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Abstract. Seasonal freeze‒thaw (FT) processes alter soil formation and causes changes in soil 12 

structure in alpine ecosystems. Soil aggregates are basic soil structural units and play a crucial role 13 

in soil organic carbon (SOC) protection and microbial habitation. However, the impact of seasonal 14 

FT processes on pore structure and its impact on SOC fractions have been overlooked. This study 15 

characterized the pore structure and SOC fractions of aggregates during the unstable freezing 16 

period (UFP), stable frozen period (SFP), unstable thawing period (UTP) and stable thawed period 17 

(STP) in typical alpine ecosystems via the dry sieving procedure, X-ray computed tomography 18 

(CT) scanning and elemental analysis. The results showed that pore network of 0.25-2 mm 19 

aggregates was more vulnerable to seasonal FT processes than that of > 2 mm aggregates. The 20 

freezing process promoted the formation of > 80 μm pores of aggregates. The total organic carbon 21 

(TOC), particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) 22 

contents of aggregates were high in the stable frozen period and low in unstable thawing period, 23 

demonstrating that freezing process enhanced SOC accumulation while early stage of thawing led 24 

to SOC loss. The vertical distribution of SOC of aggregates was more uniform in the stable frozen 25 

period than in other periods. Pore equivalent diameter was the most important structural 26 

characteristic influencing SOC contents of aggregates. In the freezing period, pore structure 27 

inhibited SOC loss by promoting the formation of >80 μm pores. In the thawing period, pores of 28 

＜15 μm inhibited SOC loss. Our results revealed that changes in pore structure induced by FT 29 

processes could positively contribute to SOC protection of aggregates. 30 

 31 
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1. Introduction 34 

The alpine regions contribute to over 50% of the soil organic carbon (SOC) stock in terrestrial 35 

ecosystems, which is 1.5 times higher than the atmospheric carbon pool (Tarnocai et al., 2009). 36 

Significant soil carbon emissions from warming-induced permafrost thawing could further provide 37 

a positive carbon feedback to climate change (Schuur and Mack, 2018). Freeze‒thaw (FT) cycles 38 

are main processes of soil formation in alpine regions (Wang et al., 2007). The ongoing global 39 

warming has reduced snow cover in winter and decreased the insulations of soils against freezing, 40 

which has increased the frequency of FT cycles (Kreyling et al., 2008). Soil aggregates are 41 

fundamental soil structural units and favour SOC protection (Oztas and Fayetorbay, 2003; Tan et 42 

al., 2014). SOC is preserved by physical protection in the forms of light organic carbon (fLOC), 43 

particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). POC is a 44 

crucial contributor to soil aggregation and parallels plant-derived carbon into aggregates, and 45 

MAOC plays a crucial role in long-term SOC storage (Wang et al., 2020; Witzgall et al., 2021). 46 

FT processes may loosen the aggregates’ protection of SOC by stimulating substrate release (Song 47 

et al., 2017), destroying soil aggregates and stimulating microbial activities (Campbell et al., 2014; 48 

Xiao et al., 2019), and the impact is highly dependent on SOC components. For example, FT 49 

processes could significantly increase soil soluble carbon content and extractable SOC content but 50 

decrease microbial biomass carbon (MBC) content of aggregates (Patel et al., 2021). The increase 51 

in microporosity and microbial activity of aggregates induced by FT could decrease the dissolved 52 

organic carbon (DOC) concentration (Kim et al., 2023). More frequent FT cycles enhance SOC 53 

availability especially in active layers and thus lead to a high risk of greenhouse gas release (Estop-54 

Aragones et al., 2020). However, these related studies were mostly based on simulated laboratory 55 

FT experiments. The field FT process is elusive as it contains the complex interactions between 56 

soil properties, plant growth and topographic features, which are responsible for differences in the 57 

outcomes between laboratory and field conditions (Henry et al., 2007; Deng et al., 2024). 58 

Therefore, quantifying the actual dynamics of SOC of aggregates under seasonal FT processes is 59 

valuable. 60 

Soil structure refers to the spatial arrangement of solids and voids and controls many 61 

important biophysical processes in soils (Rabot et al., 2018).  The pore networks of soil aggregates 62 

are heterogeneous. FT processes not only affect the stability of soil aggregates but also change 63 
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their inner pore characteristics, especially those of the water-filled pores (Wang et al., 2012; Li 64 

and Fan, 2014; Starkloff et al., 2017). For example, A decrease in pore connectivity, an increase 65 

in elongated porosity and an increase in asymmetrical pores were observed after continuous FT 66 

events (Ma et al., 2020; Rooney et al., 2022; Kim et al., 2023). Pore network determines the 67 

accessibility of organic matter to microbes and indirectly influence microbial activities, thus 68 

determining the magnitude to which the SOC is protected (Ruamps et al., 2013; Kravchenko and 69 

Guber, 2018). Interactions between pore structure and SOC fractions of soil aggregates have 70 

gained much attention. Pores of 30-75 μm and > 13 μm in size were found to enhance the 71 

mineralization of carbon (Lugato et al., 2009; Kravchenko et al., 2015). Pores of > 90 μm and < 72 

