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Abstract 8 

Modelling complex mass flow processes like glacial lake outburst floods (GLOFs) for hazard 9 

and risk assessments involves substantial data and computational resources, often leading 10 

researchers to use low-resolution, open-access data and parameters based on plausibility 11 

rather than direct measurement, which, although effective in back analysis, introduces 12 

significant uncertainties in forward modelling. To determine the sensitivity of the model outputs 13 

stemming from input parameter uncertainties in the forward modelling, we selected nine 14 

parameters relevant to GLOF modelling and performed a total of 78 simulations in the 15 

physically-based r.avaflow model. Our results indicate that GLOF modelling outputs are 16 

notably sensitive to six parameters, which are, in order of importance: 1) volume of mass 17 

movements entering lakes; 2) DEM datasets; 3) the origin of mass movements; 4) mesh size; 18 

5) basal frictional angle; and 6) entrainment coefficient. The volume of mass movement 19 

impacting lakes has the greatest impact on GLOF output, with an average coefficient of 20 

variation (CV) = 47%, while the internal friction angle had the least impact (CV=0.4%). We 21 

recommend that future GLOF modelling should carefully consider the output uncertainty 22 

stemming from the sensitive input parameters identified here, some of which cannot be 23 

constrained before a GLOF and must be considered only statistically.  24 
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1 Introduction 25 

Glacial lakes can store millions of cubic meters of water: as of 2015, it is estimated that glacial 26 

lakes (>=0.05 km2) store about ~105.7 km3 of water globally (Zhang et al., 2023a; Shugar et 27 

al., 2020; Zheng et al., 2021b).  Although glacial lakes in High Mountain Asia (HMA) contribute 28 

only 4.6 km3 to this total volume, they have experienced the greatest expansion (46%) 29 

between 1990 and 2018 (Shugar et al., 2020). Furthermore, over 28% of glacial lakes in the 30 

HMA are dammed by loose/destabilizing moraines (Fujita et al., 2013; Zheng et al., 2021b) 31 

and the majority of glacial lakes (70%) are exposed to mass inputs, in the form of ice/snow 32 

avalanches, rockfalls and landslides (Dubey et al., 2023). Although there is no substantial 33 

evidence for an increasing trend in glacial lake outburst floods (GLOF) within existing data 34 

(between 850 and 2022 CE)  (Shrestha et al., 2023; Lützow et al., 2023; Veh et al., 2022; Veh 35 

et al., 2023), the GLOF frequency is expected to increase in the future (Zheng et al., 2021) 36 

because the glaciers and permafrost in HMA are extremely sensitive to rising temperatures 37 

(Gruber et al., 2017; Kääb et al., 2018). Meltwater resulting from the shrinkage of glaciers 38 

leads to the formation of new glacial lakes and the expansion of existing ones (Zhang et al., 39 

2015; Wang et al., 2020). This process sometimes exposes them to mass movement from the 40 

slopes above and increases the total volume of stored water (Rounce et al., 2016). 41 

Additionally, the degradation of permafrost destabilizes the slopes surrounding the glacial 42 

lakes, increasing the likelihood of mass movements into lakes  (Huggel, 2009). 43 

Recent work has documented 3151 GLOF events between 850 and 2022 C.E. globally 44 

(Lützow et al., 2023) and 682 GLOF events in HMA between 1833 and 2022 (Shrestha et al., 45 

2023). In the HMA alone, these GLOF events have resulted in 6907 human deaths, caused 46 

damage to more than 2200 buildings, 71 km2 of agricultural land, 163 MW capacity of 47 

hydropower, 2000 livestock and numerous other structures, including bridges and roads 48 

(Shrestha et al., 2023). However, these reported deaths and damages are significantly 49 

underestimated because of patchy documentation (Carrivick and Tweed, 2016). Unfortunately, 50 

the risk from GLOF is expected to rise in the future with the anticipated expansion of glacial 51 

lakes (Zheng et al., 2021b; Zhang et al., 2023b) compounded by a growing population and the 52 

construction of structures in areas prone to GLOFs (Taylor et al., 2023; Nie et al., 2023). 53 

Most GLOF events in HMA start with mass movements entering the lake from surrounding 54 

slopes, leading to the displacement of water and waves overtopping the dam (Shrestha et al., 55 

2023; Lützow et al., 2023; Nie et al., 2018).  Rock- or ice-avalanches and landslides entering 56 

the lake constitute 70% of known causes of HMA historical GLOF events (Shrestha et al., 57 

2023). The overtopping waves cause moraine dam incision and dam failure, resulting in a 58 

sudden discharge of lake water. To a lesser extent, GLOF events are also triggered by factors 59 
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such as increased hydrostatic pressure from runoff snow and ice melt, intense rainfall and 60 

cloud outbursts, and dam settling caused by the melting of ice cores or internal piping.  As the 61 

flood propagates further downstream, it can transform into a debris flow and/ or a hyper-62 

concentrated flow/debris flood depending on the geologic and topographic characteristics of 63 

the river channel (Gaphaz, 2017; Schneider et al., 2014; Westoby et al., 2015; Westoby et al., 64 

2014). These complex GLOF process chains are difficult to accurately capture in numerical 65 

models, given the large number of processes and parameters, and the phase transformations 66 

during the event, which limits our ability to model the impacts of the hazard cascade as a 67 

whole. 68 

1.1 Numerical modelling of GLOFs 69 

Previous studies have used various modelling codes such as HEC-RAS (Sattar et al., 2021b), 70 

BASEMENT (Worni et al., 2013; Worni et al., 2012; Byers et al., 2018), FLO-2D (Somos-71 

Valenzuela et al., 2015), RAMMS (Lala et al., 2018), and r.avaflow (Mergili et al., 2020b). Most 72 

all these models, however, cannot model the evolution of the GLOF process chain through 73 

interaction at the boundary of different processes involved (e.g. the interaction of mass 74 

movements with the lake) and dynamic transformation of flow through entrainment and 75 

deposition. To address this limitation, some of the studies modelled each component 76 

separately and then fed the results of each modelling component into the next stage (Lala et 77 

al., 2018; Schneider et al., 2014; Frey et al., 2018). For example, Lala et al (2018) have used 78 

RAMMS to model mass movement from the surrounding slope into the lake, Heller–Hager and 79 

BASEMENT to model wave propagation across the lake surface and BASEMENT to model 80 

the subsequent downstream hydrodynamic evolution of GLOF. In contrast, the r.avaflow model 81 

(Mergili et al., 2017; Mergili and Pudasaini, 2024) enables the integration of all components of 82 

the GLOF process chain and their interactions and transformation without the need to combine 83 

the results of different models. It enables the detailed modelling of the GLOF process chain, 84 

covering everything from the initial trigger to the downstream propagation. r.avaflow is an 85 

open-source, GIS-based tool for simulating mass flows over arbitrary terrain. Furthermore, 86 

r.avaflow is open source and allows modification of all input parameters, making it suitable for 87 

conducting GLOF parameter sensitivity analysis (Mergili et al., 2017; Mergili and Pudasaini, 88 

2024). 89 

r.avaflow utilizes the total variation diminishing non-oscillatory central differencing (NOC-TVD) 90 

numerical scheme (Wang et al., 2004) to solve an enhanced version of the Pudasaini multi-91 

phase flow model (Pudasaini and Mergili, 2019). It also offers added features for entrainment, 92 

deposition, dispersion, and phase transformation. Because of these features, r.avaflow can 93 

model the full process chain of a GLOF and flow transformation due to erosion of bed material 94 
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and deposition of entrained material (Mergili et al., 2017; Mergili and Pudasaini, 2024). 95 

However, the precision of this model output depends on the accuracy of various input 96 

parameters and initial conditions, including the release height of mass, the resolution and 97 

vertical accuracy of the digital elevation model (DEM), density, entrainment, and frictional 98 

parameters (Mergili et al., 2017). The difficulty involved in getting accurate measurements of 99 

these parameters introduces substantial uncertainty in the modelling results.  100 

Because of the significant logistic challenges associated with collecting field data and the 101 

financial costs involved in acquiring high-resolution remote sensing data, many of the 102 

parameters in GLOF modelling are derived from open-access data, leading to considerable 103 

uncertainties in the resultant discharge, inundation extent, and arrival times. Also, certain 104 

factors such as the volume of mass movement entering the lake are impossible to measure 105 

accurately before a GLOF event. For example, the global-scale DEM, SRTM GL1, with a 106 

ground resolution of 30 m, is commonly employed in GLOF modelling without adequately 107 

considering the inherent uncertainty due to horizontal and vertical inaccuracies in this DEM 108 

