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Abstract:

Atmospheric water vapor stable isotopes are crucial for understanding
hydrological cycle processes under climate change. This study presents the results from
a year-long in-situ monitoring of atmospheric water vapor stable isotopes (5'0, 8D) at
Matara, Sri Lanka, from March 2020 to February 2021 to assess how oceanic sources
and moisture transport influence coastal atmospheric moisture isotopic composition.
We identified clear seasonal patterns in the isotopic composition, with 8180, 8D, and d-
excess showing substantial variation between the southwest and northeast monsoon
periods. The primary moisture sources were the Arabian Sea and the Indian Ocean
during the southwest monsoon (May to September), characterized by small amplitude

fluctuations of §'%0 (-20.4%o to -9.1%o). During the northeast monsoon, the northern
1
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Bay of Bengal, the Indian subcontinent, and Southeast Asia were primary moisture
sources, resulting in large amplitude fluctuations ef-in §'0 (-23.9%o to -7.5%o) and
higher d-excess values (up to 25 %o). The study also identified significant influences of
sea surface temperature and sea surface relative humidity on the isotopic composition
of water vapor. Additionally, we could use outgoing longwave radiation (OLR) to gauge

the intensity of convective activity. Observational periods with Eewerlow OLR-values,

indicative of stronger and deeper convection, were associated with air masses that were

more depleted in §'30 than periods with high OLR. These findings facilitate a better

understanding of how the monsoon and local meteorological conditions affect water
vapor isotope compositions in tropical region. Furthermore, the new dataset will enable
to improve water vapor isotopic modeling and projections of atmospheric processes in
coastal regions.

Keywords: Indian Summer Monsoon, Water Vapor Isotopes, Sea Surface Condition,

Convective Activity, Sri Lanka

Short Summary

Monitoring of atmospheric water vapor isotopes for one year at Matara, Sri Lanka,
yieldedrevealed clear seasonal variations in §'0, 8D, and d-excess. The results showed
lower amplitudes of '30 during the southwest monsoon and higher amplitudes of §'*0
and higher d-excess during the northeast monsoon. Sea surface evaporation and
regional convective activity significantly influenced the isotopic compositions. Overall,
our results facilitate an improved understanding of the impacts of the monsoon and

local meteorological conditions on tropical water vapor isotopie-cempositione signals.

1 Introduction

The Indian Summer Monsoon (ISM), occurring from June to September, is a
pivotal component of the Asian climate system, serving as the primary moisture
transport system efmeistare-from the Indian Ocean to the Indian subcontinent and the

Tibetan Plateau (TP). Monsoonal precipitation plays a crucial role in agriculture and
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water resource avahabilityavailability, affecting the welfare of over 1.9 billion people
in surrounding countries (Webster et al., 1998; Goswami et al., 2006). The Tibetan
climate and hydrology are profoundly influenced by the ISM, as it contributes
significantly to the regional water cycle by delivering substantial rainfall during the
summer months. This rainfall is essential for maintaining the glaciers and permafrost
in the TP, a key water catchment area for many of Asia's largest rivers (Bookhagen and
Burbank, 2010). The ISM's intensity and variability can lead to significant fluctuations
in water availability, affecting both agriculture and hydropower generation in the region
(Singh and Bengtsson, 2004; Gao et al., 2014). Furthermore, the interaction between
the ISM and the TP's topography creates unique climatic conditions that influence
weather patterns and extreme events in the region (Liu and Chen, 2000).

The seasonal precipitation and its origins over the TP are inextricably linked to
the dynamics of the ISM (Dai et al., 2021). Previous studies have provided evidence
that precipitation over the TP offer insights into the climatic fluctuations and distinct
moisture attributes associated with the ISM (Gao et al., 2013; Guo et al., 2017). The
summer monsoon brings significant moisture from the Indian Ocean, leading to
substantial rainfall over the TP primarily during the monsoon months of June-
September (Yao et al., 2012). This seasonal influx of moisture is critical for maintaining
the regional hydrological balance and supporting ecosystems. Furthermore, the ISM’ s
intensity and variability significantly influence the interannual and decadal
precipitation patterns over the TP, affecting the overall water availability and climatic
stability of the region (Kaushal et al., 2018).

Amidst the backdrop of global climate change, observing stable isotopes in
atmospheric water vapor is vital for monitoring and understanding climate shifts in low-
latitude areas (Rahul et al., 2016b). Such research is instrumental for providing a deeper
understanding of near-surface water vapor dynamics, pinpointing vapor sources and
transport routes, and differentiating between different—various contributions of
atmospheric water vapor to the water cycle. The stable isotopic composition of

precipitation (Rahul et al., 2016a; Cai et al., 2017) and water vapor (Risi et al., 2008;
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Steen-Larsen et al., 2013b; Rahul et al., 2016b; Lekshmy et al., 2022) serves as a
valuable tool for identifying the origins and understanding transmission processes of
atmospheric water vapor. Fractionation occurs during various phase transitions, such as
sea surface evaporation, condensation beneath-in clouds, re-evaporation of raindrops

beneath clouds, and diffusive exchanges between water vapor and raindrops in different

environments (Stewart, 1975; Benetti et al., 2018; Graf et al., 2019). The occurrence of
fractionation unveils investigable spatiotemporal distribution patterns in the water
isotopic composition, encompassing water vapor and precipitation. In this context,
deuterium excess (d-excess = 8D — 8 x §!80) is a useful parameter for studying kinetic
fractionation effects (Dansgaard, 1964). Recent studies have significantly enhanced our
understanding of isotopic signals in eenveetion—convective regions, elucidating the

complex interactions between moisture processes and isotopic composition in tropical

deep convection (Risi et al., 2008; Blossey et al., 2010). Around Barbados, during the
winter trade winds, vertical transport and large-scale circulation have been identified as
primary drivers of isotopic variability at the cloud base, acting over timescales from
hours to days (Bailey et al., 2023; Villiger and Aemisegger, 2024). Investigations into
water vapor isotopes in the West African troposphere reveal that both convection and
mixing highlight the important role played by large-scale atmospheric circulation
processes in the variations of water vapor isotopes (Diekmann et al., 2021; de Vries et
al., 2022). The precise mechanisms by which convective activity reduees-depletesthe
values-ef-stable-isotepes—n water vapor and precipitation of heavy isotopes are still

under debate. Some researchers have emphasized the significance of condensation

levels (Cai and Tian, 2016; Permana et al., 2016; Thompson et al., 2017), while others
suggested raindrop re-evaporation and raindrop-vapor isotope exchanges during strong
convection as crucial factors (Galewsky et al., 2016). Additionally, unsaturated or
mesoscale descending airflows that transport vapor depleted in heavy isotopes to the
lower atmosphere also contribute to lower isotope values (Risi et al., 2008; Kurita,
2013). The influence of these processes varies with the intensity of convective activity.

