig. 1a, b).

278 Atmospheric water vapor stable isotopes are expressed using the δ notation (in per
279 mil, ‰), using the following equations:

$$R_{^{18}\text{O}} = \frac{^{18}\text{O}}{^{16}\text{O}} \quad (9)$$

$$R_{\text{D}} = \frac{\text{D}}{\text{H}} \quad (10)$$

$$\delta_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{VSMOW}}} - 1 \right) \times 1000\% \quad (11)$$

280 Here, δ_{sample} represents either $\delta^{18}\text{O}$ or δD (^{18}O or D isotope ratio) relative to Vienna
281 Standard Mean Ocean Water (VSMOW). R_{sample} and R_{VSMOW} are the ^{18}O or D and
282 VSMOW isotope ratios, respectively.

283 2.3 Calibration Protocol

284 In this study, we adhere to the calibration protocol proposed by Steen-Larsen et al.
285 (2013b). Briefly, the instrument calibration and data processing consist of three major
286 steps: (1) humidity-isotope response calibration, (2) VSMOW - Standard Light
287 Antarctic Precipitation (VSMOW-SLAP) calibration, and (3) drift correction (see Text
288 S1 in the Supporting Information).

289 The water vapor concentration can influence the measured water vapor isotopic
290 composition, known as concentration- or humidity-isotope dependency
291 characterization. By adding a constant stream of water vapor with known isotopic
292 composition at different humidity levels, we can establish the humidity-isotope
293 response function (Sturm and Knohl, 2010; Aemisegger et al., 2012). As this function
294 can vary over time, its calibration was repeated monthly, using two standard samples of
295 known isotopic compositions measured at humidity levels ranging from 16,000 to
296 38,000 ppmv at intervals of 1000 ppmv. Each level was measured for at least 25 minutes
297 using the LGR WVISS. Our results are referenced to a humidity level of 20,000 ppmv.
298 We compared our measurements to the international VSMOW-SLAP scale, assuming a
299 linear drift between calibration points.

300 To compensate for instrumental drift, we measured the water vapor from a drift-
301 standard bottle for 25 minutes after each 12 hours performed an ambient air
302 measurement. Furthermore, we tested for instrument drift as part of the routine
303 instrument maintenance, assuming a linear drift between each drift-standard
304 measurement. Laboratory analyses of liquid isotopes have confirmed the stability of its
305 isotopic composition over time.

306 **2.4 Rayleigh Distillation Model and MBL-Mixing Model**

307 The Rayleigh distillation model is employed to quantify isotopic variations during
 308 phase changes (Dansgaard, 1964), by which the residual air mass becomes drier with a
 309 depletion in heavy isotopes following moist adiabatic vertical ascent (Gat, 1996):

$$R_r = R_0 f^{\alpha_v^l(T) - 1} \quad (12)$$

310 Here, R_r and R_0 represent the isotopic ratio of residual vapor and initial vapor,
 311 respectively. $\alpha_v^l(T)$ denotes the equilibrium fractionation factor, and f is the fraction
 312 of residual water vapor.

313 By integrating the definition of isotope ratios as given in Equation (11), the
 314 Rayleigh distillation model can be expressed in terms of isotopic content as follows:

$$\delta_r = (\delta_0 + 1) f^{\alpha_v^l(T) - 1} - 1 \quad (13)$$

315 where δ_r and δ_0 are the isotope ratios relative to VSMOW in residual and initial vapor,
 316 respectively.

317 We employ the mixing model to examine the isotopic characteristics after the
 318 mixing of two air masses (Galewsky and Hurley, 2010):

$$R_{\text{mix}} = \frac{f[\text{HDO}]_1 + (1 - f) \times [\text{HDO}]_2}{f[\text{H}_2\text{O}]_1 + (1 - f) \times [\text{H}_2\text{O}]_2} \quad (14)$$

$$R_{\text{mix}} = \frac{f[\text{H}_2^{18}\text{O}]_1 + (1 - f) \times [\text{H}_2^{18}\text{O}]_2}{f[\text{H}_2\text{O}]_1 + (1 - f) \times [\text{H}_2\text{O}]_2} \quad (15)$$

319 where R_{mix} represents the isotopic ratio of the mixed air mass, while $[\text{HDO}]$, $[\text{H}_2\text{O}]$, and
 320 $[\text{H}_2^{18}\text{O}]$ denote isotopic water vapor volume mixing ratios, and f is the mixing fraction.

321 We use water vapor isotopes to characterize the mixing processes in the marine
 322 boundary layer (MBL) (Benetti et al., 2018), using the following equation (Craig and
 323 Gordon, 1965):

$$1 + \delta_e = \frac{1}{\alpha_k} \times \frac{\alpha_v^l \times (1 + \delta_{\text{OC}}) - \text{RH}_{\text{SST}} \times (1 + \delta_{\text{MBL}})}{1 - \text{RH}_{\text{SST}}} \quad (16)$$

324 where α_v^l represents the equilibrium fractionation factor between vapor and liquid, and
 325 α_k is the kinetic fractionation factor. δ_{OC} denotes the isotopic composition of the ocean
 326 surface. We utilize α_v^l from Majoube (1971a, b) and α_k for the smooth regime ($\alpha_k^{18}\text{O} =$

327 1.006 and $\alpha_{kD} = 1.0053$) (Merlivat and Jouzel, 1979).

328 **2.5 Concentration-Weighted Trajectory and Moisture Source**

329 **Diagnoses**

330 To delineate water vapor transport paths and pinpoint moisture sources, we
331 employed the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
332 model from the US National Oceanic and Atmospheric Administration (NOAA) to
333 compute backward trajectories of air masses arriving at Matara station during the
334 southwest and northeast monsoons. The Global Data Assimilation System (GDAS) with
335 $1^\circ \times 1^\circ$ and 3-hour spatial and temporal resolutions provided the background
336 meteorological data from May 2020 to September 2020 and December 2020 to
337 February 2021 (<ftp://arlftp.arlhq.noaa.gov/archives/gdas1/>). The HYSPLIT model uses
338 GDAS reanalysis data, which contains 37 (vertical) pressure levels and a $1^\circ \times 1^\circ$
339 horizontal resolution. This enables the model to generate hourly outputs consisting of
340 particle properties, locations, and relevant meteorological variables such as pressure,
341 temperature, precipitation, and specific humidity. As atmospheric water vapor primarily
342 resides at altitudes below 2 km (Wallace and Hobbs, 2006), we initiated the backward
343 trajectories from a height of 50 m above the ground. Particles were released four times
344 daily (at 00:00, 06:00, 12:00, and 18:00 UTC) at 20 different locations within a
345 rectangular area extending 0.2° in each direction (north, south, east, and west) from
346 Matara station and at four heights above the ground (50 m, 500 m, 1200 m, and 2000
347 m). Each trajectory was back-traced for 168 h, recording data at 1-h intervals. The
348 HYSPLIT model outputs latitude, longitude, elevation, pressure, temperature,
349 precipitation, relative humidity, and specific humidity. Backward trajectory clustering
350 analysis was conducted, using the corresponding meteorological data. We averaged the
351 trajectories of four times per day to obtain a daily mean trajectory, combined with water
352 vapor stable isotope values on precipitation days. These daily mean trajectories were
353 clustered by moisture source using K-means clustering. By analyzing the variations in
354 latitude, elevation, and specific humidity along the trajectories, the influence of
355 different moisture sources on local vapor content and isotopic composition was

356 evaluated.

357 These analyses yielded concentration-weighted trajectory (CWT) fields
358 (resolution of $0.5^\circ \times 0.5^\circ$) (Hsu et al., 2003) using the in-situ daily average $\delta^{18}\text{O}$ and d-
359 excess, which in turn facilitated the identification of potential moisture sources and an
360 assessment of the potential influence of recirculation on d-excess in water vapor
361 (Salamalikis et al., 2015; Bedaso and Wu, 2020; Xu et al., 2022). CWT (C_{ij}) was
362 calculated as:

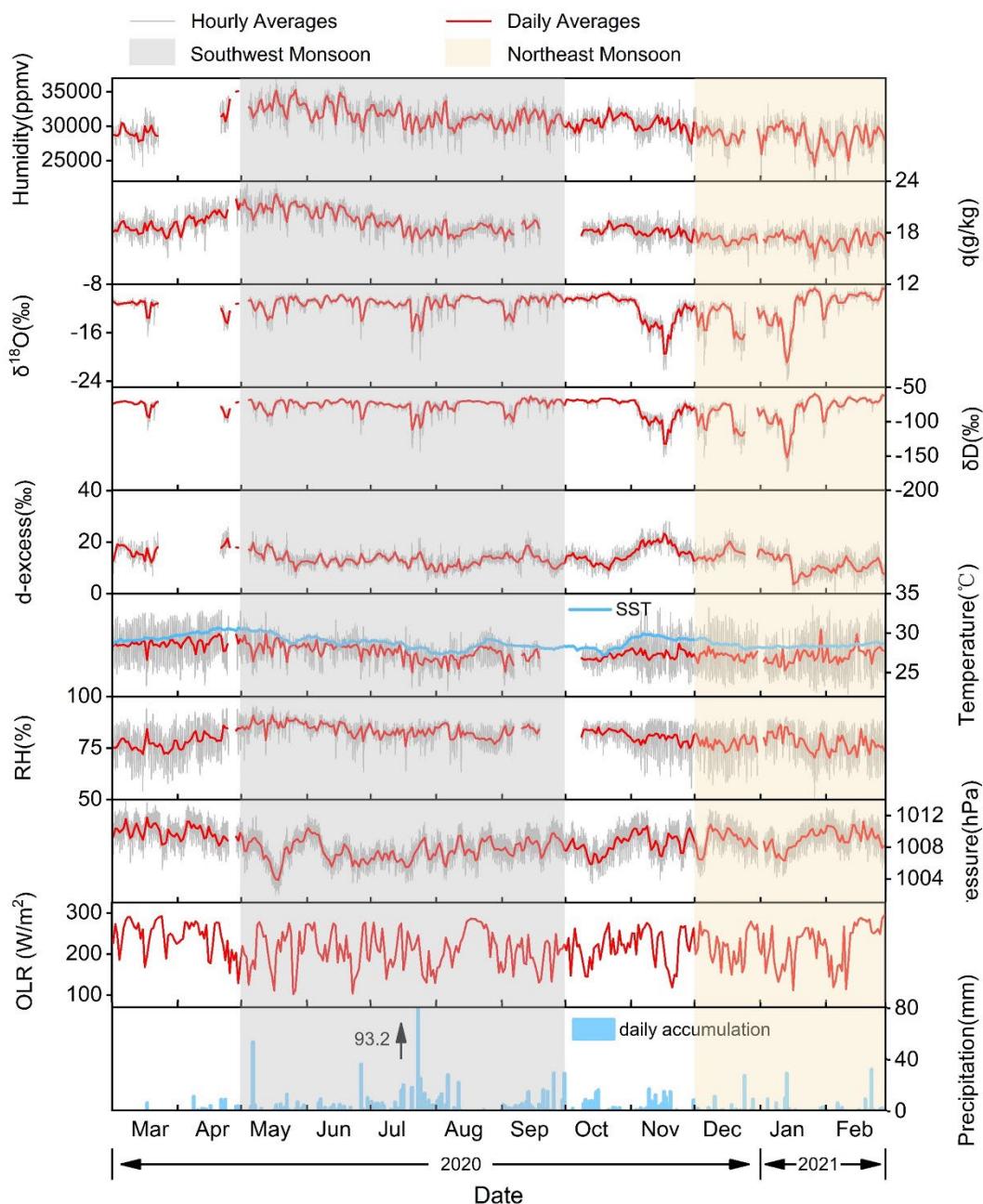
$$C_{ij} = \frac{\sum_{k=1}^K C_k \tau_{ijk}}{\sum_{k=1}^K \tau_{ijk}} \quad (17)$$

363 where (i, j) denote grid coordinates, k the trajectory index, K the total number of
364 trajectories analyzed, C_k the concentration (here $\delta^{18}\text{O}$ and d-excess) at the end of the
365 trajectory k , and τ_{ijk} the residence time of trajectory k in grid cell (i, j) . We substituted
366 the residence time by the number of trajectory endpoints in each grid cell (i, j) .

367

368 **3 Results**

369 **3.1 Seasonal Variability of Water Vapor Stable Isotope**


370 Fig. 2 shows the hourly and daily averages of water vapor isotopes ($\delta^{18}\text{O}$, δD , and
371 d-excess) alongside temperature, relative humidity, atmospheric pressure, specific
372 humidity, and SST at Matara station.