(Rinzin et al., 2023). Similarly, the origin of avalanches and other mass movements is 109 

determined using low to medium-resolution remote sensing imagery and DEM, often 110 

supplemented by secondary datasets like permafrost data (Obu et al., 2019), which can 111 

introduce notable uncertainties (Sattar et al., 2023; Allen et al., 2016). When estimating the 112 

volume of avalanches entering lakes, DEM differencing between pre- and post-event 113 

conditions can be advantageous for reconstructing historical events (Baggio et al., 2021; 114 

Zheng et al., 2021a), although the accuracy is contingent upon the vertical and horizontal 115 

accuracy and resolution of the data, and the temporal interval between data accusation. 116 

Likewise, when ice is considered the sole source of avalanches, ice thickness is employed to 117 

calculate the avalanche volume (Allen et al., 2022), for which the accuracy of computed 118 

volume relies on the resolution and availability of data in the region of interest. Under the 119 

circumstances when the depth of landslides and avalanches are not known, conservative 120 

thicknesses of 10, 30, and 50 m based on past events (Dubey et al., 2023) are often utilised 121 

for forward modelling, further contributing to significant uncertainties in the modelling results 122 

(Rounce et al., 2017; Rounce et al., 2016; Dubey and Goyal, 2020).  123 

Moreover, the flow parameters in r.avaflow are adjusted and optimised based on the fit of the 124 

model’s results to well-documented past events (Mergili et al., 2017; Mergili et al., 2020a; Vilca 125 

et al., 2021) and the physically plausible range suggested by Mergili et al. (2017), Mergili et 126 

al. (2018b) and Mergili et al. (2018a).  Efforts to fine-tune parameters to fit with historical events 127 

of varying magnitude, temporality and spatiality have led to the use of wide-ranging values. 128 

For example, Mergili et al. (2020b) used an internal solid friction angle of 28° to reconstruct 129 
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the 1941 GLOF process chain of Lake Palcacocha in the Cordillera Blanka, Peru. In contrast, 130 

Vilca et al. (2021) used 45° to model the 2020 glacial lake outburst process chain of Lake 131 

Salkantycocha located in Cordillera Vilcabamba of Peru. Likewise, the value of the basal 132 

friction angle ranges between 6-18°  (Baggio et al., 2021; Mergili et al., 2020a) (Supplementary 133 

Figure 1 (Fig. S1)). Because each GLOF event is inherently distinct, even when originating 134 

from the same glacial lake (Emmer and Cochachine, 2013; Lala et al., 2018), employing 135 

reconstructed values from past events for forward modelling introduces substantial 136 

uncertainties (Gaphaz, 2017; Mergili et al., 2020b). Finally, r.avaflow model outputs are 137 

extremely sensitive to parameters like entrainment coefficient value, basal friction angle and 138 

initial release volume (Mergili et al., 2018b; Mergili et al., 2018a; Baggio et al., 2021). However, 139 

to our knowledge, how changes in the values of these input parameters affect the model output 140 

(for example, peak and total flow, flow depth, flow velocity and arrival time) is not known.  141 

To determine the relative contribution of uncertainties in different input parameters to variability 142 

in GLOF extent, we identified nine out of 38 input parameters and initial conditions relevant to 143 

GLOF flow modelling that have been previously identified as the most important in the 144 

literature: digital elevation model; mesh size; the volume of mass movement impacting the 145 

lake; the origin of mass movement impacting the lake; grain density of mass movement 146 

impacting the lake; entrainment coefficient; internal friction angle; basal friction angle; and, 147 

fluid friction number (Table S1). We assessed the sensitivity of the model output to each of 148 

these parameters by conducting up to 10 r.avaflow simulations per parameter and varying 149 

their values within the range determined from the literature that employed r.avaflow modelling 150 

(Fig. S1). We investigated the impact of variation in these parameter values on the model 151 

outputs and used the following diagnostic variables: peak discharge; total discharge; flow 152 

arrival time; flow height; flow velocity and reach distance. We then calculated the coefficient 153 

of variation for each parameter and ranked them based on this metric.  154 

2 Study site 155 

Here, our sensitivity analysis is conducted on Thorthormi Tsho located at 28.10° N, 90.27° E 156 

in the Lunana region of the Bhutan Himalaya (Fig. 1). The area of Thorthormi Tsho has 157 

expanded by ~192% since 1990, evolving into the largest proglacial lake (area = 4.35 km2) 158 

in Bhutan by 2020 (Rinzin et al., 2023) (Fig. 1B and 1E). Although the lake level was lowered 159 

by 5m by artificially draining out the water between 2008 and 2012 (Nchm, 2019a), 160 

Thorthormi Tsho is marked as the most dangerous glacial lake (Nchm, 2019a; Rinzin et al., 161 

2021) (Fig. 1B). In recent years, Thorthormi Tsho has produced two GLOF events (Nchm, 162 

2023); the first one occurred on June 20, 2019 (Nchm, 2019b), the latest on October 30, 163 

2023. Also, modelling of future predicted GLOF from Thorthormi Tsho shows it can produce 164 
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a flood with flow volume up to 300 × 106 m3 of water with a peak discharge of up to 75000 165 

m3 s-1, affecting more than 16000 people and various infrastructures downstream of this 166 

glacial lake (Rinzin et al., 2023). This high outburst susceptibility and potential make 167 

Thorthormi Tsho an ideal candidate for GLOF modelling to improve our modelling output 168 

GLOF uncertainty.169 

 170 

Figure 1: Study area. The map (a) location of  Thorthormi Tsho and its downstream condition 171 

in Bhutan. The map (b) shows elevation and the overview of glacial lakes in Lunana and 172 

settlements along the Phochu and Punatsangchu basins, downstream of Thorthormi Tsho.  173 

The downstream settlement is divided into 17 zones (1-17), each 10 km long. (c) Area of 174 

Thorthormi Tsho between 1960 and 2020, and the surrounding slope with topography potential 175 
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(TPP) for mass movement entering Thorthormi Tsho. (d and e) the downstream settlements 176 

in the (d) Lunana and (d) Punakha and Wangdue Phodrang regions. The bar graphs are (f) 177 

the change in the area of Thorthormi Tsho between 1960 and 2020 and (g) the buildings 178 

(count) and road (km) within the 1 km on either side of the river centreline as per the latest 179 

OpenStreetMap.   180 

Additionally, the Phochu and Punatsangchu basins, located downstream of Thorthormi Tsho, 181 

are the most populated basins in Bhutan. The latest updated OpenStreetMap, 182 

(https://www.openstreetmap.org) although it does not have 100% coverage, shows that there 183 

are over 7000 buildings, 50 bridges, 4 schools, 687 km of road and a large area of agricultural 184 

land within the 1 km radius of the Phochu and Punatsangchu rivers. 202 buildings are located 185 

within the immediate 10 km downstream of Thorthormi Tsho (Fig. 1c,1d,1f). Besides, located 186 

downstream are the two biggest hydropower plants (Punatsangchu-1 and Punatsangchu-2) 187 

in Bhutan nearing the commission and poised to become key contributors to the nation's GDP.  188 

Also, the Punakha Dzong, great historical and cultural significance is located downstream of 189 

Thorthormi Tsho. This high downstream exposure to GLOF hazard further highlights the 190 

importance of understanding GLOF characteristics from Thorthormi Tsho for GLOF modelling 191 

(Fig. 1). 192 

3 Methods 193 

3. 1 r.avaflow model framework 194 

r.avaflow is a comprehensive GIS-based open-source computational framework for modelling 195 

mass movement from one or more release areas over the defined basal topography (Mergili 196 

et al., 2017; Mergili and Pudasaini, 2024). It can model the entire GLOF process chain starting 197 

from the release of avalanches, through the dynamic interaction of the avalanche and lake 198 

water, then the overtopping and retrogressive moraine dam erosion, and finally the 199 

downstream evolution of the resulting flow (Mergili et al., 2020b; Vilca et al., 2021; Sattar et 200 

al., 2023). It can also robustly consider the interactions between the phases as well as erosion 201 

and deposition (Mergili et al., 2017). Furthermore, it is equipped with a built-in function for 202 

visualization and validation. Because of this capability, r.avaflow has been widely used to 203 

model process chains such as GLOF in the high mountains all over the world, mostly to 204 

reconstruct past events (Zheng et al., 2021a; Mergili et al., 2020b; Vilca et al., 2021) and to a 205 

lesser extent to predict future hazards (Sattar et al., 2023; Allen et al., 2022). 206 

In r.avaflow, the evolution of the flow in space and time is solved by using an enhanced version 207 

of the  Pudasaini multiphase flow model (Pudasaini and Mergili, 2019; Pudasaini, 2012). The 208 

flow is computed through depth-averaged conservation of mass and momentum equations for 209 
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solid and fluid components. These equations involve six differential equations accounting for 210 

solid (Ds) and fluid (Df) flow depths, solid (Msx) and fluid (Mfx) momentum in x direction (Msx = 211 