Research on water vapor stable isotopes in the marine boundary layer aims to
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elucidate the processes associated with evaporation_in different conditions of vertical

stability, wind, sea surface temperature (SST), and relative humidity with respect to the

SST (RHsst)-isetopes-as-wel-as-influencingfactors(Craig-and Gordon; 1965). The d-
excess of evaporated water vapor is mainly impacted by kinetic fractionation and
sensitive to assectated-with-sea-surface-temperature(SSTH, therelative humidity-abeve
the-sea—surtreetR HssTeatelated rekativeto-the satarationvaporpresstreat- 5SS, and
the wind speed (reugh—orsmoeothyand the turbulence regime in the boundary layer

(Merlivat and Jouzel, 1979; Benetti et al., 2015: Benettietal, 2018). Investigations into

the water vapor stable isotopic composition within the marine boundary layer have been
principally focused on regions such as the North Atlantic (e.g., Greenland, Iceland,
Bermuda) (Steen-Larsen et al., 2013a; Bonne et al., 2014; Benetti et al., 2018; Bonne
et al., 2019), Bay of Bengal (BoB) (Lekshmy et al., 2022), and Arctic Oceans (Kurita,
2011). Several studies could confirm the existence of a negative relationship between
d-excess and RHsst (Uemura et al., 2008; Steen-Larsen et al., 2015), with wind speed
and SST exerting a limited influence on this correlation (Benetti et al., 2015).
Observations from the North Atlantic support this theory (Benetti et al., 2014). Other

studies, argue that the SST does have an influence via the weak dependence of the d-

excess on temperature during equilibrium fractionation based on theoretical arguments

(Aemisegger and Sjolte, 2018) as well as observations in the marine boundary layer

covering a large latitudinal gradient over the Atlantic and Southern Ocean (Thurnherr

et al. 2020). In addition, studies found significant variations in d-excess values in vapor

that originated at different moisture sources (Pfahl and Wernli, 2008; Kurita, 2011;

Steen-Larsen et al., 2013b; Delattre et al., 2015). Subsequently, Benetti et al. (2015)
introduced a multi-layer mixing model, which is expected to improve the accuracy of
d-excess and water vapor isotope simulations. Due to the impact of kinetic fractionation
on sea surface water evaporation, some studies have focused on simulating observed d-
excess under the closure assumption (Merlivat and Jouzel, 1979). Others have used
1sotope atmospheric circulation models to assess mixing and transport processes within

the marine boundary layer at different resolution (Steen-Larsen et al. 2017; Risi et al.
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2020; Thurnherr et al. 202 1Benettietal;2645). In addition, previous studies have used

single column analytical mixing models (Risi et al. 2019), as well trajectory-based box

models (Thurnherr and Aemisegger, 2022). Owing to the minor influence of transport-

induced fractionation, d-excess in the marine boundary layer is typically employed to
deduce moisture sources (Benetti et al., 2018).

Located in the northern Indian Ocean, Sri Lanka is impacted by both the southwest
and northeast monsoons (Fig. 1a, b) and has been identified as an important origin
region for monsoonal water vapor over the TP. However, only few studies have focused
on the Indian Ocean, and even fewer on the area around Sri Lanka. This knowledge gap
underscores the need to explore isotopic signals in this region and place them into their
appropriate context, e.g., with findings by Risi et al. (2008). For instance, more recent
studies on water stable isotopes in the South Indian Ocean and South Asian region have
uncovered connections between local processes and large-scale atmospheric circulation,
shedding light on sea-surface dynamics (Midhun et al., 2013; Rahul et al., 2016b;
Bonne et al., 2019). Unlike, in precipitation and surface water, in atmospheric water
vapor stable isotopes can be monitored continuously regardless of season, weather, or
location (Angert et al., 2008). This potentially full temporal and spatial coverage allows
for a more comprehensive and continuous monitoring of atmospheric water vapor
dynamics and transport, which should in turn facilitate a deeper understanding of
isotope transformation processes within the water cycle. Therefore, investigating the
dynamics of near-surface atmospheric water vapor stable isotopes at coastal stations is
not only pivotal for identifying monsoonal water vapor source regions but will facilitate
a better understanding of precipitation processes over the Indian Ocean. Oceanic
evaporation represents the first of many phase transitions that occur during the global
water cycle. The primary objective of researching water vapor stable isotopes is to
comprehend the processes and controlling factors of water isotopic variations.

In this study, we present the results from continuous observations of near-surface
atmospheric water vapor stable isotopes in Matara, Sri Lanka, collected from March 1,

2020, to February 28, 2021. We analyze the observational data to gain a better
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understanding of the variations in moisture sources and main transmission processes in
tropical coastal regions. Furthermore, we explore how sea surface processes, convective
activity, and local meteorological factors affect near-surface atmospheric water vapor
stable isotopes at a coastal station, across daily, monthly, and seasonal (monsoonal) time
scales. Section 2 gives an overview of the study site and presents the meteorological
and water vapor observations, calibration protocols, and analysis methods. In Section
3, we illustrate the variability of isotopic and meteorological parameters, analyze
moisture sources, assess the impact of sea surface processes on water vapor isotopes,
and explore the relationship between water vapor isotopes, convective activity, and

local meteorological observations.

2 Study Site, Data, and Methods

2.1 Study Site and Meteorological Data

Sri Lanka (located between approximately 6°N to 10°N and 79° to 82°E) is the
southernmost country on the Indian subcontinent and a key region for identifying the
moisture source of the south Asian summer monsoon (Ravisankar et al., 2015).
Featuring a tropical climate, Sri Lanka experiences four distinct monsoon seasons
annually: the northeast monsoon from December to February, the first inter-monsoon
from March to April, the southwest monsoon from May to September, and the second
inter-monsoon from October to November (Malmgren et al., 2003; Jayasena et al.,
2008). For the analyses, we combined the first and second inter-monsoon periods into
a single “non-monsoon period”. Most of the precipitation in Sri Lanka comes from the
southwest and northeast monsoon systems, accounting for over 78% of the total annual
precipitation (Fig. 1c). Precipitation formation in Sri Lanka primarily relies on
organized convection associated with the Intertropical Convergence Zone (ITCZ) and
low-pressure systems (Gadgil, 2003), while the associated moisture primarily originates
in the Indian Ocean and BoB (Bandara et al., 2022). The southwest monsoon transports
moisture from the Indian Ocean to southwestern Sri Lanka (Fig. 1a) where it leads to

increased rainfall (Bavadekar and Mooley, 1981). In contrast, the northeast monsoon
7
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carries water vapor from the BoB to northern and northeastern of Sri Lanka (Fig. 1b)
(Dhar and Rakhecha, 1983; Wang, 2006).

An automated weather station (AWS) was installed at the University of Ruhuna,
Matara (located at 5.94°N, 80.57°E) on the southern coast of Sri Lanka (Fig. 1d). It
collected real-time meteorological observations, including air temperature,
precipitation, relative humidity, air pressure, wind speed, and wind direction, from

March 1, 2020, to February 28, 2021.
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Figure 1: Mean wind vectors (arrows) at 850 hPa during the (a) 2020 southwest monsoon and
(b) 2020/2021 northeast monsoon seasons, along with mean precipitation (P, base colors) from
ERAS averaged for the same period. (c) Monthly mean temperature and specific humidity (q)
obtained from the automated weather station at Matara (January and February are from 2021
while March — December from 2020), with monthly average temperature, specific humidity,
and precipitation from ERAS (averaged for the years 2000-2020) plotted for comparison. (d)
Photograph of the roof-mounted weather station at the University of Ruhuna, Sri Lanka.

In this study, we used hourly data of 2m air temperature, 2m dew temperature, air
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pressure, precipitation, SST, atmospheric boundary layer height (BLH), wind speed,
wind direction, and outgoing longwave radiation (OLR), obtained from ERAS for years
2000 to 2021, with a spatial resolution of 0.25°%0.25° and a temporal resolution of one
hour. Meteorological data are compared with water vapor isotopic data measured during

the same period. Based on the European Centre for Medium-Range Weather Forecasts

(ECMWEF, https://cds.climate.copernicus.eu/eu/) reanalysis dataset (ERAS), the annual
average precipitation and air temperature for the period from 2000 to 2020 is 2085 mm
and 27.6 °C, respectively (Fig. 1c) (Hersbach et al., 2020). Studies have shown that
ERAS data provide good representations of the Matara equatorial climate and can be
used in lieu of missing observational data (Fig. S3) (Bandara et al., 2022). Due to
weather conditions and instrument trouble, specific humidity measured by the isotopic
measurement instrument and computed by the AWS are missing from March, 2020 to
April, 2020. Therefore, we chose to present both variables obtained from ERAS as they
complement each other, providing a clearer picture of humidity changes at Matara
station.

