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 13 

Abstract. Accurate flood risk assessments and early warning systems are needed to protect and prepare people in coastal areas 14 

from storms.  In order to provide this information efficiently and on time, computational costs in flood models need to be kept 15 

as low as possible. One way to achieve this goal is to apply sub-grid corrections to relatively coarse computational grids. 16 

Previously, these have been used subgrid corrections in full-physics models have been used in full-physics circulation models.  17 

to achieve this goal, or using Rreduced-complexity models using based on the linear inertial equations and subgrid approaches 18 

have been used previously to achieve this goal. In this paper, for the first time, we developed a subgrid approach corrections 19 

for the Linear Inertial Equations (LIE) that account for bed level and friction variations. They were implemented We 20 

implemented these subgrid corrections is method in the SFINCS model version 2.1.1 Dollerup Release. Pre-processed lookup 21 

tables that correlate water levels with hydrodynamic quantities make more precise simulations with lower computational costs 22 

possible. These subgrid corrections have undergone validation through a variety number ofseveral conceptual and real-world 23 

application scenarios, including rainfall -induced flooding during a analyses of hurricane hazards and tidal 24 

fluctuationspropagation in an estuary. We demonstrate that the subgrid corrections for Linear Inertial Equations significantly 25 

improve model accuracy while utilizing the same resolution without subgrid corrections.  In terms of computational efficiency, 26 

subgrid corrections increase computational costs by 38-128%. MoreoverHowever, they yield a 35-50 times speedup since 27 

coarser model resolutions with subgrid corrections can provide the same accuracy as finer resolutions without subgrid 28 

corrections. Limitations are discussed, for example, when grids do not adequately resolve river meanders, fluxes can be 29 

overestimated. Our findings show that subgrid corrections are a usefuln invaluable asset for hydrodynamic modelers striving 30 

to achieve a balance between accuracy and efficiency.  31 
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1 Introduction 32 

With hundreds of millions of people living in areas with an elevation of less than 10 meters above sea level (McGranahan et 33 

al, 2007), coastal zone flooding has large consequences for casualties and damage to real estate and infrastructure. To protect 34 

and mitigate flood damages and loss of life, a priori risk assessments may inform decision makers in what locations and under 35 

what circumstances flooding occurs, and what interventions to take. Furthermore, flood early warning systems provide 36 

information based on which evacuation of citizens can take place to save lives. Both the risk assessments and early warning 37 

systems should provide as accurate as possible information so as not to give false warnings or needlessly over or underestimate 38 

the extent and cost of interventions.  39 

 40 

For flood warnings, this means that simple bathtub approaches, where a peak water level is imposed on an area’s topography, 41 

do not suffice. They may overestimate the flood intensity because the surge hydrograph is not taken into account (Vousdoukas 42 

et al., 2016), or underestimate it due to lacking physics (e.g. wave effects, Didier et al., 2020) or lacking inputs such as 43 

roughness effects which would impede flow (Ramirez et al., 2016). Therefore, for a more accurate flood estimate, the dynamic 44 

aspects of floods such as the duration of an event, and the path that flood waters take should be considered. Furthermore, the 45 

compound nature of coastal area floods, which may be caused by a combination of marine surges, wave overtopping, coastal 46 

river discharges, and local rainfall needs to be taken into account. These dynamics and processes may be resolved using 47 

process-based numerical models which are based on the conservation of mass and momentum. HoweverWhile, classical full-48 

physics physics models (ADCIRC; Luettich et al., 1992, Delft3D-FLOW; Lesser et al., 2004, MIKE; Warren and Bach, 1992 49 

or SOBEK; Stelling et al., 1998) offer highly detailed simulations, they often require substantial computational resources, 50 

particularly for high-resolution simulations over large areas or when exploring uncertainties in flooding through ensemble 51 

modelling. Although these models can be applied to large-scale systems with adequate computing power, their high 52 

computational demands may constrain their practical use in time-sensitive or resource-limited scenarios.are computationally 53 

expensive, which limits their application for large areas and high resolution, and the exploration of uncertainties in flooding 54 

due to uncertain inputs.  55 

 56 

To that end, reduced-complexity models have been developed and applied in riverine settings and coastal applications. 57 

Examples include, among others, the LISFLOOD(-FP) model by Bates et al. (2010) and the SFINCS (Super-Fast INundation 58 

of CoastS) model by Leijnse et al. (2021 These models focus on solving reduced forms of the momentum equations using a 59 

simplified numerical scheme)).  , allowing them to run significantly faster than traditional full-physics models. These models 60 

solve only the essential terms in the momentum equations using a simple numerical scheme and are as a consequence orders 61 

of magnitude faster than the conventional models. Still, the number of simulations that can be run is limited, as the numerical 62 

scheme is explicit and therefore strongly influenced by the spatial grid size (and associated time step).  63 

 64 
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One way to further increase the computational speed is to apply a subgrid approach which makes use of the assumption that 65 

water level gradients are typically much smaller than topographic gradients. Defina (2000) presented shallow water equations 66 

with mass conservation corrections to account for wetting and drying areas, and corrections to the momentum equations to 67 

account for varying velocities. Casulli (2009a) introduced a dual-grid approach with a higher resolution grid for the bathymetry 68 

and a lower resolution grid for the hydrodynamics where the depth and cross-sectional area were computed using the higher-69 

resolution grid and stored in lookup tables which were used to evaluate the water levels on the lower resolution grid. Volp et 70 

al. (2013) extended Casulli’s approach to finite volumes and incorporated a subgrid-based methodsubgrid corrections to 71 

compute advection and bottom friction under the assumptions of locally uniform flow direction and friction slope.  Sehili et 72 

al. (2014) showed that a subgrid approach corrections could save an order of magnitude of computational cost without major 73 

accuracy loss in estuarine modeling. For coastal storm surge applications, Kennedy et al. (2019) developed a refined set of 74 

equations incorporating extra terms derived from an upscaling technique. These additional terms, emerging from the averaging 75 

of shallow water equations, account for the integral properties of fine-scale bathymetry, topography, and flow dynamics. This 76 

process is similar to how Boussinesq approximations are used for turbulence closure in Navier-Stokes models and involves 77 

using coarse-scale variables, such as averaged fluid velocity, to represent these fine-scale integrals.   They showed the improved 78 

performance of their model for the case of tidal flooding in a small bay. Woodruff et al. (2021) extended this analysis to a case 79 

of storm surge with realistic atmospheric forcing and reported a speedup of ADCIRC with a factor of 10-50. Similarly, 80 

Begmohammadi et al. (2023) adapted the numerical implementation of the real-time forecasting model SLOSH (Jelesnianski 81 

and Chester, 1992) to improve inundation performance in a coastal region with narrow channels. Woodruff et al. (2023) scaled 82 

up these approaches to the entire South Atlantic Bight and showed improved performance of a subgrid model to a conventional 83 

high-resolution model for Hurricane Matthew (2016).  84 

 85 

More recently, subgrid models such as CoaSToRM (Begmohammadi et al., 2024) and HEC-RAS (Brunner, 2016) have further 86 

advanced the field. CoaSToRM is a standalone solver for compound flooding in coastal regions, utilizing subgrid topography 87 

to improve inundation accuracy in overland and coastal flood modeling. HEC-RAS nowadays also allows for the integration 88 

of subgrid corrections, utilizing detailed hydraulic property tables to improve performance in both riverine and coastal flood 89 

scenarios. 90 

 91 

 92 

While these advances have led to great improvements in estuarine and storm surge modeling, the assumption of hydraulic 93 

connectivity of subgrid cells remains a challenge. To that end, Casulli (2009b) and Begmohammadi et al. (2021) removed the 94 

artifact of flows occurring through catchment boundaries that are not resolved by subgrid corrections in a subgrid approach by 95 

restricting flow to a predetermined path. Rong et al. (2023) introduced a new diffusive scheme in the existing subgrid 96 

corrections channel approach to better model flood routing in rivers and adjacent flood plains. Yu and Lane (2011) applied a 97 
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subgrid corrections approach to resolve the roughness effects of small-scale structural elements in river floodplain cases, based 98 

on the method by Yu and Lane (2006) and applied a storage correction to the coarser scale flow grid based on the higher-99 

resolution topographic information accounting for cell blockage and conveyance effects. 100 

 101 

However, none of these efforts combined a reduced-complexity model with a subgrid corrections approach that accounts for 102 

bed level and friction variations for efficient compound flood modeling. In this paper, we explore a subgrid corrections 103 

approach for the Linear Inertial Equations (Bates et al., 2010) that are used in the SFINCS model (Leijnse et al., 2021). All 104 

model results were obtained with the SFINCS ‘Dollerup Cauberg’ release from November 2023 which is available as open-105 

source code on GitHub and via https://www.deltares.nl/en/software-and-data/products/sfincs (van Ormondt et al., 20232024).  106 

Computational speeds reported in this paper isare determined by running the simulations on an Intel core I9 10980XE CPU. 107 

 108 

The paper is organized as follows: we start with the governing equation in SFINCS, and a description of the new subgrid 109 

approach corrections (Section 2).  We then demonstrate the accuracy of the subgrid method corrections for some conceptual 110 

cases (Section 3). In Section 4, the subgrid method corrections isare verified against the default SFINCS results and observed 111 

data for two real-world cases: tidal propagation at the St. Johns River (Florida, USA) and the flooding during Hurricane Harvey 112 

(Houston, USA). The findings are discussed in Section 5 and our conclusions are presented in Section 6. 113 