373 The mean relative humidity, specific humidity, lifting condensation level (LCL),
374 monthly precipitation, and water vapor isotopic composition ($\delta^{18}\text{O}$, δD , and d-excess)
375 exhibit a clear seasonal cycle (Fig. S3 and Table 1). The 12-month average temperature
376 and relative humidity are 27.6°C and 80.7%, respectively (Table 1). Temperature
377 variations maintain consistent amplitudes between monsoon and non-monsoon periods
378 at around 10°C . Recorded minimum and maximum temperatures are 22.3°C and 33.5°C ,
379 respectively. Specifically, comparing monthly variations in air temperature and specific
380 humidity (Fig. S3), both parameters gradually decrease from relatively high values in
381 May to their respective minima of 26.9°C and 18.5 g/kg (monthly averages) in
382 September. Monthly average air temperature and specific humidity show continuous

383 increases from January to 28.4°C and 21 g/kg in May. Also, mean relative humidity
384 peaks in May at 95%, with lower values observed during the northeast monsoon and
385 the early first non-monsoon (December to April), reaching a minimum of 49.2% in
386 January. From late May, specific humidity gradually declines, stabilizing after mid-July
387 until October with levels ranging from 16 g/kg to 20 g/kg. Significant oscillations occur
388 during the southwest and northeast monsoons, with amplitudes of approximately 1.3
389 g/kg and 2.3 g/kg, respectively. During the southwest monsoon, temperature, and
390 specific humidity peak in May (monthly averages of $28.4 \pm 1.4^\circ\text{C}$ and $21.0 \pm 1.1 \text{ g/kg}$).
391 February marks the coldest and driest (specific humidity) month (monthly averages of
392 $27.4 \pm 2.6^\circ\text{C}$ and $17.1 \pm 1.3 \text{ g/kg}$) during the northeast monsoon (Fig. S3). The seasonal
393 temperature variations exhibit modest amplitudes (Fig. 2), attributed to the tropical
394 climate at Matara station. Conversely, relative humidity displays higher amplitude
395 seasonal than synoptic variations. Furthermore, daily average SSTs consistently exceed
396 the daily average 2m air temperatures recorded by the AWS (Fig. 2).

397 Yearly averages for water vapor isotopic values are $-11.6\text{\textperthousand}$ for $\delta^{18}\text{O}$, $-79.5\text{\textperthousand}$ for
398 δD , and $13.3\text{\textperthousand}$ for d-excess, respectively. Isotopic composition ranges from $-23.9\text{\textperthousand}$ to
399 $-7.5\text{\textperthousand}$ for $\delta^{18}\text{O}$, $-173.2\text{\textperthousand}$ to $-53.4\text{\textperthousand}$ for δD , and $-1.2\text{\textperthousand}$ to $28.1\text{\textperthousand}$ for d-excess (Table
400 1). Monthly averages of water vapor isotopes ($\delta^{18}\text{O}$ and d-excess) exhibit stability from
401 March to October, followed by sudden decreases. $\delta^{18}\text{O}$ and δD show distinct seasonal
402 variations, with higher values during the southwest monsoon and lower values during
403 the northeast monsoon (Table 1). Consequently, the subsequent analysis will
404 concentrate on the variations in $\delta^{18}\text{O}$. $\delta^{18}\text{O}$ decreases during the southwest, northeast ,
405 and non-monsoon periods, with mean values of $-11.1\text{\textperthousand}$, $-12.2\text{\textperthousand}$, and $-11.9\text{\textperthousand}$,
406 respectively. Extreme values of $\delta^{18}\text{O}$ are observed during the northeast monsoon, with
407 a maximum of $-7.5\text{\textperthousand}$ and a minimum of $-23.9\text{\textperthousand}$. Conversely, d-excess exhibits a
408 reverse pattern to $\delta^{18}\text{O}$ on both seasonal and monthly scales, characterized by lower
409 values during the southwest monsoon and higher values during the non-monsoon period.
410 Furthermore, d-excess increases during the northeast, southwest, and non-monsoon
411 periods, with mean values of $12.4\text{\textperthousand}$, $13\text{\textperthousand}$, and $14.7\text{\textperthousand}$, respectively. The d-excess

412 maximum occurs in November at 28.1‰ (monthly average of $15.2 \pm 4.3\text{‰}$), while the
 413 minimum of -1.2‰ was recorded in January (monthly average of $11.3 \pm 4.5\text{‰}$). d-
 414 excess peaks in April 2020 at 19.1‰, indicating potential contributions from local
 415 recycling. The high values of d-excess are related to moisture recycling. Low specific
 416 humidity corresponds to depleted $\delta^{18}\text{O}$ and elevated d-excess, indicating a strong
 417 depletion during the long-distance transport from the source regions to the observation
 418 station.

419

420 **Figure 2: Near-surface observations at Matara station of water vapor isotopes ($\delta^{18}\text{O}$, δD , and**

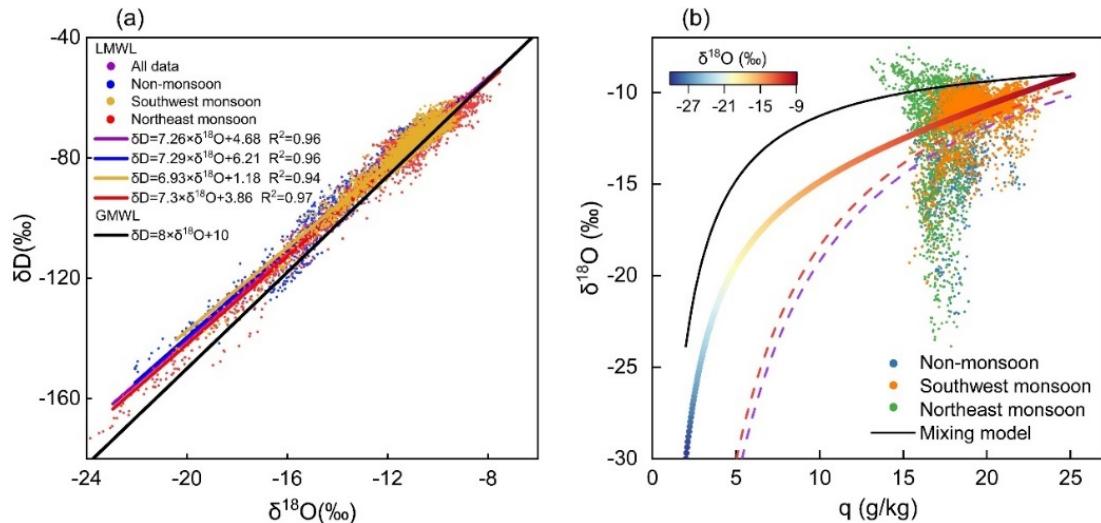
421 **d-excess) and meteorological parameters (humidity, specific humidity (q), temperature,**
422 **relative humidity (RH), pressure, outgoing longwave radiation (OLR, obtained from NCEP),**
423 **and precipitation) from March 1, 2020, to February 28, 2021. Local sea surface temperature**
424 **at Matara (SST, obtained from ERA5) is plotted in blue.**

425 **Table 1: Summary of hourly-averaged data collected at Matara station from March 1, 2020,**
 426 **to February 28, 2021. Averages are shown in bold. N indicates the number of observations of**
 427 **$\delta^{18}\text{O}$, δD , d-excess, temperature (T), relative humidity (RH), specific humidity (q),**
 428 **atmospheric boundary layer height (BLH), and lifting condensation level (LCL). Yearly**
 429 **maxima and minima for each parameter are highlighted using bold italics.**

Season		$\delta^{18}\text{O}$	δD	d-excess	T	RH	q	BLH	LCL
		(‰)	(‰)	(‰)	(°C)	(%)	(g/kg)	(m)	(m)
Non- monsoon	mean	-11.9	-80.6	14.7	28.0	79.4	18.6	630.1	471.4
	SD	2.2	16.6	3.8	2.2	7.3	1.3	179.1	204.1
	Max.	-9.0	-65.3	28.1	33.2	94.2	23.0	1178.8	1283.1
	Min.	-22.1	-151.1	5.1	23.3	54.2	15.1	84.4	98.1
	N	1851	1851	1851	2617	2617	2617	2928	2617
Southwest monsoon	mean	-11.1	-75.7	13.0	27.6	83.8	19.4	741.4	348.7
	SD	1.3	9.6	2.8	1.5	4.5	1.5	149.0	118.4
	Max.	-9.1	-60.8	24.1	32.7	95.0	23.7	1564.4	938.9
	Min.	-20.4	-143.5	4.5	22.7	63.4	15.1	259.0	78.5
	N	3314	3314	3314	3192	3197	3192	3672	3192
Northeast monsoon	mean	-12.2	-85.1	12.4	27.1	77.4	17.2	516.4	524.7
	SD	3.0	22.0	4.29	2.4	7.8	1.2	139.4	224.0
	Max.	-7.5	-53.4	25.0	33.5	90.0	19.9	1125.7	1465.6
	Min.	-23.9	-173.2	-1.2	22.3	49.2	13.1	182.0	192.3
	N	1885	1885	1885	1993	1993	1993	2160	1993
All	mean	-11.6	-79.5	13.3	27.6	80.7	18.6	648.7	434.8
	SD	2.2	16.1	3.6	2.0	7.0	2.1	181.3	195.1
	Max.	-7.5	-53.4	28.1	33.5	95.0	23.7	1564.4	1465.6
	Min.	-23.9	-173.2	-1.2	22.3	49.2	13.1	84.4	78.5
	N	7050	7050	7050	7802	7807	7807	8760	7802

430

431 For $\delta^{18}\text{O}$, δD , and d-excess, synoptic variations were recorded (Fig. 2). Abrupt
432 changes occurred in late July 2020 and from November 2020 to January 2021,
433 associated with synoptic events. Cumulative precipitation in July 2020 reached 451.8
434 mm, with a notable rainfall event in late July recording daily rainfall of 93.2 mm.
435 Isotopic $\delta^{18}\text{O}$ values show a sharp depletion from $-10.4\text{\textperthousand}$ to $-20.4\text{\textperthousand}$ within 20 h of
436 isolated rainfall events, lasting for 6 days. Over the 75-day period spanning from late
437 southwest monsoon to mid-northeast monsoon, significant fluctuations can be seen in
438 isotopic δ between $-22\text{\textperthousand}$ and $-11\text{\textperthousand}$. During the southwest monsoon from July 12 to
439 August 7, $\delta^{18}\text{O}$ values varied from $-20.4\text{\textperthousand}$ to $-9.2\text{\textperthousand}$, and δD values ranged from $-143.5\text{\textperthousand}$
440 to $-68.6\text{\textperthousand}$. This finding is consistent with water vapor isotopic $\delta^{18}\text{O}$ ($-14.1\text{\textperthousand}$ to $-9.8\text{\textperthousand}$)
441 and δD ($-97.2\text{\textperthousand}$ to $69.1\text{\textperthousand}$) values measured from July 12 to August 7, 2012, near the
442 Bay of Bengal, although the local minimum at Matara station is below the minimum in
443 the Bay of Bengal (Midhun et al., 2013). Other coastal stations such as Bangalore,
444 Ponmudi, and Wayanad also exhibit water vapor isotopic depletion in autumn and
445 winter, mirroring observations at Matara (Table 2).


446 The atmospheric water vapor line serves as an indicator of the humidity conditions
447 at the vapor source and the fractionation processes along the transport path. The slope
448 reflects the extent of vapor kinetic fractionation, while the intercept indicates the
449 humidity levels at the vapor source. Comparing the Local Meteoric Water Line (LMWL)
450 for $\delta^{18}\text{O}$ and δD with the Global Meteoric Water Line (GMWL) we obtain a slope of < 8
451 during both monsoon periods (Fig. 3a). Seasonal variations are also visible in $\delta^{18}\text{O}$
452 and δD distribution patterns. Daily averages of water vapor isotopic $\delta^{18}\text{O}$ and δD
453 demonstrate a strong correlation ($r = 0.96$, slope = 7.26) with a lower intercept at 4.68.
454 During the northeast monsoon, LMWL slope and intercept are higher compared to other
455 periods, indicating significant moisture recirculation. During the southwest monsoon,
456 both the slope (6.93) and intercept (1.18) are lower compared to other periods,
457 correlating with higher rainfall (Fig. 2).