For the atmosphere above open sea regions, RHssr is obtained using (Bonne et al.,
2019):

qsat(TZm air)

RHggr = RHyp i X
SST 2m air qsat(SST)

(6)

where RHyp, 5 1s the relative humidity 2m above the ocean surface, q_, (Top ai) 18
the specific humidity at a saturated condition for a given 2m air temperature, and
q,,(SST) is calculated for seawater with a salinity of 35 practical salinity units (PSU)
(Curry and Webster, 1999).

The formulas to calculate air saturation specific humidity q_, (Tom i) and sea

surface saturation specific humidity q_ (SST) with a salinity of 35 PSU are:

0.622 xE

qsat(TZm air) = P (7)

q,,(SST) =0.98 x q_ (®)
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q represents specific humidity with a salinity of 35 PSU and is calculated in the same

way as q_.(Tomair).- E 1s the saturated water vapor pressure, obtained from the

sat
improved Goff-Gratch formula (Goff and Gratch, 1946). P is atmospheric pressure. We
take the sea surface pressure as the atmospheric pressure to participate in the above

calculation (Eq. 7).

2.2 In-situ Observations of Atmospheric Water Vapor Isotopic

Composition

Near-surface atmospheric water vapor isotope measurements at Matara were
collected using a sampling frequency of 1Hz with the instrument located approximately
Sm from the AWS. We used a Water Vapor Isotope Analyzer (Los Gatos Research (LGR)
Inc.) in conjunction with an LGR Water Vapor Isotope Standard Source (WVISS) model.
The LGR instrument employs a mirrored sampling chamber in which the laser traverses
the sample volume thousands of times, effectively amplifying the water vapor
absorption signal which facilitates the detection of low concentrations of D and '*0
(Liu et al., 2015). Compared to traditional methods, this spectroscopic technique offers
three advantages: (1) it is compact and portable, enabling real-time field monitoring; (ii)
it can simultaneously measure §'*0 and 8D; and (iii) it has lower measurement costs
and requires less operator expertise.

The instrumental setup was situated approximately 100 m from the sea shore (5.94°
N, 80.57° E, 10 meters), and consisted of four primary components: (1) A sampling
inlet, positioned approximately 5 m above the ground (Fig. 1d), equipped with a
stainless-steel mesh to prevent interference from insects and facing downward to avoid
direct impacts from rain. (2) A 1/4-inch outer diameter stainless steel sampling tube,
insulated with heating tape and a 2-cm thick pipe for thermal insulation. (3) The
calibration unit to generate a constant flow of water vapor with known isotopic
composition and at different humidity levels. (4) A water vapor isotope analyzer,
delivering a measurement precision for 880 and 8D of 0.25%o and 0.5%, respectively

(a concentration of 2500 ppmv). This setup has been designed to minimize external

10
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influences and maintain the integrity of the sampled water vapor.

The spatial proximity between the water vapor analyzer and AWS ensures a high
level of synchronicity between the isotope and meteorological measurements. We
define wind directions from 60° to 330°N as oceanic, while those from 330° to 60°N as
terrestrial winds (Fig. 1a, b).

Atmospheric water vapor stable isotopes are expressed using the 6 notation (in per

mil, %o), using the following equations:

18
O
Riso = 157 ©)
%0 160
D
Ro =g (10)
Rsampl
Ssample = (ﬁ - 1) x 1000%o (11)

Here, 8sample represents either 830 or 8D (180 or D isotope ratio) relative to Vienna
Standard Mean Ocean Water (VSMOW). Rsample and Rysmow are the 0 or D and

VSMOW isotope ratios, respectively.
2.3 Calibration Protocol

In this study, we adhere to the calibration protocol proposed by Steen-Larsen et al.
(2013Db). Briefly, the instrument calibration and data processing consist of three major
steps: (1) humidity-isotope response calibration, (2) VSMOW - Standard Light
Antarctic Precipitation (VSMOW-SLAP) calibration, and (3) drift correction (see Text
S1 in the Supporting Information).

The water vapor concentration can influence the measured water vapor isotopic
composition, known as concentration- or humidity-isotope dependency
characterization. By adding a constant stream of water vapor with known isotopic
composition at different humidity levels, we can establish the humidity-isotope
response function (Sturm and Knohl, 2010; Aemisegger et al., 2012). As this function
can vary over time, its calibration was repeated monthly, using two standard samples of
known isotopic compositions measured at humidity levels ranging from 16,000 to

38,000 ppmv at intervals of 1000 ppmv. Each level was measured for at least 25 minutes

11
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using the LGR WVISS. Our results are referenced to a humidity level of 20,000 ppmv.
We compared our measurements to the international VSMOW-SLAP scale, assuming a
linear drift between calibration points.

To compensate for instrumental drift, we measured the water vapor from a drift-
standard bottle for 25 minutes after each 12 hours performed an ambient air
measurement. Furthermore, we tested for instrument drift as part of the routine
instrument maintenance, assuming a linear drift between each drift-standard
measurement. Laboratory analyses of liquid isotopes have confirmed the stability of its

isotopic composition over time.

2.4 Rayleigh Distillation Model and MBL-Mixing Model

The Rayleigh distillation model is employed to quantify isotopic variations during
phase changes (Dansgaard, 1964), by which the residual air mass becomes drier with a

depletion in heavy isotopes following moist adiabatic vertical ascent (Gat, 1996):

R, =Ry f®(M-! (12)
Here, R; and Ro represent the isotopic ratio of residual vapor and initial vapor,
respectively. ol (T) denotes the equilibrium fractionation factor, and f is the fraction
of residual water vapor.
By integrating the definition of isotope ratios as given in Equation (11), the

Rayleigh distillation model can be expressed in terms of isotopic content as follows:

8. = (8, + DFM-1_q (13)
where 0 and 9o are the isotope ratios relative to VSMOW in residual and initial vapor,
respectively.

We employ the mixing model to examine the isotopic characteristics after the

mixing of two air masses (Galewsky and Hurley, 2010):
f[HDO], + (1 - ) x [HDO],

mix f[H,0], + (1 - f) x [H,0], (14
f[H,0]; + (1 - f) x [H,0],

where Rmix represents the isotopic ratio of the mixed air mass, while [HDO], [H20], and

12
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[H2 180] denote isotopic water vapor volume mixing ratios, and f'is the mixing fraction.

The isotopic ratio and isotopic 6 in the Eq. 14 and Eq. 15 have been calibrated by
VSMOW.

We use water vapor isotopes to characterize the mixing processes in the marine
boundary layer (MBL) (Benetti et al., 2018), using the following equation (Craig and
Gordon, 1965):

145 _ I y oy % (1 +80¢) - RHgst % (1 +dypr)
¢ (Ik I'RHSST

(16)

where o, represents the equilibrium fractionation factor between vapor and liquid, and
ax 1s the kinetic fractionation factor. doc denotes the isotopic composition of the ocean

surface. We utilize o, from Majoube (1971a, b) and ox for the smooth regime (ox'%0 =

1.006 and axD = 1.0053) (Merlivat and Jouzel, 1979).

