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Abstract. Climate extremes are projected to cause unprecedented deviations in the emission and transformation of 15 

volatile organic compounds (VOCs), which trigger feedback mechanisms that will impact the atmospheric oxidation 16 

and formation of aerosols and clouds. However, the response of VOCs to future conditions such as extreme heat and 17 

wildfire events is still uncertain. This study explored the modification of the mixing ratio and distribution of several 18 

anthropogenic and biogenic VOCs in a temperate oak–hickory–juniper forest as a response to increased temperature 19 

and transported biomass burning plumes. A chemical ionization mass spectrometer was deployed on a tower at a 20 

height of 32 m in rural central Missouri, United States, for the continuous and in situ measurement of VOCs from 21 

June to August of 2023. The maximum observed temperature in the region was 38°C, and during multiple episodes 22 

the temperature remained above 32°C for several hours. Biogenic VOCs such as isoprene and monoterpene followed 23 

closely the temperature daily profile but at varying rates, whereas anthropogenic VOCs were insensitive to elevated 24 

temperature. During the measurement period, wildfire emissions were transported to the site and substantially 25 

increased the mixing ratios of acetonitrile and benzene, which are produced from burning of biomass. An in-depth 26 

analysis of the mass spectra revealed more than 250 minor compounds, such as formamide and methylglyoxal. 27 

Extreme heat and presence of wildfire plumes modified the overall volatility, reactivity, O:C, and H:C ratios of the 28 

extended list of VOCs . The calculated OH reactivities during extreme temperature condition and transport of biomass 29 

burning plumes were 106.37 ± 4.27 s⁻¹ and 106.22 ± 5.15 s⁻¹, respectively, which are substantially higher than 30 

background level of  98.78 ±1.16 s-1. Multivariate analysis also clustered the compounds into five factors, which 31 

highlighted the sources of the unaccounted-for VOCs. Ultimately, results here underscore the effect of extreme heat 32 

and wildfire emissions on the overall chemical properties VOC in a temperate forest.  33 
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1. Introduction 41 

Future global climate, with continuing greenhouse gas emissions such as CO2 from the burning of fossil fuels, is 42 

expected to have warmer temperatures that impact critical atmospheric processes. Global averaged surface air 43 

temperature is projected to exceed 1.5°C relative to 1850–1900 by the year 2030, regardless of the emission scenarios. 44 

Looking further to the future, 2081 to 2100 will experience an additional increase of 0.2°C–1.0°C and 2.4°C–4.8°C 45 

in low and high emissions scenarios, respectively (Lee et al., 2021). The heating of the atmosphere in the future will 46 

have severe effects on several atmospheric constituents and processes. For instance, a series of models have shown 47 

that warming due to greenhouse gas emissions will induce an increase in the global annual average mixing ratios of 48 

particles with less than 2.5 µm diameter (PM2.5) (Park et al., 2020), which will have implications for air quality, 49 

climate, and human cardiovascular health. By 2050, the elevated temperature is projected to increase PM2.5 by  50 

2–3 µg m−3 in the summer of the eastern United States as a consequence of faster oxidation rates and elevated 51 

production of organic aerosols (Shen et al., 2017). There is thus an urgent need to elucidate the impact of extreme heat 52 

on atmospheric processes, including the emission and transformation of organic compounds, to understand future 53 

aerosol-generating scenarios.  54 

 55 

One potential effect of overall atmospheric warming is the change in global wildfire frequency (Varga et al., 2022; 56 

Sarris et al., 2014; Ruffault embus al., 2018). At elevated temperatures, evaporation of soil moisture and generation 57 

of more fuel from drying vegetation are more pronounced, thus inducing more wildfire events (Juang et al., 2022). 58 

Beyond the CO2 emissions, wildfires generate thousands of carbonaceous compounds that impact global climate air 59 

quality and human health (Schneider et al., 2024a). With the elevated prevalence of wildfires with prolonged duration, 60 

extreme wildfire events are expected to impact the future mixing ratio and distribution of atmospheric chemical 61 

compounds that influence relevant processes such as aerosol and cloud formation. For instance, global-scale airborne 62 

measurements showed increased tropospheric ozone in air masses influenced by biomass-burning (BB) events 63 