2 Model description 114 

2.1 SFINCS governing equations 115 

The SFINCS model solves the shallow-water equations on a regular, staggered Arakawa-C grid. Its governing equations are 116 

based on the Linear Inertial Equations (LIEs; Bates et al., 2010). In particular, the volumetric flow rate per unit width at the 117 

interface between adjacent cells in the x direction for the current time step is computed with Equation 1:  118 

𝑞
𝑢
𝑡+∆𝑡 =

𝑞
𝑢
𝑡 − 𝑔∆𝑡ℎ𝑢

∆𝑧
∆𝑥

+ 𝐹∆𝑡

1 + 𝑔∆𝑡𝑛2ห𝑞
𝑢
𝑡 ห/ℎ𝑢

7
3ൗ

(1) 119 

where 𝑞௨
௧  is the flow rate at the previous time step, hu and Δz/Δx are the water depth and water level gradient at the cell interface 120 

u, g is the acceleration constant, n is the Manning’s n roughness and Δt is the time step. The water depth hu at the cell interface 121 

is computed in SFINCS as the difference between the maximum water level in the two adjacent cells and the maximum bed 122 

level in these cells. For the sake of brevity, additional forcing terms, such as wind drag, barometric pressure gradients, and the 123 

advection term, are represented in the combined term F.  124 

 125 

The mass continuity equation reads: 126 
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𝑧𝑠 𝑚,𝑛
𝑡+∆𝑡 = 𝑧𝑠 𝑚,𝑛

𝑡 + ∆𝑡 ቆ
𝑞

𝑢 𝑚−1,𝑛
𝑡 − 𝑞

𝑢 𝑚,𝑛
𝑡

∆𝑥
+

𝑞
𝑣 𝑚,𝑛−1
𝑡 − 𝑞

𝑣 𝑚,𝑛
𝑡

∆𝑦
+

𝑆𝑚,𝑛

∆𝑥∆𝑦
ቇ (2) 127 

where zs is the water level in a grid cell (with index m in x-direction, n in y-direction), and Sm,n  is an (optional) source term in 128 

m3/s which can be positive and negative (e.g. to represent precipitation, infiltration  or a user-defined point source). SFINCS 129 

allows for the specification of either constant in-time infiltration rates or empirical rainfall-runoff models such as the Curve 130 

Number method, the Green-Ampt method, and the Horton infiltration method.  In the remainder of this document, formulations 131 

will often be presented in the x direction, with the y direction treated analogously (with cell interface v).  132 

 133 

SFINCS uses a first-order explicit backward in time with a first-order central difference approximation of the spatial derivatives 134 

(BTCS-scheme).  135 

2.2 Subgrid corrections in the momentum equation 136 

The goal of the subgrid approach corrections is to compute flooding in a computationally efficient way using larger grids while 137 

retaining information of the higher-resolution elevation and roughness data. This is achieved by adjusting the conveyance 138 

depth hu and Manning’s roughness n in Equation 1 based on the local water level zu and the subgrid topography and roughness 139 

so that the unit discharge qu through a cell interface equals the average of the unit discharge of the subgrid pixels within the 140 

considered velocity point. An important assumption here is that the water level within the velocity point is constant, and 141 

therefore equal for all subgrid pixels. If the subgrid topography is known, and we assume that the water level zu is constant for 142 

all subgrid pixels in the velocity point, then representative values for hu and n (as well as the wet fraction φ) can be computed 143 

as a function of zu and stored in lookup tables for each velocity point. During a simulation, these lookup tables are queried at 144 

each time step to provide representative values for hu, n, and φ. This sSection explains the theory behind the subgrid 145 

correctionsapproach for the LIEs. The following sections describe the practical generation of the subgrid tables, and how these 146 

are queried during a SFINCS simulation. 147 

 148 

Following the notation of Kennedy et al. (2019), for a quantity Q, hydrodynamic variables coarsened to the grid scale are 149 

defined as: 150 

〈𝑄〉𝐺 =
1

𝐴
ඵ 𝑄𝑑𝐴

 

𝐴𝑊

(3) 151 

where AW is the wet portion of the grid cell area A. This will be called the “grid average” and is denoted with subscript “G”. 152 

 153 

On the other hand, the “wet average” of Q, denoted with subscript “W” is: 154 

〈𝑄〉𝑊 =
1

𝐴𝑊
ඵ 𝑄𝑑𝐴

 

𝐴𝑊

(4) 155 
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 156 

Wwith the wet average area is defined as: 157 

𝐴𝑊 = 𝜑𝐴 (5) 158 

where φ is the wet fraction of the cell area, then for hydrodynamic quantity Q: 159 

〈𝑄〉𝐺 = 𝜑〈𝑄〉𝑊 (6) 160 

 161 

Rewriting Equation 1 using wet average quantities yields tThe LIEs in their subgrid form using wet average quantities can be 162 

defined as: 163 

〈𝑞
𝑢〉𝑊

𝑡+∆𝑡 =
〈𝑞

𝑢〉𝑊
𝑡 − 𝑔 ∆𝑡 〈𝐻𝑢〉𝑊

∆𝑧
∆𝑥

+ 𝐹∆𝑡

1 + 𝑔 ∆𝑡 𝑛𝑢,𝑊
2  ห〈𝑞

𝑢〉𝑊
𝑡 ห / 〈𝐻𝑢〉𝑊

7
3ൗ

(7) 164 

where 𝑞௨
௧ = 〈𝑞௨〉ௐ  and ℎ௨ = 〈𝐻௨〉ௐ  are the wet average unit discharge and water depth, respectively., as substituted into 165 

Equation 1. and Also, now  nu,W is the Manning’s n coefficient adjusted for subgrid variations. 166 

 167 

The expression for nu,W can be derived by considering Manning’s equation for open channel flow : 168 

〈𝑞
𝑢〉𝑊 = √𝑖

〈𝐻𝑢〉𝑊

5
3ൗ

𝑛𝑢,𝑊

(8) 169 

where i is the water level slope 
∆௭ೞ

∆௫
. In case of a stationary current and in the absence of external forcing, the subgrid form of 170 

the LIEs reverts to Equation 8. Consider now a velocity point with N subgrid pixels, each with its own bed level zb,k, and 171 

roughness nk (see Figure 1 and Figure 2). For a water level zu, the water depth in each pixel is hk = max(zu – zb,k, 0). The wet 172 

average unit discharge of the subgrid pixels within the velocity point is:  173 

〈𝑞
𝑢〉𝑊 =

1

𝜑
𝑢

𝑁 √𝑖 ෍
ℎ𝑘

5
3ൗ

𝑛𝑘

𝑁

𝑘=1

(9) 174 

where 𝜑௨𝑁 is the number of wet pixels. Equation 9 can also be written as: 175 

〈𝑞௨〉ௐ = √𝑖 〈
𝐻௨

ହ
ଷൗ

𝑛
〉

ௐ  (10) 176 

 177 

Substituting Equation 10 into Equation 8 yields the expression for nu,W (Equation 11): 178 

𝑛௨,ௐ =  
〈𝐻௨〉ௐ

ହ
ଷൗ

〈
𝐻௨

ହ
ଷൗ

𝑛
〉

ௐ

 (11) 179 

 180 

Field Code Changed
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The subgrid form of the LIEs (Equations 7 and 11) can alternatively be expressed with “grid average” quantities. The SFINCS 181 

model uses these to solve the momentum balance, rather than the “wet average” quantities described above. Although 182 

somewhat less intuitive, using grid average quantities has a few practical advantages that will be discussed in the next section. 183 

To write the subgrid form of the LIEs using grid average quantities we simply substitute 〈𝑞௨〉ௐ with 〈𝑞௨〉ீ/𝜑௨ and 〈𝐻௨〉ௐ 184 

with 〈𝐻௨〉ீ/𝜑௨ in Equation 7: 185 

〈𝑞
𝑢〉𝐺

𝑡+∆𝑡 =
〈𝑞

𝑢〉𝐺
𝑡 − 𝑔 ∆𝑡 〈𝐻𝑢〉𝐺

∆𝑧
∆𝑥

+ 𝜑
𝑢

𝐹∆𝑡

1 + 𝑔 ∆𝑡 𝑛𝑢
2  ห〈𝑞

𝑢〉𝐺
𝑡 ห / 〈𝐻𝑢〉𝐺

7
3ൗ

(12) 186 

where nu is 𝜑௨

ଶ
ଷൗ

𝑛௨,ௐ. 187 

 188 

Using the same logic as for Equation 11, nu (hereafter called the representative roughness) can also be written as: 189 

𝑛𝑢 =
〈𝐻𝑢〉𝐺

5
3ൗ

〈
𝐻𝑢

5
3ൗ

𝑛 〉𝐺

(13) 190 

For a known subgrid topography, and assuming a constant water level zu for all subgrid pixels in the velocity point, 〈𝐻௨〉ீ, nu, 191 

and φu can be stored in lookup tables as a function of zu. The generation of such tables is a pre-processing step that occurs only 192 

once when the model is set up, and is not repeated in the computational loop. First, a subgrid is generated that has the same 193 

orientation as the coarser hydrodynamic grid and a higher resolution. The level of refinement of the subgrid is an even integer 194 

and is typically chosen such that the subgrid resolution roughly equals that of the digital elevation model (DEM). Next, the 195 

subgrid model bathymetry is generated by interpolating a high-resolution DEM onto the subgrid. The roughness values are 196 

determined at the subgrid subgrid-scale as well, for example by converting data from land use maps to Manning’s n values 197 

and interpolating these onto the subgrid. An example of topography and roughness on the subgrid at a velocity point is provided 198 

in Figure 1. Specifically, the high-resolution subgrid topography and roughness values around a single velocity point 199 

demonstrate that information from both sides (A and B) of the water level grid cell is included in calculating the flux over the 200 

cell face 𝑞௨ ௠,௡ between 𝑧௠,௡ and 𝑧௠ାଵ,௡. 201 
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 202 