458 **Table 2: Summary of observed water vapor isotope concentrations at various stations in India**
 459 **and the Bay of Bengal.**

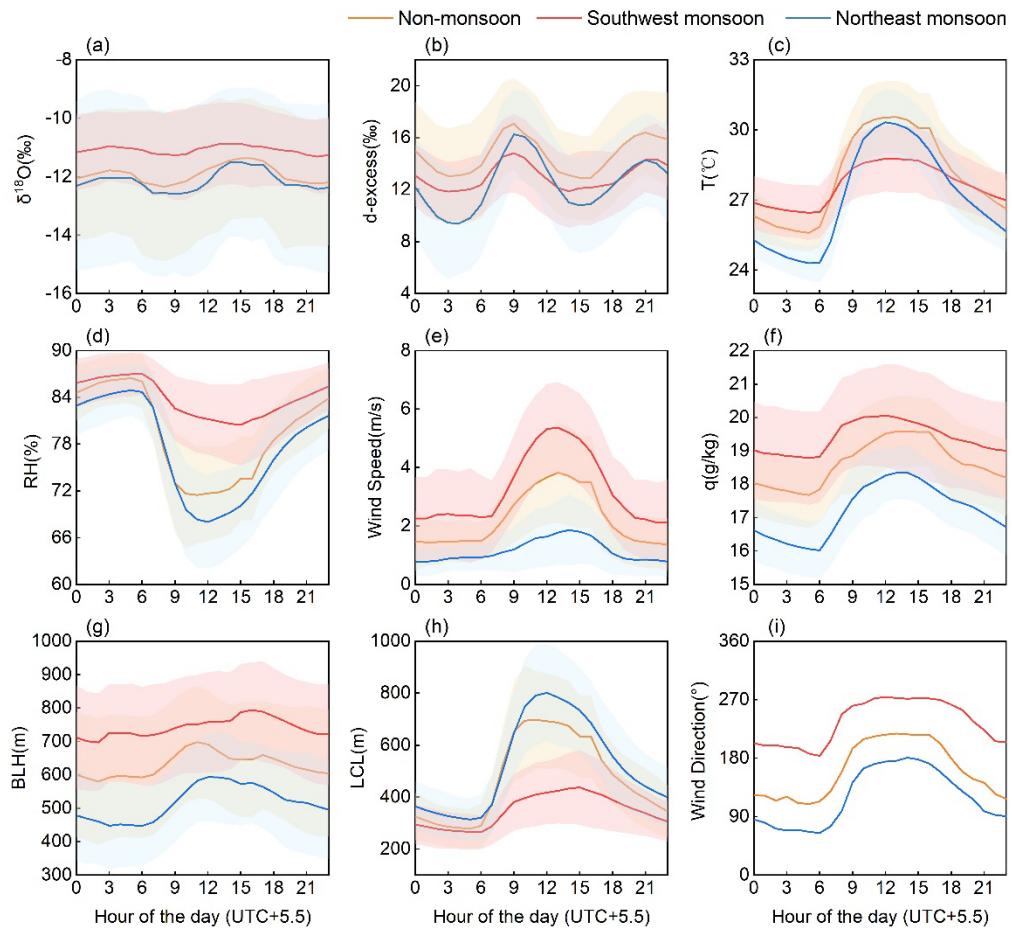
Country or region	Station or location	Latitud e (N°)	Longitu de (E°)	Date	$\delta^{18}\text{O}$ (‰)	δD (‰)	d-excess (‰)	References
India	Bangalore	13.01	77.55	Jun 1, 2012, to	-23.8	-178.3	-4.5 to	
				Sep 30, 2012	to -9.0	to -58.6	32.7	
				Oct 1, 2012, to	-22.7	-177.1	-9.5 to	(Rahul et al., 2016b)
				Feb 28, 2013	to -10.2	to -73.7	41.4	
	Kolkata	22.56	88.41	May 3, 2019, to	-16.9	-128.3	-7.1 to	
				Oct 25, 2019	to -10.0	to -72.8	25.4	(Bhattacharya et al., 2021)
	Roorkee	29.87	77.88	Feb 1, 2007, to	-17.0		32.0 to	
				May 31, 2007	to -3.0		70.0	
				Jun 1, 2007, to	-32.0	none	40.0 to	
				Sep 30, 2007	to -6.0		87.0	(Saranya et al., 2018)
Bay of Bengal	Ponmudi	8.76	77.12	Oct 1, 2007, to	-30.0		30.0 to	
				Dec 31, 2007	to -7.0		60.0	
	Wayanad	11.51	76.02	Apr 1, 2012, to	-24.1	-170.0	6.3 to	
				Nov 30, 2012	to -8.6	to -51.0	26.5	(Lekshmy et al., 2018)
	Ahmedabad	23.03	72.56	Apr 1, 2007, to	-20.5	-139.1	13.3 to	
				Apr 1, 2008	to -7.9	to -50.0	31.2	
	Chhota Shigri	32.58	77.58	Apr 1, 2007, to	-19.2	-128.1	6.9 to	
				Apr 1, 2008	to -8.9	to -59.8	40.4	(Srivastava et al., 2015)
	6m	32.58	77.58	Apr 1, 2007, to	-19.4	-101.5	28.0 to	
				Apr 1, 2008	to -10.3	to -29.2	62.0	(Ranjan et al., 2021)
	25m	25m	none	Jul 1, 2012, to	-13.6	-94.0 to	5.7 to	
				Aug 1, 2012	to -10.0	-68.3	16.4	(Midhun et al., 2013)
	25m	25m	none	Nov 15, 2013, to	-14.1	-97.2 to	6.9 to	
				Dec 1, 2013	to -9.8	-69.1	19.4	

460 We found a significant negative relationship between d-excess and $\delta^{18}\text{O}$, with a
 461 rate of change for d-excess with $\delta^{18}\text{O}$ is $-0.68\text{‰}/\text{‰}$ ($r = -0.55$) (Fig. S4a). This is below
 462 the $-0.05\text{‰}/\text{‰}$ recorded at Bangalore station (Rahul et al., 2016b). Seasonally, the
 463 correlation between both variables weaken during the southwest, northeast, and non-
 464 monsoon periods, with respective rates of change of $-0.94\text{‰}/\text{‰}$ ($r = -0.49$), $-0.69\text{‰}/\text{‰}$

465 (r = -0.54), and -0.65 ‰/‰ (r = -0.44). Similar patterns are detected for temperature–
 466 d-excess and specific humidity–d-excess correlations, showing gradual increases in the
 467 slopes and intercepts of the water vapor line. Moreover, the concentrated distribution
 468 of vapor values during the southwest monsoon and the highly scattered distribution
 469 during the northeast monsoon are indicative of the corresponding seasonal distributions
 470 of the water vapor line.

471
 472 **Figure 3: (a) Co-variation of water vapor isotopic composition and meteorological parameters**
 473 **during different monsoon and non-monsoon periods between March 1, 2020 and February 28,**
 474 **2021. The lines represent linear least-squares regressions (LMWL and GMWL) of δD (‰) as**
 475 **a function of $\delta^{18}\text{O}$ (‰). (b) Scatter plot of observed hourly water vapor isotopic $\delta^{18}\text{O}$ vs.**
 476 **specific humidity (q). The dashed red and blue curves represent the Rayleigh distillation line**
 477 **during the southwest and northeast monsoon. The solid black curve represents the mixing line.**
 478 **The colored curve represents the MBL-mixing line.**

479 Plots of q– $\delta^{18}\text{O}$, the theoretical Rayleigh distillation curve, the mixing-line, and
 480 MBL-mixing curve, were used to assess mixing conditions during the study period (Fig.
 481 3b). During the southwest monsoon, most measurements are clustered between the
 482 Rayleigh and mixing curve, indicating isotopic variability dominated by leaching
 483 effects of precipitation and moisture mixing process. Limited water vapor
 484 measurements are scattered below the Rayleigh fractionation line, implying a
 485 discernible impact of raindrop re-evaporation. Similarly, during the non-monsoon
 486 period, most measurements lie between the Rayleigh and mixing curves, with only a


487 few located below the Rayleigh line. During the northeast monsoon, $\delta^{18}\text{O}$ spans from
488 the upper to the lower extreme of the mixing and Rayleigh distillation curves. The
489 measurements substantially deviate from the Rayleigh curve and show a higher
490 depletion than predicted by the Rayleigh model, likely due to the influence of
491 convective processes.

492 **3.2 Diurnal Cycles**

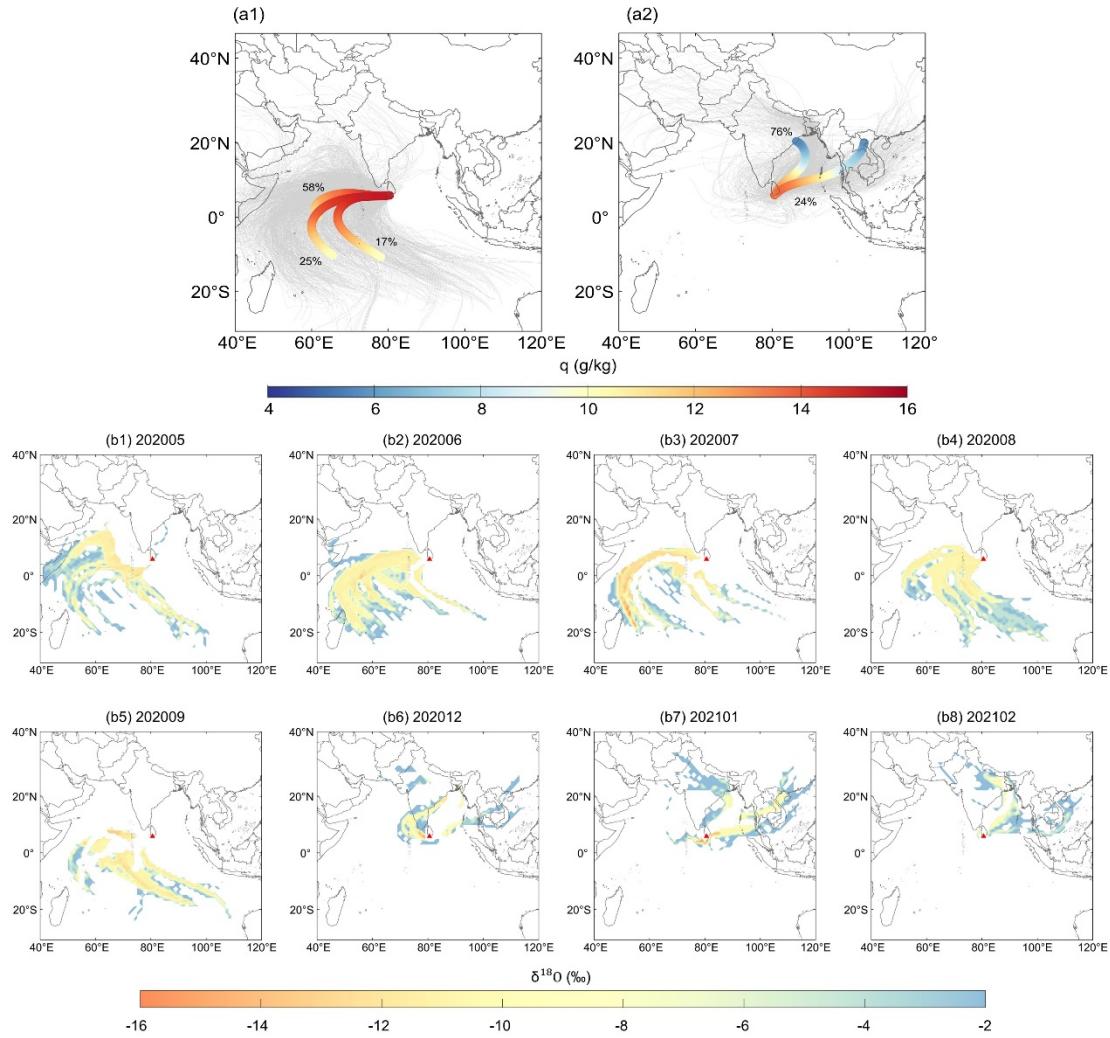
493 To look for diurnal cycles in isotopic composition and meteorological parameters,
494 we analyzed hourly averages (Fig. 4c-e).

495 All isotopic ($\delta^{18}\text{O}$, δD , and d-excess) and meteorological parameters exhibit strong
496 diurnal variations during both monsoon and non-monsoon periods (Fig. 4). Overall, the
497 diurnal variations in local meteorological parameters solar radiation during the day and
498 the resulting development of a boundary layer, with increasing temperatures and wind
499 speeds between noon and the afternoon, accompanied by a decrease in relative humidity
500 due to significant evapotranspiration. At night, surface radiative cooling causes
501 temperatures to drop, resulting in calmer conditions near the surface and gradual air
502 saturation, indicating a relatively stable atmospheric boundary layer. During the
503 southwest monsoon, $\delta^{18}\text{O}$, δD , relative humidity, wind speed, specific humidity, and
504 BLH are generally higher than during the northeast and non-monsoon periods, while d-
505 excess and LCL are lower. In the early morning, $\delta^{18}\text{O}$ steadily decreases, reaching a
506 minimum (-11.26‰) around sunrise (~09:00 local time (LT)). Subsequently, it
507 increases throughout the day, peaking (-10.87‰) in the afternoon (~15:00 LT), yielding
508 a diurnal fluctuation of merely 0.45‰. Increased specific humidity between 10:00 LT
509 and 14:00 LT coincides with increasing air temperatures and wind speeds and
510 decreasing relative humidity (Fig. 4c-f). BLH peaks between 14:00 LT and 16:00 LT,
511 slightly later than other meteorological parameters. The same diurnal variations for
512 each parameter were observed during the northeast monsoon, with maximum changes
513 in $\delta^{18}\text{O}$ and d-excess of 1.1‰ and 6.8‰, respectively. Specific humidity peaks between
514 10:00 LT and 16:00 LT, accompanied by increases in air temperature, wind speed, BLH,
515 and LCL. After 16:00 LT, specific humidity decreases alongside isotopic δ values and

516 other meteorological parameters. d-excess peaks (14.81‰) at 09:00 LT and fluctuates
 517 until 23:00 LT, contrasting with the period from 04:00 LT to 09:00 LT (Fig. 4b). d-
 518 excess exhibits a W-shaped variability, reaching similar highs at 09:00 LT and 21:00
 519 LT. Specific humidity exhibits a diurnal variation that aligns closely with the $\delta^{18}\text{O}$
 520 pattern, reaching its minimum before sunrise and peaking around midday (10:00-15:00
 521 LT). Between afternoon and evening, specific humidity remains relatively high and
 522 stable. The diurnal variation during the southwest and northeast monsoon periods are
 523 1.28 g/kg and 2.32 g/kg, respectively. Similarities with patterns observed at Lena station
 524 (Bonne et al. 2020) suggest potential influences from moisture exchange between the
 525 atmosphere and ocean surface, particularly during the northeast monsoon.