15 μm in size were found to support SOC protection (Ananyeva et al., 2013; Quigley and 73 

Kravchenko, 2022). 30–150 μm pores are also the preferential places for new carbon inputs and 74 

greater abundance of such pores translates into a higher spatial footprint that microbes make on 75 

SOC storage capacity (Kravchenko et al., 2019). These distinct correlations demonstrated that the 76 

pore-SOC interactions are highly dependent on environmental conditions. In alpine ecosystems, 77 

dynamics of SOC can be significantly correlated with the transformation and destruction of 78 

aggregates induced by FT processes (Dagesse, 2013). However, the role of pore structure in 79 

regulating SOC dynamics in FT processes has not been revealed. 80 

The Qinghai-Tibet Plateau (QTP) has warmed twice the global average rate in recent years 81 

with the average temperature being expected to increase by over 2 ℃ before 2070 (Lin et al., 2019). 82 

Soils of the QTP are fragile and vulnerable to the global climate change. The depth and duration 83 

of FT processes have decreased while the frequency of FT cycles has increased in the QTP (Peng 84 

et al., 2017), posing dramatic alterations on the soil pore network (Gao et al., 2020; Yang et al., 85 

2021). Our previous studies have shown that alpine meadow soil aggregates of the QTP had dense 86 

pore networks with many elongated pores in them due to frequent FT cycles (Zhao et al., 2020). 87 

For typical ecosystems on the QTP, the aggregate protection of SOC was promoted by pores of 88 

<15 μm by limiting microbial access and the process was most closely associated with soil 89 

moisture content (Wang and Hu, 2023). Aggregate stability has been proved to impact SOC 90 

protection on the QTP and thawing-induced SOC loss of aggregates will translate into carbon 91 

emissions from the meadow to the atmosphere and exacerbate global warming (Ozlu and Arriga, 92 

2021). Changes in carbon storage depend on relationships between SOC input from litter and root 93 
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exudates and output by microbial metabolic activities, and pore structure defines the pathway of 94 

substrate movement (Qiao et al., 2023). Overall, the pore structure of aggregates under FT 95 

conditions has important implications for predicting carbon turnover projections under global 96 

warming (He et al., 2021). 97 

To fill these research gaps, the objectives of the study were: (1) to quantify changes in pore 98 

structure and SOC fraction contents of aggregates in typical alpine ecosystems during the seasonal 99 

FT process; (2) to investigate the relationships between them and (3) to clarify the role of pore 100 

structure on aggregate functions related to SOC protection during seasonal FT processes. 101 

2. Materials and methods 102 

2.1 study sites and sampling 103 

The study was carried out in the Qinghai Lake Watershed (36◦15′N-38◦20′N, 97◦50′-101◦20′E), 104 

northeastern QTP. The area lies in the cold and high-altitude climate zone, with a mean annual 105 

temperature and precipitation of 0.1 °C and 400 mm, respectively (Li et al., 2018). Two ecosystems 106 

were selected in the study: Kobresia pygmaea meadow (KPM) and Potentilla fruticosa shrubland 107 

(PFS). They are representative terrestrial ecosystems of the Qinghai Lake watershed and account 108 

for over 60% of the watershed land area (Hu et al., 2016). One of the main features of these two 109 

ecosystems is the mattic epipedon present on the soil surface. Mattic epipedon is the surface layer 110 

consisting of a grass felt-like complex formed by the interweaving of live and dead roots of 111 

different ages. The layer is soft and significantly enhances nutrient preservation (Hu et al., 2023). 112 

The soil type was classified as Gelic Cambisols according to the FAO UNESCO system (IUSS 113 

Working Group WRB, 2022). We tried to avoid the simple pseudo replication so that each 114 

sampling site has a certain distance with others (> 1 km). Three sites within each ecosystem have 115 

similar vegetation conditions. In every FT period, three sampling plots (1 m × 1 m) were set up at 116 

each site. 117 
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 118 

Fig. 1. Location of the sampling site (a) and landscapes of the Kobresia pygmaea meadow 119 

ecosystem (b) and the Potentilla fruticosa shrub ecosystem (c).  120 

 121 

The division of seasonal FT periods is based on changes in daily soil temperature (Chen et 122 

al., 2021; Wu et al., 2023). The EM-50 soil temperature data for 2019, 2020, and 2021 were 123 

obtained at 0.5 Hz with 30 min averages at all three study sites using the ECH2O 5TE sensor 124 

(Decagon Devices, USA) (Li et al., 2018). The seasonal freeze–thaw process was divided into four 125 

periods in this study: the unstable freezing period (UFP, as soil temperature starts to drop to 0℃), 126 

the stable frozen period (SFP, with soil temperature completely blow 0 ℃), the unstable thawing 127 

period (UTP, as soil temperature starts to rise above 0 ℃), and the stable thawed period (STP, 128 

with soil temperature completely above 0 ℃). The freezing process included the SFP and UFP, 129 

while the thawing process included the STP and UTP. Soil samples were taken in October 2021 130 

(representing UFP), January 2022 (representing SFP), May 2022 (representing UFP) and July 2022 131 

(representing SFP). 132 
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 133 