Figure 1. High-resolution values of elevation 𝑧 (panel a) and roughness 𝑛 (panel b) at a U velocity point with a subgrid pixel resolution 203 
of 𝑁=16×16 per computational cell. Colors for elevation and roughness indicate subgrid-scale values which are aggregated on the 204 
computational black grid cells. Water level points are indicated by ‘+’, while velocity points are marked with ‘–’ and ‘|’.   205 

 206 

Values for the subgrid momentum corrections in SFINCS are only computed at discrete equidistant vertical levels, ranging 207 

between zmin and zmax. For each velocity point, For each velocity point (here: u), we distinguish between two sides A and B of 208 

a computational cell (see Figure 1). The minimum (zb,A,min and zb,B,min) and maximum (zb,A,max and zb,B,max) pixel elevations at 209 

both sides are determined. The combined minimum and maximum elevations zmin and zmax are defined as:  210 

𝑧𝑚𝑖𝑛 = 𝑚𝑎𝑥൫𝑧𝑏,𝐴,𝑚𝑖𝑛, 𝑧𝑏,𝐵,𝑚𝑖𝑛൯ (14) 211 

𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥൫𝑧𝑏,𝐴,𝑚𝑎𝑥, 𝑧𝑏,𝐵,𝑚𝑎𝑥൯ (15) 212 

 213 

Values of 〈𝐻௨〉ீ, 〈
ுೠ

ఱ
యൗ

௡
〉ீ,and φu are now computed for both sides A, B separately, and for the combined total velocity point (A 214 

+ B) at all vertical levels between zmin and zmax. If M is the number of vertical levels, the vertical distance between each level 215 

is defined as Δz = (zmax -  zmin) / (M – 1), and the elevation of each discrete level is zm = zmin + (m – 1) Δz (in which m goes 216 

from 1 to M). 217 

 218 

   219 

Values for 〈𝐻௨〉ீ,௠ and 𝑛௨,௠ at each level between zmin and zmax are obtained by taking a weighted average of the values at 220 

sides A, B and the combined A + B. The aim of the weighting procedure is to ensure that the grid-averaged depth 〈𝐻௨〉ீ  (and 221 

therefore the water flux) at dry velocity points (zu = zmin) is 0, whereas for completely wet points (zu = zmax), 〈𝐻௨〉ீ,ெ and 𝑛௨,ெ  222 

are determined with all subgrid pixels (i.e. using A + B). This is achieved by letting the weight factor vary over the vertical, 223 

using the wet fractions φu,A and φu,B (Equation 16): 224 

 225 

𝑤௠ = min
 

൫𝜑
𝑢,𝑚,𝐴

, 𝜑
𝑢,𝑚,𝐵൯ / max

 
൫𝜑

𝑢,𝑚,𝐴
, 𝜑

𝑢,𝑚,𝐵൯ (16) 226 
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 227 

At the lowest level (zm = zmin), 𝑤௠ is 0 by definition (since either 𝜑௨,௠,஺ or 𝜑௨,௠,஻ is 0 here), whereas at the highest level (zm 228 

= zmax) 𝑤௠ is always 1. The values for 〈𝐻௨〉ீ,௠ and 𝑛௨,௠ that are stored in the subgrid tables are determined with Equations 229 

17 to 19: 230 

 231 

〈𝐻𝑢〉𝐺,𝑚 = (1 − 𝑤𝑚) min൫〈𝐻𝑢〉𝐺,𝑚,𝐴, 〈𝐻𝑢〉𝐺,𝑚,𝐵൯ + 𝑤𝑚〈𝐻𝑢〉𝐺,𝑚,𝐴+𝐵 (17) 232 

〈
𝐻𝑢

5
3ൗ

𝑛
〉𝐺,𝑚 = (1 − 𝑤𝑚) min

 
ቌ〈

𝐻𝑢

5
3ൗ

𝑛
〉𝐺,𝑚,𝐴 , 〈

𝐻𝑢

5
3ൗ

𝑛
〉𝐺,𝑚,𝐵ቍ + 𝑤𝑚 〈

𝐻𝑢

5
3ൗ

𝑛
〉𝐺,𝑚,𝐴+𝐵 (18) 233 

𝑛𝑢,𝑚 =
〈𝐻𝑢〉𝐺,𝑚

5
3ൗ

〈
𝐻𝑢

5
3ൗ

𝑛 〉𝐺,𝑚

(19) 234 

 235 

The subgrid tables and resulting flux (panel d) for the velocity point depicted in Figure 1, using 𝑀=20 are illustrated in Figure 236 

2. Red markers highlight the values at the discrete vertical levels. 237 

 238 

Figure 2.  Computation of subgrid quantities 〈𝑯𝒖〉𝑮 (panel a), nu (panel b) and φu (panel c) as a function of water level zu with 20 239 
discrete vertical levels (M = 20). The resulting flux divided by the square root of the water slope i is shown in panel d. The black line 240 
shows the exact solution obtained by solving Equations 5, 10, 11 and 17. The red line shows the estimate used in the SFINCS model, 241 
with (for z <= zmax) linear interpolation of lookup table values, and (for z > zmax) linear increase for 〈𝑯𝒖〉𝑮 and fit for nu. 242 

Values of 〈𝐻௨〉ீ, nu, and φu are now computed for both sides A, B and the total cell at discrete equidistant vertical levels, 243 

ranging between zmin and zmax : 244 



  

 

10 
  

𝜑
𝑢,𝑚

=
1

𝑁
෍ 𝑝൫𝑧𝑚 − 𝑧𝑏,𝑘൯

𝑁

𝑘=1

(16) 245 

where p(zm – zk) is 1 for zm > zk, and 0 for zm ≤ zk:  246 

〈𝐻𝑢〉𝐺,𝑚 =
1

𝑁
෍ max൫𝑧𝑚 − 𝑧𝑏,𝑘, 0൯

𝑁

𝑘=1

(17) 247 

𝑛𝑢,𝑚 =
〈𝐻𝑢〉𝐺,𝑚

5
3ൗ

1
𝑁 ෎ ቀmax ቀ𝑧𝑚 − max൫𝑧𝑏,𝑘, 𝑧𝑚𝑖𝑛൯ , 0ቁ /𝑛𝑘ቁ

5
3ൗ

𝑁

𝑘=1

(18)
 248 

This results  249 

If M is the number of vertical levels, the vertical distance between each level is defined as Δz = (zmax -  zmin) / (M – 1), and the 250 

elevation of each discrete level is zm = zmin + (m – 1) Δz (in which m goes from 1 to M). The number (M) of discrete vertical 251 

levels is defined by the user. We have found that around 20 levels are typically sufficient to accurately describe the subgrid 252 

quantities 〈𝐻௨〉ீ, nu and φu as a function of water levels between zmin and zmax and is used throughout this paper. It his however 253 

recommended to do a sensitivity analysis in order to find an optimal number of vertical levels. This can be done by running 254 

multiple simulations with an increasing number of levels. As the number of levels increases, the simulation results will 255 

converge. Ideally, the number of vertical levels should not significantly alter the simulation results, and still result in an 256 

acceptable file size of the subgrid table file.  The vertical distance between each level is defined as Δz = (zmax -  zmin) / (M – 1), 257 

and the elevation of each discrete level is zm = zmin + (m – 1) Δz (in which m goes from 1 to M). 258 

 259 

The subgrid tables and resulting flux (panel d) for the velocity point depicted in Figure 1, using 𝑀=20 are illustrated in Figure 260 

2. Red markers highlight the values at the discrete vertical levels. 261 
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 262 

Figure 2.  Computation of subgrid quantities 〈𝑯𝒖〉𝑮 (panel a), nu (panel b) and φu (panel c) as a function of water level zu with 20 263 
discrete vertical levels (M = 20). The resulting flux divided by the square root of the water slope iI is shown in panel d. The black 264 
line shows the exact solution obtained by solving Equations 5, 10, 11 and 17. The red line shows the estimate used in the SFINCS 265 
model, with (for z <= zmax) linear interpolation of lookup table values, and (for z > zmax) linear increase for 〈𝑯𝒖〉𝑮 and fit for nu. 266 

At each time step during a simulation, the model computes the water level 𝑧௨at each velocity point using the maximum of the 267 

computed water levels in the two adjacent cells, i.e. 𝑧௨ = max
 

൫𝑧௦ ௠,௡, 𝑧௦ ௠ାଵ,௡൯. This value is then used to query the lookup 268 

tables to find appropriate values of the quantities 〈𝐻௨〉ீ , 𝑛௨,௠ , and 𝜑௨,௠. For partially wet velocity points (zmin < zu,m < zmax), 269 

a linear interpolation of the values in the tables is used. When the entire velocity point is wet (zu ≥ zmax), the depth 〈𝐻௨〉ீ  270 

increases linearly with 𝑧௨ (Figure 2a and Equation 20): 271 

〈𝐻௨〉ீ = 〈𝐻௨〉ீ,ெ + 𝑧௨ − 𝑧௠௔௫ (20) 272 

Note that in Equation 18, to determine the representative roughness, the maximum of the pixel elevation and zmin is used. This 273 

is done to ensure that when the water level zu approaches zmin, i.e. when the highest of two adjacent grid cells becomes dry, nu 274 

will become very large, thereby effectively blocking flow between sides A and B. No water is allowed to flow when zu drops 275 

below zmin. 276 

 277 

The determination of nu for completely wet velocity points is more complicated, due to its non-linear relationship with zu at zu 278 