(Bourgeois et al., 2021). Long-term analysis of wildfire events in Western Canada (2001–2019) also indicated an 64 

increase in the average ozone mixing ratio (~2 ppb), particularly during events with high mixing ratios of atmospheric 65 

aerosols from wildfire (Schneider et al., 2024b). Ozone enhancement may lead to elevated atmospheric oxidation 66 

capacity that can initiate more secondary pollutant formation.  67 

 68 

Among the chemical components of the atmosphere, the abundance of volatile organic compounds (VOCs) is expected 69 

to respond to extreme heat and wildfire emissions. VOCs, particularly the unsaturated compounds, interact with 70 

oxidants such as hydroxyl (OH) and nitrate (NO3) radicals, which subsequently create ozone and oxidized molecules 71 

(Hakola et al., 2012; Ramasamy et al., 2016; Spirig et al., 2004; Vermeuel et al., 2023).  Further reaction products 72 

such as highly oxidized molecules also participate in the formation of particles that subsequently act as cloud 73 

condensation nuclei (Chen et al., 2022; Hallquist et al., 2009). The emission and transformation of VOCs highly 74 

depend on environmental parameters such as temperature, relative humidity, and solar radiation. For instance,  75 

biogenic volatile organic compounds (BVOCs) exhibit an exponential temperature dependence, whereby an increase 76 

in temperature accelerates both their production and release from plant tissues. (Guenther et al., 1993; Rinnan et al., 77 
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2020). However, the degree of changes under future climate conditions is still uncertain (i.e., suppression or 78 

enhancement) (Daussy and Staudt, 2020). A global estimate of isoprene emissions with temperature and land-cover 79 

drivers under future scenario (year: 2070-2099) was 889 Tg yr−1, substantially higher compared to that expected using 80 

current climatological and land-cover conditions (522 Tg yr−1) (Wiedinmyer et al., 2006). Moreover, CO2, which is 81 

expected to rise in the future climate, can substantially decrease the emission of isoprene from vegetation (Lantz et 82 

al., 2019a). On the other hand, empirical results and modeling efforts suggest that future elevated temperatures could 83 

suppress the impact of CO2 on isoprene emissions, thus increasing the uncertainty of future climate’s influence on the 84 

emission of isoprene (Lantz et al., 2019b; Sahu et al., 2023). Moreover, BB events such as wildfires are considered as 85 

the second-largest source of VOCs globally, further influencing air quality and climate  (Jin et al., 2023; Yokelson et 86 

al., 2008). During wildfire events, the burning of vegetation and other biomass induce the pyrolysis of plant materials 87 

which ultimately release hundreds of VOCs during the process (Ciccioli et al., 2014) (Hatch et al., 2015; Koss et al., 88 

2018; Selimovic et al., 2018; Binte Shahid et al., 2024). Typical VOCs emitted from wildfires include acrolein, 89 

acetonitrile, pyrrole, styrene, guaiacol, toluene, phenol, and catechol (Liang et al., 2022; Jin et al., 2023). Benzene, a 90 

common compound emitted during wildfire events, has been found to be more than ten times the typical concentration 91 

in metropolitan areas, thereby posing elevated health risks (Ketcherside et al., 2024). Beyond their health impacts, the 92 

emitted reactive carbon- and nitrogen-containing compounds can significantly alter several critical atmospheric 93 

processes, including ozone formation and particle formation events. However, the relative importance and contribution 94 

of volatile organic compounds (VOCs) from wildfire activities to atmospheric reactivity remain uncertain, even with 95 

several studies tackling the problem. (Gilman et al., 2015; Kumar et al., 2018; Permar et al., 2023) . A comprehensive 96 

understanding of the interactions between future abiotic factors and VOC emissions is essential for accurately 97 

predicting future air quality and climate scenarios. 98 

 99 

In this work, we conducted a field campaign in the summer of 2023 to quantify the variability of VOCs over a 100 

temperate oak–hickory–juniper (Quercus–Carya–Juniperus) forest in the Ozark Border Region of central Missouri. 101 

The primary goal of the campaign was to examine the influence of temperature on VOCs. We deployed a high-102 

resolution chemical ionization mass spectrometer to continuously measure VOC concentrations. We were also able to 103 

incorporate opportunistic analyses of the impact of wildfire emissions on the variability of VOCs due to the smoke 104 

that reached our site because of extreme forest biomass burning activity in Canada. 105 