Fig. 2. Daily average soil temperature in 2021 and the classification of freeze‒thaw stages (SFP-134 

stable frozen period, UTP-unstable thawing period, STP-stable thawing period and UFP-unstable 135 

freezing period). 136 

 137 

Soils from three typical profiles in the sampling plots (1 m×1 m) in each site were dug. A 138 

total of 18 soil profiles were obtained in every FT period. We classified the soil layers as 0-10 cm, 139 

10-30 cm and 30-50 cm soil layers. Soil cores and bulk soil were collected at each soil layer for 140 

aggregate sieving and physiochemical characteristic measurements, respectively. Soil cores were 141 

obtained using an 80 mm diameter soil auger and then preserved in an icebox before being sieved 142 

in the laboratory. A total of 54 soil cores were collected in every FT period. Nitrile powder-free 143 

gloves, a plastic garden trowel, and a small saw were utilized for bulk soil sampling. The basic 144 

soil properties of each soil layer at the study site are listed in Table S1. Particle size distribution 145 

was determined using the sieve-pipette method (Mako et al., 2019; Zhao et al., 2021). The soil 146 

water content as weight was determined using an oven-dried method (Klute, 1986). Soil pH 147 

measurements were conducted by an FE20 pH meter (Mettler Toledo, Columbus, USA) from 148 

slurries of samples at a soil:water ratio of 1:2.5 (w:w) (Zhao et al., 2020). SOC and TN were 149 

determined using a CN 802 elemental analyzer (VELP, Italy). Inorganic carbon was removed from 150 

the soil samples using 1 mol/L HCl prior to elemental analysis (Zhang et al., 2017). 151 

2.2 Aggregate sieving 152 

Separation of soil aggregates was performed using the dry sieving method with 0.053, 0.25- 153 

and 2-mm sieves from bottom to top. Soil cores were gently broken by hand into 1-cm clods, and 154 

then soils were laid out between sheets of brown paper (Schutter and Dick, 2002). Debris such as 155 
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gravel and roots were removed from the samples. Two hundred grams of soil was placed on the 156 

top sieve and was shaken for five minutes by the sieve shaker (200r/min). Therefore, the aggregates 157 

were divided into four categories: large macroaggregates (LMAs, with diameters >2 mm), small 158 

macroaggregates (SMAs, with diameters of 0.25~2 mm), microaggregates (mAs, with diameters 159 

of 0.053~0.25 mm), and fractions with diameters <0.053 mm. Aggregate fractions of > 2 mm and 160 

0.25-2 mm were weighed and preserved for further analysis. 161 

2.3 CT sanning and image processing 162 

A nanoVoxel-4000 X-ray three-dimensional microscopic CT (Sanying Precision Instruments 163 

Co., Ltd., China) was used to scan the soil aggregates with X-ray source parameters of voltage 80 164 

kV and current 50 μA, with which 2800 detailed and low-noise images could be obtained during 165 

a 360° rotation. The reconstructed images featured a 3.6 μm spatial resolution and 2800 × 2800 × 166 

1500 voxels. Aggregate fractions of > 2 mm and 0.25-2 mm from all soil layers of the UFP, SFP, 167 

UTP and STP periods were scanned (other fractions were too small to separate into a single 168 

sample). A total of 144 aggregates were selected and scanned. 169 

Reconstruction of the pore network of aggregates was completed using Avizo 9.0 170 

(Visualization Sciences Group, Burlington, MA). The procedure for image analysis was similar to 171 

that described by Wang and Hu (2023). Briefly, the clutters around the aggregates were eliminated 172 

using a volume-editing module. Mask extraction was carried out in the segmentation module (Zhao 173 

et al. 2020). The soil matrix was selected with the “Magic Wand” tool, and then the “Fill” tool was 174 

used to fill the pores for obtaining the aggregate boundary and the mask of the whole aggregate 175 

(Zhao and Hu, 2023a). All images were binarily segmented using the histogram thresholding 176 

method based on the global thresholding algorithm (Jaques et al., 2021), and pore thresholds were 177 

selected for all images. 178 
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 179 

Fig. 3. Procedures used for the visualization and quantification of soil aggregate pore networks. 180 

Taken from Zhao et al. (2020) with permission from Elsevier. 181 

 182 

The two-dimensional images were transformed into 3D images by Volume Rendering tool in 183 

Avizo 9.0 software. The intra-aggregate porosity was calculated using the Volume Fraction tool. 184 

After transforming 2D images into 3D images, pore characteristics including the equivalent 185 

diameter, volume, number, length, and surface area were calculated using the Label Analysis tool. 186 

The pore number density (ND) is defined as the ratio of the pore number (n) to the total volume 187 

of the aggregate samples (V): 188 

                                                                                 𝑁𝐷 =
𝑛

𝑉
                                                                         (1) 189 

One pore network may consist of several branches of connected pores or just one individual 190 

pore. The pore length is the total actual length in all branches. The pore length density (LD) is 191 

defined as the ratio of the pore length (L) to the total volume of pores (V) (Yang et al., 2021): 192 

