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Abstract.

Phytoplankton plays a crucial role in both climate regulation and marine biodiversity, yet it faces escalating threats due to

climate change. Projecting the future changes in phytoplankton biomass and productivity under climate change requires the

utilization of Earth System Models capable of resolving marine biogeochemistry, and exploits the averaged responses across

an ensemble of models (within the Coupled Model Intercomparison Project Phase 6, CMIP6) as the most probable projection.5

However, in the North Atlantic, this straightforward method falls short in providing robust projections of phytoplankton net

primary production (NPP) over the 21st century. This is because the processes controlling NPP strongly differ from one

model to another, thus causing model divergence. A new inter-comparison approach was therefore developed and applied to

8 CMIP6 models exhibiting substantial divergence in their NPP projections in the North Atlantic. This approach is based on

the identification of the mechanisms causing model divergence and the assessment of their reliability, in order to conduct an10

informed selection of the most reliable models. The basin was first divided into 3 bioregions tailored to the characteristics of

each model using a novel method based on a clustering procedure. Two key mechanisms causing model divergence were then

identified in the subtropical and subpolar regions (namely, diazotrophy and the presence of an ammonium pool, respectively).

This allowed for an informed selection of models in each region, resulting in reduced uncertainty and a more pronounced

decrease in total NPP in the subtropical North Atlantic and a stronger increase of small phytoplanton NPP in the subpolar15

North Atlantic. Our model selection strengthened carbon export and phytoplankton biomass decreases under climate change,

but had no impact on zooplankton biomass. By leveraging the diversity of CMIP6 models, this innovative approach identifies

the key mechanisms influencing NPP projections and provides valuable insights into the future trajectory of the Earth’s climate

system.

1 Introduction20

The world’s oceans are facing increasing pressures due to climate change, leading to significant alterations in their physical

and biogeochemical conditions. Sea Surface Temperature (SST) has risen by an average of 0.88 °C between 1850-1900 and

2011-2020 (Fox-Kemper et al., 2021), pH has declined by 0.016 to 0.020 units per decade in the subtropical regions since the
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1980s (Canadell et al., 2021) while upper-ocean stratification has increased by 5.5± 1.0% between 1960 and 2018 (Li et al.,

2020). These changes pose a threat to the oceans’ ability to provide essential environmental services that many people rely25

on, such as fisheries or carbon sequestration. Phytoplankton is key to many of these services and understanding how climate

change will impact it is of primary importance, but still remains an open question.

The global distribution of phytoplankton is highly heterogeneous and is strongly influenced by ocean dynamics. The North

Atlantic Ocean displays sharp contrasts, featuring a true "sea desert" in its subtropical section and one of the most productive

regions on Earth in its subpolar part (Behrenfeld and Falkowski, 1997; Westberry et al., 2008). This high productivity is notably30

facilitated by a nutrient stream associated with the Atlantic Meridional Overturning Circulation (AMOC), which transports

nutrients from equatorial and southern regions to the North Atlantic (Williams et al., 2006, 2011; Palter and Lozier, 2008),

as well as by deep convection areas that bring large quantities of nutrients to the surface (Abot et al., 2023). This elevated

productivity supports rich ecosystems and, combined with ocean dynamics, enables the North Atlantic Ocean to sequester

large amounts of organic carbon through the biological carbon pump (Nowicki et al., 2022).35

Climate change has both direct and indirect effects on phytoplankton net primary production (NPP). Directly, NPP increases

with rising temperatures (Eppley, 1972; Sauterey et al., 2023). Indirectly, climate change impacts nutrient supply and light

availability. Nutrient fluxes are influenced locally and regionally by increased vertical stratification, which reduces vertical

supplies (Bopp et al., 2013), and globally by the projected decrease in the AMOC intensity (Whitt, 2019). Sea ice retreat

reduces light limitation in polar region (Vancoppenolle et al., 2013), while zooplankton grazing is also affected by global40

warming (Laufkötter et al., 2015; Rohr et al., 2023). The impacts of these mechanisms vary regionally and affect differently

the different phytoplankton groups, potentially causing shifts in community structures and total abundance (Kléparski et al.,

2023; Benedetti et al., 2021).

Given this intricate complexity, projecting the precise impact of climate change on phytoplankton NPP poses significant

challenges. Earth-system models (ESMs) from the Coupled Models Intercomparison Project (CMIP) include all of the above45

processes and thus offer a comprehensive approach to evaluating climate change impact on NPP. CMIP provides standardized

experimental protocols (Eyring et al., 2016) based on shared socioeconomic pathways (O’Neill et al., 2014; O’Neill et al.,

2016), enabling comparison of projections across models. Traditionally, all available models from the same CMIP phase are

studied together and are used to assess a projection uncertainty around the multi-model mean (Bopp et al. (2013); Fu et al.

(2016); Kwiatkowski et al. (2020); Tagliabue et al. (2021)). Each model is given the same weight and the multi-model mean is50

often considered as the best available projection, as it is assumed to be less impacted by the particular sets of parametrisations

used in individual models. But, Kwiatkowski et al. (2020) have shown that in the case of NPP projections with models from

the sixth phase of CMIP (CMIP6), there was a strong divergence in NPP projections between models at the global scale. This

was confirmed in particular regions such as the Indian and Atlantic oceans by Tagliabue et al. (2021). Thus in terms of NPP,

the multi-model mean contains little information and may not be considered as a reliable estimate of its future evolution. An55

approach different from the multi-model mean is therefore needed to assess how NPP will respond to climate change under a

given projection scenario.
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The strong divergence of NPP between models happens despite a strong coherence between them on the evolution of

the physical and biogeochemical variables controlling NPP, such as SST, Mixed Layer Depth (MLD), NO3 concentrations

(Kwiatkowski et al., 2020) or the AMOC (Weijer et al., 2020). This suggests that the observed discrepancy originates from60

differences in the representation and parametrization of marine biogeochemistry processes in the different models. Therefore,

if it was possible to identify which processes controlled NPP projections in the different models, and to estimate their relevance

in explaining NPP future evolution, it would then be possible to assess projections reliability and to make an informed selection

of models to obtain more robust and precise NPP projections.