Ds.vsx, Mfx = Df.vfx), and Msy and Mfy in y direction (Msy = Ds.vsy, Mfy = Df .vfy ), where v is the 212 

flow velocity (Mergili et al., 2017).  Mohr-Coulomb plasticity is used to compute solid stress 213 

while fluid is subjected to solid volume-fraction-gradient-enhanced non-Newtonian viscous 214 

stress. r.avaflow also considers other factors like virtual mass force, viscous drag, and 215 

buoyancy. These factors collectively facilitate momentum transfer between the solid and fluid 216 

phases, enabling simultaneous deformation, separation, and mixing of phases as they 217 

propagate across the mountain topography (Pudasaini and Mergili, 2019; Pudasaini and 218 

Krautblatter, 2014a; Mergili et al., 2020b; Pudasaini, 2012). To numerically solve these 219 

differential equations and propagate flow over time and space, r.avaflow uses a high-resolution 220 

total variation diminishing non-oscillatory central differencing (TVD-NOC) scheme, a 221 

commonly used numerical scheme to handle the advection of quantities, whilst minimising 222 

numerical artefacts like oscillations (Wang et al., 2004). The internal friction angle and basal 223 

friction angle, which are crucial factors governing the frictional forces influencing flow rheology, 224 

are scaled with a solid fraction of the flow material (Mergili et al., 2018b; Mergili et al., 2017; 225 

Pudasaini and Mergili, 2019). This scaling effectively accounts for the reduced interaction 226 

between solid particles and the basal surface within flows rich in fluid (Mergili et al., 2018b; 227 

Mergili et al., 2017).  228 

r.avaflow has three different models, namely, a single-phase shallow water model with Voellmy 229 

friction relation, an enhanced version of the multi-phase-flow of Pudasaini and Mergili (2019) 230 

and an equilibrium-of-motion model for the slow-flow process (Mergili et al., 2017). Here, we 231 

chose an enhanced version of the multi-phase-flow model considering an erodible moraine 232 

dam and rock-ice avalanche as the solid component and lake water as the fluid component. 233 

The multi-phase mass flow model can simulate the propagation of three different elements: 234 

solid (coarse material including boulders, cobbles and gravel), fine solid (including sand and 235 

particles larger than clay and silt), and fluid (including water and very fine particle including 236 

clay, silt and colloids), and assign each of them with distinct flow rheology (Pudasaini and 237 

Mergili, 2019).  238 

Furthermore, r.avaflow has six specific optional functions including conversion of release 239 

height to depth, diffusion control, surface control, entrainment, stopping and dynamic adaption 240 

of friction parameters (Mergili and Pudasaini, 2024). The latest version of r.avaflow has four 241 

options to compute erosion and entrainment, (i) calculated by multiplying the entrainment 242 

coefficient with flow momentum, (ii) simplified entrainment-deposition numerical model of 243 

Pudasaini and Krautblatter (2014b), (iii) a combination of (i) and (ii), and (iv) acceleration-244 
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deceleration entrainment and deposition model. Since models (ii) to (iv) are at the 245 

experimental phase, here, we used model (i), where the amount of entrainment is computed 246 

dynamically by multiplying with the user-defined entrainment coefficient (CE) with the total 247 

momentum of the flow at the given raster cell and time step (Mergili et al., 2017) (equations 1 248 

and 2).  249 

 qE,s = CE|Ms+Mf| αs,Emax (1) 

 qE,f = CE|Ms+Mf| (1- αs,Emax) (2) 

 250 

Where qEs and qEf are the entrainment rates of solid and fluid respectively 251 

CE is user user-defined entrainment coefficient (kg-1) 252 

αs, Emax is using user-defined solid entertainable material height (m) 253 

 254 

Figure 2: Schematic view of Thorthormi Tsho, surrounding terrain (study area) and input 255 

parameters employed for investigating r.avaflow model output sensitivity used in this study. 1-256 

6 shows the location of the mass movement areas into the lake. 257 
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We utilized r.avaflow direct (Mergili and Pudasaini, 2024), a web-based tool, to initially 258 

generate the sample model script. We modified it by inputting parameters relevant to each 259 

experimental set-up and wrote a bash shell script for all simulations in each experiment to test 260 

various parameter values within our predefined range. We developed one master bash script 261 

for each experiment that allowed us to run all experiments in parallel leveraging the Rocket 262 

High Performance Computing (HPC) facilities at Newcastle University. All the GLOF 263 

simulations were done for Thorthormi Tsho and were run for 1500 seconds when the flow 264 

reaches up to ~24 km downstream of the lake depending on values of various parameters 265 

defined here. The flow propagation beyond this point and its interaction with the downstream 266 

component are beyond the scope of this study. 267 

Table 2: Key parameters tested in this study to investigate model output sensitivity.  Detailed 268 

parameters for r.avaflow modelling are provided in Table S1. 269 

Parameter Value range No. of 

simulations 

Constant 

value 

Topographic data (DEM) 

and Mesh size 

High Mountain Asia DEM (HMA-

DEM) (8m), AW3D30 (30m), 

NASADEM (30m), SRTM GL3 (90 m) 

12 (3×4) HMA-DEM 

Avalanche origin location Left (2), Right (2), Headwall (2) 6 Loc-1 

Avalanche volume 1 ‒ 10 × 106 m3 10 5 × 106 m3 

Grain density 1000 ‒ 2700 kg/m3 10 2700 

Entrainment coefficient -5.85 ‒ -6.95 kg-1 10 -6.35 

Basal friction angle 10 ‒ 14º 10 10 

Internal friction angle 25 ‒ 35º 10 28 

Fluid friction number 0.027 ‒ 0.050 10 0.05 

3.2 Model inputs parameterisation and experimental setups 270 

r.avaflow has a large choice of parameters and initial conditions, such as a DEM representing 271 

initial basal topography, the volume of the solid and liquid phase, entrainment and stopping 272 

parameters and density and friction parameters (Mergili and Pudasaini, 2024) (Table S1). The 273 

values specified for these parameters influence crucial aspects of modelled GLOF flow, 274 

including impacted area, travel distance, travel time, and volume of sediment deposited at the 275 
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various downstream locations (Mergili et al., 2017). In this study we selected a total of nine 276 

parameters which are identified as important in the previous studies (e.g. Mergili et al. 277 

(2020a)): 1) DEM dataset, 2) mesh size; 3) the origin of mass movement into the lake; 4) 278 

volume of mass movement entering the lake; 5) grain density of mass movement entering the 279 

lake; 6) entrainment coefficient; 7) basal friction angle; 8) internal friction angle; 9) fluid 280 

frictional number. To investigate the impact of DEM dataset variation (1) and mesh size 281 

variations (2), we modelled GLOF by employing freely available global and regional DEM 282 

datasets with differing spatial resolution and vertical accuracy (Table 2). For the origin of the 283 

mass movement entering lake (3), we first computed the topographic potential for slope 284 

movement into the lake (Allen et al., 2019) (Fig. 1B) and selected six different sites by 285 

considering the topographic potential values and direction of the lake (Fig. 2). The volume of 286 

mass movement entering lake (4) was varied between 1 × 106 m3 and 10 × 106 m3. The 287 

avalanche grain density (ρS) (5) value range was considered based on assumed combinations 288 

of rock and ice avalanche parts following the approach used in the earlier studies (Allen et al., 289 

2022; Sattar et al., 2023). For parameters 6-9, we gathered various values employed in 290 

previous studies (Allen et al., 2022; Mergili et al., 2020a; Mergili et al., 2020b; Vilca et al., 291 

2021) and established the conservative range. In doing so, we computed descriptive statistics 292 

and established the median, upper quantile value, and lower quantile for each parameter using 293 

these collated values (Fig. S1). We then varied these parameter values between the 294 

calculated upper quartile and lower quartile, to give 10 equally spaced values in total. This 295 

range of 10 values was utilised in our 10 experiments for the respective parameter, whilst 296 

holding other parameter values constant at the median value. For example, for the internal 297 

friction angle (ϕ) experiment, the ϕ was varied between the upper and lower quantiles, with 10 298 

increments in total, whilst holding constant the other parameter values (Table 1).  An overview 299 

of employed parameters and workflow is shown in Fig. 2 and Table 1, while further details on 300 

the parameter range used for each experiment are provided in the following section. 301 

 302 

 303 

 304 

 305 

 306 

 307 
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Table 2: Characteristics of DEM datasets employed in this study to investigate the impact of 308 

DEM dataset variation on GLOF modelling results. 309 

DEM 
dataset 

Acquisition 
techniques 

Spatial 
resolution 

Vertical accuracy  Coverage Survey 
date 

AW3D30 Optical stereo 
images 

~30 m  6.84 m (RMSE relative to 
ICESat in HMA) (Liu et 
al., 2019) 