LD =
𝐿

𝑉
(2) 193 

The surface area density (SD) is defined as the ratio of the pore surface area (S) to the total 194 

volume of V: 195 

 𝑆𝐷 =
𝑆

𝑉
(3) 196 

To characterize the pore shape, the pore shape factor (SF) was calculated as follows: 197 
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𝑆𝐹 =
𝐴0

𝐴
(4) 198 

where 𝐴0 represents the surface area of the equivalent sphere of the pores and 𝐴 is the actual 199 

surface area of the pores. SF values closer to 1 indicate a more regular pore shape (i.e., closer to a 200 

spherical shape), and smaller values refer to more irregular or elongated pore shapes (Zhou et al., 201 

2012). 202 

The equivalent diameter (EqD) was defined as the diameter of spherical particle with the 203 

same volume and was calculated by pore volume: 204 

𝐸𝑞𝐷 = √
6 × 𝑉

𝜋

3

(5) 205 

Where 𝑉 represents the volume of pores. 206 

The pores were divided into four classes based on their equivalent diameter: <15, 15–30, 30–207 

80, and >80 μm. According to Lal and Shukla (2004) and Wang and Hu (2023), pores <30, 30–80, 208 

and >80 μm are termed micropores, mesopores and macropores, respectively. 209 

2.4 SOC fraction separation 210 

In every FT period, soil aggregate samples were sufficiently ground to pass through a 0.15 211 

mm sieve before their total organic carbon content (TOC) content was measured using the CN 802 212 

elemental analyzer (VELP, Italy).  213 

The determination of SOC fractions, including POC and MAOC, was performed as described 214 

by Cambardella and Elliott (1992). Approximately 5 g of each dried aggregate of the LMA and 215 

SMA fractions was moved to a 50 mL centrifuge tube and dispersed in 25 mL of a sodium 216 

hexametaphosphate (0.5%, w/v) solution by shaking for 18 h in a reciprocating shaker at 120 RMP 217 

to ensure that it was evenly blended (Chen et al., 2020; Fu et al., 2023). The dispersed samples 218 

were rinsed onto a 53 µm sieve to separate MAOC (particle size <53 µm) and POC (particle 219 

size >53 µm) using distilled water until the water stream was clear and free of fine soil particles. 220 

After that, samples were transferred to evaporating dishes and dried at 65 °C for 48 h to isolate 221 

soils which contained POC or MAOC fractions solely (Six et al., 1998). After weighing and 222 

sieving, all the fractions’ SOC contents were measured using the CN802 elemental analyser 223 

(VELP, Italy). The POC and MAOC contents were obtained by multiplying the percentage of each 224 

particle size fraction in the soil (Sun et al., 2023). 225 



11 

 

2.5 Statistical analysis 226 

All statistical analyses except redundancy analysis (RDA) were conducted with IBM’s SPSS 227 

20 software (SPSS Inc., USA). One-way analysis of variance (ANOVA) followed by Fisher’s 228 

protected least significance difference (LSD) test was conducted to compare differences between 229 

the four seasonal FT periods and between different aggregate fractions. Pearson’s correlations 230 

were conducted to evaluate the linkages between pore characteristics and SOC fractions of 231 

aggregates. Statistical significance was defined at P < 0.05. RDA was conducted to determine pore 232 

parameters that had a significant impact on SOC fractions and was carried out in R software 233 

(http://www.r-project.org) using the vegan package. 234 

3 Results 235 

3.1 Soil pore characteristics of aggregates  236 

Fig. 4 depicts the pore size distribution of soil aggregates during the seasonal FT process. In 237 

the two ecosystems, pores of > 80 μm dominated the pore space in all periods and accounted for 238 

over 65% of the total porosity. The contribution of pores of < 15 μm was low in the stable frozen 239 

period with 4.39 % in the meadow ecosystem and 5.36 % in the shrubland ecosystem. The volume 240 

percentage of pores of > 80 μm was high in the stable frozen period (80.62% in the meadow 241 

ecosystem and 87.65% in the shrubland ecosystem) and was significantly higher than that in the 242 

UTP (74.17% in the meadow ecosystem and 78.53% in the shrubland ecosystem) and the STP 243 

(67.18% in the meadow ecosystem and 80.96% in the shrubland ecosystem). The results showed 244 

that freezing process enhanced the formation of pores of > 80 μm while thawing contributed to the 245 

increase in porosity of pores of <15 μm.  246 

  247 
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 248 

Fig. 4. Pore size distribution (by pore diameter) of soil aggregates in the (a) meadow ecosystem 249 

and (b) shrubland ecosystem during the seasonal FT process. Bars represent the mean ± standard 250 

error (n=18). Different lowercase letters denote significant differences among pore volume 251 

percentages in different FT periods (P<0.05). 252 

 253 

The characteristics of the pores of aggregates during the seasonal FT process are shown in 254 

Fig. 5. The seasonal FT process did not significantly affect the EqD (Fig. 5b). The mean pore 255 

volumes of 0.25-2 mm aggregates in the freezing period (3.76×10³ μm³ and 3.14 ×10³ μm³ in the 256 

meadow and shrubland ecosystems respectively) were significantly higher than those in the 257 

thawing period (2.30×10³ μm³ and 2.24 ×10³ μm³ in the meadow and shrubland ecosystems 258 

respectively), while no significant difference was observed for > 2 mm aggregates (Fig. 5c). In the 259 

meadow ecosystem, the pore length density of the 0.25-2 mm aggregates was 1.68 ×10-2 μm μm-3 260 

in thawing period, which was 1.71 times higher than that in the freezing period (0.98 ×10-2 μm 261 