The objective of the following study is to apply this procedure to CMIP6 models over the North Atlantic Ocean, a highly65

productive region exhibiting strong future divergence between models (Tagliabue et al., 2021). Because we hypothesise that

the response to climate change differs depending on the biogeochemical regime, we divided the North Atlantic into three

bioregions (polar, subpolar, subtropical) using a clustering procedure and assessed each subregion individually. Finally, we

discuss how our revised estimates of NPP projections may affect carbon export and plankton biomass, as key proxies for the

biological carbon pump and marine ecosystems.70

2 Methodology

2.1 CMIP6 models

All the CMIP6 models assessed in this study include an ocean biogeochemistry component. For both the historical period

and the SSP5-8.5 scenario (O’Neill et al., 2016), a prerequisite for each model was to have a minimum of three ensemble

members with available outputs for primary production and for the five clustering variables employed to construct bioregions75

(Chlorophyll-a surface concentrations, sea surface temperature (SST), mixed layer depth (MLD), sea ice concentration, and

nitrate surface concentrations). Out of the 16 models with primary production projections under the SSP5-8.5 scenario, only

8 fulfil these criteria. Among the 8 excluded models, 6 have only one member, and the remaining two (CNRM-ESM2-1 and

MIROC-ES2L) lack one clustering variable for several or all members. Details about the characteristics of the remaining 8

models can be found in table 1.80

Ensemble means for each model were computed to eliminate a maximum amount of natural variability, allowing us to focus

on the impact of anthropogenic climate change. Trends were derived by averaging ensemble mean outputs over 20-year periods

every five years from 1950-1970 to 2080-2100. These trends were calculated over the region between 10-80°N and 270-360°E,

referred to as "the North Atlantic Ocean" in the subsequent analysis. The period 1950-1970 was taken as the reference and all

projections were expressed as the evolution between this reference period and 2080-2100.85

The complexity of ESM marine biogeochemistry components varies significantly from one model to another. Among the 8

models selected, the simplest model only includes one nutrient and one phytoplankton class (Zahariev et al., 2008) whereas

the most model features 5 nutrients and three phytoplankton classes (Moore et al. (2001) ; see Kearney et al. (2021) for a

summary of the biogeochemistry components of CMIP6 models). Due to these differences, each model is studied individually

to comprehensively grasp the mechanisms controlling NPP projections.90
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Three phytoplankton groups were considered in this study : diatoms, diatozotrophs and small phytoplankton. The last cat-

egory encompasses classes labelled as nanophytoplankton, picophytoplankton and bulk phytoplankton when sensitivity to

silicate is absent. In MPI-ESM1-2-LR, the bulk phytoplankton class is grouped with diatoms due to its reliance on SiO2 (Ily-

ina et al., 2013), whereas the large phytoplankton class in CanESM5-CanOE is distinguished from diatoms due to the absence

of silicate in the model (Christian et al., 2022). Furthermore, CMIP6 models can be categorized into three groups based on95

their representation of diazotrophy:

– Models without any diazotrophy: ACCESS-ESM1-5 and UKESM1-0-LL.

– Models with an explicit group of diazotrophs: CESM2, CESM2-WACCM, and MPI-ESM1-2-LR. In these models,

diazotroph growth rate is not constrained by nitrogen; they can utilize atmospheric N2 but depend on PO4 and Fe

availability (Moore et al. (2001) for CESM2 and CESM2-WACCM; Paulsen et al. (2017) for MPI-ESM1-2-LR).100

– Models with an implicit representation of diazotrophs: IPSL-CM6A-LR, CanESM5, CanESM5-CanOE. N2 fixation is

parametrized, and its interaction with other nutrients varies based on this parametrization.

2.2 Construction of bioregions

The processes governing changes in NPP vary across different regions, necessitating a regional approach. Bioregions are the

most suitable framework for conducting such a study because each bioregion corresponds to a specific production regime.105

However, their boundaries align with physical phenomena such as oceanic currents and sea ice, the precise localization of

which varies among models. Consequently, fixed bioregions like those established by Longhurst (2007) and used in Tagliabue

et al. (2021) have limitations for inter-comparison studies.

To address this limitation, a novel approach was developed to establish bioregions tailored to the characteristics of each

model. They were constructed using the SOM+HAC clustering procedure (defined in the following section), a robust method110

for extracting temporal and spatial patterns from large datasets. This procedure was first applied to the observed mean seasonal

cycles over the recent historical period of five clustering variables, chosen for their relevance in explaining NPP long term

evolution and their availability in CMIP6 models outputs. The bioregions obtained were then replicated in each model. By

employing this method, we ensured that each bioregion corresponded to a similar production regime across all models.

2.2.1 The SOM+HAC procedure115

The Self-Organizing Map (SOM) algorithm (Kohonen, 2013) is widely used for pattern identification and clustering analysis

for large multi-variate datasets. In environmental sciences, it has been used to study precipitation patterns (Derouiche et al.,

2022; Dilmi et al., 2017), monsoon weather regimes (Guèye et al., 2011)), phytoplankton biomes (El Hourany et al., 2021;

Hofmann Elizondo et al., 2021), the oceanic circulation (Jouini et al., 2016), aerosol concentrations (Yahi et al., 2013) or to

identify biophysical regions in the Beaufort sea (Hilborn and Devred, 2022). Similar to classical vector quantization proce-120

dures, such as K-mean clustering, the SOM algorithm condensates the information contained in a multi-variate dataset into an
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optimal number of "neurons", each associated to a vector characterizing a subset of the initial dataset. However, unlike K-mean

clustering, the neurons in the SOM algorithm are not independent. They are distributed over a 2D map with a topological con-

straint such that close neurons on the map are similar. Practically, this constraint means that, during the learning phase, neurons

are not updated alone but as batches of close neurons, thus allowing the propagation of local updates to the global neuron map.125

This topological constraint allows the preservation of the topological properties of the initial dataset. An advantage of the SOM

algorithm over K-mean clustering procedures is that it is robust to missing data (Vatanen et al., 2015), making it particularly

interesting in the regions seasonally covered by sea ice.