2.5 Concentration-WeightedQualitative Trajectory-based and

Moisture Source DiagnrosesAnalysis

To delineate water vapor transport paths and pinpoint moisture sources, we
employed the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model from the US National Oceanic and Atmospheric Administration (NOAA) to
compute backward trajectories of air masses arriving at Matara station during the
southwest and northeast monsoons. The Global Data Assimilation System (GDAS) with
1°x1° and 3-hour spatial and temporal resolutions provided the background
meteorological data from May 2020 to September 2020 and December 2020 to
February 2021 (ftp://arlftp.arlhg.noaa.gov/archives/gdas1/). The HYSPLIT model uses

GDAS reanalysis data, which contains 37 (vertical) pressure levels and a 1°x1°
horizontal resolution. Atmospheric water vapor primarily resides at altitudes below 2
km (Wallace and Hobbs, 2006). In this study, particles were released four times daily
(at 00:00, 06:00, 12:00, and 18:00 UTC) at 20 different locations within a rectangular
area extending 0.2° in each direction (north, south, east, and west) from Matara station

and at four heights above the ground (50 m, 500 m, 1200 m, and 2000 m). Each

13
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trajectory was back-traced for 168 h, recording data at 1-h intervals. The HYSPLIT
model outputs latitude, longitude, elevation, pressure, temperature, precipitation,
relative humidity, and specific humidity. Backward trajectory clustering analysis was
conducted, using the corresponding meteorological data. We averaged the trajectories
of four times per day to obtain a daily mean trajectory, combined with water vapor
stable isotope values on precipitation days. These daily mean trajectories were clustered
by moisture source using K-means clustering. By analyzing the variations in latitude,
elevation, and specific humidity along the trajectories, the influence of different
moisture sources on local vapor content and isotopic composition was evaluated.
These analyses yielded concentration-weighted trajectory (CWT) fields
(resolution of 0.5°%0.5°) (Hsu et al., 2003) using the in-situ daily average §'30 and d-
excess, which in turn facilitated the identification of potential moisture sources and an
assessment of the potential influence of recirculation on d-excess in water vapor
(Salamalikis et al., 2015; Bedaso and Wu, 2020; Xu et al., 2022). CWT (Cjj) was

calculated as:

e
Zk=1 k Tijk
C,==—"——x

! ZkK=1 Tijk

where (i, j) denote grid coordinates, k the trajectory index, K the total number of

(17

trajectories analyzed, Ck the concentration (here 5'%0 and d-excess) at the end of the
trajectory k, and ik the residence time of trajectory k in grid cell (i, j). We substituted

the residence time by the number of trajectory endpoints in each grid cell (i, j).

3 Results

3.1 Seasonal Variability of Water Vapor Stable Isotope

During a year-long observational period (1 March 2020 to 28 February 2021). the

seasonal and synoptic variations observed in water vapor isotopes (8'%0, 8D, and d-

excess) and key meteorological parameters (temperature, relative humidity,

atmospheric pressure, specific humidity, and SST) are explored (Fig, 2), aiming to

provide insights into the interactions between atmospheric and oceanic conditions at
14
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Matara. The tropical setting at Matara leads to relatively modest temperature

d-exeess){(Fig—S4-andTableH—Tthe 12-month average temperature—andrelative
humidity-areat 27.6°C, dipping to 22.3°C and reaching 33.5°C at extremes.-and-860-7%;

respectively (Table 1), Temperature variations maintain consistentThe amplitude_of
temperatures between—mensoon—andnon-menseon—pertodsremains at—around 10°C

between monsoon and non-monsoon periods—. Specific humidity ranging from 16 g/kg

to 21 ¢/kg and shows marked oscillations during the southwest and northeast monsoons,

with amplitudes of approximately 1.3 g/ke and 2.3 g/kg. respectively. Relative humidity

also shows clear seasonal pattern, peaking at 95% in May (southwest monsoon) and

falling to 49.2% in January (northeast monsoon). Monthly trends (Fig. S4 and Table 1)

reveals a steady decrease in both air temperature and specific humidity from May to

September, culminating in their lowest values (26.9°C and 18.5 g/kg, respectively).

gfke respeetively-During the southwest monsoon, temperatures; and specific humidity
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peak-in May (monthly averages of 28.4 £ 1.4°C and 21.0 + 1.1 g/kg) reflect the influx

of warm, moist air from the Indian Ocean. In contrast, February marks-stands out as the

coldest and driest period {speetfie humidity)-month-(menthhyaverages o£27.4 £ 2.6°C
and 17.1 £ 1.3 g/kg) corresponding during-to the northeast monsoon (Fig. S4). The

seasonal—temperatare—vartationsAmong them, exhibit—medest—amplitudes(Fig—2);

SSTs consistently exceed the daily average 2m air temperatures recorded by the AWS,

indicating the ocean’s significant role in modulating near-surface atmospheric

conditions (Fig. 2).(Fig2)

Yearly averages for water vapor isotopic values are -11.6%o for §'30, -79.5%o for

oD, and 13.3%o for d-excess, respectively. Isotopic composition ranges from -23.9%o to
-7.5%o for §'%0, -173.2%o to -53.4%o for 8D, and -1.2%o to 28.1%o for d-excess (Table
1). Monthly averages of water vapor isotopes (5'%0 and d-excess) exhibit stability from
March to October, followed by sudden decreases. '%0 and 8D show distinct seasonal
variations, with higher values during the southwest monsoon and lower values during
the northeast monsoon (Table 1). Therefore, the subsequent analysis will concentrate
on the variations in §'*0. During the southwest monsoon, the northeast monsoon, and
the non-monsoon periods, the average values of §'0 are -11.1%o, -12.2%o, and -11.9%o,
respectively. Extreme values of 'O are observed during the northeast monsoon, with
a maximum of -7.5%0 and a minimum of -23.9%.. Conversely, d-excess exhibits a
reverse pattern to 5'%0 on both seasonal and monthly scales, characterized by lower
values during the southwest monsoon and higher values during the non-monsoon period.
Furthermore, during the northeast monsoon, the southwest monsoon, and the non-
monsoon periods, the average values of d-excess are 12.4%o, 13%o, and 14.7%o,
respectively. The d-excess maximum occurs in November at 28.1%o0 (monthly average
of 15.2 + 4.3%0), while the minimum of -1.2%o was recorded in January (monthly
average of 11.3 £4.5%o). The high values of d-excess are related to moisture recycling.

Low specific humidity corresponds to depleted 5'%0 and elevated d-excess, indicating

16



429  a strong depletion during the long-distance transport from the source regions to the
430  observation station. Coastal stations such as Bangalore, Ponmudi, and Wayanad also
431  show similar water vapor isotopic depletion in autumn and winter, reflecting the

432  observations made at Matara (Table 2).
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434 Figure 2: Near-surface observations at Matara station of water vapor isotopes (6'*0, 3D, and
435  d-excess) and meteorological parameters (humidity, specific humidity (q), temperature,

436 relative humidity (RH), pressure, outgoing longwave radiation (OLR, obtained from NCEP),
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and precipitation) from March 1, 2020, to February 28, 2021. Local sea surface temperature
at Matara (SST, obtained from ERAS) is plotted in blue.

For 8'%0, 8D, and d-excess, synoptic variations were recorded (Fig. 2). Abrupt
changes occurred in late July 2020 and from November 2020 to January 2021,
associated with synoptic events. Cumulative precipitation in July 2020 reached 451.8
mm, with a notable rainfall event in late July recording daily rainfall of 93.2 mm.
Isotopic 8'*O values show a sharp depletion from -10.4%o to -20.4%o within 20 h of
isolated rainfall events, lasting for 6 days. Over the 75-day period spanning from late
southwest monsoon to mid-northeast monsoon, significant fluctuations can be seen in
isotopic $'*0 between -22%o and -11%o. During the southwest monsoon from July 12
to August 7, '%0 values varied from -20.4%o to -9.2%o, and 8D values ranged from -
143.5%o to -68.6%o. This finding is consistent with water vapor isotopic §'%0 (-14.1%o
t0 -9.8%0) and 3D (-97.2%o to 69.1%o) values measured from July 12 to August 7, 2012,
near the Bay of Bengal, although the local minimum at Matara station is below the

minimum in the Bay of Bengal (Midhun et al., 2013).
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Table 1: Summary of hourly-averaged data collected at Matara station from March 1, 2020,
to February 28, 2021.Averages are shown in bold. N indicates the number of observations of
6130, 8D, d-excess, temperature (T), relative humidity (RH), specific humidity (q), and

atmospheric boundary layer height (BLH). Yearly maxima and minima for each parameter

are highlighted using bold italics.