μm-3). In the shrubland ecosystem, pore surface area density and length density of 0.25-2 mm 262 

aggregates were 0.0553 μm2 μm-3 and 2.37 ×10-4 μm μm-3, respectively, both significantly higher 263 

than those in the freezing period (0.0404 μm2 μm-3 and 1.81×10-4 μm μm-3 for surface area density 264 

and length density, respectively). Overall, seasonal FT processes mainly led to changes in the pore 265 

characteristics of 0.25-2 mm aggregates rather than those of > 2 mm aggregates. 266 
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 267 

Fig. 5. Pore characteristics of soil aggregates during the seasonal FT process. (a) porosity, (b) pore 268 

equivalent diameter, (c) mean volume of pores, (d) pore surface area density, (e) pore length 269 

density and (f) pore shape factor. Bars represent the mean ± standard error (n=9). ** represents 270 

significant differences between pore characteristics in freezing period and thawing period (P<0.05). 271 

Different lowercase letters denote significant differences between pore characteristics of >2 mm 272 

aggregates and 0.25-2 mm aggregates (P<0.05). 273 

 274 

3.2 SOC fraction contents of aggregates  275 

The SOC fraction contents (TOC, POC and MAOC) of aggregates during the seasonal FT 276 

process is shown in Fig. 6. Generally, in the two ecosystems, the TOC contents of aggregates 277 

peaked in the stable frozen period, ranging from 57.33 g/kg to 60.28 g/kg (Fig. 6a). The following 278 

unstable thawing period demonstrated the dramatic decline in TOC contents of > 2 mm (dropped 279 

by 37.73% and 32.95% in the meadow and shrubland ecosystems, respectively) and 0.25-2 mm 280 

aggregates (dropped by 45.57% and 39.43% in the meadow and shrubland ecosystems, 281 

respectively).  282 
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 283 

Fig. 6. Changes of SOC content (a-TOC, b-POC and c-MAOC) of soil aggregates during the 284 

seasonal freeze‒thaw process. Bars represent the mean ± standard error (n=9). Different lowercase 285 

letters denote significant differences among SOC contents in different FT periods (P<0.05). 286 

Note: UFP-unstable freezing period, SFP-stable frozen period, UTP-unstable thawing period, STP-stable thawed 287 

period. 288 

Changes in contents of POC and MAOC were similar to those of TOC (Fig. 6b and 6c). In 289 

the meadow ecosystem, the POC contents were high in the stable frozen period (27.90 g/kg for > 290 

2 mm aggregates and 33.77 g/kg for 0.25-2 mm aggregates) and the dramatic decline existed in 291 

the unstable thawing period (32.69% for > 2 mm aggregates and 58.01% for 0.25-2 mm aggregates) 292 

(Fig. 6b). The MAOC content of > 2 mm aggregates was 29.99 g/kg in the stable frozen period, 293 

which was 1.74 times higher than that in the unstable thawing period (17.28 g/kg) (Fig. 6c). In the 294 
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shrubland ecosystem, POC contents in freezing periods were significantly higher than those in 295 

thawing periods (Fig. 6b). The unstable thawing process led to significant loss in MAOC compared 296 

with the stable freezing period (41.54% for > 2 mm aggregates and 39.14% for 0.25-2 mm 297 

aggregates) (Fig. 6c). Therefore, freezing increased SOC concentration and the beginning of 298 

thawing led to a significant loss of SOC. 299 

The changes in the coefficient of variation (CV) of SOC content during the seasonal FT 300 

process, which depicted the variation in the SOC of aggregates from different soil depths, were 301 

shown in Table 1. In the two ecosystems, the CV values in the stable frozen period (0.20 for the 302 

meadow ecosystem and 0.22 for the shrubland ecosystem) were significantly lower than those in 303 

other periods. These results revealed that the freezing process featured a more uniform distribution 304 

of SOC across different soil layers. 305 

 306 

Table 1 Coefficient of variation (CV) of SOC content of aggregates in all soil layers during the 307 

seasonal FT process 308 

Ecosystem 
Seasonal FT periods 

UFP SFP UTP STP 

meadow 0.38±0.12a 0.20±0.07b 0.47±0.19a 0.56±0.21a 

shrubland 0.46±0.16a 0.22±0.09b 0.34±0.17a 0.34±0.13a 

Note: Bars represent the mean ± standard error (n=6). Different lowercase letters denote significant differences in CV 309 

of different FT periods. 310 

 311 

3.3 Relationships between pore structure and SOC fractions of aggregates 312 

In the freezing period, no correlations were observed between SOC fractions and pore 313 

parameters while pore size distribution had significant impact on SOC content. The TOC and 314 

MAOC contents were both positively correlated with pores of > 80 μm (P=0.039 and P=0.041, 315 

respectively) but negatively correlated with pores of 15-30 μm (P=0.010 and P=0.013, 316 

respectively). In the thawing period, the POC content was positively correlated with pores of <15 317 