When handling environmental data, the specific quantity of classes or neurons isn’t predetermined. In cases where the SOM

is employed for vector quantization, a large number of neurons are utilised, each assigned to a geographic sub-region. To130

determine major patterns among these neurons, a Hierarchical Agglomerative Clustering (HAC) is employed on them, while

preserving the topological constraints. This procedure is denoted SOM+HAC hereafter. The HAC produces a dendrogram

offering various suggestions for estimating the number of classes. A balance is struck between the number of classes that can be

logically explained and the number required to encompass the data’s embedded information. This approach has demonstrated

success in numerous studies (Farikou et al., 2015; Jouini et al., 2016; El Hourany et al., 2021; Baaklini et al., 2022).135

2.2.2 The datasets used to build bioregions

To ensure that the bioregions obtained in each model were similar, they were first constructed from the observations before

being reproduced in the models (see the following subsection). Here, we describe the datasets of observations used to build

these bioregions.

Surface chlorophyll-a concentrations were extracted from E.U. Copernicus Marine Service Global Ocean Colour product140

(https://doi.org/10.48670/moi-00281). It provides daily outputs of chlorophyll concentration, estimated from satellite data, over

the global ocean between September 1997 and the present. Data from the period 2000-2020 were used.

Sea Surface Temperature and Mixed Layer Depth data were extracted from the Multi Observation Global Ocean 3D product

from Copernicus Marine service (data.marine.copernicus.eu). It provides weekly and monthly values of 6 variables, among

which SST and MLD, over the global ocean between 1993 and 2023, built from both in-situ and satellite observations. Again,145

data from the period 2000-2020 were used.

NO3 concentrations were extracted from the World Ocean Atlas 2018 database (Garcia et al., 2018) while sea ice concentra-

tion data came from the EUMETSAT OSI SAF SSMIS product (cds.climate.copernicus.eu) and covered the period 1998-2015.

2.2.3 Application of the clustering procedure

The SOM+HAC was first applied to the historical mean seasonal cycles of five clustering variables (surface chlorophyll con-150

centrations, surface nitrate concentrations, mixed layer depth, sea ice concentration, and sea surface temperature) computed

from the datasets previously described. They were regridded to 1x1° regular grids, concatenated and the coastal areas were

removed. The North Atlantic Ocean was thus represented by 3335 grid points, each associated to a vector of dimension 60,

corresponding to the 5 successive climatological seasonal cycles. To ensure equal weighting of all variables in the clustering
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process, the dataset was normalized beforehand. Several normalization methods, such as those outlined in Derouiche et al.155

(2022); Dilmi et al. (2017); Hilborn and Devred (2022) can be employed. It was decided to normalize each seasonal cycle

by dividing it by the absolute maximum value reached over the entire period and region. This normalization method has the

advantage of preserving the dataset structure while ensuring all values fall within the range of -1 and 1. The selection of clus-

tering variables resulted from a compromise between their relevance in explaining primary production variability in the North

Atlantic Ocean and their availability in CMIP6 model outputs. For instance, silicate concentration was excluded, despite its160

acknowledged impact on primary production in the subpolar gyre (Hátún et al., 2017; Sieracki et al., 1993), as only 5 out of 8

models provided the output.

The neurons obtained from the observations were then used to replicate similar bioregions in the CMIP6 models. In each

model, a matrix akin to that of the observations was reproduced with the average seasonal cycles over the period 2000-2020,

using the same normalization method and constants. Each grid point in each model was subsequently assigned to its nearest165

neuron based on Euclidean distance and to the cluster associated with that neuron, thereby reproducing the bioregions in each

model. This assignment was carried out regardless of the distance between the grid point and the neuron. Consequently, the

regions obtained were the closest to those built from the observations but could be rather different from them.

3 Results

3.1 Global projections170

Primary production projections over the whole North Atlantic Ocean with CMIP6 models exhibit a large spread (see figure 1-

A). Among the eight models, five (UKESM1-0-LL, CESM2, CESM2-WACCM, MPI-ESM1-2-LR and CanESM5) project

a strong decrease of net primary production (from -33.6 to -11.4 g.m−2.yr−1 in 2080-2100 with respect to 1950-1970),

while the remaining three (CanESM5-CanOE, IPSL-CM6A-LR, ACCESS-ESM1-5) project an increase (from +8.0 to +17.0

g.m−2.yr−1). On average, CMIP6 models project an NPP decrease of -10.4 g.m−2.yr−1. This range is similar to the one175

obtained with the first member of the 16 models used in Tagliabue et al. (2021). Therefore, the selected subset of eight models

is considered representative of the broader ensemble of CMIP6 models.

There is confidence in the sign of NPP projections in the north-eastern section of the subtropical gyre and along Greenland

eastern coast only (fig. 1-D). Confidence is defined here following Kwiatkowski et al. (2020) with at least 80 % of the pro-

jections have the same sign. Models disagree on the sign of the future evolution of NPP in most of the subpolar gyre and in180

the southern subtropical gyre. This lack of confidence happens despite a strong coherence between models on the evolution of

MLD and surface nitrate concentrations, particularly in the subpolar North Atlantic Ocean (fig. 1-E,F). On average over the

region, all models project a decrease of MLD and NO3 concentrations, with a multi-model mean decrease of respectively -22.1

m and -1.3 mmol.m−3.
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3.2 Construction of the bioregions185

The SOM+HAC procedure identified an optimal number of four bioregions in the observations: one subtropical region, one po-

lar region, and two subpolar regions. The subtropical bioregion, the largest at 20.8 million km2, exhibits an oligotrophic regime

characterized by very low nitrate and chlorophyll-a concentrations (maximum annual values of respectively 0.87 mmol.m−3

and 0.16 mg.m−3). It is situated over the subtropical gyre and the Caribbean Sea, bordered by the North Atlantic Current to the

north. The polar region, the smallest at 1.0 million km2, stands out due to the extensive presence of sea ice during winter and190

is further divided into two subregions: the Baffin Sea and the Eastern Greenland Sea. The two subpolar regions, with surfaces

of 3.3 and 4.8 million km2, respectively correspond to the intergyre region with the northern part of the Labrador Sea and the

northern subpolar gyre with the Norwegian Sea. The latter region exhibits a deeper winter mixed layer, higher nitrate surface

concentrations, and a delayed bloom compared to the former. However, the two regions do not significantly differ in terms of

annual maximum chlorophyll-a concentrations (0.76 mg.m−3 in August for the former and 0.80 mg.m−3 in September for the195

latter).