526 **Figure 4: Average diurnal cycles of (a) $\delta^{18}\text{O}$, (b) d-excess, (c) temperature (T), (d) relative
 527 humidity (RH), (e) wind speed, (f) specific humidity (q), (g) atmospheric boundary layer
 528 height (BLH), (h) lifting condensation level (LCL), and (i) wind direction during the non-
 529 monsoon, southwest monsoon, and northeast monsoon periods. Shaded areas correspond to
 530**

531 ± 1 standard deviation.


532 **3.3 Sea Surface Evaporation Conditions in the Moisture Source
533 Region**

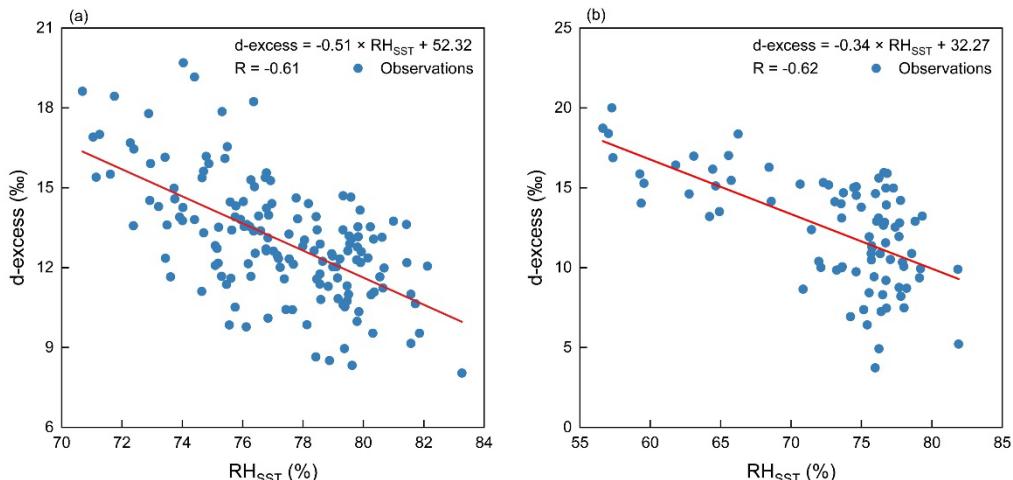
534 To be able to explore water vapor isotopic variations in the sea surface boundary
535 layer, we must first understand the processes and factors that affect isotope variations
536 during ocean surface water evaporation. The primary determinant governing water
537 vapor stable isotope shifts across different regions is the regional moisture transport
538 process, characterized by differences in isotopic variations in the moisture source
539 region, variations in meteorological conditions during the evaporation processes, and
540 divergences of the moisture transport pathways (Bonne et al., 2020). Thus, this section
541 aims to identify factors that drive the seasonal variations of near-surface atmospheric
542 water vapor stable isotopes at Matara, including water vapor origin, transmission routes,
543 and sea surface evaporation conditions in the source regions.

544 To further understand the different seasonal relationships between $\delta^{18}\text{O}$, d-excess,
545 and meteorological parameters, we analyzed potential seasonal differences between the
546 main moisture sources using HYSPLIT. Trajectories that reach Matara during the
547 southwest and northeast monsoons have different origins. During the southwest
548 monsoon, wind directions span from 60° to 360° and the main origin regions are
549 therefore the Arabian Sea (AS) and Indian Ocean (Fig. 5a). Due to the northward
550 movement of the warm South Equatorial Current, these winds gather significant
551 amounts of moisture along the way, bringing heavy rainfall to Matara (Fig. 5a).
552 Conversely, during the northeast monsoon, the main wind direction shifts to 0°-225°
553 and 330°-360°, such that most trajectories originate in northeast India, where specific
554 humidity is lower (overland), and only a short portion of the trajectory passes over the
555 BoB. The long transport distance results in a greater depletion in water vapor isotopes
556 once the air mass arrives at Matara station.

557 Moisture from all sources shows seasonal variations, with $\delta^{18}\text{O}$ values lower
558 during the southwest monsoon than during the northeast monsoon. The shift in water
559 vapor source from the AS in May to the southern Indian Ocean in September leads to

560 $\delta^{18}\text{O}$ enriched water vapor from August to September. Enhanced convective activity
 561 and rainfall during the southwest monsoon result in $\delta^{18}\text{O}$ depletion, while tropical
 562 storms and hurricanes also contribute to $\delta^{18}\text{O}$ depletion.

563
 564 **Figure 5: Backward trajectories of water vapor tracks reaching Matara station and its four**
 565 **surrounding sites (height: 50m, 500m, 1200m, and 2000m) during the (a1) southwest monsoon**
 566 **and (a2) northeast monsoon. The changes in specific humidity (q) along each clustered**
 567 **trajectory are shown in color. Numbers indicate the proportion (%) of trajectories represented**
 568 **by each clustered trajectory. Monthly concentration fields of water vapor isotopic $\delta^{18}\text{O}$ from**
 569 **a 168h HYSPLIT simulation of back trajectories during the two monsoon seasons (b1-b8).**
 570 **Red triangle marks the study site.**


571 d-excess exhibits similar seasonal variations at Matara station, with lower values
 572 during the two monsoon seasons and higher values during the non-monsoon periods

573 (Table 2, Fig. 4). This seasonal variation may stem from changes in relative humidity
574 in the moisture source areas and further modifications during transport.

575 Ocean evaporation represents the starting point of the phase transformations that
576 occur within the global water cycle. Identifying the isotopic variations and controlling
577 factors of oceanic evaporation is essential for understanding isotopic shifts in the
578 marine boundary layer. Previous coastal observational studies focusing on the marine
579 boundary layer have confirmed a significant association between d-excess and RH_{SST}
580 (Pfahl and Wernli, 2009; Steen-Larsen et al., 2015). In cases where dynamic
581 fractionation during air mass transport is either absent or minimal, d-excess can serve
582 as an indicator of the moisture source region (Bonne et al., 2014).

583 The map of the moisture sources (Fig. 5) identified the Indian Ocean and BoB as
584 the main source areas for moisture arriving at Marara station. To gauge the impact of
585 more local influences, we investigated how changes in sea surface meteorological
586 conditions in the sea around Matara station affects near surface water vapor isotope
587 concentrations (Fig. S6). During the southwest monsoon, RH_{SST} in "Region a" (located
588 to the south of Matara between 3-6°N and 78-82°E) ranged from 66% to 84%, with
589 SST fluctuating between 28.0°C and 30.6°C. During the northeast monsoon, RH_{SST} in
590 "Region b" (located to the east of Matara between 6-8°N and 82-85°E) ranged from 54%
591 to 84%, with SST fluctuating between 28.1°C and 29.1°C. In comparison with the
592 southwest monsoon, RH_{SST} is slightly lower, accompanied by less pronounced
593 variability in SST. The rate of change in d-excess under the influence of RH_{SST} in the
594 BoB (during the northeast monsoon) is -0.34 ‰/%. In comparison, the rate of change
595 in d-excess with the RH_{SST} of the northern Indian Ocean (during the southwest monsoon)
596 is -0.51 ‰/%, suggesting that evaporation over the northern Indian Ocean significantly
597 impacts local d-excess. Studies focused on the BoB 's sea surface revealed that RH_{SST}
598 explains only 25% of the d-excess variation ($d\text{-excess} = (-0.55 \pm 0.14) \times RH_{SST} + (56 \pm 12); r = -0.5$). The limited variation in relative humidity during the monsoon period
599 led to a low correlation, indicating that monsoon moisture plays a crucial role in the
600 isotopic composition of water vapor in the BoB (Midhun et al., 2013). Conversely, the

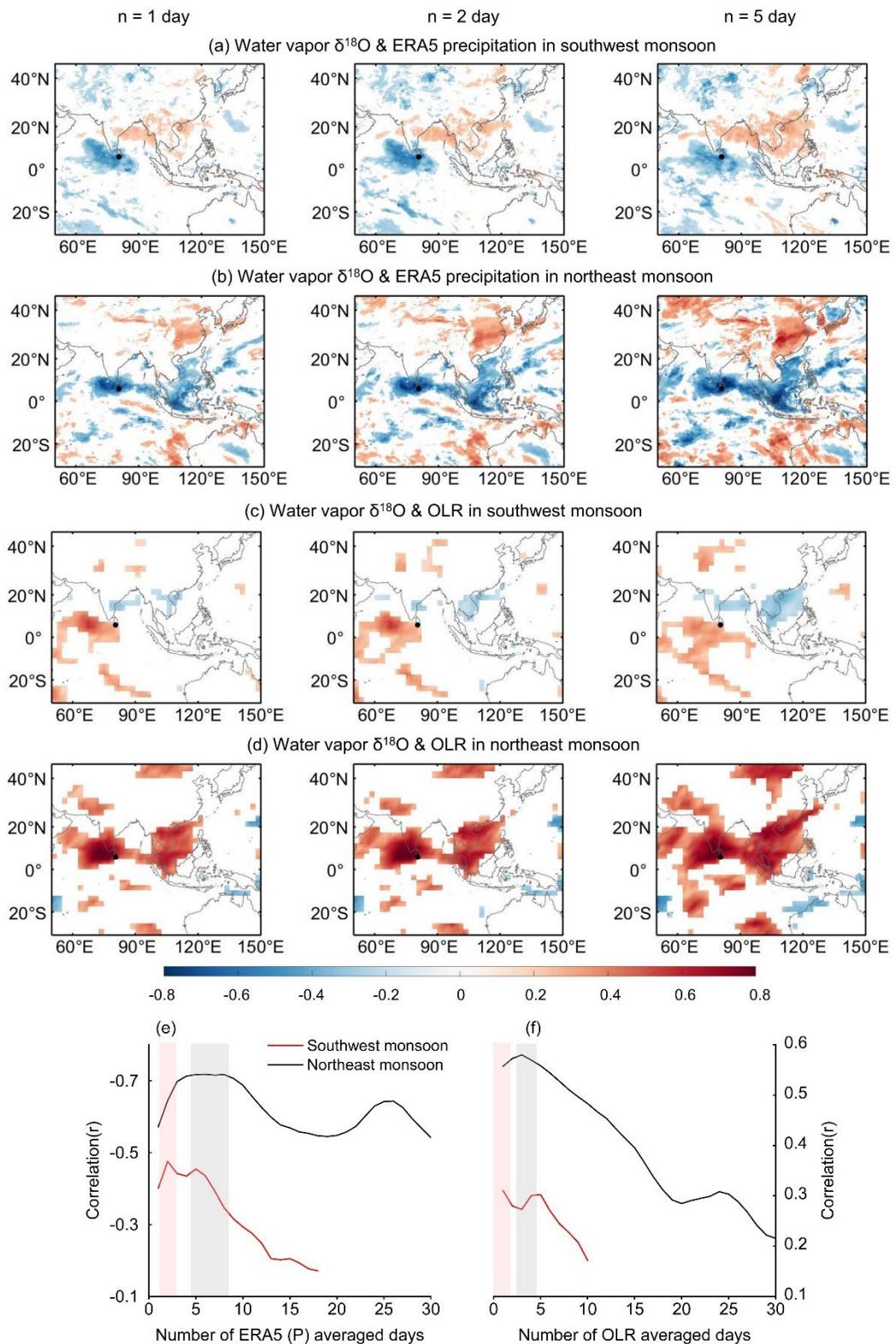
602 observed relationship between near-surface water vapor d-excess at Matara and relative
 603 humidity in the surrounding oceanic region during the observational period, with
 604 correlation coefficients of -0.61 and -0.62 ($p<0.01$), respectively (Fig. 6), reveals a
 605 marked negative correlation between d-excess and relative humidity in the nearby
 606 Indian Ocean and BoB, indicating that water vapor at Matara is predominantly supplied
 607 by nearby oceans. Notably, SST amplitude near the Matara station is smaller than the
 608 variations in near-surface air temperature (Fig. 2).