Season %0 D d- T RH q BLH
excess
(%0) (%) (%)  (°C) (%) (gkg)  (m)
Non- mean -11.9  -80.6 14.7 28.0 79.4 18.6 630.1
monsoon SD 2.2 16.6 3.8 2.2 7.3 1.3 179.1
Max. 9.0 -65.3  28.1 33.2 94.2 23.0 1178.8
Min. 22,1 -151.1 5.1 23.3 54.2 15.1 84.4
N 1851 1851 1851 2617 2617 2617 2928
Southwest mean -11.1 -75.7 13.0 27.6 83.8 194 741.4
monsoon SD 1.3 9.6 2.8 1.5 4.5 1.5 149.0
Max. 9.1 -60.8  24.1 32.7 95.0 23.7 1564.4
Min. 204  -1435 45 22.7 63.4 15.1 259.0
N 3314 3314 3314 3192 3197 3192 3672
Northeast mean -12.2  -85.1 12.4 271 77.4 17.2 516.4
monsoon SD 3.0 22.0 4.29 2.4 7.8 1.2 139.4
Max. -7.5 -53.4  25.0 33.5 90.0 19.9 1125.7
Min. -23.9  -173.2 -1.2 22.3 49.2 13.1 182.0
N 1885 1885 1885 1993 1993 1993 2160
All mean -11.6  -795 133 27.6 80.7 18.6 648.7
SD 2.2 16.1 3.6 2.0 7.0 2.1 181.3
Max. -7.5 -534  28.1 335 95.0 23.7 1564.4
Min. 239 -1732 -1.2 22.3 49.2 13.1 84.4
N 7050 7050 7050 7802 7807 7807 8760
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The atmospheric water vapor line serves as an indicator of the humidity conditions
at the vapor source and the fractionation processes along the transport path. The slope
reflects the extent of vapor kinetic fractionation, while the intercept indicates the
humidity levels at the vapor source. Comparing the Local Meteoric Water Line (LMWL)
for §'%0 and 8D with the Global Meteoric Water Line (GMWL) we obtain a slope of <
8 during both monsoon periods (Fig. 3a). Seasonal variations are also visible in §'%0
and 8D distribution patterns. Daily averages of water vapor isotopic 8'*0 and 8D
demonstrate a strong correlation (r = 0.96, slope = 7.26) with a lower intercept at 4.68.
The LMWL slope and intercept vary significantly between monsoon and non-monsoon
seasons, peaking in the northeast monsoon with values of 7.3 and 3.86, and nadir in the
southwest monsoon with 6.93 and 1.18, respectively. This suggests increased humidity
over sea surface vapor sources from the northeast to southwest monsoon, attributed to
heightened evaporation and reduced dynamic fractionation effects. During the northeast
monsoon, LMWL slope and intercept are higher compared to other periods, indicating

significant moisture recirculation.
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Table 2: Summary of observed water vapor isotope concentrations at various stations in India

and the Bay of Bengal.
d-
Country  Stationor Latitud Longitu 5180
) ) Date 3D (%) excess References
orregion  location e(N°) de(E°) (%o0)
(%o)
Jun 1,2012,t0  -23.8 -178.3 -4.5to
Sep 30, 2012 t0-9.0 to-58.6 32.7
Bangalor (Rahul et al.,
13.01 77.55 -22.7
e Oct 1, 2012, to -177.1 -95t0  2016b)
to -
Feb 28, 2013 to-73.7 414
10.2
-16.9
May 3, 2019, to -128.3 -7.1to  (Bhattacharya
Kolkata 22.56 88.41 to -
Oct 25,2019 to-72.8 254 etal.,, 2021)
10.0
Feb 1,2007,t0  -17.0 32.0 to
May 31, 2007 to -3.0 70.0
Jun 1, 2007, to -32.0 40.0to  (Saranya et
) Roorkee  29.87  77.88 none
India Sep 30, 2007 to -6.0 87.0 al., 2018)
Oct 1,2007,t0  -30.0 30.0 to
Dec 31, 2007 to -7.0 60.0
241 -170.0 6.3 to
Ponmudi  8.76 77.12
Apr1,2012,t0 to-8.6 to-51.0 26.5 (Lekshmy et
Nov 30 2012 -20.5 -139.1 133t0 al, 2018)
Wayanad  11.51 76.02
to-7.9 t0-50.0 312
Ahmedab Apr 1,2007,t0  -19.2 -128.1 6.9 to (Srivastava et
23.03 72.56
ad Apr 1, 2008 to-89 t0-59.8 404 al., 2015)
-19.4
Chhota -101.5 28.0to (Ranjan et al.,
32.58 77.58 none to -
Shigri to-29.2  62.0 2021)
10.3
-13.6
-940to 5.7to
6m to -
Jul 1,2012, to 100 -68.3 16.4 (Midhun et
Aug 1,2012 ' al., 2013)
Bay of -14.1 -972t0 69to
25m none
Bengal t0o-9.8 -69.1 19.4
-19.9
Nov 15,2013, -136.6 13.3to  (Lekshmy et
25m to -
to Dec 1, 2013 1o to -69.4 31.0 al., 2022)

We found a significant negative relationship between d-excess and §'*0, with a

rate of change for d-excess with §'30 is -0.68 %o/%o (r = -0.55) (Fig. S5a). This below

the -0.05 %o/%o recorded at Bangalore station (Rahul et al., 2016b). Seasonally, the

correlation between both variables have weaken during the southwest, northeast, and

non-monsoon periods, with respective rates of change of -0.94 %o0/%o0 (r = -0.49), -
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0.69 %0/%o (r = -0.54), and -0.65 %0/%0 (r = -0.44). Similar patterns are detected for
temperature—d-excess and specific humidity—d-excess correlations, showing gradual
increases in the slopes and intercepts of the water vapor line. Moreover, the
concentrated distribution of vapor values during the southwest monsoon and the highly
scattered distribution during the northeast monsoon are indicative of the corresponding

seasonal distributions of the water vapor line.
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Figure 3: (a) Co-variation of water vapor isotopic composition and meteorological parameters
during different monsoon and non-monsoon periods between March 1, 2020 and February 28,
2021. The lines represent linear least-squares regressions (LMWL and GMWL) of 6D (%o) as
a function of 880 (%o). (b) Scatter plot of observed hourly water vapor isotopic 'O vs.
specific humidity (q). The dashed red and blue curves represent the Rayleigh distillation line
during the southwest and northeast monsoon. The solid black curve represents the mixing line.
The colored curve represents the MBL-mixing line.

Plots of g-8'%0, the theoretical Rayleigh distillation curve, the mixing-line, and
MBL-mixing curve, were used to assess mixing conditions during the study period (Fig.
3b). During the southwest monsoon, most measurements are clustered between the
Rayleigh and mixing curve, indicating isotopic variability dominated by effects of
precipitation and moisture mixing process. Limited water vapor measurements are
scattered below the Rayleigh fractionation line, implying a discernible impact of
raindrop re-evaporation. Similarly, during the non-monsoon period, most

measurements lie between the Rayleigh and mixing curves, with only a few located
22
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below the Rayleigh line. During the northeast monsoon, 830 spans from the upper to
the lower extreme of the mixing and Rayleigh distillation curves. The measurements
substantially deviate from the Rayleigh curve and show a higher depletion than

predicted by the Rayleigh model, likely due to the influence of convective processes.