Global 2006 to 
2011 

NASADEM SAR 
Interferometry 

~30 m 5.3 m (RMSE for USA) 
(Liu et al., 2019) 

Global 2000 

SRTM 
GL3 

SAR 
Interferometry 

~90 m 9.51 m (RMSE relative to 
ICESat in HMA) (Buckley 
et al., 2020) 

Global 2000 

HMA 8m 
DEM 

Optical stereo 
images 

8 m 2-m (depending on the 
type of sensor) (Shean, 
2017a) 

High 
Mountain 
Asia 
(HMA) 

2002 to 
2016 

3.2.1 Digital elevation (1) model and mesh size (2)  310 

Here our goal is to constrain model output uncertainty stemming from the use of freely 311 

available global and regional DEM datasets. We performed a series of GLOF simulations 312 

using four open-access DEM data of various resolutions, vertical accuracy and elevation 313 

derivation methods, namely, High Mountain Asia DEM (HMA-DEM; 8 m) (Shean, 2017b), 314 

ALOS Global Digital Surface Model (AW3D30; 30 m) (Jaxa, 2021), NASADEM (~30 m) (Nasa-315 

Jpl, 2021), and SRTM GL3 (~90 m) ((Srtm), 2013). Further to investigate the impact of mesh 316 

size variation in each DEM dataset, we performed three simulations for each DEM data by 317 

changing mesh size to 20 m, 30 m, and 40 m. The GLOF simulations for all other parameter 318 

experiments were done using HMA-DEM at 8 m resolution (Table 2). 319 

3.2.2 Volume of lake and avalanche entering lake (4)  320 

r.avaflow has the option to define the initial release volume of different phases involved in the 321 

GLOF process chain. Here, we assume GLOF was initiated by rock-ice mixed mass 322 

movement entering into the lake followed by a tsunami wave hitting the moraine damming the 323 

lake and causing moraine dam failure. Accordingly, we defined the frontal moraine damming 324 

Thorthormi Tsho as phase-1 (rock component with ρ = 2700 kg m3), mass movement entering 325 

Thorthormi Tsho as phase-2 (rock-ice component) and Thorthormi Tsho as phase-3 (fluid part). 326 

Conducting a bathymetry survey of Thorthormi Tsho is highly challenging as the lake is filled 327 

with debris and icebergs. Therefore, we considered the volume by considering the mean value 328 

(294×106 m3) of all the volumes estimated from a total of eight area-volume scaling equations 329 

(Table S2). This same calculated volume is used as constant fluid volume across all the GLOF 330 

simulation experiments we conducted here and was not considered for sensitivity analysis. 331 
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However, r.avaflow requires spatially varying lake bathymetry to be used as fluid release 332 

height rather than the absolute value of lake volume. Fortunately, Thorthormi being a recently 333 

formed lake, has ice thickness data covering the extent of the lake (Farinotti et al., 2019). 334 

Therefore, we computed the bathymetry of Thorthormi Tsho by subtracting ice thickness data 335 

from the surface DEM (Linsbauer et al., 2016; Linsbauer et al., 2017). Assuming that the 336 

present-day lake has been formed by filling the over-deepening, this ice-thickness-derived 337 

bathymetry was adjusted to match the volume we calculated from the empirical equation 338 

(Table S2). 339 

The volume of the avalanche entering the lake serves as a fundamental parameter for defining 340 

various scenarios in the forward modelling of a GLOF (for example, Allen et al. (2022) and 341 

Sattar et al. (2023)). However, for the forward modelling purpose, it is difficult to predict how 342 

big or small the avalanche will be. Considering these uncertainties, to test the effect of mass 343 

movement of various volumes, we conducted a series of 10 experiments considering volumes 344 

ranging from 1×106 to 10×106 m3 (Table 1). 345 

3.2.3 Origin of mass movement into the lake 346 

To account for uncertainties in the exact origin of mass movement into the lake, we identified 347 

a total of six mass movement areas, each characterised by different directions, distances, and 348 

angles to the lake (Fig. 1 and Fig. 2). To do this, we first computed topographic potential for 349 

ice/rock avalanche and landslide movement into the lake based on slope and run-out trajectory 350 

criteria (Allen et al., 2019). Based on this first-order estimate, we identified the six potential 351 

avalanche source areas: Loc-1 (slope at ~900 m away from the headwall), Loc-2 (headwall), 352 

Loc-3 (slope at the ~900 m from right moraine dam), Loc-4 (right moraine dam), Loc-5 (slope 353 

at ~900 m from left moraine dam), Loc-6 (left moraine dam) (Fig. 1 and Fig. 2).  We then ran 354 

one scenario for each potential avalanche input location we identified.  355 

3.2.4 Grain density of mass movement entering lake (5)  356 

Our goal here is to assess the impact of the grain density of the mass movement entering the 357 

lake, which serves as a proxy for the ice-to-rock ratio. Accordingly, we consistently set the 358 

grain density of phase-1 (moraine) at 2700 kg m3 across all the experiments, whilst the fluid 359 

density of phase-3 was also held constant at 1000 kg m3. In the earlier studies, the grain 360 

density of mass movement entering the lake has been used as a proxy of the portion of an 361 

ice-rock component of mass movement into the lake, which is highly uncertain (Vilca et al., 362 

2021; Allen et al., 2022). The phase separation of rock and ice components of the mass 363 

movement with different densities is not well established in  r.avaflow (Vilca et al., 2021). 364 

Therefore, in this study, following Sattar et al. (2023), a portion of snow and ice in the 365 
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avalanche is considered fluid by adjusting the material density of the phase-2 represented by 366 

the avalanche (Table S3). In our experiment set-up, this is executed by varying the density 367 

value between 2700 kg m-3 (representing 100% rock) to 1000 kg m-3 (representing 100% 368 

water) (Table 1).  369 

3.2.5 Entrainment coefficient (6) 370 

Material entrainment due to bed erosion can make the flow more concentrated and thus 371 

increase the volume, resulting in spatial and temporal variation of flow. In the r.avaflow model, 372 

the user must define entrainment height in the form of a raster covering the entire model 373 

domain, which can be either identified using remote sensing imagery or fieldwork (Mergili and 374 

Pudasaini, 2024). However, here, we considered frontal moraine damming the lake as the only 375 

entrainment height (Fig. 1). The amount of entrainment itself is dependent on the user-defined 376 

entrainment coefficient (CE). In r.avaflow the logarithm with base 10 of the CE must be entered 377 

(Mergili et al., 2018a; Mergili et al., 2017). Here, we modelled 10 scenarios of GLOF by varying 378 

CE between 10-6.95 to 10-5.85 kg-1 (Table 1).  379 

3.2.6 Frictional parameters (7-9) 380 

The internal friction angle (ϕ), basal friction angle (δ) and fluid friction number (CFF) 381 

mechanically control the basal shear stress, internal deformation, anisotropy of the stresses, 382 

and hydraulic pressure gradient of the solid constituents (Pudasaini and Krautblatter, 2014a), 383 

which are essential attributes influencing flow runout distance and time. Within the r.avaflow 384 

model set-up, a user can either use spatially varying values for these frictional parameters 385 

using a raster map or one absolute value (Mergili and Pudasaini, 2024; Mergili et al., 2017). 386 

In this study, we computed 10 experiments for each of these frictional parameters. Specifically, 387 

by varying the ϕ between 25° to 35°, δ between 10° and 14° and CFF between 0.027 to 0.050 388 

(Table 1).   389 

3.3 Sensitivity Analysis 390 

Here we use sensitivity analysis, to determine how variations in the initial values for key impact 391 

the model outputs (Saltelli et al., 2004). Thus, our goal is not to determine the 'correct’ value 392 

for each parameter but to determine the r.avaflow input parameter(s) that cause the most 393 

variation in the model output. To constrain this variability, we mainly focused on examining the 394 

peak discharge, total discharge, and flow arrival time as the output metrics. The flow for all the 395 

experiments was measured from the profile immediately beneath the moraine dam (profile-1 396 

in Fig. 2). We calculated the peak and total discharge based on the flow data obtained from 397 

the same profile (Fig. S2). The flow arrival time was considered as the average value across 398 
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the time recorded from the profiles located 3 km, 6 km and 9 km downstream of the Thorthormi 399 

Tsho (profile-2, 3, 4 in Fig. 2). All input parameters were standardized within a percentile range 400 

of 0 to 100 for comparative analysis of their effects on the resultant outputs. For the scalable 401 

parameters, we also computed simple linear regression considering input parameters as the 402 

independent variable and model output as the dependent variable. To ascertain the sensitivity 403 

of the model output to variations in value across all parameters, we computed the coefficient 404 

of variation (CV) for individual parameters and subsequently ranked them based on this metric. 405 