  106 
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2. Experimental Designs 107 

2.1 Site Description and Meteorological Data 108 

 109 

Figure 1. Map of the MOFLUX site located in Missouri. The circle indicates a 50 km radius from the site. The figure 110 
illustrates the interstate and forested areas, which may contribute to the sources of anthropogenic and biogenic VOCs 111 
in the temperate forest. 112 

Measurements were conducted at the Missouri Ozark AmeriFlux (MOFLUX) site (latitude: 38° 44' 38.76'' N, 113 

longitude: 92° 12' 0'' W) in central Missouri, United States (see Figure 1). The MOFLUX site is registered with the 114 

AmeriFlux (ID: US-MOz) and PhenoCam networks (ID: missouriozarks). The campaign was conducted during the 115 

summer of 2023, between June 25 and August 12. The site is situated in the Baskett Wildfire Research and Education 116 

Area. The primary sources of  BVOCs were oaks (white and black), sugar maple, shagbark hickory, and eastern red 117 

cedar (Geron et al., 2016). The subtropical/mid-latitude continental characteristics of the area provide a warm and 118 

humid overall climate for the forest. Long-term measurements of meteorological parameters (1981–2010) at a nearby 119 

airport  (~10 km) indicated that the average temperature for July was 25.2°C (National Climatic Data Center citation). 120 

Typical precipitation (annual average: 108.2 cm) is fairly evenly distributed through the yearly cycle. More 121 

information regarding the site is provided elsewhere (Gu et al., 2015). 122 

 123 

 124 

 125 
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 126 

Figure 2. Time series profile of (A) temperature, (B) relative humidity, RH, and (C) downward solar radiation at the 127 
temperate mixed deciduous forest in Missouri. The dotted line in the temperature plot is the average value during the 128 
measurement duration, and the shaded filled area denotes the extreme temperature conditions (>32°C). 129 

The Ozark Plateau (Wiedinmyer et al., 2005), and this site in particular, is a known hotspot for emissions of BVOCs 130 

such as isoprene and monoterpene. Drought is a critical event at MOFLUX, as such environmental stress induced the 131 

highest ecosystem isoprene emission ever recorded for a temperate forest in 2011 (53.3 mg m−2 h−1) (Potosnak et al., 132 

2014). Field measurement campaign in 2012 in MOFLUX reported isoprene reaching a maximum concentration of 133 

28.9 ppbv, while monoterpenes peaked at 1.37 ppbv over half-hour intervals (Seco et al., 2015). Moreover, the site is 134 

about 5 km away from a major highway, thus anthropogenic VOCs (AVOCs) such as benzene and toluene from 135 

vehicle exhausts are expected to be transported into the forest. Given these strong emitters of BVOCs and the evident 136 

transport of AVOCs into the forest, the study area proved to be a good test bed for measurement of the overall response 137 

of VOCs to abiotic stress in a way that simulates possible future atmospheric conditions.  138 

 139 

Figure 2 shows the time series profile of hourly averages of temperature and relative humidity collected from 140 

Columbia Regional Airport (latitude: 38° 49' 1.2'' N, longitude: 92° 13' 15.6'' W) approximately 8.5 km from the 141 

MOFLUX site. Downward solar radiation data were measured at a weather site in Ashland, MO (latitude: 38° 43' 142 
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19.2'' N,  longitude: 92° 15' 10.8'' W), 5.22 km from the MOFLUX tower The data were accessed using the MesoWest 143 

online website (https://mesowest.utah.edu/) provided by the Department of Atmospheric Sciences, University of Utah. 144 

The average (absolute min-max) temperature, relative humidity (RH), downward solar radiation, and wind speed (not 145 

shown in the figure), were 26°C (16–38°C), 69.01% (26.43–99.02),  146 

228 W m−2 (0–1028 W m-2), and 3.2 m s−2 (0–11.27 m s−2) during the time of VOC measurements. The diurnal profiles 147 

of the meteorological conditions are provided in the supplement. During the weeks of July 4 and July 11, 64 and 100% 148 

cumulative percent area reported abnormally dry conditions (D0, US Drought Monitor Category). Drought data were 149 

accessed from the U.S. Drought Monitor (https://droughtmonitor.unl.edu/). Smoke concentrations (in mg m−3) were 150 