3.2 The Variation Characteristics of Diurnal Cycles

To look for diurnal cycles in isotopic composition and meteorological parameters,
we analyzed hourly averages (Fig. 4c-e).

All isotopic (5'%0, 8D, and d-excess) and meteorological parameters exhibit strong
diurnal variations during both monsoon and non-monsoon periods (Fig. 4). Overall, the
diurnal variations in local meteorological parameters of solar radiation during the day
and the resulting development of a boundary layer led to the increasing of temperature
and wind speed between the noon and afternoon, accompanied by a decrease in relative
humidity due to significant evapotranspiration. At night, surface radiative cooling
causes temperatures to drop, resulting in calmer conditions near the surface and gradual
air saturation, indicating a relatively stable atmospheric boundary layer. During the
southwest monsoon, §'%0, 8D, relative humidity, wind speed, specific humidity, and
BLH are generally higher than during the northeast and non-monsoon periods, while d-
excess is lower. In the early morning, §'%0 steadily decreases, reaching a minimum (-
11.26%0) around sunrise (~09:00 local time (LT)). Subsequently, it increases throughout
the day, peaking (-10.87%o) in the afternoon (~15:00 LT), yielding a diurnal fluctuation
of merely 0.45%o. Increased specific humidity between 10:00 LT and 14:00 LT
coincides with increasing air temperatures and wind speeds and decreasing relative
humidity (Fig. 4c-f). BLH peaks between 14:00 LT and 16:00 LT, slightly later than
other meteorological parameters. The same diurnal variations for each parameter were
observed during the northeast monsoon, with maximum changes in §'%0 and d-excess
of 1.1%o and 6.8%., respectively. Specific humidity peaks between 10:00 LT and 16:00
LT, accompanied by increases in air temperature, wind speed, and BLH. After 16:00 LT,
specific humidity decreases alongside isotopic o values and other meteorological

parameters. d-excess peaks (14.81%o0) at 09:00 LT and fluctuates until 23:00 LT,
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contrasting with the period from 04:00 LT to 09:00 LT (Fig. 4b). d-excess exhibits a W-
shaped variability, reaching similar highs at 09:00 LT and 21:00 LT. Specific humidity
exhibits a diurnal variation that aligns closely with the §!%0 pattern, reaching its
minimum before sunrise and peaking around midday (10:00-15:00 LT). Between
afternoon and evening, specific humidity remains relatively high and stable. The diurnal
variation during the southwest and northeast monsoon periods are 1.28 g/kg and 2.32
g/kg, respectively. Similarities with patterns observed at Lena River station in the
eastern Siberia (Bonne et al. 2020) suggest potential influences from moisture exchange

between the atmosphere and ocean surface, particularly during the northeast monsoon.
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Figure 4: Average diurnal cycles of (a) 8'%0, (b) d-excess, (¢) temperature (T), (d) relative
humidity (RH), (e) wind speed, (f) specific humidity (q), (g) atmospheric boundary layer
height (BLH), and (h) wind direction during the non-monsoon, southwest monsoon, and

northeast monsoon periods. Shaded areas correspond to =1 standard deviation.
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3.3 Sea Surface Evaporation Conditions in the Moisture Source

Region

To be able to explore water vapor isotopic variations in the sea surface boundary
layer, we must first understand the processes and factors that affect isotope variations
during ocean surface water evaporation. The primary determinant governing water
vapor stable isotope shifts across different regions is the regional moisture transport
process, characterized by differences in isotopic variations in the moisture source
region, variations in meteorological conditions during the evaporation processes, and
divergences of the moisture transport pathways (Bonne et al., 2020). Thus, this section
aims to identify factors that drive the seasonal variations of near-surface atmospheric
water vapor stable isotopes at Matara, including water vapor origin, transmission routes,
and sea surface evaporation conditions in the source regions.

To further understand the different seasonal relationships between 3'%0, d-excess,
and meteorological parameters, we analyzed potential seasonal differences between the
main moisture sources using HYSPLIT. Backward trajectories from the southwest and
northeast monsoons were spatially clustered and analyzed for changes in air mass
heights and specific humidity (Fig. S6), facilitating the identification of air mass origins.
The specific humidity along the path have been gridded, and we define the end points
of trajectories as the indicative of the moisture sources. Trajectories that reach Matara
during the southwest and northeast monsoons have different origins. During the
southwest monsoon, wind directions span from 60° to 360° and the main origin regions
are therefore the Arabian Sea (AS) and Indian Ocean (Fig. 5a). Due to the northward
movement of the warm South Equatorial Current, these winds gather significant
amounts of moisture along the way, bringing heavy rainfall to Matara (Fig. 5a and 5b).
Conversely, during the northeast monsoon, the main wind direction shifts to 0°-225°
and 330°-360°, such that most trajectories originate in northeast India, where specific
humidity is lower (overland), and only a short portion of the trajectory passes over the
BoB. The long transport distance results in a greater depletion in water vapor isotopes

once the air mass arrives at Matara station.
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Moisture from all sources shows seasonal variations, with §'®0 values higher
during the southwest monsoon than during the northeast monsoon. The shift in water
vapor source from the AS in May to the southern Indian Ocean in September leads to
5'%0 enriched water vapor from August to September. Enhanced convective activity
and rainfall during the southwest monsoon result in §'%0 depletion, while tropical

storms and hurricanes also contribute to §'30 depletion.
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Figure 5: Backward trajectories of water vapor tracks reaching Matara station and its four
surrounding sites (heights: 50m, 500m, 1200m, and 2000m) during the (a) southwest monsoon
and (b) northeast monsoon. The changes in specific humidity (q) along each clustered
trajectory are shown in color. Numbers indicate the proportion (%) of trajectories represented
by each clustered trajectory. Monthly concentration fields of water vapor isotopic 3'*0 from

a 168h HYSPLIT simulation of back trajectories during the two monsoon seasons (c-j). Red
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triangle marks the study site.

To assess how seasonal shifts in moisture sources impact the isotopic composition
of water vapor, we analyzed the relationship between specific humidity, isotope
variations, and wind direction at Matara station (Fig. S7). During the southwest
monsoon, wind directions were predominantly WNW, correlating with peak specific
humidity and highest 5'0 values and lowest d-excess, suggesting a westerly moisture
source. Conversely, air masses from the east exhibited '%0 depletion and higher d-
excess. The northeast monsoon brought drier air from the BoB, leading to specific
humidity between 14 and 17 g/kg and significantly depleted §'®0 values. These air
masses likely experienced substantial isotopic fractionation during their overland
passage.

We also investigated the influence of water vapor flux, evaporation, and
precipitation on isotopic variations. The southwest monsoon saw lower evaporation
rates compared to precipitation at Matara station, contrasting with the northern Indian
Ocean and western BoB where evaporation surpassed precipitation. The northeast
monsoon, influenced by moisture from the BoB and South Asia, showed higher
evaporation rates, increasing water vapor flux. Overall, the water vapor flux and budget
varied markedly between monsoons, with the upstream vapor budget significantly
affecting stable isotope changes, particularly 5'%0. The southwest monsoon's increased
precipitation and moisture transport from the northeast led to enriched §'*0O at Matara.
In contrast, the northeast monsoon’s moisture transport resulted in a “washing effect”,
causing a gradual §'%0 depletion due to continuous condensation and fractionation

along the transport pathway (Fig. 6 and S8).
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Figure 6: Average water vapor flux and budget during the (a) southwest monsoon and (b)
northeast monsoon, with the red dot marking Matara station.

d-excess exhibits similar seasonal variations at Matara station, with lower values
during the two monsoon seasons and higher values during the non-monsoon periods
(Table 2, Fig. 4). This seasonal variation may stem from changes in relative humidity
in the moisture source areas and further modifications during transport.