Qualitatively, models reproduce fairly well the historical bioregions obtained from observations, both in terms of localization

and physical boundaries, and despite variations in surfaces (fig. 2). The subtropical region’s surface ranges from 19.1 million

km2 in MPI-ESM1-2-LR to 24.1 million km2 in CanESM5, while the polar region’s surface varies from 0.9 million km2 in

MPI-ESM1-2-LR to 2.0 million km2 in CanESM5. The overall subpolar region is relatively consistent across different models,200

but the relative importance of the subregions varies significantly from one model to another. It was decided to merge the

subpolar subregions into one large subpolar region, supported by strong inter-model correlations between the projections of

NPP in the two regions (r = 0.91; p = 0.002), indicating a similar dominant mechanism. The three resulting bioregions are

presented for the observations and each models on figure 2. Each of these bioregions will now be studied successively to

determine the mechanisms controlling NPP projections.205

3.3 Regional analysis

3.3.1 Subtropical region

NPP projections strongly diverge in the subtropical region, with three models projecting an increase (up to +19.5 g.m−2.yr−1

in 2080-2100 with respect to the 1950-1970 mean), while the remaining five project a decrease (down to -33.4 g.m−2.yr−1)

(figure 3). These divergent groups align with those observed for the entire North Atlantic Ocean (figure 1-A), suggesting that210

the subtropical region predominantly influences the basin-scale divergence of projections.

This substantial discrepancy occurs despite coherent evolutions across models for other crucial physical and biogeochemical

variables (fig. 3). Notably, sea surface temperature (SST) increases in all models (ranging from +2.7 °C in MPI-ESM1-2-LR to

5.3 °C in CanESM5), while surface NO3 concentrations and surface PO4 concentrations decrease (NO3 concentrations from

-0.19 to -0.69 mmol.m−3; PO4 concentrations from -0.01 to -0.13 mmol.m−3). Mixed layer depth and carbon export at 100m215

depth both decrease in all models but one (respectively ACCESS-ESM1-5 and IPSL-CM6A-LR), in which they increase after

a period of decrease.
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Diatom NPP decreases in all models and therefore does not explain total NPP discrepancy. It is almost perfectly correlated

with the evolution of surface PO4 concentrations in all models (r ≥ 0.99, p≪ 0.01 ; fig. 4). The inter-model spread thus arises

from differences in sensitivity to a similar mechanism. Conversely, small phytoplankton’s NPP exhibits a strong discrepancy,220

thus explaining that of total NPP. The only variable able to cause this divergence is N2 fixation, for which a clear separation

appears between models with an implicit representation of diazotrophs, which project a strong increase of N2 fixation, and

those with an explicit representation, who project a decrease in diazotrophs’ NPP (fig. 3). As detailed in the Methodology

section, CMIP6 models can be categorized into three groups according to their representation of N2 fixation. We will now

examine each of these groups individually.225

The two models with no diazotrophy project different primary production evolutions (ACCESS-ESM1-5 projects an increase

of 10.0 g.m−2.yr−1, while UKESM1-0-LL projects a decrease of -33.4 g.m−2.yr−1). In UKESM1-0-LL, the production

of both nanophytoplankton and diatoms decreases (figure 3). This discrepancy is mainly attributed to variations in annual

maximum surface nitrate concentrations (respectively 1.0 and 0.3 mmol.m−3 on average in 2000-2020 ; the observed value is

0.4 mmol.m−3). In UKESM1-0-LL, nitrates are strongly limitant, and their declining trend (see figure 3-G) leads to a decreased230

primary production for all phytoplankton groups. In ACCESS-ESM1-5, nitrates are not a strong limitation on average across

the entire subtropical region, allowing primary production to increase with rising SST.

The three models with an explicit representation of diazotrophs all project a decrease in both primary production and N2

fixation. This decrease affects both diazotrophs and diatoms in these models, while small phytoplankton primary production

in CESM2 and CESM2-WACCM initially increases before decreasing (fig. 3). This coherence across phytoplankton groups235

suggests that the mechanism influencing primary production evolution could affect all of them, ruling out nitrates as a potential

candidate, as they do not impact diazotrophs. The only variable capable of explaining these evolutions is PO4 concentrations,

influencing all phytoplankton groups, consistently decreasing in all three models and known to limit N2 fixation in the region

in CESM models (Wang et al., 2019). Additionally, in CESM2 and CESM2-WACCM, small phytoplankton has a lower PO4

half-saturation constant than diazotrophs and diatoms (respectively 0.00025, 0.0005 and 0.00125 mmol.m−3 (Moore et al.,240

2001)), enabling them to thrive in environments with low PO4 concentrations. This explains the initial increase in their primary

production before declining when PO4 concentrations become too low. Consequently, in models with an explicit representation

of diazotrophs, decreasing PO4 concentrations leads to a reduction in overall primary production, encompassing diazotrophs,

subsequently causing a decrease in N2 fixation.

In IPSL-CM6A-LR, the absence of effective control of PO4 concentrations over N2 fixation was identified as responsible245

for the substantial increase in diazotrophy and primary production in subtropical oceans (Bopp et al., 2022). The increase in

N2 fixation fills the NH4 pool (Aumont et al., 2015), which can then serve as an alternative source of nitrogen for small phy-

toplankton, and thus lead to its increase despite a decrease in NO3 concentrations. CanESM5-CanOE also has an ammonium

pool directly filled by N2 fixation and no PO4 pool. Therefore, like in IPSL-CM6A-LR, the increase of N2 fixation results in

an increase of small phytoplankton NPP. However, unlike in IPSL-CM6A-LR, this increase also happens for large phytoplank-250

ton because PO4 can not exert its control. Finally, in CanESM5, there is a unique nitrogen pool assembling both ammonium
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and nitrates. The increase in N2 fixation fails to offset its decrease from other mechanisms, thus leading to a decrease in NPP

(fig. 3).

The interactions between N2 fixation, phosphates and small phytoplankton therefore appear to be a strong diverging factor

between models, with the potential to partially decouple total NPP from NO3 concentrations. The models with the most real-255

istic representations of diazotrophy (CESM2, CESM2-WACCM and MPI-ESM1-2-LR) all project a decrease of NPP because

of the declining PO4 concentrations. The strong increases observed in some models are caused by either too high nitrate con-

centrations when no diazotrophy is represented, or by its unchecked influence by PO4 concentrations, making such scenarios

unlikely.