estimated from the High-Resolution Rapid Refresh (HRRR) 3-km weather model for Missouri at 6-hour intervals for 151 

the duration of the VOC data measurement period The HRRR model generates weather forecast for the entire 152 

continental US. The Smoke model is based on single smoke tracer, plume rise parametrization, and satellite fire 153 

radiative power processing (Chow et al., 2022). Values ranged from 0 to 10 mg m−3 during 80% of the measurement 154 

dates (overall average was 7.33 mg m−3) but reached a maximum of 175 mg m−3 on July 16 in association with drift 155 

from large Canadian wildfires. Backward airmass trajectories were estimated using the Hybrid Single-Particle 156 

Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). The backward trajectories were calculated 157 

based on single trajectory, 500 m above ground level height, 24-hour duration and model vertical velocity as the 158 

motion calculation method. The meteorology used for the calculation was based on 1-degree Global Data Assimilation 159 

System (GDAS1).  160 

 161 

2.2 VOC Measurement and Identification 162 

VOCs were measured using a proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS 6000 X2) 163 

(Ionicon Analytik Ges.m.b.H., Innsbruck, Austria). The mass resolution of the technique (6000 m/Δm) provided an 164 

extended list of VOCs, beyond the usual routinely evaluated compounds (e.g., methanol, isoprene, and 165 

monoterpene).The PTR-ToF-MS was located in a climate-controlled cabin at the base of the MOFLUX tower. A 166 

detailed description of the general mechanism of the PTR-ToF-MS can be found in  the supplementary file and 167 

elsewhere (Yuan et al., 2017). The PTR-ToF-MS was calibrated regularly every two weeks for 50 minutes using a 168 

110-ppb mixture of gases (isoprene, limonene, benzene, toluene, ethylbenzene, dichlorobenzene, trichlorobenzene, 169 

and trimethylbenzene, Restek Corp). The linear calibration curve for each standard compound consisted of eleven data 170 

points, with mixing ratios ranging between 1.89 and 50.9 ppb. The same compounds were used to calculate the mixing 171 

ratio of other compounds using the transmission efficiency and first-order kinetic reaction. PTR-ToF-MS can provide 172 

quantitative measurement of compounds without standard gas available using mass dependent transmission analysis.  173 

Instrument blank was measured hourly using a series of switching valves and Ultra Zero grade air (Airgas). 174 

 175 

Ambient air was sampled from the MOFLUX tower with the height of 32 meters. The air was drawn at the top of the 176 

tower using a 65-meter overall length with ½ in. OD PFA tube (McMaster-Carr) and a GAST compressor/vacuum 177 

pump with a mass flow controller (Alicat Scientific, Inc) set at 20 L min−1. A Teflon filter with 47 mm diameter was 178 

https://mesowest.utah.edu/
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attached to inlet to prevent particles from entering the sampling line. The VOC data was collected using 100 179 

millisecond time resolution and averaged hourly during the data processing and reporting. 180 

 181 

High-resolution peak analysis, chemical formula identification, and data quantification were performed using the 182 

IONICON data Analyzer (IDA). IDA identified more than 1000 ions, which were subsequently reduced to 275 peaks 183 

with more than 5 parts per trillion (ppt) mixing ratios above the average blank data 184 

 The chemical identification procedure was complemented by an analysis using ChemCalc, which also provided the 185 

theoretical masses and degree of saturation (Patiny and Borel, 2013).  186 

 187 

The volatility of the extended list of VOCs was assessed by estimating the effective saturation mass mixing ratio (Csat). 188 

The parameterization of the volatility, based on the number of carbon, oxygen, and nitrogen atoms (Donahue et al., 189 

2011; Mohr et al., 2019), was calculated using the following equation:  190 

𝑙𝑜𝑔(𝐶𝑠𝑎𝑡) = (𝑛𝑂∗ − 𝑛𝐶)𝑏𝐶 − (𝑛𝑂 − 3𝑛𝑁)𝑏𝑂 − 2
(𝑛𝑂 − 3𝑛𝑁)𝑛𝐶

(𝑛𝐶 + 𝑛𝑂 − 3𝑛𝑁)
𝑏𝐶𝑂 − 𝑛𝑁𝑏𝑁             (3) 191 

where n0* = 25, bC = 0.475, bO = 0.2, bCO = 0.9, and bN = 2.5. The terms nC, nO, and nN are the number of carbon, 192 

oxygen, and nitrogen atoms, respectively.  193 

 194 

The total calculated OH reactivity (R) was obtained from the measured concentration of the VOCs using the following 195 

equation similar to a prior study (Wang et al., 2021): 196 

𝑅 =  𝛴𝑘𝑉𝑂𝐶𝑖+𝑂𝐻[𝑉𝑂𝐶𝑖]          (4) 197 

where [VOCi] is the concentration of the volatile organic compounds measured by the PTR-ToF-MS and kVOC+OH  198 