Ocean evaporation represents the starting point of the phase transformations that
occur within the global water cycle. Identifying the isotopic variations and controlling
factors of oceanic evaporation is essential for understanding isotopic shifts in the
marine boundary layer. Previous coastal observational studies focusing on the marine
boundary layer have confirmed a significant association between d-excess and RHsst
(Pfahl and Wernli, 2009; Steen-Larsen et al., 2015). In cases where kinetic fractionation
during air mass transport is either absent or minimal, d-excess can serve as an indicator
of the moisture source region (Bonne et al., 2014).

The map of the moisture sources (Fig. 5) identified the Indian Ocean and BoB as
the main source areas for moisture arriving at Matara station. To gauge the impact of
more local influences, we investigated how changes in sea surface meteorological
conditions in the sea around Matara station affects near surface water vapor isotope

concentrations (Fig. S9). During the southwest monsoon, RHsst in "Region a" (located
28
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630  to the south of Matara between 3-7°N and 56-65°E) ranged from 64% to 86%, with
631  SST fluctuating between 27.9°C and 31.5°C. During the northeast monsoon, RHsst in
632  "Region b" (located to the east of Matara between 6-8°N and 82-85°E) ranged from 54%
633  to 84%, with SST fluctuating between 28.1°C and 29.1°C. In comparison with the
634  southwest monsoon, RHsst is slightly lower, accompanied by less pronounced
635  variability in SST. The rate of change in d-excess under the influence of RHsst in the
636  BoB (during the northeast monsoon) is -0.34 %o/%. In comparison, the rate of change
637  ind-excess with the RHsst of the northern Indian Ocean (during the southwest monsoon)
638  is-0.32 %o/%, suggesting that evaporation over the northern Indian Ocean significantly
639  impacts local d-excess. Studies focused on the BoB ’s sea surface revealed that RHsst
640  explains only 25% of the d-excess variation (d-excess = (-0.55 £ 0.14) x RHsst + (56
641 £ 12); r=-0.5). The limited variation in relative humidity during the monsoon period
642 led to a low correlation, indicating that monsoon moisture plays a crucial role in the
643  isotopic composition of water vapor in the BoB (Midhun et al., 2013). Conversely, the
644  observed relationship between near-surface water vapor d-excess at Matara and relative
645  humidity in the surrounding oceanic region during the observational period, with
646  correlation coefficients of -0.56 and -0.62 (p<0.01), respectively (Fig. 7), reveals a
647  marked negative correlation between d-excess and relative humidity in the nearby
648  Indian Ocean and BoB, indicating that water vapor at Matara is predominantly supplied
649 by nearby oceans. Notably, SST amplitude near the Matara station is smaller than the

650  variations in near-surface air temperature (Fig. 2).
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Figure 7: Relationship between d-excess and RHsst during the (a) southwest monsoon and (b)
northeast monsoon. Specific sea regions (Fig. S10) to the south (Region a: 3-7°N and 56-65°E)
and east (Region b: 6-8°N and 82-85°E) of the observation station were selected to investigate
the impact of sea surface meteorological conditions on near-surface water vapor isotopes

during the two monsoon periods.

3.4 The Influence of Regional Convective Activity

In the equatorial tropics, OLR mainly results from convective activity and cloud
cover, which can impact the stable isotope composition of precipitation (Ohring et al.,
1984; Gao et al., 2013; Guo et al., 2017). Generally, higher OLR values are associated
with weaker convective activity. Examining the correlation between stable isotopes of
water vapor and OLR helps to understand the impact of convective activities along
near-surface trajectories of water vapor stable isotopes at Matara station.

We calculated the spatiotemporal correlation between OLR and precipitation
amount using the measured water vapor isotopic compositions at Matara station.
Specifically, we calculated the average precipitation amount and average OLR for each
grid point by averaging over different numbers of days (n = 1, 2, up to 30) preceding
each day. Lower OLR values indicate the presence of deep convective clouds in this
region and higher precipitation associated with lower o values.

Fig. 8a shows the strong positive correlation (red regions) between rainfall and
580 during the southwest monsoon, mainly in the northern BoB and over India. This
correlation strengthens and extends over wider areas as n increases from 1 to 5.
Additionally, a strong negative correlation is evident in the northern Indian Ocean and
southern Arabian Sea, reaching a maximum for n = 2 d. During the northeast monsoon,
the spatial correlation distribution differs, with a negative correlation observed over the
southern Indian Ocean and BoB (Fig. 8b), reaching a maximum for n=5 d. Lower OLR
values in the Arabian Sea and the northern part of the India Ocean correspond to a
decrease in water vapor isotopic 8'®0 at Matara station (Fig. 8c, d). This pattern
indicates that water vapor §'0 during the northeast monsoon period is influenced by

convective activities over the South BoB, and Southeast Asian regions. The stronger
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this convective activity, the more depleted is the air reaching Matara in water vapor
isotopic 5'%0.

To examine the correlation between water vapor isotopic 8'®0 and local
precipitation (Fig. 8¢) and OLR (Fig. 8f), we selected a small region of 5°x5° around
Matara and calculated the temporal correlation for all grid points as described above.
The results show that the correlation with precipitation is negative during both monsoon
seasons as expected. The depletion of low-level water vapor §'%0 is related to the
transport and deposition of water vapor into the lower atmosphere through convective
activity (Kurita, 2013; Midhun et al., 2013; Lekshmy et al., 2014). The air masses are
re-supplied to the convective system through moisture recycling. This results in a strong
correlation between the isotopic composition of water vapor and the convective activity
during the previous day (Fig. 8f). Residual water vapor is more depleted in strong
convective systems. In our study, the correlation reaches a high value after about 5 days,
indicating that the convective activity is sufficiently established to affect the isotopic
composition of water vapor. In fact, the correlation (for p < 0.05 and in absolute terms)
is high for all n values, with maxima of about 0.37 for n = 2 d during the southwest
monsoon and 0.55 for n =2 to 5 d during the northeast monsoon.

The OLR correlation peaks at smaller time scales (approximately n = 2-5 d, Fig.
8f) than precipitation (n = 3-7 d). We attribute this difference to the effect of cloud
distribution on precipitation and OLR. OLR has a stronger response to shallow clouds,
while precipitation is more responsive to both deep convective clouds and shallow
clouds (Masunaga and Kummerow, 2006; Schumacher, 2006). The OLR minimum
occurs when thunderstorm clouds result in more precipitation. Additionally, deep
thunderstorm clouds, with short lifetimes and consequently very low OLR
(corresponding to highly depleted water vapor isotopic 9), exhibit a short memory effect

on the correlation (peak occurs at smaller time scales) (Gambheer and Bhat, 2000).
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708  Figure 8: Isotopic composition correlations with precipitation and OLR during monsoon
709  periods. (a, b): Spatial correlations between water vapor 6'*0 and ERAS5-precipitation for the

710 southwest (a) and northeast (b) monsoons. (c, d): Spatial correlations between water vapor
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6'%0 and average OLR for the southwest (c) and northeast (d) monsoons. (e): Correlation
between 6*0 and ERAS-precipitation (P) across different averaging periods (n =1 to 30 days)
for southwest (red line) and northeast (black line) monsoons. (f): Correlation between 60
and OLR across southwest (red line) and northeast (black line) monsoons over varying
averaging periods. Red areas indicate significant negative correlations, grey areas indicate
significant positive correlations.

Note: Only correlations surpassing the 99% confidence threshold are displayed. The red box

denotes the Matara station’s region of interest.