The CV is a statistical measurement of the dispersion of data points around the mean, 406 

regardless of the units used to measure it. CV is deemed suitable here since the r.avaflow 407 

output variability is caused by input parameters that are measured in different units. To 408 

calculate CV, we took the standard deviation of the output value range of a particular 409 

experiment (e.g. peak discharge) and divided it by the mean of the same output range (Abdi, 410 

2010).  411 

4 Results 412 

4.1 Effect of DEM dataset  413 

When the GLOF is modelled employing freely available global and regional DEM datasets 414 

(HMA-DEM, AW3D30, NASADEM, SRTM GL3), our results showed a variation of peak and 415 

total discharge of GLOF from the Thorthormi Tsho by almost 100% and 400%, respectively 416 

(Fig. 3). Specifically, HMA-DEM consistently produced the lowest GLOF magnitude, while 417 

SRTM GL3 consistently produced the highest. The peak flow fluctuates between 10-115% and 418 

the total discharge between 55-400% (Fig. 3). Although NASADEM and AW3D30 have a 419 

similar spatial resolution, notable differences (65%) in peak discharge emerged between 420 

simulations done using these datasets (Fig. 3b and 3c). 421 

We observed a significant fluctuation in the mean flow height (82%) and velocity (65%) along 422 

the flow path resulting from the change in DEM datasets (Fig. 3). For instance, the mean flow 423 

height along the river centreline ranged from 39 m (HMA-DEM) to 54 m (SRTM GL3) (Table 424 

3) and the flow reach distance increased from 15.5 km (HMA-DEM) to 24.2 km (SRTM GL3). 425 

Once again, NASADEM and AW3D30 yielded significantly different maximum flow heights 426 

(8.5%) and reach distances (72%) (Fig. 3b and 3c). The use of various sources of DEM 427 

datasets led to variations in total flow arrival time by around 16%. Flows derived from SRTM 428 

data always arrived earlier, while those using HMA-DEM consistently showed the latest arrival 429 

times (Table 3). For example, at 5 km downstream, SRTM GL3 showed the earliest arrival at 430 

3.46 min while HMA-DEM resulted in the latest arrival at 4.37. The portion of the solid 431 

https://doi.org/10.5194/egusphere-2024-1819
Preprint. Discussion started: 17 July 2024
c© Author(s) 2024. CC BY 4.0 License.



 

16 
 

component of the flow did not exhibit significant fluctuations in response to changes in input 432 

DEM datasets (Fig. 3). 433 

 434 

Figure 3: Hydrographs (right panels) and maximum flow height along the river centerline (left 435 

panels) generated by conducting a sequence of r.avaflow simulations, employing different 436 

types of DEM datasets and varying the mesh resolution. 437 

4.2 Effect of mesh size variations 438 
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 When mesh size was increased from 20 m to 30 m and 40 m across all the DEM datasets, 439 

we noted a substantial increase in peak and total discharge, although changes in resulting 440 

flow characteristics like flow velocity were minimal (Fig. 3). For instance, in the case of the 441 

experiment with HMA-DEM, the peak discharges increased to 20% and 38%, respectively 442 

(Fig. 3). However, the mean flow velocity increased only by 6% when the mesh size was 443 

increased from 20 to 40 m (Table 3). Likewise, there was no significant difference in the flow 444 

reach distance emerging from changing mesh size (Fig. 3). For instance, flow with all three 445 

mesh sizes for HMA-DEM resulted in to flow reach distance of about 15 km (Fig. 3a). Mesh 446 

size variation resulted in arrival flow time variation of about 20%, with 40 m leading to earliest 447 

arrival and 20 m the latest (Table 3).  448 

Table 3. Percentage change in flow velocity, depth and arrival time resulting from variation in 449 

values of different input parameters we employed in this study. The total percentage (%) 450 

change represents the output variation between the maximum and minimum values used in 451 

the experiment. The average percentage (%) change is calculated as the mean change across 452 

all incremental steps employed in setting up the experiment. The arrival time average of the 453 

record from three locations, Profile-2, -3, and -4) (Fig. 2). Flow velocity and depth are mean 454 

values taken from the river centreline. The detail flow pattern is provided in Fig. S3, Fig. S4 455 

and Fig. S5. 456 

SL 
no. 

Parameter Velocity (% 
change)  

Depth  (% change) Time (% change) 

Average Total Average Total Average Total 

1 DEM dataset 16.25 65 20.5 82 4 16 

2 Mesh Resolution 2 6 3 9 4 12 

3 Volume of mass 9.2 92 92.3 923 -14.3 -143 

movement entering 
lake 

4 Density of mass 0.2 2 3.1 31 6 6 

movement entering 
lake 

5 Location of origin of 
mass 

3.7 37 8.2 82 8 8 

 movement entering 
lake 

6 Entrainment coefficient 1 10 4.9 49 3 3 

7 Basal friction angle 2.3 23 4.2 42 6.8 68 

8 Internal friction angle 0.1 1 3.8 38 0 0 

9 Fluid friction number 5.5 55 7 70 0.8 8 
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4.3 Effect of origin of mass movement entering the lake 457 

Our study found that the GLOF process chain initiated by mass movements from various 458 

locations (Loc-1 to Loc-6) results in a significant fluctuation in the GLOF output (Fig. 4). The 459 

peak discharge varied by approximately 200% and the total discharge by 55% (Fig. 4). 460 

Likewise, the mean flow height and velocity also fluctuated by 65% and 82%, respectively 461 

(Table 3). By comparison, the flow resulting from the GLOF initiated by mass entering from 462 

the Loc-1 (Fig. 4a) (900 m from the headwall) and Loc-5 (Fig. 4e) produced the highest 463 

magnitude GLOF and that from the loc-4 (Fig. 4d) was the lowest.  For example, the highest 464 

peak (18 ×103 m³) and total discharge (11 ×106 m³) occurred from Loc-1, while the lowest peak 465 

(6,000 m³) and total discharge (7 × 106 m³) were from Loc-4 (right lateral moraine) (Fig. 4a 466 

and 4d). The longest flow reach distance (25 km) was produced by loc-1 and loc-5, while the 467 

shortest was from minimum from loc-3 (10 km) (Fig. 4c).  Arrival times vary approximately by 468 

20%, where the flow from Loc-5 arrives earlier while Loc-1 arrives at the latest (Table 3 and 469 

Fig. 4). Solid volumetric portion did not exhibit significant fluctuation, with concentration 470 

ranging from 4% (Loc-4) to 5% (Loc-2) (Fig. 4). 471 
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472 
Figure 4: Flow rate and depth resulting from mass movement into the lake from different 473 
locations: loc-1 (a) to loc-6 (f). 474 

4.4 Effect of volume and grain density of mass movement entering the lake  475 

To separate the effect of variation in volume and density (ρS) of mass movement entering the 476 

lake, we simulated all 10 scenarios of the GLOF event using the mass movement initiated 477 

from loc-1. Here we observed that only volume variation in mass movement leads to a very 478 

large variation in the resulting peak (1160%) (Fig. 5a) and total flow (2500%) (Fig. 6a). 479 

Subsequently, this resulted in maximum variation in flow characteristics such as mean flow 480 

height (923%) and flow arrival time (50%) (Table 3, Fig. S3, Fig S5). Conversely, the ρS 481 

variation showed the least impact on both peak (5%) and total discharge (24%) (Fig. 5b, Fig. 482 

6b, and Fig. 7b) and subsequent characteristics such as flow height (3%) and velocity (2%) 483 

(Table 3 and Fig. S5). Both volume and density variation did not result in significant fluctuation 484 

in the solid-volumetric concentration of the flow (Fig. S3). 485 
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486 

Figure 5: Linear regression between input parameter value variation and resulting peak 487 

discharge. All input parameter values are normalized between 0 to 100. The linear regression 488 

is computed only for the volume of mass movement into the lake (a), grain density (b), 489 

entrainment coefficient (c), basal friction angle (d), internal friction angle (e) and fluid friction 490 

number (f). 491 
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492 

Figure 6: Linear regression between input parameter value variation and resulting total 493 

discharge. All input parameter values are normalized between 0 to 100. The linear regression 494 

is computed only for the volume of mass movement into the lake (a), grain density (b), 495 

entrainment coefficient (c), basal friction angle (d), internal friction angle (e) and fluid friction 496 

number (f). 497 
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498 

Figure 7:  Linear regression between input parameter value variation and flow arrival time. All 499 

input parameter values are normalized between 0 to 100. The linear regression is computed 500 

only for the volume of mass movement into the lake (a), grain density (b), entrainment 501 

coefficient (c), basal friction angle (d), internal friction angle (e) and fluid friction number (f) 502 