609 **Figure 6: Relationship between d-excess and RH_{SST} during the (a) southwest monsoon and (b)**
 610 **northeast monsoon. Specific sea regions (Fig. S6) to the south (Region a: 3-6°N and 78-82°E)**
 611 **and east (Region b: 6-8°N and 82-85°E) of the observation station were selected to investigate**
 612 **the impact of sea surface meteorological conditions on near-surface water vapor isotopes**
 613 **during the two monsoon periods.**

615 3.4 Influence of Convective Activity

616 In the equatorial tropics, OLR mainly results from convective activity and cloud
 617 cover, which can impact the stable isotope composition of precipitation (Ohring et al.,
 618 1984; Gao et al., 2013; Guo et al., 2017). Generally, higher OLR values are associated
 619 with weaker convective activity. Examining the correlation between stable isotopes of
 620 water vapor and OLR helps to understand the impact of convective activities along
 621 near-surface trajectories of water vapor stable isotopes at Matara station.

622 We calculated the spatiotemporal correlation between OLR and precipitation
 623 amount using the measured water vapor isotopic compositions at Matara station.


624 Specifically, we calculated the average precipitation amount for each grid point by
625 averaging over different numbers of days ($n = 1, 2$, up to 30) preceding each
626 precipitation day. Lower OLR values indicate the presence of deep convective clouds
627 in this region and higher precipitation associated with lower δ values.

628 Fig. 7a shows the strong positive correlation (red regions) between rainfall and
629 $\delta^{18}\text{O}$ during the southwest monsoon, mainly in the northern BoB and over India. This
630 correlation strengthens and extends over wider areas as n increases from 1 to 5.
631 Additionally, a strong negative correlation is evident in the northern Indian Ocean and
632 southern Arabian Sea, reaching a maximum for $n = 2$ d. During the northeast monsoon,
633 the spatial correlation distribution differs, with a negative correlation observed over the
634 southern Indian Ocean and BoB (Fig. 7b). Lower OLR values in the Arabian Sea, the
635 southern part of the BoB, and throughout Southeast Asia correspond to a decrease in
636 water vapor isotopic $\delta^{18}\text{O}$ at Matara station (Fig. 7c, d). This pattern indicates that water
637 vapor $\delta^{18}\text{O}$ during the northeast monsoon period is influenced by convective activities
638 over the Arabian Sea, South BoB, and Southeast Asian regions. The stronger this
639 convective activity, the more depleted is the air reaching Matara in water vapor isotopic
640 $\delta^{18}\text{O}$.

641 To examine the correlation between water vapor isotopic $\delta^{18}\text{O}$ and local
642 precipitation (Fig. 7e) and OLR (Fig. 7f), we selected a small region of $5^\circ \times 5^\circ$ around
643 Matara and calculated the time- and space- correlation for all grid points as described
644 above. The results show that the correlation with precipitation is negative during both
645 monsoon seasons as expected. The depletion of low-level water vapor $\delta^{18}\text{O}$ is related
646 to the transport and deposition of water vapor into the lower atmosphere through
647 convective activity (Kurita, 2013; Midhun et al., 2013; Lekshmy et al., 2014). The air
648 masses are re-supplied to the convective system through moisture recycling. This
649 results in a strong correlation between the isotopic composition of water vapor and the
650 convective activity during the previous day (Fig. 7, f). Residual water vapor is more
651 depleted in strong convective systems. In our study, the correlation reaches a high value
652 after about 5 days, indicating that the convective activity is sufficiently established to

653 affect the isotopic composition of water vapor. In fact, the correlation (for $p < 0.05$ and
654 in absolute terms) is high for all n values, with maxima of about 0.48 for $n = 3$ d during
655 the southwest monsoon and 0.72 for $n = 4$ to 9 d during the northeast monsoon.

656 The OLR correlation peaks at smaller time scales(approximately $n = 1$ -4 d, Fig.
657 7f) than precipitation($n = 3$ -8 d). We attribute this difference to the effect of cloud
658 distribution on precipitation and OLR. OLR has a stronger response to shallow clouds,
659 while precipitation is more responsive to both deep convective clouds and shallow
660 clouds (Masunaga and Kummerow, 2006; Schumacher, 2006). The OLR minimum
661 occurs when thunderstorm clouds result in more precipitation. Additionally, deep
662 thunderstorm clouds, with short lifetimes and consequently very low OLR
663 (corresponding to highly depleted water vapor isotopic δ), exhibit a short memory effect
664 on the correlation (peak occurs at smaller time scales) (Gambheer and Bhat, 2000).

666 **Figure 7: Spatial correlation fields of water vapor isotopic composition and averaged ERA5**
667 **precipitation (P) during the (a) southwest monsoon and (b) northeast monsoon, along with the**
668 **spatial correlation fields for average outgoing longwave radiation (OLR) during the (c)**
669 **southwest monsoon and (d) northeast monsoon. Averaging was conducted at each grid point**

670 for three periods of $n = 1, 2$, and 5 d preceding each of the 153 days of the southwest monsoon
671 (a, c) and 90 days of the northeast monsoon (b, d). Correlation between (e) $\delta^{18}\text{O}$ and P, as well
672 as (f) $\delta^{18}\text{O}$ and OLR during the southwest monsoon (red line) and northeast monsoon (black
673 line) $n = 1, 2, 3, \dots 30$ d. Red (grey) areas show the n-range for which the highest correlation
674 was obtained during southwest (northeast) monsoon. Here, n represents the average
675 "moisture mixing time" of regional precipitation, affecting water vapor isotopes through the
676 transport of residual water vapor (Rahul et al., 2016b).

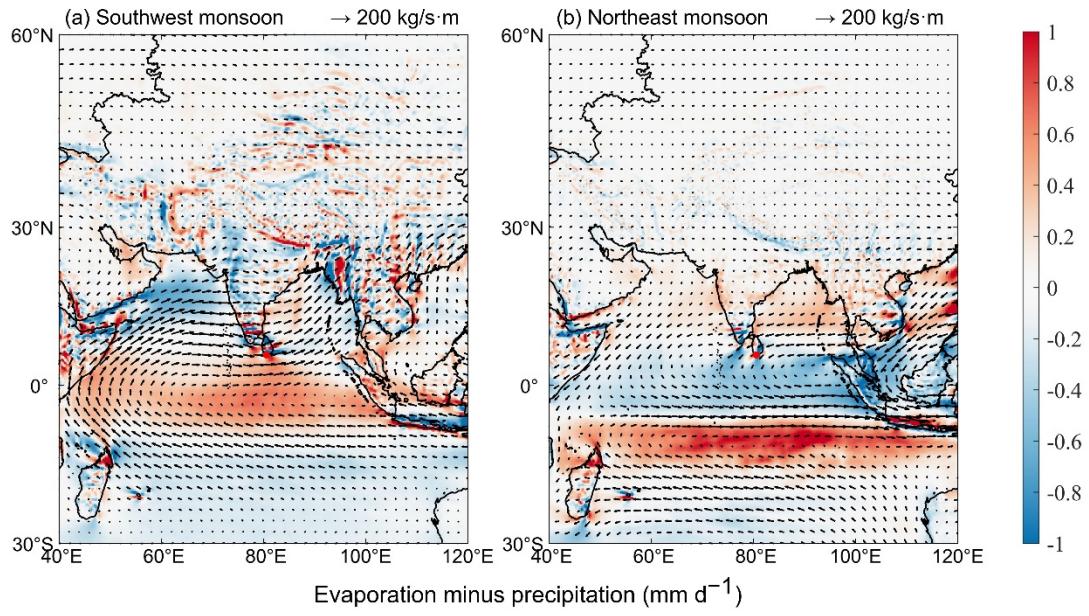
677 During both the southwest and northeast monsoons, $\delta^{18}\text{O}$ exhibits a weak
678 correlation with 2m air temperature (Fig. S7) for the simultaneous values. Throughout
679 the year, the relationship between 2m air temperature and $\delta^{18}\text{O}$ in water vapor is $\delta^{18}\text{O}$
680 = $0.7T - 30.8$ ($r = 0.32$) (Fig. S9). During the southwest and northeast monsoons, the
681 relationships become $\delta^{18}\text{O} = 0.5T - 24.95$ ($r = 0.39$) and $\delta^{18}\text{O} = 1.46*T - 51.71$ ($r =$
682 0.43), respectively (Fig. S7). Daily temperature and $\delta^{18}\text{O}$ values fluctuate less during
683 the southwest monsoon than during the northeast monsoon (Fig. 4), possibly due to a
684 weaker temperature inversion during the southwest monsoon.

685 The correlation between $\delta^{18}\text{O}$ and relative humidity differs between the two
686 monsoon periods. During the southwest monsoon, $\delta^{18}\text{O}$ and relative humidity appear
687 uncorrelated ($r = 0.01$), consistent with previous findings (Rahul et al., 2016b).
688 Conversely, during the northeast monsoon, a robust negative correlation emerges
689 between $\delta^{18}\text{O}$ and relative humidity ($r = -0.58$). Similarly, the relationship between $\delta^{18}\text{O}$
690 and precipitation varies between both monsoon seasons (Fig. S7). Moreover, during the
691 southwest monsoon, heavy precipitation leads to relatively high relative humidity and
692 the enrichment of heavier isotopes.

693

694 4. Discussion

695 This study presented the results from a one-year (March 2020 to February 2021)
696 in-situ measurement campaign of near-surface atmospheric water vapor isotopes ($\delta^{18}\text{O}$,
697 δD) at Matara station, Sri Lanka. These high-temporal resolution water vapor isotopic
698 composition and meteorological observations provided a good opportunity to


699 investigate the water vapor isotopic dynamics from synoptic to seasonal scales. The
700 variability of water vapor isotopes at Matara station is influenced by local
701 meteorological factors, oceanic evaporation processes, and regional convective
702 activities, depending on the water sources and moisture transport. The measurements
703 provided insights into multi-time-scale variations in near-surface atmospheric water
704 vapor in an equatorial region and provided information about the interactions between
705 large-scale atmospheric moisture transport and oceanic evaporation.

706 **4.1 Seasonal Versus Synoptic Variabilities and Water Vapor Flux**

707 To evaluate the influence of seasonal variations in moisture sources on the stable
708 water vapor isotopic composition, we focus on how changes in specific humidity and
709 isotopes relate to observed variations in wind direction at Matara station (Fig. S11).
710 During the southwest monsoon, the distribution of wind directions appears relatively
711 narrow, and the highest specific humidity values were recorded for west-north-westly
712 (WNW) wind directions (Fig. S11). $\delta^{18}\text{O}$ values were highest and d-excess lowest if the
713 moisture source area was to the west of Matara, while $\delta^{18}\text{O}$ depletion and high d-excess
714 were associated with air masses that arrived from the east (Fig. S11). The southwest
715 monsoon period exhibits similar ranges of specific humidity and water vapor isotope
716 composition irrespective of wind direction. During the northeast monsoon, the
717 northeastern winds from BoB brings a higher proportion of more dry air, resulting in
718 the range of specific humidity between 14 and 17 g/kg (Fig. S11) and isotopically
719 depleted water vapor ($\delta^{18}\text{O} < -22\text{\textperthousand}$) compared to other regions. Thus, these air masses
720 undergo considerable isotopic fractionation as they pass overland before reaching our
721 measurement site. For air masses originating in the southeast and northwest, isotopic
722 composition may be influenced by closer moisture sources, associated with the
723 considerable moisture uptake observed over the Arabian Sea and northern Indian Ocean
724 (Fig. S12). With easterly and northeasterly winds $\delta^{18}\text{O}$ is often elevated, with $\delta^{18}\text{O}$
725 (exceeding $-10\text{\textperthousand}$) associated with the northwesterlies (Fig. S11).

726 Since the local wind direction only provides information on the final stage of air
727 mass transport, we conduct a more detailed analysis of how water vapor flux,

728 evaporation, and precipitation along the transport pathway affect local variations in
729 stable water vapor isotopes. During the southwest monsoon, evaporation rates at Matara
730 station are lower than precipitation rates (Fig. S12), something we also observed over
731 the central Indian Ocean. In contrast, over the northern Indian Ocean and western BoB,
732 located up and downstream from Matara station, we obtained a water vapor budget
733 where evaporation exceeded precipitation. During the northeast monsoon, the Matara
734 region is affected by moisture sources from the BoB and South Asia, resulting in higher
735 evaporation rates than precipitation rates and an increase in water vapor flux. In
736 summary, the monthly variations in water vapor flux and budget indicate significant
737 differences in moisture transport between the southwest and northeast monsoons. The
738 upstream water vapor budget significantly affects the changes on stable water vapor
739 isotopes, particularly $\delta^{18}\text{O}$. During the southwest monsoon, there is a clear increase in
740 precipitation, with moisture transport primarily arriving from the northeast. During this
741 period, evaporation in the upstream region exceeds precipitation, suggesting a higher
742 water vapor content along the transport pathway, which corresponds to a continuous
743 enrichment of $\delta^{18}\text{O}$ at Matara station. In contrast, during the northeast monsoon,
744 moisture transport is mainly from the southwest. From December 2020 to January 2021,
745 upstream precipitation exceeded evaporation, leading to a “washing effect” where water
746 vapor continuously undergoes condensation and fractionation due to precipitation along
747 the transport pathway, resulting in a gradual depletion of $\delta^{18}\text{O}$.