μm (P=0.049). The TOC and MAOC contents were both positively correlated with pore length 318 

density (P=0.045 and P=0.006, respectively).  319 

 320 
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 321 

Fig. 7. Scatter plots of relationships between (a) SOC content and 15-30 μm pores and (b) SOC 322 

content and > 80 μm pores in the freezing process. 323 

 324 

Fig. 8. Scatter plots of relationships between (a) TOC content and pore length density, (b) MAOC 325 

content and pore length density and (c) POC content and < 15 μm pores in the thawing process. 326 

 327 

RDA was used to explain the relationship between the pore parameters and SOC fractions 328 

during the seasonal FT process (Supplementary Fig. 1). In the freezing period, a total of 53.29% 329 

of the SOC variation could be explained by pore characteristics. Pore EqD had a significant impact 330 

on SOC content (P=0.01). In thawing period, 52.90% of the SOC variation, with 50.99% on Axis 331 

1 and 1.91% on Axis 2, was explained by pore characteristics. Pore surface area and EqD played 332 

important roles in SOC dynamics of aggregates (P=0.01 and P=0.04, respectively).  333 

 334 

4 Discussion 335 

Our results demonstrated that the volume percentage of > 80 μm pores of aggregates was high 336 

in the stable frozen period. This finding is consistent with related results, which showed that 337 
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FTresulted in an increase in macroporosity (Wu and Hu, 2024). Ma et al. (2020) found volume 338 

percentage of pores of > 100 μm in aggregates increased from 62.39% to 96.53% after 20 times 339 

FT cycles. During the freezing process, pore-scale heterogeneities cause pressure gradients and 340 

the seepage of water from smaller to larger pores (Rempel and vam Alst, 2013), and this process 341 

enhances the expansion of force heave (Skvortsova et al., 2018). Freezing could also increase pore 342 

size by forming new connections among adjacent pores (Ma et al., 2020). The increase in pore size 343 

and porosity could loosen the aggregate stability and increase pore air content, thus increasing the 344 

air pressure and enhancing expansion (Lugato et al., 2010; de Jesus Arrieta Baldovino et al., 2021). 345 

We also found that the seasonal FT process mainly affects the pore characteristics of 0.25-2 mm 346 

aggregates rather than those of > 2 mm aggregates, especially in the pore surface area density and 347 

length density. Zhao and Hu (2023a) reported a similar significant change in pore surface area 348 

density of 0.25-1 mm aggregates after FT cycles. Changes in surface area density and pore length 349 

density or pores might be associated with pore shape. In the freezing period, the frost heave force 350 

of water is anisotropic, which increases the pore length and decreases the surface area(Rooney et 351 

al., 2022). In summary, freezing increased the pore volume and the impact of seasonal FT 352 

processes on pore characteristics is dependent on aggregate size. 353 

In our study, contents of SOC fractions were all high in the stable frozen period and low in 354 

the unstable thawing period. Huang et al. (2021) found that the TOC content of aggregates was 355 

high in January and February and showed a significant decrease in March due to FT processes. 356 

Many studies have also reported the SOC loss at the beginning of the thawing period at regional 357 

scales (Song et al., 2014; Song et al., 2020). This phenomenon can be explained by litter 358 

accumulation and suppressed microbial activities in freezing periods (Han et al., 2018), as well as 359 

the aerobic environment intensifying SOC mineralization during thawing (Liu et al., 2018; Liu et 360 

al., 2021). So, the freezing process promoted SOC accumulation while the thawing process 361 

induced a loss of SOC.  362 

Among all pore characteristics, equivalent diameter explained most in the SOC variations 363 

(Supplementary Fig. 1). In the freezing period, pores of 15-30 μm had negative impact on SOC 364 

protection, this was consistent with our previous results (Wang and Hu, 2023). Pores of 15–30 μm 365 

are probably suitable habitat for soil microbes and support their activity, where greater SOC 366 

decomposition takes place (Kravchenko & Guber, 2017; Liang et al., 2019). Pores of >80 μm 367 
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favoured SOC protection of aggregates. As the period was featured by SOC accumulation 368 

(especially residue entry), Pores of > 80 μm serve as primary sites for residue entry and are 369 

promoted by microbial materials and SOC, which enhance soil aggregation and thus drive much 370 

SOC to be protected (Ananyeva et al., 2013; Dal Ferro et al., 2014; Zhang et al., 2023). Freezing 371 

promoted the formation of these pores which were conducive to organic matter entry into 372 

aggregates. In the thawing period, pores of <15 μm inhibited the POC loss. Previous studies proved 373 

that these pores reduced SOC decomposition via limiting microbial access and shifting microbial 374 

metabolism to less efficient anaerobic respiration (Strong et al., 2004; Keiluweit et al., 2017). On 375 

the QTP, the positive impact of soil moisture on SOC protection has been revealed in both 376 

aggregate scale and landscape scale (Ma et al., 2022; Wang and Hu, 2023). The thawing process 377 

is accompanied by an increase in microbial activity and moisture availability, pores of <15 μm are 378 

able to hold water surrounding the soil particles (Kim et al., 2021). Therefore, POC associated 379 

with these pores was less vulnerable to microbial processing and desorption due to equilibration 380 

with the more frequently exchanged soil solution (Schluter et al., 2022). The protection promotes 381 

the consequent transport of POC towards mineral sorption and thus contributes to the long-term 382 