4.5 Effect of entrainment coefficient 503 

Variations in the entrainment coefficient substantially impact the resulting GLOF output, 504 

causing fluctuations in peak discharge and volume by 13% and 123%, respectively (Fig. 5c 505 

and 6c).  These changes also affect the flow characteristics including mean depth (49%) and 506 

reach distance (20%) (Table 3) but had minimal effect on arrival time (3%) (Fig. 7c). Most 507 

notably, unlike other parameters, entrainment variation also affected the solid concentration 508 

of the flow (Fig. S3). An increase in the entrainment coefficient from 10-6.95 to 10-5.85 kg-1 led to 509 

a 30% increase in the mean solid volumetric concentration of the flow.  510 

4.6 Effect of frictional parameters 511 

Among the frictional parameters, the variation in basal friction angle (δ) resulted in a significant 512 

fluctuation in GLOF magnitude and resulting flow characteristics (Fig. 5d, 6d and 7d). While 513 

the variation of fluid friction angle had minimal impact on the resulting peak and total flow (Fig. 514 

5e, 6e), it notably altered other flow characteristics, such as flow velocity (55%) and depth 515 
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(70%) (Table 3). The δ angle increase from 10 to 14° resulted in a peak and total discharge 516 

decrease of 36% (Fig. 5d) and 32% (Fig. 6d), respectively.  Likewise, the flow velocity 517 

decreased by 23% resulting into delay in flow arrival by 18% (Table 3).  Conversely, the peak 518 

flow decreased by 2% only in response to an increase in the internal frictional angle from 25-519 

35° (Fig. 5f). The variation in all frictional parameter values did not result in a significant change 520 

in the solid volumetric concentration of the flow (Fig. S4). 521 

522 

Figure 8: The coefficient of variation for (a) peak flow, (b)volume, (c) time, (d) average flow 523 

height along the river centreline, (e) flow velocity along the river centreline and (f) average 524 

across all these output parameters. 525 

 526 
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4.7 Comparison of the effect of all parameters 527 

To compare output sensitivity resulting from all parameters and initial conditions considered 528 

here, we calculated the coefficient of variation (CV) for peak flow, total discharge, arrival time, 529 

flow height and flow velocity. We further computed the average coefficient of variation (avg. 530 

CV) across all these output variables and examined the overall impact of each input parameter 531 

variation. Comparing all these output indicators, mass movement entering the lake had the 532 

greatest impact (avg. CV = 47%), followed by DEM datasets (avg. CV = 35%) and the origin 533 

of mass movement (avg. CV = 21%). Other input parameters like mesh size, basal friction 534 

angle (δ), and entrainment coefficient also caused significant variation in resulting GLOF. 535 

Notably, fluid friction number had a significant impact on flow height with its CV = 16% despite 536 

having minimal impact on other flow characteristics. 537 

For the six scalable parameters, we computed linear regression (Fig. 5 to Fig. 7). The linear 538 

regression analysis unveiled that the four parameters, namely volume (R2=0.99) of mass 539 

movement into lake, ρS of mass movement into lake (R2=0.96), basal friction angle (δ) (R2 = 540 

0.96) and CFF (R2 = 0.83) offer strong explanatory power regarding the variability observed in 541 

resulting GLOF peak discharge (Fig. 5). Among these sets of parameters, volume (m = 1.6) 542 

and ρS (m = 0.085) of mass movement entering lake indicated a positive relationship while δ 543 

(m =-0.347) and CE (m=-0.091) exhibited a negative relationship (Fig. 5). By contrast, the 544 

internal friction angle (R2 = 0.24) and entrainment coefficient (CE) (R2 = 0.22) exhibited a weak 545 

relationship with the peak discharge. All six parameters (R2 >0.9) except for the internal friction 546 

angle (R2 =0.59) indicated a high level of explanatory power regarding the variation of resulting 547 

total discharge. Across all six parameters, the volume of the avalanche exhibited the highest 548 

R2 value, signifying a strong explanatory power regarding the modelled discharge volume 549 

compared to the other parameters. Additionally, the substantial magnitude of the slope (m=1.6 550 

and m=0.53 for peak and total discharge, respectively) associated with the volume of 551 

avalanche further underscores its high magnitude relationship with the modelled GLOF flow, 552 

surpassing that of the other parameters (Fig. 5a and 6a).  553 

Basal friction angle δ and CFF demonstrated a high level of explanatory power concerning the 554 

variability in flow arrival time, as evidenced by their R2 values of 0.98 and 0.97, respectively. 555 

Avalanche volume variation also exhibited a high explanatory power with a negative 556 

relationship, supported by an R2 of 0.81 and a slope (m) of -0.019, although the linearity 557 

became less pronounced within the volume range of 4 × 106 m3 to 10 × 106 m3. In contrast, 558 

other parameters, including CE, and ϕ, did not exhibit a definitive linear relationship. (Fig. 7). 559 

However, CE variation showed a threshold effect on arrival time; increasing the CE from 10-560 
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5.95 to 10-6.42 kg-1 decreased arrival time, while further increases towards 10-5.85 kg-1 led to a 561 

linear increase in arrival time. 562 

5 Discussion 563 

Our primary aim was to investigate the sensitivity of the model GLOF outputs from r.avaflow 564 

to a range of values for key model input parameters. Previous studies have underscored the 565 

sensitivity of  r.avaflow model outputs to various input parameters, including basal friction 566 

angle, entrainment coefficient and volume of avalanche entering the lake (Baggio et al., 2021; 567 

Mergili et al., 2018b; Mergili et al., 2020a). This study advances our understanding of GLOF 568 

modelling by conducting a comprehensive sensitivity analysis across nine parameters and 569 

multiple GLOF simulations. As a result, we have for the first time, ranked these nine GLOF 570 

input parameters based on their contributions to model output variabilities. Our results showed 571 

that modelled GLOF output parameters are substantially sensitive to six of the nine 572 

parameters we tested here (DEM dataset, mesh size, volume of mass movement into the lake, 573 

origin of mass movement into the lake, entrainment coefficient, and basal friction angle) 574 

suggesting that GLOF modelling results are subject to uncertainty from the multiple sources. 575 

The findings offer valuable perspectives on the uncertainty of GLOF modelling results and 576 

complexities inherent in modelling the GLOF process chain within the rugged mountain terrain 577 

such as in the Himalaya.  578 

5.1 DEM datasets and mesh size variations 579 

DEM is one essential data for GLOF and other flood modelling (Hawker et al., 2018; Saksena 580 

and Merwade, 2015; Schumann and Bates, 2018; Westoby et al., 2014). The impact of DEM 581 

resolution is even more pronounced in the steep and complex topographic conditions 582 

prevalent in high mountain regions like the Himalaya (Liu et al., 2019). Our study provides the 583 

quantification of the effect of DEM in such environments for the first time.  Our results suggest 584 

that the use of global and regional DEM datasets ranging from HMA-DEM (8 m) to SRTM GL3 585 

(90 m) leads to over two-fold and four-fold variations in peak and total discharge, respectively, 586 

and cause successive significant fluctuations in flood height, reach distance and flow arrival 587 

time. This likely results from the low-resolution DEMs not fully resolving the river channel 588 

compared to higher resolution DEM, leading to reduced river channel conveyance (Fig. 9 and 589 

Fig. S7) (Muthusamy et al., 2021). This was supported by a comparison of the DEM profile 590 

and flow height along the river centreline (Fig. 9) and across the multiple vertical cross-591 

sections along the river channel (Fig. S6). The analysis showed that GLOF output from SRTM 592 

GL3, where river channels are poorly resolved, was comparatively higher than that from the 593 

HMA-DEM with the better resolved channel. Also, DEM datasets were acquired at different 594 
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times, meaning the topographic features they captured might also differ depending on natural 595 

geomorphological change or human-made alteration of the earth's surface over time 596 

(Schumann and Bates, 2018). 597 

598 

Figure 9: A comparison of the elevation profiles from four DEM datasets and the 599 

corresponding flow depths along the river centreline, generated through r.avaflow modelling. 600 

panels (a) and (b) show the flow depths and elevation profiles along the river centreline. 601 

Panels (c) and (d) illustrate elevation profiles for two specific sections.  DEM and flow height 602 

profiles from the vertical cross sections at various distances are also provided in the 603 

supplementary figure (Fig. S6). The DEM datasets were co-registered using Shean et al. 604 

(2016). 605 

Overestimation of flood maps stemming from reductions in DEM resolution has been reported 606 

in urban flood modelling (Muthusamy et al., 2021; Mcclean et al., 2020). However, the impact 607 

of DEM data on GLOF modelling, especially in a complex topographic setting such as in the 608 