> zmax (see Figure 2b). It would be possible to store values of nu at many levels above zmax in the subgrid tables, but that could 279 

result in too very large file sizes and memory use. To avoid this, SFINCS uses the following estimation for nu instead: 280 

𝑛𝑢 = 〈𝑛〉𝐺 −
〈𝑛〉𝐺 − 𝑛𝑢,𝑀

𝛽(𝑧𝑢 − 𝑧𝑚𝑎𝑥) + 1
(192120) 281 

where 〈𝑛〉ீ is the average Manning’s n of all subgrid pixels, and 𝛽 is a fitting coefficient (with both these parameters also 282 

stored in the subgrid tables). The fitting coefficient 𝛽 is determined for each velocity point with Equation 22as:. 283 

Field Code Changed
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𝛽 =

〈𝑛〉𝐺 − 𝑛𝑢,𝑀

〈𝑛〉𝐺 − 𝑛𝑓𝑖𝑡
− 1

𝑧𝑓𝑖𝑡 − 𝑧𝑚𝑎𝑥

(2201)
 284 

 285 

Here we have defined the level zfit at zmax + (zmax - zmin). The value for nfit at zfit is determined in a manner similar tolike Equation 286 

198: 287 

𝑛𝑓𝑖𝑡 =
൫〈𝐻𝑢〉𝐺,𝑀 + 𝑧𝑓𝑖𝑡 − 𝑧𝑚𝑎𝑥൯

5
3ൗ

1
𝑁 ∑ ൭

𝑧𝑓𝑖𝑡 − max
 

൫𝑧𝑏,𝑘, 𝑧𝑚𝑖𝑛൯

𝑛𝑘
൱

5
3ൗ

𝑁
𝑘=1

(2132)
 288 

The estimated value for nu above zmax using Equation 20 1921 is shown in Figure 2Figure 2b, with the blue marker indicating 289 

nfit. In very deep water (zu >> zmax), nu approaches 〈𝑛〉ீ, whereas for zu = zmax, nu is equal to nu,M. 290 

 291 

The behavior of nu in Figure 2b can seem non-intuitive. Whereas the grid average water depth 〈𝐻௨〉ீ  has a real physical 292 

meaning, the representative roughness nu should roughness nu should not be interpreted as a physical quantity but rather as a 293 

quantity that is used to control the flux through a velocity point, given a certain grid average water depth 〈𝐻௨〉ீwater depth 294 

and water slope 𝑖.water slope i. It is a function not only of the physical subgrid roughness but also of the subgrid water depth. 295 

 296 

The number (M) of discrete vertical levels in the subgrid tables is defined by the user. We have found that around 20 levels 297 

are typically sufficient to accurately describe the subgrid quantities 〈𝐻௨〉ீ , nu and φu as a function of water levels between zmin 298 

and zmax and is used throughout this paper. However, it is recommended to do a sensitivity analysis in order to find an optimal 299 

number of vertical levels. This can be done by running multiple simulations with an increasing number of levels. As the number 300 

of levels increases, the simulation results will converge. Ideally, the number of vertical levels should not significantly alter the 301 

simulation results and still result in an acceptable file size of the subgrid table file. 302 

 303 

As mentioned previously, SFINCS uses grid average, rather than wet average quantities. Theoretically, both options would 304 

yield identical results. The reason to choose a grid average approach is that the wet average depth and adjusted roughness can 305 

vary much more rapidly and irregularly with changing water levels than their grid average equivalents. As a result, many more 306 

vertical levels in the subgrid tables would be required to accurately describe wet average quantities as a function of z. This is 307 

illustrated by considering a velocity point with a subgrid topography cross-section (Figure 3a). The average water depth and 308 

adjusted roughness as a function of water level z (Figures 3a and 3b, respectively). 309 

 310 

Field Code Changed

Field Code Changed
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At each time step the model computes the water level zu at each velocity point using the maximum of the computed water 311 

levels in the two adjacent cells, i.e. 𝑧௨ = max൫𝑧௦ ௠,௡, 𝑧௦ ௠ାଵ,௡൯. This value is then used to query the lookup tables to find 312 

appropriate values of the quantities 〈𝐻௨〉ீ, nu, and φu. For partially wet velocity points (zmin < zu < zmax), a linear interpolation 313 

of the values in the tables is used. When the entire velocity point is wet (zu ≥ zmax), the depth 〈𝐻௨〉ீ increases linearly with zu: 314 

〈𝐻௨〉ீ = 〈𝐻௨〉ீ,ெ + 𝑧௨ − 𝑧௠௔௫ (2219)  315 

2.3 Subgrid corrections in the continuity equation 316 

The subgrid continuity equation is written in terms of grid average fluxes as: 317 

𝑉𝑚,𝑛
𝑡+∆𝑡 = 𝑉𝑚,𝑛

𝑡 + ∆𝑡 ቀ൫〈𝑞
𝑢〉𝐺,𝑚−1,𝑛

𝑡 − 〈𝑞
𝑢〉𝐺,𝑚,𝑛

𝑡 ൯∆𝑦 + ൫〈𝑞
𝑣〉𝐺,𝑚,𝑛−1

𝑡 − 〈𝑞
𝑣〉𝐺,𝑚,𝑛

𝑡 ൯∆𝑥 + 𝑆𝑚,𝑛ቁ (243) 318 

Contrary to Equation 2, Equation 23 24 computes the wet volume at the next time step, rather than the water level. The 319 

corresponding water level zs is obtained from the continuity subgrid tables.  320 

 321 

To generate the subgrid tables first the minimum and maximum pixel elevations zmin and zmax, as well as the wet volume Vmax 322 

(defined as the wet volume between zmin and zmax) are determined for each hydrodynamic grid cell (e.g. Figure 3). Then the 323 

wet volume as a function of the local water level is determined with Equation 25: 324 

𝑉(𝑧) =
∆𝑥∆𝑦

𝑁
෍ max

 
(𝑧 − 𝑧𝑘, 0)

𝑁

𝑘=1

(245) 325 

where N is the number of subgrid pixels in a grid cell. Finally, a number (M) of discrete equidistant volumes are defined, 326 

ranging between 0 and Vmax, where each volume is Vm = (m – 1) Vmax / (M - 1). By iterating over each discrete volume Vm, we 327 

can (using linear interpolation of Equation 24) determine the corresponding water levels zs. An example is given in Figure 3 328 

which shows the volumes of the highlighted cell. 329 
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 330 

Figure 3. Panel A: values on the subgrid-scale of elevation z at a water level point (N=16x16). Panel B. Representation of water level 331 
zs as a function of volume V with 20 discrete volumes (M = 20). The black line shows the exact solution of Equation 24. The red line 332 
shows the estimate of zs used in the SFINCS model with, for zs <= zmax, linear interpolation of lookup table values, for zs > zmax a 333 
linear increase with V. 334 

During a simulation, the model computes at each time step the volume V in each cell and queries the lookup tables to find the 335 

matching value for zs. For partially wet cells (V < Vmax), a linear interpolation of the values in the tables is used. When the 336 

entire cell is wet (V ≥ Vmax), the water level zs increases linearly with V and is computed as 337 

𝑧𝑠 = 𝑧𝑚𝑎𝑥 +
𝑉 − 𝑉𝑚𝑎𝑥

∆𝑥∆𝑦
(25) 338 

Note that for pre-processing purposes, it would have been more straightforward to describe the wet volume V at equidistant 339 

vertical levels zm (similar to the approach for the momentum subgrid tables). However, during the simulation, the linear 340 

interpolation of subgrid data with equidistant volume levels is much more efficient.  341 

 342 

The subgrid corrections in SFINCS are publicly available in the v2.1.1 Dollerup Release (van Ormondt et al. 2024). 343 

2.4 Pre and post-processing   344 

Pre-processing steps for SFINCS include creating a mask file describing (in)active cells, interpolating bathymetry and 345 

roughness values, and imposing boundary conditions. Tools to carry out these steps are available in both Delft Dashboard (Van 346 

Ormondt et al., 2020) and HydroMT-SFINCS (Eilander et al., 20234 or https://deltares.github.io/hydromt_sfincs/latest/), 347 

which both also have the capability to generate subgrid table files using high-resolution DEMs. In generating these subgrid 348 

tables, we largely follow common international standards such as NetCDF, ensuring compatibility and consistency with widely 349 

accepted practices in hydrodynamic modeling. 350 
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 351 

SFINCS stores the output of hydrodynamic quantities on the (coarse) computational grid. These results can be further 352 

downscaled to higher-resolution flood maps at the original DEM resolution (assuming again that the computed water level in 353 

a grid cell is representative of each subgrid pixel within that cell). Flood depths at the DEM scale are computed by subtracting 354 

the elevation of each DEM pixel from the water level in the cell. An example of the results is presented in Figure 10Figure 10. 355 

3 Conceptual verification cases: straight and meandering channels 356 

The first conceptual test involves a 5 km long straight channel of 100 m wide with 1:5 side slopes (Figure 4a and c), for which 357 

a synthetic bathymetry was created. The slope of the channel is 10-4 downhill in y-direction, and the flood plains on either side 358 

of the channel have an elevation of 0.3 m above the water level in the channel. The Manning’s n roughness is set to 0.02 s/m1/3.  359 