4. Discussion: Comparing Main Features and Identifying Influencing

Factors

This study presented the results from a one-year (March 2020 to February 2021)
in-situ measurement campaign of near-surface atmospheric water vapor isotopes (8'%0,
dD) at Matara station, Sri Lanka. These high-temporal resolution water vapor isotopic
composition and meteorological observations provided a good opportunity to
investigate the water vapor isotopic dynamics from synoptic to seasonal scales. The
variability of water vapor isotopes at Matara station is influenced by local
meteorological factors, oceanic evaporation processes, and regional convective
activities, depending on the water sources and moisture transport. The measurements
provided insights into multi-time-scale variations in near-surface atmospheric water
vapor in an equatorial region and provided information about the interactions between
large-scale atmospheric moisture transport and oceanic evaporation.

During the both monsoon periods, specific humidity and stable water isotope
composition showed a clear diurnal cycle at Matara station, primarily due to the
significant contribution of local evapotranspiration to the overall moisture balance. In
equatorial regions, seasonal variations in stable water vapor isotopes are largely
governed by changes moisture sources and the transport processes. Ponmudi station,
located in southern India (Lekshmy et al., 2018), shares many characteristics with

Matara station, in that it is also a coastal city, influenced by both the southwest and
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northeast monsoons. During the summer, moisture sources for air arriving at Ponmudi
are mostly located in the southern Arabian Sea and equatorial Indian Ocean, with
relative humidity levels exceeding 70%. This high relative humidity, combined with a
continuous supply of moisture from the Arabian Sea, results in significant rainfall in
the Ponmudi region, exceeding 2040 mm per year.

Fluctuations of water vapor stable isotopes at shorter (weather) time scales are
closely associated with regional convective activities. Research conducted on
precipitation and water vapor stable isotopes at Bangalore, another coastal city in
southern India, indicates that local meteorological parameters do not influence isotope
ratios (Rahul et al., 2016b). Rather, these ratios are affected by the integrated regional
convective activity, characterized by large-scale rainfall or outgoing longwave radiation
flux. Like Matara station, Bangalore is also affected by both the southwest and northeast
monsoons. The observed depletion in heavy isotopes may be due to the influx of
moisture from the Bay of Bengal, depleted due to the rainout effect, mixing with air
that has travelled overland crossing the Indian subcontinent.

Overall, the long-term monitoring of water vapor stable isotopes in South Asian
equatorial regions could highlight the importance of both seasonal and sub-seasonal
(weather-scale) variations, mostly due to changes in moisture sources and processes
that occur during the air mass transport at the circulation scale. Matara station served
as a good location to study the effects of moisture transport processes over the Indian
Ocean. We could also identify seasonal patterns that in general agree with previous
findings for tropical equatorial regions (Midhun et al., 2013; Rahul et al., 2016b;
Lekshmy et al., 2018).

5. Summary and Conclusions

One-year (March 2020 to February 2021) in situ meteorological observations and
measurements of water vapor isotopic composition were conducted at Matara station,
Sri Lanka. Meteorological parameters exhibited diurnal variations during both

monsoon and non-monsoon periods. The new dataset provides detailed information on
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the isotopic composition of near-surface atmospheric water vapor, which complements
local precipitation isotopic dataset by including periods without rainfall. Additionally,
it enables a comparative analysis of water vapor isotopic variations across the two
monsoon periods. Research findings indicate that during the northeast monsoon, diurnal
fluctuations in 8'%0, temperature, and specific humidity were observed, with maximum
values reaching 1.1%o0, 6.0°C, and 2.3 g/kg, respectively. In contrast, during the
southwest monsoon these parameters exhibit only small magnitude fluctuations of
0.45%o, 2.3°C, and 1.3 g/kg. Atmospheric temperature affects isotopic composition
through its effect on isotope fractionation. Additionally, a weak seasonal variability in
near-surface water vapor isotopes was observed, with 8'%0 typically showing high
values (-11.1%o) during the monsoon period and low values (-11.9%o) during the non-
monsoon period. d-excess exhibited lower value (12.7%o) during the monsoon period
than during the non-monsoon period (14.7%o).

An evaluation of water vapor sources using HYSPLIT indicates small but notable
seasonal variations in air mass origins. The source regions differ seasonally, with the
northern Indian Ocean serving as the primary source during the southwest monsoon,
and the Bay of Bengal dominating as the source during the northeast monsoon.
Significant variations in water vapor flux and budget occur during the monsoon periods,
with upstream water vapor budgets exerting a pronounced impact on isotopic signatures,
especially 6'*0. Evaporation over the northern Indian Ocean significantly impacts local
d-excess at Matara. Contrary to previous research indicating a weak correlation (r = -
0.5) between d-excess in the Bay of Bengal and the sea surface relative humidity (RHssr)
(Midhun et al., 2013), we found a slightly stronger negative correlation with RHsst
during the monsoon periods, with values of -0.61 and -0.62 (p<0.01) for the northern
Indian Ocean and Bay of Bengal, respectively. This study underscores the capability of

near-surface d-excess to reflect the evaporation conditions over these oceanic source

of raindrop evaporation is yet to be thoroughly explored.
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Consistent with previous research (Rahul et al., 2016b), large-scale rainfall and
regional convective activity (OLR) significantly impact isotope ratios at Matara station.
Notably, significant changes in §'*0 were observed during a heavy rainfall event in July
2020, with a sharp decline in isotopic values from -10.4%o to -20.4%o within 20 hours.
During the southwest monsoon, strong cloud cover and high humidity over the ocean
may lead to 6'%0 enrichment at Matara station. The water vapor isotope compositions
observed during the southwest monsoon are similar as those observed in the Bay of
Bengal (Midhun et al., 2013). The depleted of water vapor isotope values at Matara
station in autumn and winter is consistent with findings from other coastal stations, such
as Bangalore, Ponmudi, and Wayanad (Rahul et al., 2016b; Lekshmy et al., 2018).
Current investigations into convection activities and evaporation processes in tropical
and subtropical regions offer fresh perspectives on the stable isotopic composition of
water vapor in these regions (Landshuter et al., 2024; Galewsky et al., 2023; Baily et
al., 2015). The re-evaporation of raindrops in deep convection (Risi et al., 2019) and
the formation of ice clouds in tropical regions (de Vries et al., 2022), which influence
the tropopause, provide critical insights into the factors governing isotopic variability
during shallow and deep convection. Simulations that incorporate entrainment and
mixing processes highlight the importance of accurately quantifying the effects of
hydrometeor evaporation on water vapor stable isotopes (Risi et al., 2019; Benetti et al.,
2015). These findings form a basis for deeper exploration of the distinctive isotopic
characteristics of tropical water vapor during the different monsoon periods. Our study
is the first to point out that the correlation between OLR and §'30 peaks around 2-5
days before the observation, which we attribute to the impacts of cloud distribution.

This study examines the origins of moisture arriving at Matara station and the
associated atmospheric transport, with a focus on the substantial impact of cloud
distribution on the stable isotopic composition of water vapor, driven by regional
convection. Therefore, these insights are crucial for refining our grasp of isotopic
dynamics, particularly in relation to cloud microphysics and atmospheric mixing

processes within the broader water cycle (de Vries et al., 2022). This comprehensive
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dataset containing synchronous water vapor isotope and meteorological measurements
offer extensive opportunities for further analyses, e.g., of the typical weather events,
atmospheric patterns, and ocean-atmosphere interactions in the equatorial region.
Given that only one year of observations is currently available, there is a pressing need
for supplementary and sustained measurements of water vapor stable isotopes in this
region to support multi-year studies and interannual variabilities. Furthermore, given
the anticipated changes in numerous weather and hydrological processes in equatorial
regions, future research should explore the impacts of typical weather events, and
ocean-atmosphere interactions, to deepen our understanding of extreme events and
large-scale atmospheric modes (e.g., ENSO, MJO, and IOD). Considering the temporal
and spatial variability in the dynamics of tropical ocean-atmosphere systems, high-
resolution isotope models and satellite datasets should be combined for a more

comprehensive analysis in the future.
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