SOC storage (Vedere et al., 2020). Overall, the FT-induced pore structure posed a positive impact 383 

on SOC protection in that: pores of > 80 μm promoted by freezing serve as primary sites for organic 384 

matter entry, while pores of <15 μm promoted by thawing inhibited POC decomposition through 385 

holding moisture. 386 

In this study, we explored changes in the pore structure and SOC fractions of alpine soil 387 

aggregates during the seasonal FT process. However, we could not isolate the impact of FT 388 

processes on soil structure and functions as impacts from vegetation and climate could not be 389 

avoided under field conditions. Therefore, it is necessary to compare the results based on 390 

laboratory FT simulations and field sampling in future studies to clarify the importance of FT 391 

processes in shaping pore structure and affecting soil functions. Recent studies have clarified the 392 

importance of minerals (e.g., Fe, Al, and their oxides) in microscale SOC protection (Kang et al., 393 

2024; Wang et al., 2024; Zhu et al., 2024). This mechanism can be closely associated with soil 394 

moisture and enzyme activities (Li et al., 2023; Hu et al, 2024), while the role of pore structure 395 

has not been clarified. Future research needs to further quantify the impact of soil structure on 396 
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organic carbon, which will enable us to apply the mechanisms we have discovered to landscape 397 

scales to improve existing global carbon cycle predictions. 398 

5 Conclusion 399 

The findings of the study revealed that seasonal FT processes regulate pore structure, and 400 

SOC concentration of aggregates. The seasonal FT process significantly affected the pore surface 401 

area density and length density of 0.25-2 mm aggregates. The freezing period promoted the 402 

formation of pores > 80 μm while thawing led to shrinkage of pore space. Freezing enhanced the 403 

accumulation of SOC of aggregates and the more uniform distribution of SOC among different 404 

soil layers. Thawing witnessed the loss of SOC. The seasonal FT process altered the SOC 405 

protection of aggregates via regulating pore size distribution. Pores of > 80 μm promoted by 406 

freezing serve as primary sites for organic matter entry, while pores of <15 μm promoted by 407 

thawing inhibited POC decomposition through holding moisture. Overall, our study explains the 408 

changes in SOC during the freeze-thaw process by innovatively establishing a pathway of FT-pore 409 

structure-SOC. In future studies, by incorporating a more variety of factors, we hope the 410 

contribution of soil structure to SOC conservation can be upscaled to achieve a more precise global 411 

carbon cycle estimation. 412 

 413 
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Figure Captions 837 

Fig. 1. Location of the sampling site (a) and landscapes of the Kobresia pygmaea meadow 838 

ecosystem (b) and the Potentilla fruticosa shrub ecosystem (c). 839 

Fig. 2. Daily average soil temperature in 2021 and the classification of freeze‒thaw stages (SFP-840 

stable frozen period, UTP-unstable thawing period, STP-stable thawing period and UFP-unstable 841 

freezing period). 842 

Fig. 3. Procedures used for the visualization and quantification of soil aggregate pore networks. 843 

Taken from Zhao et al. (2020) with permission from Elsevier. 844 

Fig. 4. Pore size distribution (by pore diameter) of soil aggregates in the (a) meadow ecosystem 845 

and (b) shrubland ecosystem during the seasonal FT process. Bars represent the mean ± standard 846 

error (n=18). Different lowercase letters denote significant differences among pore volume 847 

percentages in different FT periods (P<0.05). 848 

Fig. 5. Pore characteristics of soil aggregates during the seasonal FT process. (a) porosity, (b) pore 849 

equivalent diameter, (c) mean volume of pores, (d) pore surface area density, (e) pore length 850 

density and (f) pore shape factor. Bars represent the mean ± standard error (n=9). ** represents 851 

significant differences between pore characteristics in freezing period and thawing period (P<0.05). 852 

Different lowercase letters denote significant differences between pore characteristics of >2 mm 853 

aggregates and 0.25-2 mm aggregates (P<0.05). 854 

Fig. 6. Changes of SOC content (a-TOC, b-POC and c-MAOC) of soil aggregates during the 855 

seasonal freeze‒thaw process. Bars represent the mean ± standard error (n=9). Different lowercase 856 

letters denote significant differences among SOC contents in different FT periods (P<0.05). 857 

Fig. 7. Scatter plots of relationships between (a) SOC content and 15-30 μm pores and (b) SOC 858 

content and > 80 μm pores in the freezing process. 859 

Fig. 8. Scatter plots of relationships between (a) TOC content and pore length density, (b) MAOC 860 

content and pore length density and (c) POC content and < 15 μm pores in the thawing process.861 
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Supplementary Data 

Supplementary Table 1. Basic soil physio-chemical properties  

Ecosystem 

Soil 

depth 

(cm) 

Bulk 

density 

(g/cm³) 

Soil 

water 

content 

(%) 

pH 

Organic 

C 

(g/kg) 

Total N 

(g/kg) 

Particle size composition (%) 

clay silt sand 

KPM 

(meadow) 

0-10 
0.77±0.