Himalaya has been rarely documented (Wang et al., 2011). Our results show the substantial 609 

variation in GLOF model output stemming from DEM dataset variation, even when employing 610 

DEM with comparable spatial resolutions, which underscores the criticality of high-quality DEM 611 

data in GLOF modelling (Fig. 9). DEM datasets covering rugged high mountain terrain, where 612 
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GLOFs typically occur are likely to have more errors due to geometric distortion and data loss 613 

due to challenges involved in data acquisition for DEM production (Hugonnet et al., 2021; Liu 614 

et al., 2019). Therefore, using global scale DEMs, such as SRTM and ASTER, for GLOF 615 

modelling due to the absence of high-resolution alternatives (Wang et al., 2011) may only be 616 

suitable for first-order assessment of GLOFs at large scales  (Zhang et al., 2023b). This is 617 

important as uncertainty stemming from DEM datasets is often overlooked and/or not well 618 

addressed in the previous basin-specific GLOF modelling work (Rinzin et al., 2023; Sattar et 619 

al., 2023; Sattar et al., 2021b).  620 

5.2 Mass movement origin variation 621 

Our study indicated that different locations of avalanche initiation produced GLOFs with 622 

approximately two-fold variations in their peak discharge, volume, and reach distance (Fig. 4). 623 

These variations can be explained based on the lake geometry and the direction/ angle at 624 

which the mass movement enters the lake. r.avaflow model provides detailed output 625 

parameters such as kinetic energy associated with the flow, and flow height map for each time 626 

step, which allowed us to better understand the cause of this variation. For example, the 627 

avalanche mass originating from loc-1, which is located at the slope above the headwall, 628 

directly impacts the head end of the lake with the highest kinetic energy (50714 GJ) among all 629 

other source avalanches. This head-end impact, coupled with its high energy, facilitates the 630 

direct forward propagation of waves toward the frontal outlet, causing the lake water to overtop 631 

the frontal moraine and resulting in a higher peak and total discharge (Fig. S7). Thorthormi 632 

Tsho is roughly crescentic in shape and curves toward the west, with its maximum curvature 633 

facing the mass movement origin of loc-6. This shape also allows the impact wave generated 634 

from mass movement from loc-6 to move almost unimpeded along the flow line, resulting in 635 

greater GLOF discharge. In contrast, the direct wave of impact generated by the mass 636 

movement from loc-3, located on the slope above the right moraine dam, is deflected towards 637 

the left lateral moraine, and only a secondary wave proceeds towards the lake outlet, resulting 638 

in a comparatively lower peak and total discharge (Fig. S7). This finding implies that the 639 

geometry of the glacial lake and the surrounding source slope plays a vital role in GLOF output. 640 

Thus, we underscore the importance of considering catchment shape in GLOF modelling, 641 

although we cannot assume that two identical basins will have the same flood properties due 642 

to the influence of other factors, such as the involved volume of solid and fluid parts. 643 

Earlier studies (Mergili et al., 2017; Mergili et al., 2020b) have explained the interaction 644 

between landslides and reservoirs (lakes) and their influence on the resulting hydrograph. 645 

However, these studies did not consider the variables such as directions and angles from 646 

which the mass impacts the lake. To fill this gap, here we enhanced our understanding of the 647 
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interplay between the resulting GLOF magnitude and avalanche mass attributes including the 648 

direction and angle from which the avalanche mass enters the lake, the amount of kinetic 649 

energy the avalanche mass possesses and the geometry of the lake. Our results emphasize 650 

the significant impact on the resulting GLOF events caused by the uncertainty in pinpointing 651 

the specific location of origin of mass movement into the lake. Thawing of permafrost and 652 

destabilization of the slope surrounding the lake due to climate warming (Gruber et al., 2017; 653 

Kääb et al., 2018) combined with the expansion of the glacial lake towards the mountain flank 654 

(Rounce et al., 2016) are likely to increase the frequency of mass movement into the lake, 655 

further exacerbating this uncertainty. Therefore, our finding here will be useful to further 656 

improve the development of scenario-based approaches to GLOF modelling (Gaphaz, 2017; 657 

Sattar et al., 2021a) including, high, medium, small and worst-case scenarios (Allen et al., 658 

2022; Gaphaz, 2017). 659 

5.3  Mass movement volume, grain density, and entrainment coefficient  660 

Our investigation revealed that variation in GLOF magnitude is most sensitive to the volume 661 

of avalanches entering the lakes. It also exhibits a significant level of sensitivity to the 662 

entrainment coefficient whilst the grain density (ρS) exhibits negligible impact. For example, 663 

the variation of avalanche volume between 1×106 m3 and 10×106 m3 leads to peak and total 664 

discharge fluctuation of 1160% and 2500%, respectively, and subsequent variation in 665 

maximum flow height and arrival time (Fig. 5 to Fig. 7). The dominant impact of avalanche 666 

volume and entrainment coefficients on GLOF magnitude could be due to their direct influence 667 

on the overall magnitude and intensity of flood events. The total discharge during the GLOF 668 

cascade event is a function of the volume of the avalanche entering the lake. This is further 669 

corroborated by the near-perfect linear relationship between peak discharge (R2 = 0.99) and 670 

total discharge (R2 = 1) with the volume of avalanches entering the lake observed here. 671 

Likewise, the volume of solid content in the flow is solely contributed by the entrainment of 672 

frontal moraine material, primarily determined by the entrainment coefficient (CE). Additionally, 673 

this correlation could be attributed to the amount of energy and associated momentum of the 674 

flow, which changes significantly with corresponding variations in avalanche volume. Also, it 675 

could be due to the longer timing and duration of the flow as evident in Fig. S4. Most GLOF 676 

events in high mountains across the HMA and other alpine regions are caused by moraine 677 

dam breaches triggered by mass movement entering the lake from the surrounding mountain 678 

flank (Shrestha et al., 2023; Lützow et al., 2023; Emmer and Vilímek, 2014). As a result, mass 679 

movement volume is considered a primary basis for scenario development  (Allen et al., 2022). 680 

Thus, we believe this finding provides useful insights towards improving the developing of 681 
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different scenarios of GLOFs with higher confidence, or is a basis for ensemble testing, with 682 

the caveat that the range of outputs may be too wide to be of practical use. 683 

5.4 Frictional parameters variations 684 

Among the frictional parameters, our result showed that GLOF magnitude is most sensitive to 685 

the δ. For example, the variation of total discharge (47.5%) resulting from fluctuation of δ within 686 

the conservative range was 30 times greater than that of internal friction angle (ϕ) and over 687 

four times greater than that of fluid friction angle (CFF). δ plays a dominant role in flow dynamics 688 

and the interaction between the flowing material and the channel bed. This direct contact 689 

means that even minor changes in δ can have substantial effects on the resistance 690 

encountered by the flowing material, thereby influencing the mobility of the flow (Pudasaini 691 

and Krautblatter, 2014b; Mergili et al., 2018a; Mergili et al., 2018b). ϕ on the other hand 692 

primarily affects particle interactions within the flowing material, whilst CFF is a coefficient which 693 

quantifies the overall flow resistance within the flow path mainly depending on surface 694 

roughness. Our findings indicate that prioritizing the consideration of δ over the other two 695 

frictional parameters is advisable. This can be done by determining spatially variable values 696 

through field data or conducting a statistically substantial sensitivity analysis. Nonetheless, 697 

despite the relatively low overall impact on GLOF magnitude, the CFF notably increased the 698 

flow's mobility, especially beyond 12 km downstream, when the flow became fluid-dominant 699 

(Fig. S4).  This because CFF is controls the mobility of the fluid part (Mergili and Pudasaini, 700 

2024; Mergili et al., 2017). This suggests that CFF could exert a substantial influence, 701 

particularly in modelling scenarios encompassing longer flow distances. 702 

5.5 Key points from the comparison of all parameters and the way forward 703 

Identifying the most accurate parameter values or optimal datasets can be achieved through 704 

validation with well-constrained historical events (Zheng et al., 2021a; Schneider et al., 2014; 705 

Mergili et al., 2020b; Shugar et al., 2021), but there are limitations in the transferability of these 706 

findings due to the unique characteristics and initial conditions of each GLOF, such as varying 707 

volumes of solid and liquid. These specific conditions mean that the results of one modelled 708 

GLOF event might not accurately predict the behaviour of GLOFs in different regions or under 709 

different circumstances (Mergili et al., 2018a; Mergili et al., 2020b). Therefore, while these 710 

back-analysed parameter values can provide valuable insights, they need to be applied with 711 

caution and adapted to the specific context of each new GLOF scenario. This is emphasized 712 

by our finding that the characteristics of the modelled GLOF are substantially impacted by 713 

various parameters. As a result of these multiple sources of uncertainty in modelled GLOF, it 714 

could pose challenges in effectively communicating risks with communities and other 715 
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stakeholders (Thompson et al., 2020). We highlight that more sensitive parameters should be 716 

treated carefully in future GLOF modelling works by robustly considering associated 717 

uncertainties.  718 

Due to the high sensitivity of the model output on DEM resolution, we emphasize the critical 719 

importance of high-resolution and good-quality DEM (Uuemaa et al., 2020; Schumann and 720 