(cm3 molecule–1 s–1) are the reaction rate constant between the OH and VOC. The reaction rate constant were 199 

calculated bases on the available data from the National Institute of Standards and Technology (NIST) Chemical 200 

Kinetics Database which compiled kinetics data on gas phase reactions (https://kinetics.nist.gov/kinetics/). All 201 

molecular formulas identified from more than 250 ions were subjected to Reaction Database Quick Search Form. The 202 

calculation of the reaction rate constant incorporated the hourly temperature conditions observed during the field 203 

campaign. Only records with available activation energy (Ea) and pre-exponential factor (A), along with temperature 204 

range (20-36 °C) similar to the observed conditions in the temperate forest, were considered in the calculation. To 205 

address molecular formulas with multiple records, the median value of the rate constants was employed. For example, 206 

the reaction rate constant for the class of monoterpene was derived from literature values of several compounds, 207 

including α-pinene, β-pinene, 3-carene, limonene, camphene, and β-ocimene. The median reaction rate constant across 208 

all these monoterpenes was then utilized to calculate the OH reactivity. 209 

2.3 Source and Process Signature Analysis of VOCs using Multivariate Analysis  210 

Determination of the source signature or emission profile of the VOCs is critical in assessing the dominant 211 

anthropogenic and biogenic activities that impact the atmospheric reactivity from VOCs. Here, multivariate analysis 212 

was applied to the observed VOC mixing ratios using non-negative matrix factorization (NNMF). Because NNMF 213 

https://kinetics.nist.gov/kinetics/
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requires no uncertainty for the calculation procedure, it has an advantage over positive matrix factorization, which is 214 

typically implemented for a mixture of organic compounds in the gas and particle phase (Salvador et al., 2022). NNMF 215 

is expressed as:  216 

𝐴𝑚×𝑛 = 𝑊𝑚×𝑘𝐻𝑘×𝑛 + 𝜎𝑚×𝑛 (5) 217 

 218 

where A is the input matrix with dimensions of m and n containing non-negative elements, W and H are species 219 

fingerprint and coefficient matrices, k is the lowest rank approximation or the optimal factor, and σ is the residual 220 

between the left and right sides of the equation. The VOC mixing ratio data with a matrix of 196 × 274 dimensions 221 

was employed as the input for the NNMF routine program in MATLAB. The NNMF was applied for a 10-factor series 222 

with 30 replicates, 1000 iterations, and a multiplicative update algorithm. Replicates are the number of times program 223 

will perform the factorization, with every replicate starting with random values for W and H. Iteration is the input 224 

value for the maximum iteration in the optimization settings for convergence purposes. The NNMF at MATLAB can 225 

be performed either as alternating least square (als) or multiplicative update algorithm (mult). This study implemented 226 

the mult factorization algorithm as it has faster iterations and more sensitive to starting values.  227 

  228 
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3. Results and Discussion 229 

3.1 General Overview of the Major VOCs 230 

 231 

Figure 3. (A-C) Average mixing ratio in ppb and (E-M) average diurnal profile of major VOCs at MOFLUX . Also 232 
included here is the average diurnal profile of (D) temperature for reference. Time reported here is the local daylight 233 
time. The center lines of the box and whisker plots are the mean mixing ratio. Box edges are quartiles, and lower 234 
(upper) corresponds to 25th (75th). Whiskers represent 1.5 times the interquartile range. Symbols outside the box plot 235 
are outliers. Diurnal profiles have a unit of ppb mixing ratio. MVK and MACr are methyl vinyl ketone and 236 
methacrolein. The error bars are represented by standard error. 237 
 238 
Many VOCs (n = 275) were detected in the ambient air throughout the three-month measurement period. Figure 3 239 

shows the average mixing ratio of the dominant VOCs observed in the temperate forest. Among the VOCs, methanol 240 

and acetone recorded the highest mixing ratios. Methanol and acetone are the most abundant nonmethane organic 241 

gases in the troposphere and are emitted by terrestrial plants during growth stages (Bates et al., 2021; Hu et al., 2013; 242 