748

749 **Figure 8: Comparing average water vapor flux and water vapor budget during the (a)**
 750 **southwest monsoon and (b) northeast monsoon. The red dot indicates the location of Matara**
 751 **station.**

752 **4.2 Comparing Main Features and Identifying Influencing Factors**

753 During the both monsoon periods, specific humidity and stable water isotope
 754 composition showed a clear diurnal cycle at Matara station, primarily due to the
 755 significant contribution of local evapotranspiration to the overall moisture balance. In
 756 equatorial regions, seasonal variations in stable water vapor isotopes are largely
 757 governed by changes moisture sources and the transport processes. Ponmudi station,
 758 located in southern India (Lekshmy et al., 2018), shares many characteristics with
 759 Matara station, in that it is also a coastal city, influenced by both the southwest and
 760 northeast monsoons. During the summer, moisture sources for air arriving at Ponmudi
 761 are mostly located in the southern Arabian Sea and equatorial Indian Ocean, with
 762 relative humidity levels exceeding 70%. This high relative humidity, combined with a
 763 continuous supply of moisture from the Arabian Sea, results in significant rainfall in
 764 the Ponmudi region, exceeding 2040 mm.

765 Fluctuations of water vapor stable isotopes at shorter (weather) time scales are
 766 closely associated with regional convective activities. Research conducted on

767 precipitation and water vapor stable isotopes at Bangalore, another coastal city in
768 southern India, indicates that local meteorological parameters do not influence isotope
769 ratios (Rahul et al., 2016b). Rather, these ratios are affected by the integrated regional
770 convective activity, characterized by large-scale rainfall or outgoing longwave radiation
771 flux. Like Matara station, Bangalore is also affected by both the southwest and northeast
772 monsoons. The observed depletion in heavy isotopes may be due to the influx of
773 moisture from the Bay of Bengal, depleted due to the rainout effect, mixing with air
774 that has travelled overland crossing the Indian subcontinent.

775 Overall, the long-term monitoring of water vapor stable isotopes in South Asian
776 equatorial regions could highlight the importance of both seasonal and sub-seasonal
777 (weather-scale) variations, mostly due to changes in moisture sources and processes
778 that occur during the air mass transport at the circulation scale. Matara station served
779 as a good location to study the effects of moisture transport processes over the Indian
780 Ocean. We could also identify seasonal patterns that general agreement with previous
781 findings for tropical equatorial regions (Midhun et al., 2013; Rahul et al., 2016b;
782 Lekshmy et al., 2018).

783

784 **5. Summary and Conclusions**

785 One-year (March 2020 to February 2021) in situ meteorological observations and
786 measurements of water vapor isotopic composition were conducted at Matara station,
787 Sri Lanka. Meteorological parameters exhibited diurnal variations during both
788 monsoon and non-monsoon periods. During the northeast monsoon, diurnal
789 fluctuations in $\delta^{18}\text{O}$, temperature, and specific humidity were observed, with maximum
790 values reaching 1.1‰, 6.0°C, and 2.3 g/kg, respectively. In contrast, during the
791 southwest monsoon these parameters exhibit only small magnitude fluctuations of
792 0.45‰, 2.3°C, and 1.3 g/kg. Atmospheric temperature affects isotopic composition
793 through its effect on isotope fractionation. Additionally, a weak seasonal variability in
794 near-surface water vapor isotopes was observed, with $\delta^{18}\text{O}$ typically showing high
795 values (-11.1‰) during the monsoon period and low values (-11.9‰) during the non-

796 monsoon period. d-excess exhibited lower value (12.7‰) during the monsoon period
797 than during the non-monsoon period (14.7‰).

798 Evaporation over the northern Indian Ocean significantly impacts local d-excess
799 at Matara. Contrary to previous research indicating a weak correlation ($r = -0.5$)
800 between d-excess in the Bay of Bengal and the sea surface relative humidity (RH_{SSST})
801 (Midhun et al., 2013), we found a slightly stronger negative correlation with RH_{SSST}
802 during the monsoon periods, with values of -0.61 and -0.62 ($p < 0.01$) for the northern
803 Indian Ocean and Bay of Bengal, respectively. This study underscores the capability of
804 near-surface d-excess to reflect the evaporation conditions over these oceanic source
805 regions.

806 Consistent with previous research (Rahul et al., 2016b), large-scale rainfall and
807 regional convective activity (OLR) significantly impact isotope ratios at Matara station.
808 Notably, significant changes in $\delta^{18}\text{O}$ were observed during a heavy rainfall event in July
809 2020, with a sharp decline in isotopic values from -10.4‰ to -20.4‰ within 20 hours.
810 During the southwest monsoon, strong cloud cover and high humidity over the ocean
811 may lead to $\delta^{18}\text{O}$ enrichment at Matara station. The water vapor isotope compositions
812 observed during the southwest monsoon are similar as those observed in the Bay of
813 Bengal (Midhun et al., 2013). The deficiency of water vapor isotope values at Matara
814 station in autumn and winter is consistent with findings from other coastal stations, such
815 as Bangalore, Ponmudi, and Wayanad (Rahul et al., 2016b; Lekshmy et al., 2018). Our
816 study is the first to point out that the correlation between OLR and $\delta^{18}\text{O}$ peaks around
817 1-4 days, which we attribute to the impacts of cloud distribution.

818 This study contributes to a better understanding of the origins of moisture arriving
819 at Matara station and the associated atmospheric transport. This comprehensive dataset
820 containing synchronous water vapor isotope and meteorological measurements offer
821 extensive opportunities for further analyses, e.g., of the typical weather events,
822 atmospheric patterns, and ocean-atmosphere interactions in the equatorial region.
823 Nevertheless, additional and continuous observations of water vapor stable isotopes in
824 this region are urgently needed to be able to study interannual variability. Given the

825 anticipated changes in numerous weather and hydrological processes in equatorial
826 regions, future research should explore the impacts of typical weather events, and
827 ocean-atmosphere interactions, to deepen our understanding of extreme events and
828 large-scale atmospheric modes (e.g., ENSO, MJO, and IOD). Considering the temporal
829 and spatial variability in the dynamics of tropical ocean-atmosphere systems, high-
830 resolution isotope models and satellite datasets should be combined for a more
831 comprehensive analysis in the future.

832 **Acknowledgements:**

833 This work was funded by The Second Tibetan Plateau Scientific Expedition and
834 Research (STEP) program (Grant No. 2019QZKK0208) and the National Natural
835 Science Foundation of China (Grants 41922002 and 41988101-03), as well as the
836 Innovation Program for Young Scholars of TPESER (QNCX2022ZD-01). We thank
837 staff in the China Sri Lanka Joint Center for Education and Research, Mr. Charith
838 Madusanka Widanage, and Dr. Di Dai for their invaluable support and assistance with
839 measurements.

840

841 **Author Contributions:**

842 **Yuqing Wu:** Data curation, Formal analysis, Writing - Original draft preparation.
843 **Jing Gao:** Data curation, Conceptualization, Methodology, Supervision, Writing -
844 Review and Editing, Funding acquisition. **Aibin Zhao:** Writing - Review and Editing,
845 Project administration. **Xiaowei Niu:** Data curation. **Yigang Liu:** Data curation. **Disna**
846 **Ratnasekera:** Project administration. **Tilak Priyadarshana Gamage:** Project
847 administration. **Amarasinghe Hewage Ruwan Samantha:** Data curation.

848

849 **Data availability:**

850 The ERA5 dataset is the latest reanalysis dataset published by the European Centre
851 for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020)
852 (<https://cds.climate.copernicus.eu/cdsapp#!/home>). The Global Data Assimilation
853 System (GDAS) has been published by the US National Oceanic and Atmospheric
854 Administration (NOAA) (<ftp://arlftp.arlhq.noaa.gov/archives/gdas1/>). The water vapor
855 isotopic compositions dataset will be available on the Zenodo research data repository
856 after manuscript publication.

857

858 **Competing interests:**

859 The contact author has declared that none of the authors has any competing interests.

860 **References**

861 Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.:
862 Measuring variations of $\delta^{18}\text{O}$ and $\delta^2\text{H}$ in atmospheric water vapour using two
863 commercial laser-based spectrometers: an instrument characterisation study,
864 *Atmos. Meas. Tech.*, 5, 1491-1511, <https://doi.org/10.5194/amt-5-1491-2012>,
865 2012.

866 Angert, A., Lee, J.E., and Yakir, D.: Seasonal variations in the isotopic composition of
867 near-surface water vapour in the eastern Mediterranean, *Tellus B*, 60, 674-684,
868 <https://doi.org/10.1111/j.1600-0889.2008.00357.x>, 2008.

869 Bailey, A., Aemisegger, F., Villiger, L., Los, S.A., Reverdin, G., Quiñones Meléndez,
870 E., Acquistapace, C., Baranowski, D.B., Böck, T., Bony, S., Bordsdorff, T.,
871 Coffman, D., de Szoek, S.P., Diekmann, C.J., Dütsch, M., Ertl, B., Galewsky,
872 J., Henze, D., Makuch, P., Noone, D., Quinn, P.K., Rösch, M., Schneider, A.,
873 Schneider, M., Speich, S., Stevens, B., and Thompson, E.J.: Isotopic
874 measurements in water vapor, precipitation, and seawater during EUREC4A,
875 *Earth Syst. Sci. Data*, 15, 465-495, <https://doi.org/10.5194/essd-15-465-2023>,
876 2023.

877 Bandara, U., Agarwal, A., Srinivasan, G., Shanmugasundaram, J., and Jayawardena,
878 I.M.S.: Intercomparison of gridded precipitation datasets for prospective
879 hydrological applications in Sri Lanka, *Int. J. Climatol.*, 42, 3378-3396,
880 <https://doi.org/10.1002/joc.7421>, 2022.

881 Bavadekar, S.N., and Mooley, D.A.: Use of the equation of continuity of water vapour
882 for computation of average precipitation over peninsular India during the
883 summer monsoon, In: Lighthill, J., Pearce, P.R. (Eds.), *Monsoon Dynamics*,
884 Cambridge University Press, Cambridge, pp., 261-268, 1981.

885 Bedaso, Z., and Wu, S-Y.: Daily precipitation isotope variation in Midwestern United
886 States: Implication for hydroclimate and moisture source, *Sci. Total Environ.*,
887 713, 136631, <https://doi.org/10.1016/j.scitotenv.2020.136631>, 2020.

888 Benetti, M., Aloisi, G., Reverdin, G., Risi, C., and Sèze, G.: Importance of boundary

889 layer mixing for the isotopic composition of surface vapor over the subtropical
890 North Atlantic Ocean, *J. Geophys. Res. Atmos.*, 120, 2190-2209,
891 <https://doi.org/10.1002/2014JD021947>, 2015.

892 Benetti, M., Lacour, J-L., Sveinbjörnsdóttir, A.E., Aloisi, G., Reverdin, G., Risi, C.,
893 Peters, A.J., and Steen-Larsen, H.C.: A Framework to Study Mixing Processes
894 in the Marine Boundary Layer Using Water Vapor Isotope Measurements,
895 *Geophys. Res. Lett.*, 45(5), 2524-2532, <https://doi.org/10.1002/2018GL077167>,
896 2018.

897 Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen, H.C., and
898 Vimeux, F.: Deuterium excess in marine water vapor: Dependency on relative
899 humidity and surface wind speed during evaporation, *J. Geophys. Res. Atmos.*,
900 119, 584-593, <https://doi.org/10.1002/2013JD020535>, 2014.

901 Bershaw, J., Penny, S.M., and Garzione, C.N.: Stable isotopes of modern water across
902 the Himalaya and eastern Tibetan Plateau: Implications for estimates of
903 paleoelevation and paleoclimate, *J. Geophys. Res. Atmos.*, 117, 110,
904 <https://doi.org/10.1029/2011JD016132>, 2012.

905 Bhattacharya, S., Pal, M., Panda, B., and Pradhan, M.: Spectroscopic investigation of
906 hydrogen and triple-oxygen isotopes in atmospheric water vapor and
907 precipitation during Indian monsoon season, *Isot. Environ. Health. S.*, 57, 368-
908 385, <https://doi.org/10.1080/10256016.2021.1931169>, 2021.