3.3.2 Subpolar region260

NPP projections also significantly diverge in the subpolar region (fig. 5-A). Three models (CESM2, CESM2-WACCM, and

UKESM1-0-LL) project a substantial decrease (respectively -54.3, -53.7 and -44.7 g.m−2.yr−1 in 2080-2100 with respect

to 1950-1970), while three others (IPSL-CM6A-LR, CanESM5-CanOE, and ACCESS-ESM1-5) project a modest increase

(respectively +5.4, +6.6 and +3.8 g.m−2.yr−1). The remaining two models project an intermediate decline (-12.7 g.m−2.yr−1

in MPI-ESM1-2-LR and -10.0 g.m−2.yr−1 in CanESM5). This disparity persists despite consistent trends across models for265

other physical and biogeochemical variables, such as SST, MLD, AMOC intensity, carbon export, NO3 and PO4 surface

concentrations (fig. 5). However, the breakdown of NPP projections into the different phytoplankton groups highlights that it

is predominantly small phytoplankton that drives their divergence (fig. 5). Diatom NPP consistently decreases in all models.

Remarkably strong and statistically significant correlations (r > 0.96, p≪ 0.01) were identified in all models between di-

atom NPP projections and surface maximum annual NO3 concentrations (fig. 4). Like in the subtropical bioregion, this suggests270

that the inter-model spread of diatom NPP projections comes from differences in sensitivity to a similar mechanism.

Five models out of seven project an increase in small phytoplankton’s NPP, despite a decrease of NO3 and PO4 con-

centrations coherent across models (fig. 5). Of these five models, four (IPSL-CM6A-LR, CanESM5-CanOE, CESM2, and

CESM2-WACCM) incorporate an ammonium pool. In IPSL-CM6A-LR, CESM2, and CESM2-WACCM, where the distinct

contributions of NO3 and NH4 to primary production can be discerned, it is primarily NH4 that sustains it. This suggests275

a similar situation in CanESM5-CanOE, where the increase in small phytoplankton’s primary production is likely caused by

the rising temperatures and shallowing of MLD and sustained by NH4. However, these increases are only able to compensate

for diatoms decreases in IPSL-CM6A-LR, thus explaining the sign of the evolution of total NPP. The increased NPP of small

phytoplankton in ACCESS-ESM1-5, where there is no NH4 pool, was attributed to the absence of nitrate limitation (minimum

annual concentration averaging 1.5 mmol.m−3 over 2080-2100 despite a consistent decrease throughout the 21st century).280

The elevation in SST and the reduction of light limitation due to the shallowing of MLD can consequently enhance NPP. Con-

versely, in UKESM1-0-LL and CanESM5, nitrates exert strong limitations (minimum annual concentration averaging 0.04 and

0.003 mmol.m−3, respectively, over 2080-2100), and their depletion leads to a reduction in NPP.

The strong increase of small phytoplankton’s NPP observed in some CMIP6 models is therefore made possible by the

presence of an ammonium pool, which stands up as an alternative source of nitrogen and sustains NPP. NH4 is only present in285
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small concentration, but is quickly regenerated, and is therefore preferentially used by small phytoplankton rather than diatoms.

It explains why diatoms can not benefit from it and decrease with macro-nutrient concentrations.

3.3.3 Polar region

Primary production increases in all models in the polar region, ranging from +6.2 to +25.5 g.m−2.yr−1 in 2080-2100 with

respect to 1950-1970 (fig. 6). These increase are mainly caused by sea ice retreat (on average, 36.4 % of the initial polar290

regions were still covered in sea ice in winters in 2080-2100), which leaves space for phytoplankton’s growth, and thus leads

to an increase in NPP. However, like in the rest of the subpolar regions, NO3 and PO4 surface concentrations decrease in all

models (fig. 6).

This increase in total NPP is observed in all models for small phytoplankton, but not for diatoms, for which three models

(CESM2, CESM2-WACCM and UKESM1-0-LL) project a decrease of their primary production after an initial increase (fig. 6).295

These three models are the most sensitive to a decrease in NO3 concentrations, as they have the highest half-saturation constants

of the 6 models (2.5 mmol.m−3 for CESM2 and CESM2-WACCM Moore et al. (2001)); 0.75 mmol.m−3 for UKESM1-0-

LL Yool et al. (2013)). Moreover, they all reach very low annual minimum NO3 concentrations (respectively 0.02, 0.02 and

0.19 mmol.m−3 in 2080-2100), indicating a termination of the bloom by nitrates. Therefore, in these three models, after a

first period in which the retreat of sea ice leads to an increase in primary production through the reduction of light limitation,300

nitrates become the main controlling factor of primary production, which leads to its decrease. In IPSL-CM6A-LR, nitrate

concentrations are even lower than in the previous models (annual minimum of 0.01 mmol.m−3 in 2080-2100), but diatoms

are less sensible to low nitrate concentrations (half-saturation constant of 0.39 mmol.m−3 (Aumont et al., 2015)) and their

primary production can keep increasing under the reduction of light limitation. In MPI-ESM1-2-LR, nitrate concentrations are

high throughout the XXIst century (annual minimum concentration of 1.18 mmol.m−3 in 2080-2100 despite a consistent305

decrease throughout the century), and never become limitant. Diatom primary production can therefore freely increase with

sea ice retreat.

To summarize, climate change leads to an increase of small phytoplankton NPP in all CMIP6 models because of sea ice

retreat. The fate of diatoms is the result of a compromise between their sensitivities to light, to nitrates and the evolutions of

NO3 concentrations and sea ice, as was already the case in CMIP5 (Vancoppenolle et al., 2013). However, only a small portion310

of the Arctic was included in this study, and the results found can not be expanded to the total Arctic ocean.