Bates, 2018), especially when modelling is aimed at producing hazard maps with higher 721 

granularity at the specific basin scale.  Specifically, DEMs should be the high spatial resolution, 722 

high vertical accuracy and recently produced, especially in areas of high relief and rapid 723 

landscape change such as in Himalaya (Schumann and Bates, 2018).  Previous studies have 724 

indicated that flood modelling accuracy can be improved by correcting the effect of DEM 725 

resolution and accuracy (Saksena and Merwade, 2015) or by merging with other high-726 

resolution and accurate DEMs (Muthusamy et al., 2021). These methods appear viable in the 727 

context of highly sparse coverage of high-resolution DEMs and the unaffordability of high-728 

resolution commercial DEMs, but the modelling results should still be interpreted with caution. 729 

On the other hand, whilst it poses computational challenges, especially with high-resolution 730 

DEMs, we believe that selecting a mesh size equivalent to the spatial resolution of the DEM 731 

could effectively mitigate uncertainty associated with mesh size variation. Models such as D-732 

Claw which features patch-based adaptive mesh refinement capability can be potentially used 733 

as alternative models, however, its use in GLOF modelling is limited so far (Iverson and 734 

George, 2014; George et al., 2017). 735 

Avalanche volume and δ exhibit a strong linear relationship with all output parameters. Whilst 736 

the linear relationship does not negate the influence these parameters have on flow 737 

characteristics, it suggests that model output errors resulting from uncertainties in these 738 

parameters might be predictably managed. This is essential since predicting the volume of 739 

mass movement involved in the forward modelling is highly challenging and determining an 740 

accurate value is impossible – the current challenge is rather to establish a likely envelope of 741 

volumes. However, such prediction should be bespoke to the particular events based on the 742 

initial parameters like estimated ice thickness, slope, and presence of permafrost. 743 

Furthermore, such predictions must also consider other factors, such as equifinality arising 744 

from the interaction of multiple parameters (Mergili et al., 2018a; Mergili et al., 2018b; Mergili 745 

et al., 2020b).  746 

The CE exhibits a linear relationship only with volume. This relationship with the volume is 747 

understandable, as the entrainment coefficient is a primary determinant of how much solid 748 

fraction of the flow is added due to erosions. However, the arrival time exhibits distinct 749 

thresholds at the entrainment coefficient 10-6.46 kg-1.  The decrease in flow arrival time 750 
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observed until a CE value of 10-6.46 kg-1 may be attributed to the flow being primarily dominated 751 

by the fluid component, with the contribution from erosion being negligible. However, the 752 

subsequent increase in flow arrival time as the CE value further increased from 10-6.46 kg-1 to 753 

10-5.85 kg-1 could be attributed to the effect of increasing concentration resulting from a higher 754 

rate of erosion.  This suggests that once this threshold is surpassed, the resulting peak flow 755 

and arrival time demonstrate a heightened sensitivity to variations in entrainment. 756 

Consequently, this sensitivity may translate to the flow characteristics such as flow height and 757 

arrival and arrival time which are essential for hazard and risk assessments. It is important to 758 

note that this threshold value may vary across different GLOF events due to the diverse 759 

combinations of other parameters.  760 

The linearity demonstrated by the initial volume of avalanches entering the lake and δ warrants 761 

further investigation into flow characteristics resulting from variations in these parameters. 762 

Further investigation with adequate sample sizes and a reliable statistical approach would 763 

enable the establishment of accurate relationships or predictor values. The threshold effect 764 

observed in the CE value also warrants further investigation using statistically conclusive 765 

samples to determine whether the threshold value is universal across different events or 766 

specific to individual occurrences. For factors such as internal friction angle, fluid friction 767 

number, and ρS, the conservative values may suffice or receive less emphasis, particularly 768 

considering the numerous parameters involved in GLOF modelling. 769 

The r.avaflow model provides comprehensive and open-source codes for simulating 770 

cascading mass flow in complex topographies (Mergili and Pudasaini, 2024). Its 771 

comprehensiveness stems from the wide range of parameters it considers, making it a 772 

versatile tool for various mass flow process chain simulations (Mergili et al., 2017). Past 773 

studies have demonstrated the model's ability to accurately back-calculate historical events 774 

with detail (Shugar et al., 2021). However, challenges persist in its application to forward 775 

modelling (Allen et al., 2022; Sattar et al., 2023), particularly in the context of GLOF hazard 776 

and risk assessment (Mergili et al., 2020b). In our study, we conducted a robust sensitivity 777 

analysis considering nine parameters relevant to GLOF towards addressing these challenges. 778 

Since we identified the key parameters that significantly influence the modelled GLOF output, 779 

our result can be used as a basis for further improvement and optimization of r.avaflow 780 

modelling codes.  781 

The GLOF simulations were conducted using the r.avaflow model due to its capability to model 782 

the entire GLOF process chain (Mergili and Pudasaini, 2024; Mergili et al., 2017). While we 783 

present the uncertainty involved in the full process chain GLOF from mass movement entering 784 

the lake to downstream propagation, we specifically explored the uncertainty of the GLOF 785 
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input parameters relevant to r.avaflow modelling. Input parameters such as DEM datasets, 786 

and the volume and density of mass movement involved in a GLOF event, might be similar 787 

across different models. However, we caution that the parameters tested here do not 788 

necessarily apply to all models used for GLOF modelling.  789 

The flow arrival time was measured from the profile located 3 km, 6 and 9 km downstream of 790 

the lake since some of our modelled GLOF terminates before proceeding further downstream. 791 

This is a reasonable point as human settlement downstream of the lake is mostly concentrated 792 

around this area. The variation of flow arrival time might be underestimated if the location is 793 

farther downstream from the lake.  794 

Here we focused on nine essential parameters in r.avaflow, which are relevant to GLOF 795 

modelling. However, including inbuilt modules, initial conditions, and all flow parameters, 796 

r.avaflow has more than 30 parameters (Mergili and Pudasaini, 2024) (Table S1). Thus, our 797 

sensitivity analysis might have potentially overlooked the complexity of r.avaflow stemming 798 

from the effect of all these parameters.  799 

One-at-a-time sensitivity analysis we used here, inherently lacks consideration for parameter 800 

interactions and may have potentially overlooked important relationships (Saltelli et al., 2004). 801 

Moreover, due to the immense computational cost of r.avaflow, we used only 10 simulations. 802 

While this number of simulations for each parameter produced substantially conclusive 803 

results, we do not discount the robustness of global sensitivity analysis employing an adequate 804 

sampling size. Future studies should focus on testing further r.avaflow parameters and in-805 

depth model analysis by employing a statistically sufficient sampling size. 806 

6 Conclusions 807 

GLOFs present substantial dangers to communities residing in valleys downstream of glacial 808 

lakes. GLOFs involve complex cascading processes and typically occur across rugged 809 

mountain terrains. Due to these complexities, modelling GLOFs necessitates extensive input 810 

data, parameters, and complex modelling codes for accurate hazard and risk assessments, 811 

which is inherently challenging. However, previous studies have mostly relied on open-access 812 

data and are grounded in a historical event introducing significant uncertainties to the 813 

modelling results. In this study, we have, for the first time, conducted sensitivity analysis 814 

considering multiple GLOF parameters and ranked these inputs based on how their 815 

uncertainties in input values apportion to the variation in modelling output, by employing 816 

cutting-edge modelling code, r.avaflow.  Our results suggested GLOF modelling outputs such 817 

as peak and total discharge are substantially sensitive to variation in input values of six out of 818 
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nine parameters we tested here. Specifically, the modelling outputs are the most sensitive to 819 

the volume of avalanches entering lakes followed by the variation in DEM datasets and the 820 

location of origin of mass movement entering the lake. Other parameters like mesh size, basal 821 

frictional angle, and entrainment coefficient also showed significant sensitivity. Although 822 

limited to GLOF modelling with the r.avaflow model, our study emphasizes that GLOF 823 

modelling results are influenced by uncertainties stemming from various sources, 824 

underscoring the need for careful interpretation of the modelling results. By ranking the model 825 

parameters according to their impact on model output, our study prioritizes model input 826 

parameters for future modelling efforts, given the challenge of adequately constraining multiple 827 

parameters. Additionally, this study lays the groundwork for a thorough investigation into the 828 

most sensitive parameters, to improve our understanding of GLOF modelling. 829 
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