Water level boundary conditions at the upstream and downstream sides are set to +0.25 m and -0.25 m, respectively, resulting 360 

in a 10-4 water level slope, equal to the channel slope. The analytical solution, using Manning’s equation for open channel flow 361 

yields a discharge of 360 m3/s. The input files for the 5m subgrid version of this model setup can be found in Appendix B1. 362 

 363 

The second test is identical to the first, except that it has a meandering channel. The meandering channel has a sinuosity Ω of 364 

1.32, i.e. the ratio between the length along the channel (6603 m) and its straight-line length (5000 m) (see e.g. Lazarus and 365 

Constantine, 2013 for background on river sinuosity). As the water levels upstream and downstream of the channel are kept 366 

the same, the water level slope in the meandering channel is smaller by a factor Ω, resulting in a (lower) analytical discharge 367 

of 313 m3/s.  368 
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 369 

Figure 4. Schematized channel used in the conceptual verification cases, including a straight channel (top view, panel a), a 370 
meandering channel (top view, panel b), and a cross-section (panel c).   371 

Simulations are carried out by SFINCS at various grid resolutions (5, 10, 20, 50, 100, 200, and 500 m), with both with and 372 

without the subgrid method and regular versionscorrections of SFINCS. The subgrid simulations use a 1 m resolution subgrid, 373 

onto which the DEM is bilinearly interpolated. For the regular topography simulations, grid cell averaging is used to schematize 374 

the model bathymetry, in which the bed level of each cell is set equal to the mean of the DEM pixels within that cell. Figure 5 375 

shows the regular model bathymetry at grid resolutions Δx of 10 m, 50 m, and 200 m for the meandering channel. It is clear 376 

that whereas the first two capture the channel topography reasonably well, the channel depth in the 200 m model is strongly 377 

underestimated, and its width is proportionally overestimated. 378 
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 379 

Figure 5 Schematized meandering channel bathymetry with regular topography for hydraulic grid resolutions Δx = 10 m, Δx = 50 380 
m, and Δx = 200 m   381 

In the first test (straight channel), the regular bathymetry models stay reasonably close to the analytical solution up to 382 

resolutions of 50m (blue bars in Figure 6 – panel A). The accuracy of the coarser models however degrades significantly with 383 

decreasing grid resolution as is to be expected. The channel depth in the coarser models is increasingly underestimated, and 384 

even though its width is proportionately overestimated, the strongly non-linear relationship between water depth and discharge 385 

results in a decrease of the discharge with decreasing grid resolution. In contrast, the discharges computed by the subgrid 386 

models are within 2% of the analytical solution across all grid resolutions (red bars in Figure 6 – panel A), proving that, at 387 

least for very simple conceptual cases, the subgrid method corrections presented here is are accurate. 388 
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 389 

Figure 6.  Effect of grid resolution Δx on computed discharges for regular and subgrid topography in straight (panel a) and 390 
meandering (panel b) channel.  391 

In the second test (meandering channel), the trend of the regular models is similar to those in the first test (blue bars in Figure 392 

6 – panel B), but the performance is lower than in the straight channel case, with the discharge for the two coarsest regular 393 

models going to zero. This is caused by the fact that the hydraulic connection between some channel cells is broken in the 394 

coarsest models (see also Figure 5). 395 

 396 

The subgrid models in the second test show very good accuracy at resolutions up to 50 m. Coarser models start to overestimate 397 

the discharge. The 500 m model in particular computes a discharge of 473 m3/s (an overestimation of the analytical discharge 398 

by ~51%). There are two reasons for this: as the coarse mesh does not capture the scale of the meanders, the channel is 399 

effectively schematized as a straight channel with a length of 5000 m. This leads to an overestimation of the true water level 400 

slope and resulting wet average flux. Secondly, meanders inside a grid cell result in a larger wet fraction, which the model 401 

“interprets” as a wide channel, leading to a further overestimation. 402 

 403 

For rivers with meanders that are not resolved by the model grid, we can approximate the discharge overestimation as a function 404 

of the channel sinuosity: 405 

ொ೘

ொೝ
= Ω

ଷ
ଶൗ (267)  406 

where Ω is the sinuosity, Qr is the true discharge and Qm is the discharge computed with the subgrid method corrections (see 407 

Appendix A for the derivation of Equation 2627). Equation 26 27 suggests that the discharge overestimation in the 500 m 408 
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subgrid model (which does not resolve the meandering at all) is ~52 % (1.323/2), which closely matches the computed 409 

overestimation of ~51% reported earlier.  410 

4 Real-world application cases 411 

4.1 Tidal propagation St. Johns River 412 

Leijnse et al. (2021) described SFINCS model results for Hurricane Irma (2017) along the St. Johns River (Florida, USA). The 413 

length of the river is about 170 kilometers from its mouth to Lake George upstream (Figure 7Figure 7 – panel A) where still a 414 

small tidal signal remains. Its width varies between 400 m and 5 km. Although the model showed good skill when compared 415 

to a full-physics Delft3D model, its 100-meter grid resolution proved insufficient to adequately propagate the tide into the 416 

estuary.  417 

 418 

In this test case, the St. Johns River SFINCS model from Leijnse et al. (2021) is adapted and tidal propagation into the river is 419 

simulated at several horizontal resolutions (25, 50, 100, 200, and 500 m) using both the regular and subgrid approachversion 420 

of SFINCS. The topography and bathymetry data are improved by using data obtained from the Continuously Updated Digital 421 

Elevation Model (CUDEM; CIRES, 2014). The Manning friction coefficient in the river is set to 0.02 s/m1/3. The offshore 422 

boundary water levels are derived from TPXO 8.0 tidal components (Egbert and Erofeeva, 2002). Computed water levels are 423 

validated against observed tidal components from 11 tide stations (retrieved through Delft Dashboard; van Ormondt et al., 424 

2020) (Figure 7Figure 7 – panel A). The input files for the 25m subgrid version of this model setup can be found in Appendix 425 

B2. Values for the subgrid corrections are stored in a table with20 discrete vertical levels. 426 

 427 

Simulations are carried out over a one-month period to assess the model’s capability to propagate the tide into the river. 428 

Analysis of the main tidal component M2 across different model variations reveals considerable differences in the upstream 429 

propagation (Figure 7Figure 7B). The amplitude of M2 is approximately 75 cm at the offshore boundary and sharply decreases 430 

near the city of Jacksonville, where the river narrows significantly (about 40 kilometers upstream along the river). At 100-431 

meter resolution, the SFINCS model with regular topography can reproduce the main trends but underestimates the tidal 432 

amplitudes relative to observations (Figure 7Figure 7B), as in Leijnse et al. (2021). At the coarser 500-meter resolution, this 433 

underestimation of amplitude is significantly stronger and the tide arrives too late (Figure 7Figure 7C).  The tidal propagation 434 

only accurately matches the observations when utilizing a 25-meter resolution with the regular topography. 435 

 436 

The subgrid version of SFINCS, on the same 100-meter grid resolution, mitigates the underestimation of the regular (non-437 

subgrid) version (Figure 7B). The median error of M2 amplitude prediction over the 11 observation stations decreases from 438 

2.6 cm to 0.4 cm, the phase error from 4.1 to 2.1 degrees, and the overall RMSE from 8.0 to 6.4 cm. Further analysis with 439 
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different grid resolutions illustrates that the model that uses subgrid corrections propagates the tide inland properly, even at 440 

very coarse resolutions of 500 meters. The tidal phasing is also generally more accurately resolved when applying subgrid 441 

corrections. The RMSE of the computed M2 amplitude over a one-month tidal prediction increases from about 8 cm to about 442 

20 cm for coarser grid resolutions in regular bathymetry mode. However, when incorporating subgrid corrections it remains 443 

stable at around 8 cm. While high tide predictions remain accurate for the model with subgrid corrections at lower grid 444 

resolutions (Table 1), the performance decreases more significantly for low water, indicating that during these periods, the low 445 

tide flushing of the river may be underestimated.  Including the subgrid raises computational costs by around 28-58% (37% 446 

on average) as a result of the extra overhead involved in querying the subgrid tables. A comparison between the 25-meter 447 

regular resolution and the 100-meter subgrid resolution demonstrates similar skill but reveals a factor 50 speed-up, allowing 448 

the subgrid version to use coarser model resolutions with significantly lower computational costs without sacrificing precision. 449 

The subgrid version of SFINCS, on the same 100-meter grid resolution, mitigates the underestimation of the regular (non-450 

subgrid) version (Figure 7B). The median error of M2 amplitude prediction over the 11 observation stations decreases from 451 

2.6 cm to 0.4 cm, the phase error from 4.1 to 2.1 degrees, and the overall RMSE from 8.0 to 6.4 cm. Further analysis of 452 

different grid resolutions via the subgrid method corrections illustrates that, even with coarser grid resolutions, the subgrid-453 

enabled SFINCS version of SFINCS propagates the tide inland properly, even at very coarse resolutions of 500 meters. The 454 

tidal phasing is also generally more accurately resolved with subgrid versus the regular SFINCS mode. Computing the RMSE 455 

over the whole month tidal prediction shows that error increases from about 8 cm to about 20 cm for coarser grid resolutions 456 

in regular SFINCS mode. However, when incorporating subgrid corrections this remains stable around this value of 8 cm. 457 