3.4 Toward more robust NPP projections

The model representation of small phytoplankton emerged as the main cause of divergence in NPP projections between models

in the subtropical and subpolar North Atlantic Ocean. In the subtropical basin, differing representations of diazotrophy explain

model disparities. When not adequately regulated by nutrients like PO4, it has the potential to significantly boost small phy-315

toplankton’s NPP while other nutrient concentrations decline. Only the 3 models explicitly representing diazotrophs represent

these controls and project a decrease in NPP. The three models with an implicit representation of diazotrophs, and no effective

control from PO4, are therefore not reliable for studying the evolution of small phytoplankton’s NPP in the region. Among the
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models without diazotrophy, ACCESS-ESM1-5 emerged as overly rich in nutrients on average across the subtropical region,

making it unreliable for projecting average NPP evolution. Thus, only four out of the eight models appeared dependable for320

projecting small phytoplankton’s NPP evolution in the region (MPI-ESM1-2-LR, CESM2, CESM2-WACCM and UKESM1-

0-LL). They project an average decrease of -4.8 g.m−2.yr−1 (from -26.0 to +6.4 g.m−2.yr−1), against -2.2 g.m−2.yr−1 (from

-26.0 to +20.4 g.m−2.yr−1) with all models (fig. 7-C). This selection also leads to a strengthening of diatoms NPP projected

decrease (fig. 7-B), thus resulting in a total NPP decrease of -24.9 [-33.4 - -20.3] g.m−2.yr−1 (against -8.2 [-33.4 - 19.5]

g.m−2.yr−1 ; fig. 7-A).325

In the subpolar region, NH4 appeared to be able to sustain small phytoplankton’s NPP in the models where it is present

(IPSL-CM6A-LR, CanESM5-CanOE, CESM2, and CESM2-WACCM). If we hypothesize that ammonium will indeed play

such a role in reality, models without an ammonium pool then tend to overestimate the impact of decreasing NO3 concentra-

tions on small phytoplankton. We can therefore set them aside and obtain narrowed estimates of small phytoplankton’s NPP

projections: +21.4 g.m−2.yr−1 (from +6.4 to +35.0 g.m−2.yr−1) instead of 7.3 g.m−2.yr−1 (from -28.2 to +35.0 g.m−2.yr−1)330

with all models (fig. 7-F). However, such an hypothesis would have no impact on total NPP because it would not affect diatoms

(fig. 7-E) and the extreme models would be kept in the subset : -24.0 g.m−2.yr−1 (from -54.3 to +6.6 g.m−2.yr−1) instead of

-20.0 g.m−2.yr−1 (from -54.3 to +6.6 g.m−2.yr−1) with all models (fig. 7-D).

The contrast in the impact of model selection on diatoms between the subtropical and subpolar regions suggests that the

mechanisms driving divergence in small phytoplankton also influence diatoms in the former but not the latter. In both regions,335

diatoms are predominantly governed by the same mechanism: a reduction in macro-nutrient concentrations results in a de-

crease in diatom NPP (fig. 4). However, the magnitude of this reduction is notably greater in the subpolar region compared

to the subtropical region. Consequently, the influence of NH4 on diatoms in the subpolar region is negligible, whereas that of

diazotrophy in the subtropical region is not. Therefore, selecting models based on the processes governing small phytoplankton

NPP projections leads to narrowed projections for diatoms and total NPP in the subtropical region but not in the subpolar one.340

In the polar region, no discriminating mechanism was identified and it was not possible to narrow projections using the same

method.

3.5 Impact on carbon export and plankton biomass

NPP is closely linked with carbon export and plankton biomass, which are crucial variables for comprehending the future

trajectory of the biological carbon pump and the effects of climate change on marine ecosystems. Consequently, the process-345

based selection of NPP models made previously can be used to estimate new projections of these other two variables.

Projections for carbon export across the global North Atlantic Ocean reveal significant disparities, ranging from -8.7 to +0.3

g.m−2.yr−1, with an average decrease of -3.9 g.m−2.yr−1. However, there is less uncertainty regarding the direction of its

future changes compared to NPP projections (table 2). While some models anticipate a slight increase in the subtropical region,

all models project a decline in carbon export in the subpolar region. The model selection allows for a reduction of projection350

uncertainties in the subtropical region, resulting in a larger average decrease (-5.7 g.m−2.yr−1 on average compared to -3.5

g.m−2.yr−1 with all models). In the subpolar region, it does not reduce projection uncertainties, but strengthen the average
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decrease (table 2). The slight global increase of carbon export projected by some models is therefore explained by the strong

increase of NPP they project in the subtropical region, and is therefore unlikely to happen. The NPP process-based selection

of models thus strengthen carbon export decrease at the end of the XXIst century in the North Atlantic Ocean.355

Phytoplankton biomass projections also exhibit a strong discrepancy, similar to that of NPP for the global North Atlantic

Ocean and for the subtropical region (table 2). However, the future evolution of phytoplankton biomass in the subpolar region is

less uncertain compared to NPP, despite considerable model divergence (table 2). The selection of models leads to a significant

reduction of projection uncertainties in the subtropical region, where a new inter-model agreement on a future decrease of

phytoplankton biomass emerges. The strong increases projected by some models are therefore caused by their inadequate360

representation of diazotrophy in the subtropical region, making such projections improbable.

All models agree on a decrease of zooplankton biomass across the global North Atlantic Ocean and in the two individ-

ual regions (table 2). Both selections only slightly narrow projections in the two regions. This limited impact is due to the

varying representations of zooplankton in CMIP6 models (Rohr et al., 2023), leading to a relative inter-model decoupling of

phytoplankton and zooplankton. An analysis similar to the one conducted here should therefore be done to fully understand365

zooplankton projections in CMIP6 models.

4 Discussion

4.1 Model democracy and emergent constraints

NPP projections in the North Atlantic Ocean emerged as a case where the traditional approach of model inter-comparison

studies through "model democracy" may not be adapted. This approach assumes that all ESMs are equally relevant and reliable370

for projecting future climate evolution (Knutti, 2010), whereas we showed here that some models, due to their representation

or lack thereof of certain processes, are not dependable for projecting NPP in the region. A democratic multi-model mean

computed with equal weights attributed to all models, as is done in Kwiatkowski et al. (2020) and Tagliabue et al. (2021),

would therefore not be the optimal estimate of the future evolution of NPP.