19b 

35.76±

15.01 

6.50±0.

35 

85.26±

29.38a 

7.66±2.

22a 

9.05±2.6

5 

33.60±6.1

0 
57.35±8.73 

10-30 
1.00±0.

17a 

32.00±

20.68 

6.49±0.

19 

67.12±

20.49ab 

6.94±1.

37ab 

10.65±3.

74 

35.83±9.0

5 
53.52±12.64 

30-50 
1.07±0.

05a 

24.18±

13.04 

7.17±0.

32 

25.35±

6.78b 

2.66±0.

45b 

11.84±2.

57 

34.88±4.9

8 
53.28±7.32 

PFS 

(shrubland

) 

0-10 
0.83±0.

23 

42.57±

4.57a 

6.64±0.

40 

64.42±

11.22a 

7.00±1.

12a 

13.95±

0.56 

47.56±

1.25 
38.49±1.69 

10-30 
0.81±0.

15 

32.40±

8.70ab 

6.82±0.

22 

44.11±6

.88ab 

4.30±0.

90ab 

14.59±

0.86 

46.85±

1.00 
38.56±1.73 

30-50 
0.96±0.

15 

22.82±

0.50a 

7.31±0.

37 

36.44±

7.06b 

3.38±0.

53b 

15.05±

1.80 

47.44±

3.80 
37.50±5.58 

Note: KPM-Kobresia pygmaea meadow; PFS- Potentilla fruticosa shrub. The properties were measured with 

samples taken in the unstable freezing period. All data is presented with standard error (n=3). Different lowercase letters denote 865 

significant difference between soil layers. 
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Supplementary Table 2. Mass proportions of soil aggregates in alpine ecosystems during the seasonal 

freeze‒thaw process 

Ecosystem 
Aggregate 

fraction 

Mass proportion of aggregates (%) 

UFP SFP UTP STP 

KPM 

(meadow) 

> 2 mm 34.55±6.80ab 41.14±11.36a 29.83±8.72b 38.86±12.90ab 

0.25-2 mm 46.29±5.60a 37.29±7.77b 48.73±6.86a 42.97±11.81ab 

0.053-0.25 mm 16.61±3.64 16.73±5.73 20.27±4.32 15.56±5.09 

<0.053 mm 2.55±0.80a 4.84±2.74a 1.16±0.81b 2.61±1.61ab 

PFS 

(shrubland) 

> 2 mm 32.17±5.49 34.52±13.59 26.57±6.66 30.03±8.52 

0.25-2 mm 47.30±5.80a 35.40±6.50b 51.72±8.65a 45.02±7.17a 

0.053-0.25 mm 18.07±3.28b 22.50±7.40a 18.72±4.28ab 21.00±7.10ab 

<0.053 mm 2.49±1.62ab 7.75±3.50a 2.92±2.16b 3.95±3.52ab 

Note: Bars represent the mean ± standard error (n=9). Uppercase letters represent significant differences among FT periods 870 

(P<0.05). 
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Supplementary Table 3 Correlations between SOC content and soil structure of soil aggregates in freezing period and 

thawing period 

Thawing period 

 Porosity 
Equivalent 

diameter 

Mean 

volume 

Pore 

surface 

area 

density 

Pore 

length 

density 

Pore 

shape 

factor 

Pd<15 Pd15-30 Pd30-80 Pd>80 

TOC 0.428 -0.404 -0.124 0.553 0.718* 0.241 0.420 0.084 0.316 -0.235 

POC 0.222 -0.252 0.188 0.339 0.397 0.032 0.639* 0.123 0.410 -0.273 

MAOC 0.529 -0.443 -0.479 0.622* 0.865** 0.422 0.013 0.010 0.086 -0.106 

Freezing period 

 Porosity 
Equivalent 

diameter 

Mean 

volume 

Pore 

surface 

area 

density 

Pore 

length 

density 

Pore 

shape 

factor 

Pd<15 Pd15-30 Pd30-80 Pd>80 

TOC 0.582 -0.507 -0.036 0.326 0.396 0.199 0.811* -0.834** -0.503 0.733* 

POC 0.521 -0.214 -0.274 0.178 0.428 0.538 0.458 -0.353 -0.146 0.295 

MAOC 0.409 -0.498 0.117 0.296 0.234 0.071 0.727* -0.818* -0.532 0.727* 

Note: * represents the correlation is significant (P<0.05). Pd<15: volume percentage of pores <15 μm, Pd15-30: volume percentage of pores 15-30 

μm; Pd30-80: volume percentage of pores 30-80 μm; Pd>80: volume percentage of pores >80 μm. 875 
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Supplementary Figure 1. RDA analysis between SOC content and pore characteristics of aggregates in 

(a) the freezing period and (b) the thawing period. 

Note: Volume-pore volume, EqD-equivalent diameter of pores, Pd30-80-pores with diameter of 30-80 μm, SF-pore 880 

shape factor, Pd<15: pores with diameter of <15 μm, Pd15-30- pores with diameter of 15-30 μm, Pd>80- pores with 

diameter of > 80 μm. 

 