While high tide peak predictions remain robust for the subgrid SFINCS version at larger grid resolutions (Table 1), the 458 

performance decreases more significantly for low water peaks, indicating that during these periods, the low tide flushing of 459 

the river is still underestimated.  Integrating the subgrid raises computational costs by around 0-72% (44% on average) as a 460 

result of the extra overhead involved in querying the subgrid tables. 461 

 462 
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 463 

Figure 7. Overview of the St. Johns River near Jacksonville, FL, USA (Panel A), with analysis points (green dots) and tide gauges 464 
(yellow dots). Panel B: Observed (black dots) and modeled (colors) M2 tidal amplitudes along the river from downstream to 465 
upstream. Panel C: Observed (black dots) and modeled (colors) M2 tidal phases along the river. Different colors represent variations 466 
in the SFINCS model setup: red indicates the regular non-subgrid version, while blue denotes the subgrid version, with decreasing 467 
color intensity indicating a decrease in model resolution. M2 phase is converted from degrees to hours, assuming one degree equals 468 
12.42 hours / 360 degrees. The coordinate system is WGS 84 / UTM 15 N (EPSG 32615).  469 
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Table 1. Overview of model skill and computational expense for evaluated scenarios of inland tidal propagation at the St. Johns 470 
River, FL. Metrics include RMSE of overall difference in time-series compared to observations, RMSE of high water peaks, RMSE 471 
of low water peaks, difference in M2 amplitude, and difference in M2 phase, all presented as medians over 11 observation stations. 472 
The last column shows the runtime in seconds, measured on an Intel Core i9-10980XE CPU. Each simulation was run three times, 473 
and the minimum runtime was recorded to eliminate potential contamination of timing. Additionally, the relative error to the regular 474 
25m configuration has been computed for the overall RMSE to provide further insight into the performance of the subgrid 475 
methodversion of SFINCS compared to the baseline model. We also computed the percentage increase in computational costs for 476 
the subgrid version, which is reflected in the model runtime column to illustrate the additional computational expense. 477 

Run RMSE 

overall [cm] 

RMSE high 

water peak 

[cm] 

RMSE low 

water peak 

[cm] 

Amplitude 

difference 

M2 [cm] 

Phase 

difference 

M2 [°] 

Model 

runtime [sec] 

regular_25m 7.7 (100%) 6.6 9.1 -0.3 1.0 6834864512 

regular_50m 7.8 (101%) 5.7 10.1 -1.7 5.0 82737596 

regular_100m 8.0 (104%) 4.3 12.5 -2.6 4.1 854727 

regular_200m 12.0 (156%) 5.3 19.5 -6.7 6.5 139110 

regular_500m 16.1 (209%) 8.3 25.4 -10.9 21.4 2928 

subgrid_25m 8.7 (113%) 8.3 7.3 1.5 1.2 87652 

(128%)98806 

subgrid_50m 7.5 (97%) 7.6 6.1 0.6 1.5 11510 

(139%)12127 

subgrid_100m 6.4 (83%) 5.3 6.1 -0.4 2.1 1344 

(158%)1251 

subgrid_200m 7.8 (101%) 7.3 8.2 -1.0 1.5 182 

(1030%)159 

subgrid_500m 8.2 (106%) 6.6 8.7 -0.3 -1.5 30 (132%)28 

   478 
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4.2 Pluvial flooding during Hurricane Harvey 479 

Sebastian et al. (2021) used SFINCS to hindcast the flood extent and flood depth during Hurricane Harvey (2017) in Houston, 480 

TX. The model was validated against water level time series at 21 United States Geological Survey (USGS) observation points 481 

and 115 high water mark (HWM) locations (Figure 8Figure 8). The original model was run with a regular 25-meter resolution 482 

grid based on a high-resolution continuous topo-bathymetry across the area of interest. The model was compared to observed 483 

data across the study area, achieving an average error of 73 cm.The model had a fair correlation with observed time series and 484 

HWM across the study area.  485 

 486 

Figure 8. Modeled flood inundation in the urban areas of Houston, TX, simulated with SFINCS at a 25m resolution with subgrid 487 
corrections. Water depths less than 0.10 m are excluded for clarity. USGS stream gauges (redred stars) and high-water marks 488 
(HWMs, blackyellow circles) used for model validation are shown as solid circles. Six USGS stations, presented as time series in 489 
Figure 9, are marked with circles andgreen circles stars, including their station numbers. A zoom-in of the midstream portion of 490 
Brays Bayou is shown in Figure 10. The coordinate system is WGS 84 / UTM 15 N (EPSG 32615). © Microsoft. 491 

In this field case, the model setup is adapted and flooding across Houston is simulated at several horizontal resolutions. In 492 

particular, three variations for regular SFINCS (25, 50, and 100 meters) and 5 variations of subgrid (same resolutions as regular 493 

mode, including 200, and 500 meters) were created. Model settings were based on the Sebastian et al. (2021) model except for 494 

the model resolution. Friction and infiltration capacity were cell-averaged from the original setup for the coarser model runs. 495 

The input files for the 25m subgrid version of this model setup can be found in Appendix B3. In the subgrid version, we 496 

included a higher than typical 100 discrete vertical levels to describe the subgrid quantities since during testing model skill 497 

improved when including more vertical levels. 498 
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 499 

Almost all model versions reproduce the general shape of the observed hydrograph. However, the coarser regular version of 500 

SFINCS results in larger errors mainly due to an overestimation of the water level (Figure 9). The overestimation is driven by 501 

an incorrect representation of the bed level which is averaged across larger areas and can therefore not depict the local bayous 502 

with coarser grid cells. SFINCS with the subgrid corrections improves the model skill (Table 2). For example, when comparing 503 

the 25-meter regular with the subgrid version of-enabled SFINCS model with on the same computational resolution, the Nash-504 

Sutcliffe Efficiency(NSE1)) increases from 0.35 to 0.58. NSE is a statistical metric used to evaluate the predictive accuracy of 505 

models by comparing observed and predicted values. NSE values range from 0 to 1, with values closer to 1 indicating a better-506 

performing model. An NSE value of 0 means the model's predictions are as accurate as using the mean of the observed data 507 

as the predictor. Model skill increases because more topo-bathymetry information is considered per grid cell via the subgrid 508 

correction in the momentum and continuity equations (see Sections 2.2 and 2.3). Despite the subgrid correction, model skill 509 

still decreases with decreasing computational resolution. For example, a 500-meter simulation with subgrid correction has an 510 

NSE close to zero.  Including the subgrid feature increases computational expense by 73 87 to 184 175 % (average of 511 

129128%), because of additional overhead in querying the subgrid tables. The highest model skill is obtained with the finest 512 

model resolution (25m used here) including subgrid corrections. Selecting the model resolution of choice is a balancing act 513 

between model skill and computational expense. 514 

 515 

SFINCS can store the maximum computed water level across the computational domain, with the capability to downscale this 516 

data to higher-resolution flood maps as part of a post-processing step. In particular, to calculate flood depths at the DEM scale, 517 

the elevation of individual DEM pixels is subtracted from the corresponding cell's water level (see Section 2.4). For instance, 518 

the results demonstrate that the 25-meter resolution outcomes and those downscaled to a 100-meter subgrid are quite similar. 519 

This is illustrated in Figure 10, which shows modeled flood inundation in the midstream portion of Brays Bayou using four 520 

different SFINCS model options. Panels A and C in Figure 10 highlight the comparison: Panel A presents the regular 25-meter 521 

resolution, while Panel C depicts the 'subgrid 100m – downscaled' method, which applies a downscaling method to the DEM 522 

resolution as a post-processing step. However, the 100-meter subgrid resolution runs 35 times faster than the 25-meter regular 523 

SFINCS version, while maintaining a similar level of accuracy (see Table 2) and thus, producing comparable extents of 524 

flooding. Nonetheless, it is important to note that the 100-meter resolution results tend to provide a coarser visual representation 525 

of flood extents, often overestimating them (see panels B and D in Figure A1) for both the regular and subgrid versions of 526 

SFINCS.models. 527 

  528 

 
1 𝑁𝑆𝐸 = 1 −

∑ (ை೔ି௉೔)మ೙
೔సభ

∑ (ை೔ିைത)మ೙
೔సభ

 where O is ith observed value, Pi is ith predicted value and Ō is the mean of the observed data 
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Table 2. Overview of model skill and computational expense for evaluated scenarios of pluvial flooding during Harvey. Model skill 529 
metrics for time series, including NSE (Nash-Sutcliffe Efficiency), MAE (Mean Absolute Error), RMSE (Root Mean Square Error), 530 
and bias, as well as MAE for high-water marks (HWMs). The last column shows the runtime in seconds, measured on an Intel Core 531 
i9-10980XE CPU. Each simulation was run three times, and the minimum runtime was recorded to eliminate potential 532 
contamination of timing on Windows. Additionally, the relative MAE to the regular model configuration has been computed to 533 
provide further insight into the performance improvements with the subgrid methodcorrections.  We also computed the percentage 534 
increase in computational costs for the subgrid version, which is reflected in the model runtime column to illustrate the additional 535 
computational expense. 536 

 
Time series 

   
HWM 

 

simulation NSE [-] MAE [m] RMSE [m] bias [m] MAE [m] Model 

runtime 

[sec]run time 

[s] 

regular_25m 0.349 1.68 (100%) 2.14 -0.548 0.73 1119712136 

regular_50m -0.007 2.08 (124%) 2.58 0.405 0.68 12583552 

regular_100m -1.988 3.41 (203%) 3.94 2.493 0.84 118116 

subgrid_25m 

0.581 1.29 (77%) 1.58 -0.842 0.89 

20951 

(187%)20951 

subgrid_50m 

0.540 1.30 (77%) 1.57 -0.963 0.94 

2800 

(223%)2801 

subgrid_100m 

0.495 1.35 (80%) 1.62 -0.984 0.98 

324 

(275%)341 

subgrid_200m 0.310 1.62 (96%) 1.94 -1.226 1.09 3838 

subgrid_500m 0.011 2.05 (122%) 2.47 -1.671 1.27 76 
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 537 