However, we did not entirely set aside the "model democracy" approach, because it was applied to model subsets in both375

regions. This application is questionable because it assumes independence among selected models, which is often not the

case (Eyring et al., 2019). Some CMIP6 models are essentially variations of a similar base model (e.g., CESM2 and CESM2-

WACCM) and share components and parametrizations (Masson and Knutti, 2011; Bishop and Abramowitz, 2013; Alexan-

der and Easterbrook, 2015). This lack of independence results in systematic biases within multi-model mean when "model

democracy" is adopted. To address this issue, various studies have attempted to assign different weights to models based on380

their independence and ability to reproduce historical observations (Sanderson et al., 2015, 2017). While such efforts have

sometimes improved agreement between multi-model means and observations (Räisänen et al., 2010; Knutti et al., 2017), the

question of the validity of weighting methods for future projections remains unresolved. For example, in the context of NPP

projections in the subtropical North Atlantic Ocean, discrepancies in diazotrophy between models with effective PO4 control

and those without only arise around the year 2020 (fig. 3). Consequently, weighting based solely on observations would likely385
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overlook this divergence. Thus, process-based model selections, such as the one conducted here, and weighting methods are

complementary techniques that should ideally be used together to maximize their respective advantages.

Moreover, our approach failed at improving total NPP projections in the subpolar North Atlantic Ocean, because we were

not able to constrain diatoms. The discrepancy of diatom NPP projections arise from differences in sensitivity to a similar

mechanism (fig. 4), which prevents a process-based approach. However, it might set a good framework for an Emergent390

constraint approach, which consists in exploiting an inter-model correlation between an observable variable and the response

of another variable to climate change to constrain projections (Eyring et al., 2019; Sanderson et al., 2021). Emergent constrains

have successfully been used to constrain projections of climate sensitivity (Cox et al., 2018), sea-ice extent (Qu and Hall, 2014),

extreme precipitation events (O’Gorman, 2012), or NPP in the tropical ocean (Kwiatkowski et al., 2017). But, the reliability

of emergent constraint outcomes is often hindered by the presence of systematic biases in large-ensembles, stemming from395

model interdependence (Sanderson et al., 2021). Nevertheless, it is sometimes possible to enhance this reliability with the

identification of a robust mechanism explaining the correlation used. Emergent constraints and process-based approaches are

therefore complementary, particularly when competing mechanisms coexist. The case of NPP projections in the subpolar North

Atlantic Ocean thus seems to be an ideal situation for combining a process-based method applied to small phytoplankton,

carried out in this study, with an emergent constraint approach applied to the differing sensitivities of diatom NPP to nitrate400

concentrations. This will be the objective of a future study.

4.2 Estimation of climate change impacts on high trophic levels

CMIP model output serves as data inputs for the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), an exercise

aimed at examining the effects of climate change on human societies and ecosystems (Frieler (2024); https://protocol.isimip.

org/). In the context of studying fisheries and marine ecosystems, CMIP models are used as inputs for marine ecosystem models.405

Depending on the model employed, the connecting variable between plankton and higher trophic levels could be either NPP or

the biomass of phytoplankton and zooplankton (Tittensor et al., 2021). However, only a limited selection of CMIP models are

incorporated into these studies. For the third phase of ISIMIP, specifically, only four CMIP6 models were chosen for marine

ecosystem studies: GFDL-ESM4, UKESM1-0-LL, MPI-ESM1-2-HR, and IPSL-CM6A-LR. The biases exhibited by these

models in projecting NPP and plankton biomass consequently influence the marine ecosystem models that employ them to410

investigate climate change impacts.

We demonstrated that IPSL-CM6A-LR lacks reliability in projecting NPP in the subtropical region due to its failure to

represent PO4 control over N2 fixation. Conversely, UKESM1-0-LL lacks an NH4 pool, likely resulting in an overestimation

of NPP decrease in the subpolar region. These model deficiencies in projecting NPP directly affect phytoplankton biomass,

and similar issues may arise for zooplankton biomass due to their disparate representations across CMIP6 models (Rohr et al.,415

2023). Such biases could significantly impact ISIMIP outcomes, which are subsequently used by policymakers to develop

adaptation measures to climate change. Hence, it is imperative to identify these biases, assess the reliability of CMIP models

in projecting variables used in ISIMIP studies, and estimate the repercussions of CMIP biases on ISIMIP results.
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4.3 Perspectives on the future evolution of the biological carbon pump

Carbon export caused by the sinking of particulate organic matter is a key feature of the biological carbon pump, which420

helps to store carbon in the deep ocean and reduces atmospheric CO2 concentration. Depending on the remineralisation depth

of organic matter and the residency time of inorganic carbon in the deep ocean (Wilson et al., 2022), a decrease of carbon

export caused by climate change might reduce the amount of carbon stored into the deep ocean and increase atmospheric CO2

concentration, thus forming a positive feedback mechanism. However, the sequestration time of the exported organic carbon

strongly vary spatially (Nowicki et al., 2022). In the subtropical North Atlantic Ocean, it is only stored for a few decades,425

whereas it remains sequestered for several hundred of years in the subpolar North Atlantic Ocean.

The strengthened decrease of carbon export obtained in both regions in this study therefore means that the North Atlantic

biological carbon pump might be more affected by climate change than previously anticipated, and on particularly long time

scales for the subpolar region. However, because we were not able to reduce diatom NPP projection uncertainties in the region,

the spread in carbon export projections remains very large.430

Nevertheless, there is no quantitative relationship between carbon export and the efficiency of the biological carbon pump

(DeVries et al., 2012). A reduction of the former does not necessarily mean a decrease of the latter. Further work is therefore

needed to understand how the decrease in carbon export in the North Atlantic Ocean would affect the biological carbon pump,

on both the short and the long term.

5 Conclusion435

NPP is a key biogeochemical variable for which we have large uncertainties regarding its future evolution under climate

change, particularly in the North Atlantic ocean. The traditional approach to this problem, based on a multi-model mean

computed through the "model democracy" approach, fails at providing informative projections for NPP in the region. We

therefore developed a new methodology to exploit CMIP6 models diversity, in order to gain new insights in the way NPP will

be affected by climate change in the region. Thanks to an innovative regionalisation of the North Atlantic ocean, we were440

able to identify the processes responsible for the divergence of model projections, and to assess their likelihood to occur. This

analysis allowed us to proceed to an informed selection of models in each bioregion, which gave us new estimates of the future

evolution of NPP, along with carbon export and plankton biomasses, in the subtropical and subpolar bioregions.