909 Bonne, J-L., Behrens, M., Meyer, H., Kipfstuhl, S., Rabe, B., Schönicke, L., Steen-
910 Larsen, H.C., and Werner, M.: Resolving the controls of water vapour isotopes
911 in the Atlantic sector, *Nat. Commun.*, 10, 1632, <https://doi.org/10.1038/s41467-019-09242-6>, 2019.

913 Bonne, J-L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H.,
914 and Steen-Larsen, H.C.: The isotopic composition of water vapour and
915 precipitation in Ivittuut, Southern Greenland, *Atmos. Chem. Phys.*, 14, 4419-
916 2014, <https://doi.org/10.5194/acp-14-4419-2014>, 2014.

917 Bonne, J-L., Meyer, H., Behrens, M., Boike, J., Kipfstuhl, S., Rabe, B., Schmidt, T.,

918 Schönicke, L., Steen-Larsen, H.C., and Werner, M.: Moisture origin as a driver
919 of temporal variabilities of the water vapour isotopic composition in the Lena
920 River Delta, Siberia, *Atmos. Chem. Phys.*, 20, 10493-10511,
921 <https://doi.org/10.5194/acp-20-10493-2020>, 2020.

922 Bookhagen, B., and Burbank, D.W.: Toward a complete Himalayan hydrological
923 budget: Spatiotemporal distribution of snowmelt and rainfall and their impact
924 on river discharge, *J. Geophys. Res.*, 115, F03019,
925 <https://doi.org/10.1029/2009JF001426>, 2010.

926 Cai, Z., Tian, L., and Bowen, G.J.: ENSO variability reflected in precipitation oxygen
927 isotopes across the Asian Summer Monsoon region, *Earth Planet. Sci. Lett.*, 475,
928 25-33, <https://doi.org/10.1016/j.epsl.2017.06.035>, 2017.

929 Cai, Z., and Tian, L.: Atmospheric Controls on Seasonal and Interannual Variations in
930 the Precipitation Isotope in the East Asian Monsoon Region, *J. Climate*, 29,
931 1339-1352, <https://doi.org/10.1175/JCLI-D-15-0363.1>, 2016.

932 Chakraborty, S., Sinha, N., Chattopadhyay, R., Sengupta, S., Mohan, P.M., and Datye,
933 A.: Atmospheric controls on the precipitation isotopes over the Andaman
934 Islands, Bay of Bengal, *Sci. Rep.*, 6, 19555, <https://doi.org/10.1038/srep19555>,
935 2016.

936 Craig, H.: Isotopic Variation in Meteoric Waters. *Science*, 133, 1702-1703,
937 <https://doi.org/10.1126/science.133.3465.1702>, 1961.

938 Craig, H., and Gordon, L.I.: Deuterium and oxygen 18 variation in the ocean and the
939 marine atmosphere, In: Tongiorgi, E. (Eds.), *Stable Isotopes in Oceanographic*
940 *Studies and Paleotemperatures*, pp., 9-130, 1965.

941 Curry, J.A., and Webster, P.J.: *Thermodynamics of Atmospheres and Oceans*, Academic
942 Press, London, 31705, 1999.

943 Dai, D., Gao, J., Steen-Larsen, H.C., Yao, T., Ma, Y., Zhu, M., and Li, S.: Continuous
944 monitoring of the isotopic composition of surface water vapor at Lhasa,
945 southern Tibetan Plateau, *Atmos. Res.*, 264, 105827,
946 <https://doi.org/10.1016/j.atmosres.2021.105827>, 2021.

947 Dansgaard, W.F.: Stable Isotopes in Precipitation, Tellus B, 16, 436-468,
948 <https://doi.org/10.1111/j.2153-3490.1964.tb00181.x>, 1964.

949 Delattre, H., Vallet-Couïn, C., and Sonzogni, C.: Deuterium excess in the
950 atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local
951 signatures, Atmos. Chem. Phys., 15, 10167-10181, <https://doi.org/10.5194/acp-15-10167-2015>, 2015.

952 de Vries, A.J., Aemisegger, F., Pfahl, S., and Wernli, H.: Stable water isotope signals in
953 tropical ice clouds in the West African monsoon simulated with a regional
954 convection-permitting model, Atmos. Chem. Phys., 22, 8863-8895,
955 <https://doi.org/10.5194/acp-22-8863-2022>, 2022.

956 Dhar, O., and Rakhecha, P.: Foreshadowing Northeast Monsoon Rainfall Over Tamil
957 Nadu, India, Mon. Weather Rev., 111, 109, [https://doi.org/10.1175/1520-0493\(1983\)111<0109:FNMROT>2.0.CO;2](https://doi.org/10.1175/1520-0493(1983)111<0109:FNMROT>2.0.CO;2), 1983.

959 Diekmann, C.J., Schneider, M., Knippertz, P., de Vries, A.J., Pfahl, S., Aemisegger, F.,
960 Dahinden, F., Ertl, B., Khosrawi, F., Wernli, H., and Braesicke, P.: A Lagrangian
961 Perspective on Stable Water Isotopes During the West African Monsoon, J.
962 Geophys. Res. Atmos., 126, e2021JD034895,
963 <https://doi.org/10.1029/2021JD034895>, 2021.

964 Dirmeyer, P.A., Jin, Y., Singh, B., and Yan, X.: Trends in Land–Atmosphere Interactions
965 from CMIP5 Simulations, J. Hydrometeorol., 14, 829-849,
966 <https://doi.org/10.1175/JHM-D-12-0107.1>, 2013.

967 Dütsch, M., Pfahl, S., Meyer, M., and Wernli, H.: Lagrangian process attribution of
968 isotopic variations in near-surface water vapour in a 30-year regional climate
969 simulation over Europe, Atmos. Chem. Phys., 18, 1653-1669,
970 <https://doi.org/10.5194/acp-18-1653-2018>, 2018.

971 Gadgil, S.: The Indian Monsoon and Its Variability, Rev. Earth Pl. Sci., 31, 429-467,
972 <https://doi.org/10.1146/annurev.earth.31.100901.141251>, 2003.

973 Galewsky, J., and Hurley, J.V.: An advection-condensation model for subtropical water
974 vapor isotopic ratios, J. Geophys. Res. Atmos., 115, 116,

976 <https://doi.org/10.1029/2009JD013651>, 2010.

977 Galewsky, J., Steen-Larsen, H.C., Field, R.D., Worden, J., Risi, C., and Schneider, M.:
978 Stable isotopes in atmospheric water vapor and applications to the hydrologic
979 cycle, *Rev. Geophy.*, 54, 809-865, <https://doi.org/10.1002/2015RG000512>,
980 2016.

981 Gambheer, A.V., and Bhat, G.S.: Life Cycle Characteristics of Deep Cloud Systems
982 over the Indian Region Using INSAT-1B Pixel Data, *Mon. Weather Rev.*, 128,
983 4071-4083, [https://doi.org/10.1175/1520-0493\(2000\)129<4071:LCCODC>2.0.CO;2](https://doi.org/10.1175/1520-0493(2000)129<4071:LCCODC>2.0.CO;2), 2000.

985 Gao, J., Masson-Delmotte, V., Risi, C., He, Y., and Yao, T.: What controls precipitation
986 $\delta^{18}\text{O}$ in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A
987 case study at Lhasa and Nyalam, *Tellus B*, 65, 21043,
988 <https://doi.org/10.3402/tellusb.v65i0.21043>, 2013.

989 Gao, Y., Li, X., Leung, L. R., Chen, D., and Xu, J.: Aridity changes in the Tibetan
990 Plateau in a warming climate, *Environ. Res. Lett.*, 9, 104013,
991 <https://doi.org/10.1088/1748-9326/10/3/034013>, 2014.

992 Gat, J.: Oxygen and hydrogen isotopes in the hydrologic cycle, *Annu. Rev. Earth Pl.
993 Sci.*, 24, 225-262, <https://doi.org/10.1146/ANNUREV.EARTH.24.1.225>, 1996.

994 Gedzelman, S., Lawrence, J., Gamache, J., Black, M., Hindman, E., Black, R., Dunion,
995 J., Willoughby, H., and Zhang, X.: Probing hurricanes with stable isotopes of
996 rain and water vapor, *Mon. Weather Rev.*, 131, 1112-1127,
997 [https://doi.org/10.1175/1520-0493\(2003\)131<1112:Phwsio>2.0.Co;2](https://doi.org/10.1175/1520-0493(2003)131<1112:Phwsio>2.0.Co;2), 2003.

998 Goff, J.A., and Gratch, S.: Low-pressure properties of water from -160°F to 212 °F.
999 Transactions of the American Society of Heating and Ventilating Engineers, 52,
1000 95-122, 1946.

1001 Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, M.S., and Xavier, P.K.:
1002 Increasing Trend of Extreme Rain Events Over India in a Warming Environment,
1003 *Science*, 314, 1442-1445, <https://doi.org/10.1126/science.1132027>, 2006.

1004 Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for

1005 below-cloud effects on stable water isotopes in vapour and rain, *Atmos. Chem.*
1006 *Phys.*, 19, 747-765, <https://doi.org/10.5194/acp-19-747-2019>, 2019.

1007 Guo, X., Tian, L., Wen, R., Yu, W., and Qu, D.: Controls of precipitation $\delta^{18}\text{O}$ on the
1008 northwestern Tibetan Plateau: A case study at Ngari station, *Atmos. Res.*, 189,
1009 141-151, <https://doi.org/10.1016/j.atmosres.2017.02.004>, 2017.

1010 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J.,
1011 Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
1012 S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
1013 and Thépaut, J.N.: The ERA5 global reanalysis, *Q. J. Roy. Meteor. Soc.*,
1014 <https://doi.org/10.1002/qj.3803>, 2020.

1015 Hsu, Y-K., Holsen, T.M., and Hopke, P.K.: Comparison of hybrid receptor models to
1016 locate PCB sources in Chicago, *Atmos. Environ.*, 37, 545-562,
1017 [https://doi.org/10.1016/S1352-2310\(02\)00886-5](https://doi.org/10.1016/S1352-2310(02)00886-5), 2003.

1018 Jayasena, H.A.H., Chandrajith, R., and Dissanayake, C.B.: Spatial variation of isotope
1019 composition in precipitation in a tropical environment: a case study from the
1020 Deduru Oya river basin, Sri Lanka, *Hydrol. Process.*, 22, 4565-4570,
1021 <https://doi.org/10.1002/hyp.7060>, 2008.

1022 Kaushal, N., Breitenbach, S.F.M., Lechleitner, F.A., Sinha, A., Tewari, V.C., Ahmad,
1023 S.M., Berkelhammer, M., Band, S., Yadava, M., Ramesh, R., and Henderson,
1024 G.M.: The Indian Summer Monsoon from a Speleothem $\delta^{18}\text{O}$ Perspective-A
1025 Review, *Quaternary*, 1, 29, <https://doi.org/10.3390/quat1030029>, 2018.

1026 Kostrova, S.S., Meyer, H., Fernandoy, F., Werner, M., and Tarasov, P.E.: Moisture
1027 origin and stable isotope characteristics of precipitation in southeast Siberia,
1028 *Hydrol. Process.*, 34, 51-67, <https://doi.org/10.1002/hyp.13571>, 2020.

1029 Kurita, N.: Origin of Arctic water vapor during the ice-growth season, *Geophys. Res.*
1030 *Lett.*, 38, <https://doi.org/10.1029/2010GL046064>, 2011.

1031 Kurita, N.: Water isotopic variability in response to mesoscale convective system over
1032 the tropical ocean, *J. Geophys. Res. Atmos.*, 118, 10,376-10,390,
1033 <https://doi.org/10.1002/jgrd.50754>, 2013.

1034 Lekshmy, P.R., Midhun, M., and Ramesh, R.: Influence of stratiform clouds on δ D and
1035 $\delta^{18}\text{O}$ of monsoon water vapour and rain at two tropical coastal stations, *J.*
1036 *Hydrol.*, 563, 354-362, <https://doi.org/10.1016/j.jhydrol.2018.06.001>, 2018.

1037 Lekshmy, P.R., Midhun, M., and Ramesh, R.: Role of moisture transport from Western
1038 Pacific region on water vapor isotopes over the Bay of Bengal, *Atmos. Res.*,
1039 265, 105895, <https://doi.org/10.1016/j.atmosres.2021.105895>, 2022.

1040 Lekshmy, P.R., Midhun, M., Ramesh, R., and Jani, R.A.: ^{18}O depletion in monsoon rain
1041 relates to large scale organized convection rather than the amount of rainfall,
1042 *Sci. Rep.*, 4, 5661, <https://doi.org/10.1038/srep05661>, 2014.

1043 Li, L., and Garzione, C.N.: Spatial distribution and controlling factors of stable isotopes
1044 in meteoric waters on the Tibetan Plateau: Implications for paleoelevation
1045 reconstruction, *Earth Planet. Sci. Lett.*, 460, 302-314,
1046 <https://doi.org/10.1016/j.epsl.2016.11.046>, 2017.