Figure 9. Overview of (computed) water levels during Hurricane Harvey. Comparison between modeled (colored lines) and observed 538 
(black lines) hydrographs at six USGS gauge locations (labeled in Figure 8Figure 8): Panels A. Buffalo Bayou (USGS 08073600); B. 539 
White Oak Bayou at Main Street (USGS 08074598); C. Brays Bayou at MLK Jr. Blvd (USGS 08075110); D. Sims Bayou at Houston, 540 
TX (USGS 08075500); E. Vince Bayou at Pasedena, TX (USGS 08075730); f Greens Bayou nr Houston, TX (USGS 08076000). 541 
Different colors represent variations in the SFINCS model setup. Red is used for the regular version of SFINCS (non-subgrid). Blue 542 
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is used for the subgrid version of SFINCS. Decreasing color intensity depicts a decrease in model resolution. Rainfall intensity is 543 
included as the green line and uses the right y-axis. 544 

 545 

Figure 10. Modeled flood inundation in the midstream portion of Brays Bayou for 4 different SFINCS model options: A) regular 546 
25m, b) regular 100m, c) ‘subgrid 100m – downscaled’ is using the same model simulation as ‘subgrid 100m – direct’ (panel D), but 547 
then applying a downscaling method to the DEM resolution as a post-processing step. Water depths less than 0.10 m have been 548 
excluded for visual purposes. The locations of USGS stream gauges (red stars) and HWMs (yellow circlesblack) used for the model 549 
validation are shown as solid circles.  The coordinate system of this figure is WGS 84 / UTM 15 N (EPSG 32615). © Microsoft. 550 

  551 
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5 Discussion 552 

The integration of subgrid corrections into SFINCS has led to significant enhancements in accuracy, as evidenced in both 553 

conceptual verification cases (Section 3) and real-world scenarios, including tidal propagation (Section 4.1) and pluvial 554 

flooding (Section 4.2). This section delves into the impact of these accuracy enhancements and outlines the remaining 555 

challenges and areas for future research, particularly concerning flow-blocking features and the overestimation of fluxes in 556 

meandering systems. 557 

 558 

The ability to achieve improved accuracy on the same grid resolution signifies progress. However, in practical terms, a more 559 

accurate simulation also allows for the use of coarser model resolutions. This is particularly advantageous given SFINCS's 560 

explicit numerical scheme, enabling faster and thus more efficient compound flood modeling. For example, in the real-world 561 

application cases of tidal propagation (Section 4.1) and pluvial flooding (Section 4.2), a subgrid model at 100-meter resolution 562 

demonstrates comparable, if not higher, performance to the regular 25-meter resolution SFINCS model. However, the 563 

computational cost is significantly lower with a factor of 35-35 to 50 speedup. The introduction of subgrid corrections does 564 

introduce additional computational expenses versus regular SFINCS for the same grid spacing. In the St. Johns River case 565 

(Section 4.1), where we used 20 discrete bins to describe the subgrid quantities, the increase in computational costs was 566 

relatively low with an average increase of 37% when comparing the same grid spacing. In contrast, higher costs were observed 567 

in the Hurricane Harvey case (Section 4.2), where model performance improved when 100 discrete bins were used instead of 568 

the more typical 20 bins, leading to an average computational cost increase of 128%. Therefore, the increase in computational 569 

costs is dependent on the number of bins used to describe the subgrid quantities, with finer binning sometimes providing better 570 

accuracy at the cost of increased computational demands. Additionally, using more bins also results in larger NetCDF subgrid 571 

files. For example, in the 200-meter Harvey case, the subgrid file size was 343 MB, compared to 65 MB for the 200-meter 572 

Jacksonville case, a nearly fivefold increase. Notably, the number of active cells was twice as large for the Jacksonville case, 573 

which demonstrates that subgrid file sizes scale linearly as a function of both the number of active cells and the number of 574 

discrete bins. For identical model resolutions, the inclusion of subgrid corrections for momentum and continuity results in an 575 

increase in computational costs by 44 to 129%. 576 

 577 

The downscaling routines implemented also allowed for the use of the high-resolution data in the post-processing step. 578 

However, the simple subtraction of the computed water level and high-resolution topography (introduced in Section 2.4 and 579 

applied in Section 4.2) might result in water in an area that would not be flooded using high-resolution models. While this 580 

might not affect the accuracy compared to water level stations, it does influence results and flood extents. In particular, 581 

disconnected grid cells might pop up behind levees and other flow-breaking features which form a challenge when 582 

communicating the results to stakeholders.  Moreover, the presented downscaling routine has limited use for areas with steep 583 
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gradients where the assumption of a constant water level per computational cell is invalid. Therefore, exploring more 584 

sophisticated hybrid surrogate models might improve the dynamic evolution of the flood extent (Fraehr et al., 2022).  585 

Furthermore, in the subgrid SFINCS model, we currently estimate infiltration rates on the computational grid. This approach 586 

does not account for higher-resolution information in the estimation of infiltration rates, which may lead to less accurate 587 

representations of infiltration rates in areas these vary significantly at the subgrid scale. Future work could explore 588 

integrating finer-scale soil, and topographic data into the infiltration estimation process to further enhance the model’s 589 

performance, particularly in regions with partial wet cells and heterogeneous soil properties. 590 

 591 

It is important to note that the real-world cases evaluated here are not without limitations. One ongoing challenge for the 592 

modeling community is the insufficient representation of river bathymetry in combined topo-bathymetry datasets. In many 593 

cases, river bathymetry is not well captured, which can affect the accuracy of hydrodynamic models, particularly for riverine 594 

flooding. Furthermore, land cover maps used to estimate bed friction can introduce contamination where land roughness is 595 

mapped onto the river and therefore affecting model accuracy. No specific adjustments were made to the real-world cases 596 

presented in this paper, and the published models were simply adjusted to be run at several resolutions with and without subgrid 597 

corrections.  598 

 599 

Addressing subgrid connectivity poses a significant challenge for the implementation described in this paper and the broader 600 

modeling community. In contrast to approaches that relied on cell and edge clones (Casulli, 2009b; Begmohammadi et al., 601 

2021) or artificial diffusion (Rong et al., 2023), SFINCS employs a subgrid weir formulation. This formulation, which is 602 

aligned with (or snapped to) , which is applied snapped to the grid, controls the flow between two cells but requires the creation 603 

of subgrid features during a pre-processing phase. To date, these features have been manually identified. However, there is 604 

ongoing research into algorithms capable of detecting flow-blocking features as well as the integration of methods from 605 

existing literature or direct modifications to the subgrid lookup tables to account for this. In scenarios where flow-blocking 606 

features (such as levees or urban structures) are not adequately captured, the model may underestimate the extent of localized 607 

flooding. 608 

 609 

Similarly, the overestimation of fluxes in situations with unresolved meanders continues to be a challenge. This issue is not 610 

exclusive to SFINCS's implementation of subgrid corrections but is a common challenge across subgrid modeling. Various 611 

estimates for the sinuosity Ω have been reported in scientific literature. Lazarus and Constantine (2013) suggest that the typical 612 

range for Ω lies between 1 and 3, where 1 corresponds to a straight channel and 3 represents the upper limit for natural, freely 613 

migrating meandering rivers. Hence, when using a computational grid that does not resolve the river meanders, the presented 614 

subgrid approach corrections may overestimate discharges by more than a factor of 5 (or 33/2). This is especially important in 615 

real-world scenarios involving highly sinuous river systems, where discharge inaccuracies can significantly affect flood 616 
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predictions. To mitigate this, it is recommended that the grid spacing of the computational grid does not exceed the width of 617 

the river channel.To avoid this, it is recommended that the grid spacing of the computational grid does not exceed the width 618 

of the river channel.    619 

6 Conclusions 620 

Large-scale flood models require high accuracy at acceptable computational times. One strategy to achieve this is to use 621 

information available at a higher resolution than the hydrodynamic grid resolution in models through subgrid corrections. This 622 

paper describes a set of subgrid corrections to the Linear Inertial Equations (LIE) using grid average quantities (depth, 623 

representative roughness, wet fraction, and flux to the momentum equations and for the wet volume in the continuity equation) 624 

which were implemented in SFINCS. The model uses pre-processed subgrid tables that correlate water levels with 625 

hydrodynamic quantities by assuming constant water levels for all subgrid pixels.  626 

 627 

The conceptual case of a straight channel showed good skill in terms of discharge fluxes with the subgrid model regardless of 628 

the model resolution while the accuracy of the regular models without subgrid correction decreased significantly with 629 

decreasing resolution. For the meandering channel, differences start to emerge for coarser model resolutions with and without 630 

subgrid corrections. In particular, the difference in discharge estimation was overestimated by 50% for the coarsest subgrid 631 

model used.  The ratio between the length along the channel and its straight-line length (also known as sinuosity or Ω) served 632 

as a valuable metric for quantifying flux overestimations. The conceptual cases gave confidence that the corrections were 633 

correctly implemented while also highlighting their limitations in grids that do not adequately resolve river meanders. In 634 

particular, we introduced an equation that allows for approximation of the discharge overestimation as a function of the channel 635 

sinuosity: 636 

 637 

Real-world application cases further validated the benefits of subgrid correctionssubgrid corrections' benefits. For tidal 638 

propagation in the St. Johns River, the subgrid model with a 500-meter resolution matched the accuracy of the 25-meter 639 

standard SFINCS model. Similarly, in modeling pluvial flooding during Hurricane Harvey, a 25-meter resolution SFINCS 640 

model was necessary to achieve a Nash–Sutcliffe Efficiency (NSE) of 0.35, while the subgrid variant at the same resolution 641 

outperformed this with an NSE of 0.58 (where a score of 1 would be perfect) and maintained comparable accuracy even at a 642 

coarser 100-meter resolution. Although subgrid corrections introduce additional computational costs—ranging from 37% to 643 