CMIP6 models diversity was essential to conduct such an approach because it allowed us to identify the mechanisms re-

sponsible for projection divergence. The models set aside in the different bioregions should therefore not be discarded from445

CMIP6 ensemble. Nevertheless, it is necessary to recognise that all models are not equally relevant depending on the region

and the variable considered, and on the question asked. A direct "model democracy" approach is therefore limited and should

only be considered as a first step in an inter-comparison study. It should be completed by more advanced methods, such as

informed model selection, observation-based weighting or emergent constraints, and by their combination. Moreover, when

CMIP6 models outputs are used to assess the impacts climate change will have on ecosystems or human societies, the relia-450
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bility of the models used to conduct these studies should be assessed, in order to avoid strong biases stemming from CMIP6

models to affect the results.
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Figure 1. Projections of NPP (A), mixed layer depth (B) and surface NO3 concentrations (C) in the eight CMIP6 models over the whole

North Atlantic Ocean. The dotted black lines are the multi-model means (MMM) and the shaded area in the NPP panel corresponds to

the range of projections with the first member of the 16 models used in Tagliabue et al. (2021). Maps of the evolution of NPP (D), mixed

layer depth (E) and surface NO3 concentrations (F) between 1950-1970 and 2080-2100. Stippling designates areas of projection robustness,

defined as 80 % model sign agreement.
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Figure 2. Bioregions built with the SOM+HAC procedure from the historical seasonal cycles of chlorophyll-a concentrations, nitrate con-

centrations, SST, MLD and sea ice concentration, and their reproduction in CMIP6 models for the period 2000-2020. The subtropical region

is in green, the subpolar one in red and the polar region is in cyan.
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Figure 3. Projections over the subtropical bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e),

diazotrophy (f), nitrate concentrations (g), phosphate concentrations (h) and carbon export at 100 m depth (i). The average value over 1950-

1970 is taken as the reference. The dotted lines correspond to the three models with a parametrized N2 fixation. On panel F, these three

models refer to the right-hand axis.

25

https://doi.org/10.5194/egusphere-2024-1820
Preprint. Discussion started: 3 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. Correlations between the evolutions of diatom NPP and surface maximum annual macro-nutrient concentrations between 1950-

1970 and 2080-2100 in the subtropical region (A) and in the subpolar one (B).
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Figure 5. Projections over the subpolar bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e), carbon

export (f), nitrate concentrations (g), phosphate concentrations (h) and AMOC (i). The average value over 1950-1970 is taken as the reference.
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Figure 6. Projections over the polar bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e), carbon

export (f), nitrate concentrations (g), phosphate concentrations (h) and sea ice concentration (i). The average value over 1950-1970 is taken

as the reference.
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Figure 7. New estimates of total NPP (panels A and D), diatom NPP (B and E) and small phytoplankton’s NPP (C and F) projections with

the selected CMIP6 models in the subtropical (top row) and subpolar (bottom row) regions. The grey shaded areas and the dotted black lines

respectively correspond to the projection inter-model spreads with all models and the associated multi-model means. The coloured shaded

areas and the plain lines correspond to the new inter-model spreads and multi-model means with the selected models.
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Model Ocean and sea ice
Marine biogeo-

chemistry
Phytoplankton groups

Nbr of

members
Reference

ACCESS-ESM1-5 MOM5, CICE4 WOMBAT Phytoplankton 10
Ziehn et al. (2020); Oke

et al. (2013)

CESM2 POP2-CICE5 MARBL-BEC

Picophytoplankton

Diatoms

Diazotrophs

3 Moore et al. (2001)

CESM2-WACCM POP2-CICE5 MARBL-BEC

Picophytoplankton

Diatoms

Diazotrophs

3 Moore et al. (2001)

CanESM5 NEMOv3.4.1-LIM2 CMOC
Phytoplankton

Diazotrophs (param.)
5

Swart et al. (2019); Chris-

tian et al. (2022); Za-

hariev et al. (2008)

CanESM5-CanOE NEMOv3.4.1-LIM2 CanOE

Nanophytoplankton

Microphytoplankton

Diazotrophs (param.)

3
Swart et al. (2019); Chris-

tian et al. (2022)

IPSL-CM6A-LR NEMOv3.6-LIM3 PISCESv2

Nanophytoplankton

Diatoms

Diazotrophs (param.)

7
Boucher et al. (2020);

Aumont et al. (2015)

MPI-ESM1-2-LR MPIOM1 HAMOCC6
Diatoms

Diazotrophs
10

Mauritsen et al. (2019);

Paulsen et al. (2017)

UKESM1-0-LL NEMOv3.6, CICE MEDUSA-2
Nanophytoplankton

Diatoms
5

Sellar et al. (2019); Yool

et al. (2013)
Table 1. Characteristics of the 8 CMIP6 models studied. The phytoplankton group "Diatoms (param.)" refers to models with an implicit

representation of N2 fixation with a parametrization and without an explicit diazotroph group.
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Total NPP

(g.m−2.yr−1)

Export C (100m)

(g.m−2.yr−1)

Phyto biomass

(g-C/m3)

Zoo biomass

(g-C/m3)

North At-

lantic Ocean
All models -10.4 [-33.7 - +17.0] -3.9 [-8.7 - +0.3] -0.22 [-0.64 - +0.21] -0.16 [-0.56 - -0.01]

Subtropical

region

All models -8,2 [-33.4 - +19.5] -3.5 [-7.2 - +0.6] -0.16 [-0.63 - +0.24] -0.17 [-0.59 - -0.01]

Subset -24.9 [-33.4 - -20.3] -5.7 [-7.2 - -2.9] -0.27 [-0.63 - -0.13] -0.22 [-0.59 - -0.08]

Subpolar

region

All models -20.0 [-54.3 - +6.6] -6.1 [-15.3 - -0.8] -0.48 [-0.86 - +0.07] -0.17 [-0.6 - +0.0]

Subset -24.0 [-54.3 - +6.6] -8.4 [-15.3 - -1.4] -0.50 [-0.68 - +0.07] -0.13 [-0.48 - +0.0]

Table 2. Comparison of the mean projections of total NPP, carbon export at 100m, phytoplankton and zooplankton biomasses between 1950-

1970 and 2080-2100 in the subtropical and subpolar regions for all models and for the subsets determined in each region. The values within

the brackets correspond to inter-model spread.
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