1047 Liu, J., Ding, M., and Xiao, C.: Review on atmospheric water vapor isotopic
1048 observation and research: theory, method and modeling, *Prog. Geog.*, 34, 340-
1049 353, <https://doi.org/10.11820/dlkxjz.2015.03.009>, 2015.

1050 Liu, X., and Chen, B.: Climatic warming in the Tibetan Plateau during recent decades,
1051 *Int. J. Climatol.*, 20, 1729-1742, [https://doi.org/10.1002/1097-0088\(20001130\)20:14<1729::AID-JOC556>3.0.CO;2-Y](https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y), 2000.

1053 Majoube, M.: Fractionnement en oxygène 18 entre la glace et la vapeur d'eau, *Journal
1054 De Chimie Physique*, 68, 625-636, 1971a.

1055 Majoube, M.: Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur,
1056 *Journal de Chimie Physique et de Physico Chimie Biologique*, 68, 1423-1436,
1057 <https://doi.org/10.1051/jcp/1971681423>, 1971b.

1058 Malmgren, B.A., Hulugalla, R., Hayashi, Y., and Mikami, T.: Precipitation trends in Sri
1059 Lanka since the 1870s and relationships to El Niño-southern oscillation, *Int. J.*
1060 *Climatol.*, 23, 1235-1252, <https://doi.org/10.1002/joc.921>, 2003.

1061 Masunaga, H., and Kummerow, C.: Observations of tropical precipitating clouds
1062 ranging from shallow to deep convective systems, *Geophys. Res. Lett.*, 33, 805,

1063 <https://doi.org/10.1029/2006GL026547>, 2006.

1064 Merlivat, L., and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18
1065 relationship for precipitation, *J. Geophys. Res. Oceans.*, 84, 5029-5033.

1066 <https://doi.org/10.1029/JC084iC08p05029>, 1979.

1067 Midhun, M., Lekshmy, P.R., and Ramesh, R.: Hydrogen and oxygen isotopic
1068 compositions of water vapor over the Bay of Bengal during monsoon, *Geophys.*
1069 *Res. Lett.*, 40, 6324-6328, <https://doi.org/10.1002/2013GL058181>, 2013.

1070 Ohring, G., Gruber, A., and Ellingson, R.: Satellite Determinations of the Relationship
1071 between Total Longwave Radiation Flux and Infrared Window Radiance, *J.*
1072 *Appl. Meteorol. Clim.*, 23, 416-425, [https://doi.org/10.1175/1520-0450\(1984\)023<0416:SDOTRB>2.0.CO;2](https://doi.org/10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2), 1984.

1073 Pang, Z., Kong, Y., Froehlich, K., Huang, T., Yuan, L., Li, Z., and Wang, F.: Processes
1074 affecting isotopes in precipitation of an arid region, *Tellus B*, 63, 352-359,
1075 <https://doi.org/10.1111/j.1600-0889.2011.00532.x>, 2011.

1077 Permana, D.S., Thompson, L.G., and Setyadi, G.: Tropical West Pacific moisture
1078 dynamics and climate controls on rainfall isotopic ratios in southern Papua,
1079 Indonesia, *J. Geophys. Res. Atmos.*, 121, 2222-2245,
1080 <https://doi.org/10.1002/2015JD023893>, 2016.

1081 Pfahl, S., and Wernli, H.: Lagrangian simulations of stable isotopes in water vapor: An
1082 evaluation of nonequilibrium fractionation in the Craig-Gordon model, *J.*
1083 *Geophys. Res. Atmos.*, 114, 108, <https://doi.org/10.1029/2009JD012054>, 2009.

1084 Rahul, P., Ghosh, P., and Bhattacharya, S.K.: Rainouts over the Arabian Sea and
1085 Western Ghats during moisture advection and recycling explain the isotopic
1086 composition of Bangalore summer rains, *J. Geophys. Res. Atmos.*, 121, 6148-
1087 6163, <https://doi.org/10.1002/2015JD024579>, 2016a.

1088 Rahul, P., Ghosh, P., Bhattacharya, S.K., and Yoshimura, K.: Controlling factors of
1089 rainwater and water vapor isotopes at Bangalore, India: Constraints from
1090 observations in 2013 Indian monsoon, *J. Geophys. Res. Atmos.*, 121, 13,936-
1091 13,952, <https://doi.org/10.1002/2016JD025352>, 2016b.

1092 Ranjan, S., Al, R., Keesari, T., Singh, V., Kumar, P., and Manish Leuenberger, M.: Triple
1093 Water Vapour-Isotopologues Record from Chhota Shigri, Western Himalaya,
1094 India: A Unified Interpretation based on $\delta^{17}\text{O}$, $\delta^{18}\text{O}$, δD and Comparison to
1095 Meteorological Parameters, *Front. Earth Sci.*, 8, 599-632,
1096 <https://doi.org/10.3389/feart.2020.599632>, 2021.

1097 Ravisankar, L., Madhavan, M., and Ramesh, R.: Spatial variation of amount effect over
1098 peninsular India and Sri Lanka: Role of seasonality, *Geophys. Res. Lett.*, 42,
1099 5500-5507, <https://doi.org/10.1002/2015GL064517>, 2015.

1100 Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic
1101 composition ($\delta^{18}\text{O}$ and δD) of precipitation and water vapor in the tropics: 2.
1102 Physical interpretation of the amount effect, *J. Geophys. Res. Atmos.*, 113, 306,
1103 <https://doi.org/10.1029/2008JD009943>, 2008.

1104 Salamalikis, V., Argiriou, A.A., and Dotsika, E.: Stable isotopic composition of
1105 atmospheric water vapor in Patras, Greece: A concentration weighted trajectory
1106 approach, *Atmos. Res.*, 152, 93-104,
1107 <https://doi.org/10.1016/j.atmosres.2014.02.021>, 2015.

1108 Saranya, P., Krishan, G., Rao, M.S., Kumar, S., and Kumar, B.: Controls on water vapor
1109 isotopes over Roorkee, India: Impact of convective activities and depression
1110 systems, *J. Hydrol.*, 557, 679-687,
1111 <https://doi.org/10.1016/j.jhydrol.2017.12.061>, 2018.

1112 Schumacher, C.: Shallow tropical convection: How often does it rain? *Bull. Am.
1113 Meteorol. Soc.*, 87, 23-25, 2006.

1114 Singh, P., and Bengtsson, L.: Hydrological sensitivity of a large Himalayan basin to
1115 climate change, *Hydrol. Process.*, 18, 2363-2385,
1116 <https://doi.org/10.1002/hyp.1468>, 2004.

1117 Srivastava, R., Ramesh, R., Gandhi, N., Jani, R.A., and Singh, A.K.: Monsoon onset
1118 signal in the stable oxygen and hydrogen isotope ratios of monsoon vapor,
1119 *Atmos. Environ.*, 108, 117-124,
1120 <https://doi.org/10.1016/j.atmosenv.2015.02.062>, 2015.

1121 Steen-Larsen, H.C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K.,
1122 Prié, F., Bayou, N., Brun, E., Cuffey, K., Dahl-Jensen, D., Dumont, M.,
1123 Guillevic, M., Kipfstuhl, J., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni,
1124 B., and Sveinbjörnsdóttir, A.: What controls the isotopic composition of
1125 Greenland surface snow? *Clim. Past.*, 10, 379-392, <https://doi.org/10.5194/cpd-9-6035-2013>, 2013a.

1127 Steen-Larsen, H.C., Johnsen, S.J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann,
1128 H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M.D., Falourd,
1129 S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S.B.,
1130 Sjolte, J., Steffensen, J.P., Sperlich, P., Sveinbjörnsdóttir, A.E., Vinther, B.M.,
1131 and White, J.W.C.: Continuous monitoring of summer surface water vapor
1132 isotopic composition above the Greenland Ice Sheet, *Atmos. Chem. Phys.*, 13,
1133 4815-4828, <https://doi.org/10.5194/acp-13-4815-2013>, 2013b.

1134 Steen-Larsen, H.C., Sveinbjörnsdóttir, A.E., Jonsson, T., Ritter, F., Bonne, J-L.,
1135 Masson-Delmotte, V., Sodemann, H., Blunier, T., Dahl-Jensen, D., and Vinther,
1136 B.M.: Moisture sources and synoptic to seasonal variability of North Atlantic
1137 water vapor isotopic composition, *J. Geophys. Res. Atmos.*, 120, 5757-5774,
1138 <https://doi.org/10.1002/2015JD023234>, 2015.

1139 Stewart, M.K.: Stable isotope fractionation due to evaporation and isotopic exchange
1140 of falling waterdrops: Applications to atmospheric processes and evaporation of
1141 lakes, *J. Geophys. Res.*, 80, 1133-1146,
1142 <https://doi.org/10.1029/JC080i009p01133>, 1975.

1143 Sturm, P., and Knohl, A.: Water vapor $\delta^2\text{H}$ and $\delta^{18}\text{O}$ measurements using off-axis
1144 integrated cavity output spectroscopy, *Atmos. Meas. Tech.*, 3, 67-77,
1145 <https://doi.org/10.5194/amt-3-67-2010>, 2010.

1146 Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Beaudon, E., Porter, S.E.,
1147 Kutuzov, S., Lin, P.N., Mikhaleko, V.N., and Mountain, K.R.: Impacts of
1148 Recent Warming and the 2015/2016 El Niño on Tropical Peruvian Ice Fields, *J.*
1149 *Geophys. Res. Atmos.*, 122, 12,688-12,701,

1150 <https://doi.org/10.1002/2017JD026592>, 2017.

1151 Tremoy, G., Vimeux, F., Mayaki, S., Souley, I., Cattani, O., Risi, C., Favreau, G., and
1152 Oi, M.: A 1-year long $\delta^{18}\text{O}$ record of water vapor in Niamey (Niger) reveals
1153 insightful atmospheric processes at different timescales, *Geophys. Res. Lett.*,
1154 39(8), 805, <https://doi.org/10.1029/2012GL051298>, 2012.

1155 Uemura, R., Matsui, Y., Yoshimura, K., Motoyam, H., and Yoshida, N.: Evidence of
1156 deuterium excess in water vapor as an indicator of ocean surface conditions, *J.*
1157 *Geophys. Res. Atmos.*, 113, D19114, <https://doi.org/10.1029/2008JD010209>,
1158 2008.

1159 Villiger, L., and Aemisegger, F.: Water isotopic characterisation of the cloud–circulation
1160 coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric
1161 circulation at different scales, *Atmos. Chem. Phys.*, 24, 957-976,
1162 <https://doi.org/10.5194/acp-24-957-2024>, 2024.

1163 Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the South
1164 American SeeSaw on the intra-seasonal variability of the isotopic composition
1165 of precipitation in the Bolivian Andes, *Earth. Planet. Sci. Lett.*, 307, 47-58,
1166 <https://doi.org/10.1016/j.epsl.2011.04.031>, 2011.

1167 Wallace, J.M., and Hobbs, P.V.: 3-Atmospheric Thermodynamics, *Atmos. Sci.*, 63-111,
1168 <https://doi.org/10.1016/B978-0-12-732951-2.50008-9>, 2006.

1169 Wang, B.: The Asian monsoon. Springer praxis books, Springer/Praxis Publishing Co,
1170 Berlin, 787 pp., 651-683, 2006.

1171 Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., and
1172 Yasunari, T.: Monsoons: Processes, predictability, and the prospects for
1173 prediction, *J. Geophys. Res. Oceans.*, 103, 14451-14510,
1174 <https://doi.org/10.1029/97JC02719>, 1998.

1175 Worden, J., Noone, D., Bowman, K., Beer, R., Eldering, A., Fisher, B., Gunson, M.,
1176 Goldman, A., Herman, R., Kulawik, S., Lampel, M., Osterman, G., Rinsland,
1177 C., Rodgers, C., Sander, S., Shephard, M., Webster, C., and Worden, H.:
1178 Importance of rain evaporation and continental convection in the tropical water

1179 cycle, *Nature*, 445, 528-532, <https://doi.org/10.1038/nature05508>, 2007. Xu, T.,
1180 Pang, H., Zhan, Z., Zhang, W., Guo, H., Wu, S., and Hou, S.: Water vapor
1181 isotopes indicating rapid shift among multiple moisture sources for the 2018-
1182 2019 winter extreme precipitation events in southeastern China, *Hydrol. Earth*
1183 *Syst. Sci.*, 26, 117-127, <https://doi.org/10.5194/hess-26-117-2022>, 2022.
1184 Yao, T., Thompson, L.G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X.,
1185 Joswiak, D.R., Wang, W., Joswiak, M.E., Devkota, L.P., Tayal, S., Jilani, R., and
1186 Chen, F.: Third Pole Environment (TPE), *Environ. Dev.*, 7, 52-64,
1187 <https://doi.org/10.1016/j.envdev.2012.04.002>, 2012.