128% depending on binning density—they provide significant benefits in performance and accuracy, achieving a factor of 35-644 

50 speedup by enabling the use of coarser resolutions and thus improving efficiency in real-world flood modeling applications. 645 

 646 

Building on these findings, the implementation of subgrid corrections for LIE within SFINCS demonstrates significant 647 

potential for improving accuracy and reducing computational demands in compound flooding simulations. However, the 648 
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broader relevance of subgrid corrections should not be limited to LIE or SFINCS alone. Subgrid methodscorrections could 649 

benefit a wide range of hydrodynamic models, such as full-physics or reduced-complexity models alike, Furthermore, these 650 

corrections could be applied across diverse environmental conditions, including urban pluvial flooding, coastal storm surge, 651 

and riverine flooding, thereby enhancing the generalizability and utility of hydrodynamic modeling across various domains.  652 

Overall, the results from both conceptual and real-world cases show that subgrid corrections are a valuable addition to 653 

hydrodynamic modeling, particularly when balancing the need for accuracy with computational efficiency. 654 

Overall, the implementation of subgrid corrections for LIE within SFINCS shows promise for enhancing model accuracy and 655 

reducing computational demands in compound flooding simulations, marking a significant step forward in the field of 656 

hydrodynamic modeling. 657 
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Appendices 674 

Appendix A: Derivation of discharge overestimation due to unresolved meandering    675 

The subgrid approach corrections presented in this paper may result in an overestimation of fluxes between grid cells in places 676 

where river meanders are not sufficiently resolved by the computational grid. The overestimation may be expressed as the 677 

ratio between the computed and theoretical fluxes. In this appendix, we describe a simple relation between this ratio and the 678 

river sinuosity in cases where the model grid does not resolve the meanders at all. The sinuosity is defined as the ratio between 679 

the length along the channel and its straight-line length (e.g. Lazarus and Constantine, 2013).  680 

 681 

Figure A1. Conceptual figure of the sinuosity which is a defined as the ratio between the length along the channel and its straight-682 
line length 683 

Using Manning’s formula, the theoretical discharge can be described with: 684 
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 685 

where W is the river width, L is the length of the center line of river stretch, ∆z is the water level difference over the river 686 

stretch, H is the channel depth (assumed uniform), and n is the Manning’s roughness coefficient. 687 

Inside a model using the subgrid methodcorrections, the discharge computed at the cell interface will be: 688 
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 689 

where ∆x is the grid size, φ is the wet fraction of the velocity point, and H is the “wet-average” depth. 690 

We assume here that the sinuosity is:  691 

Ω =
𝐿

∆𝑥
(𝐴. 3) 692 

Furthermore, the wet fraction φ in A.2 can be written defined as the river area W x L divided by the cell area: 693 
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After substituting φ in Eq. A.2 with Eq. A.4, we can write the overestimation (i.e. the ratio of the computed and theoretical 695 

discharge 𝑄௠  / 𝑄௥) as: 696 
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Appendix B: Input files for cases considered in this manuscript 698 

Conceptual verification cases: straight and meandering channels 699 

mmax           = 11 700 
nmax           = 26 701 
dx             = 200 702 
dy             = 200 703 
x0             = -1000 704 
y0             = 0 705 
rotation       = 0 706 
latitude       = 0 707 
crsgeo         = 0 708 
tref           = 20190101 000000 709 
tstart         = 20190101 000000 710 
tstop          = 20190103 000000 711 
tspinup        = 60 712 
dtmapout       = 864003600 713 
dthisout       = 600 714 
dtmaxout       = 3600 715 
dtwnd          = 1800 716 
alpha          = 0.5 717 
theta          = 0.95 718 
huthresh       = 0.005 719 
manning        = 0.02 720 
manning_land   = 0.02 721 
manning_sea    = 0.02 722 
rgh_lev_land   = 0 723 
zsini          = 1 724 
qinf           = 0 725 
rhoa           = 1.25 726 
rhow           = 1024 727 
dtmax          = 999 728 
maxlev         = 999 729 
bndtype        = 1 730 
advection      = 01 731 
baro           = 0 732 
pavbnd         = 0 733 
gapres         = 101200 734 
advlim         = 5 735 
stopdepth      = 100 736 
depfile        = sfincs.dep 737 
mskfile        = sfincs.msk 738 
indexfile      = sfincs.ind 739 
bndfile        = sfincs.bnd 740 
bzsfile        = sfincs.bzs 741 
srcfile        = sfincs.src 742 
disfile        = sfincs.dis 743 
sbgfile        = sfincs_subgrid.nc?sfincs.sbg 744 
obsfile        = sfincs.obs 745 



  

 

35 
  

crsfile        = sfincs.crs 746 
manningfile    = sfincs.manning 747 
inputformat    = bin 748 
outputformat   = net 749 
cdnrb          = 3 750 
cdwnd          = 0  28  50 751 
cdval          = 0.001      0.0025      0.0015 752 
hmaxfile       = hmax.txt 753 
zsfile         = zs.txt 754 
dtout          = 3600 755 
dttype         = min 756 
storevelocity  = 1 757 
storevel       = 1 758 

Tidal propagation St. Johns River 759 

mmax                 = 2720 760 
nmax                 = 5520 761 
dx                   = 25 762 
dy                   = 25 763 
x0                   = 459437.0 764 
y0                   = 3375791.0 765 
rotation             = -164.0 766 
epsg                 = 32617 767 
latitude             = 0.0 768 
tref                 = 20180901 000000 769 
tstart               = 20180901 000000 770 
tstop                = 20180931 000000 771 
tspinup              = 60.0 772 
dtout                = 86400 773 
dthisout             = 600.0 774 
dtrstout             = 0.0 775 
dtmaxout             = 99999999999 776 
trstout              = -999.0 777 
dtwnd                = 1800.0 778 
alpha                = 0.5 779 
theta                = 1.0 780 
huthresh             = 0.01 781 
manning              = 0.04 782 
manning_land         = 0.04 783 
manning_sea          = 0.02 784 
rgh_lev_land         = 0.0 785 
zsini                = 0.0 786 
qinf                 = 0.0 787 
rhoa                 = 1.25 788 
rhow                 = 1024.0 789 
dtmax                = 60.0 790 
advection            = 12 791 
baro                 = 0 792 
pavbnd               = 0 793 
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gapres               = 101200.0 794 
stopdepth            = 100.0 795 
crsgeo               = 0 796 
btfilter             = 60.0 797 
viscosity            = 1 798 
depfile              = sfincs.dep 799 
mskfile              = sfincs.msk 800 
indexfile            = sfincs.ind 801 
bndfile              = ..//..//setup//sfincs.bnd 802 
bzsfile              = ..//..//setup//sfincs.bzs 803 
sbgfile              = sfincs_subgrid.nc 804 
obsfile              = ..//..//setup//noaa_xtide_v4_added_debug_points.obs 805 
inputformat          = bin 806 
outputformat         = net 807 
cdnrb                = 3 808 
cdwnd                = 0.0 28.0 50.0 809 
cdval                = 0.001 0.0025 0.0015 810 

Conceptual verification cases: straight and meandering channelsPluvial flooding during Hurricane Harvey 811 

mmax                 = 2632 812 
nmax                 = 1555 813 
dx                   = 25 814 
dy                   = 25 815 
x0                   = 243943.538 816 
y0                   = 3279280.3807 817 
rotation             = 0 818 
epsg                 = 32615 819 
tref                 = 20170825 000000 820 
tstart               = 20170825 000000 821 
tstop                = 20170831 000000 822 
dtout                = 86400 823 
dthisout             = 600 824 
dtmaxout             = 518400 825 
dtwnd                = 600 826 
alpha                = 0.5 827 
theta                = 1 828 
huthresh             = 0.05 829 
rgh_lev_land         = 0 830 
zsini                = 0 831 
qinf                 = 0 832 
rhoa                 = 1.25 833 
rhow                 = 1000 834 
advection            = 1 835 
stopdepth            = 9999 836 
depfile              = sfincs.dep 837 
mskfile              = sfincs.msk 838 
indexfile            = sfincs.ind 839 
bndfile              = sfincs.bnd 840 
bzsfile              = sfincs.bzs 841 
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srcfile              = sfincs.src 842 
disfile              = sfincs.dis 843 
sbgfile              = sfincs_subgrid.nc 844 
amprfile             = Observations_Interpolate_600x600_halfhour_test.ampr 845 
obsfile              = sfincs.obs 846 
inputformat          = bin 847 
outputformat         = net 848 
cd_nr                = 0 849 
geomskfile           = sfincs.gms 850 
hmaxfile             = hmax.dat 851 
hmaxgeofile          = hmaxgeo.dat 852 
zsfile               = zs.dat 853 
vmaxfile             = vmax.dat 854 
qinffile             = qinf_constanttime_spatialvary 855 
storevel             = 1  856 
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