Wells et al., 2014). Mean mixing ratios of methanol and acetone were 23 ppb, consistent with a prior study done in 243 

MOFLUX, in which half-hour averages of methanol ranged between 1.9 and 26 ppb (Seco et al., 2015). Here, the 244 

maximum hourly average mixing ratio of methanol reached as high as 59 ppb, which occurred at 6:00 pm on the 30th 245 

of June. Methanol also showed a diurnal profile with a daily peak at noon, which was an indication of a photochemical 246 
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source. Besides the terrestrial emissions of methanol, the secondary production of methanol from organic 247 

peroxyradicals (e.g., CH3O2) contributes substantially to the methanol budget (Bates et al., 2021).  248 

 249 

Also shown in Figure 3 are the average mixing ratios of isoprene and its primary oxidation products, methyl vinyl 250 

ketone and methacrolein (MVK+MACr). Isoprene is the most dominant BVOC, contributing around 50% to the total 251 

global emission (Guenther et al., 2012).  Isoprene substantially influences the surface ozone concentration and 252 

secondary organic aerosol formation, which is attributed to isoprene’s reactivity to ozone, OH, and nitrate (NO3) 253 

radicals (Wennberg et al., 2018). Besides the photochemical oxidation of isoprene, MVK and MACr have other 254 

sources, such as Biomass Burning (BB) and gasoline vehicular emissions (Ling et al., 2019). Isoprene also generates 255 

MVK during nighttime through the dominant β-RO2 isomer formation pathway (Ng et al., 2017). Isoprene’s emission 256 

rate at MOFLUX was previously reported as one of the highest for canopy-scale emissions (53.3 mg m−2 h−1) 257 

(Potosnak et al., 2014). This was evident in our measurement, where the average mixing ratio of isoprene during the 258 

intensive observation period was 10.32 ppb, and MVK + MACr had a similar mean mixing ratio. The isoprene mixing 259 

ratio reached as much as 75 ppb, which occurred at 1:00 pm on July 4. Observed isoprene mixing ratios were 260 

substantially elevated compared to other similar temperate forests in the United Kingdom (~8 ppb) (Ferracci et al., 261 

2020), deciduous forest in Michigan, USA (~1.5 ppb) (Kanawade et al., 2011), and mixed temperate forest in Canada 262 

(~0.01 ppb) (Fuentes and Wang, 1999). For MVK+MACr, prior measurements in similar environments reported 263 

mixing ratios below 2.0 ppb (Safronov et al., 2019; Shtabkin et al., 2019; Montzka et al., 1995) highlighting the intense 264 

production of MVK+MACr at MOFLUX. Interestingly, the most elevated mixing ratio of MVK+MACr (58 ppb) 265 

occurred on a different day (6/28) and later in the night (8:00 pm); this result was attributed to other sources of MVK 266 

and MACr. Nevertheless, the MVK showed a similar diurnal profile with isoprene, which suggested that 267 

photochemical oxidation of isoprene was the dominant source of MVK+MACr observed in MOFLUX. Also, diurnal 268 

profiles, as indicated in Figure 3, showed that MVK+MACr still persisted even with the reduction of the isoprene at 269 

nighttime. This was attributed to the longer atmospheric lifetime and lesser reactivity of MVK+MACr. Furthermore, 270 

The ratio between isoprene and MACR + MVK indicates the lifetime of the isoprene and degree of oxidation of 271 

isoprene to MVK and MACr. Greater than value of 1.0 observed in MOFLUX suggests transport time shorter than 272 

one isoprene lifetime, as indicated in the previous studies (Selimovic et al., 2022; Hu et al., 2015). 273 

 274 

Monoterpene, a critical contributor to ozone and secondary aerosol formation (Salvador et al., 2020a; Salvador et al., 275 

2020b), is a class of organic compounds with the formula C10H16 such as α-pinene, β-pinene, limonene, δ-carene, 276 

ocimene, and sabinene, and its distribution varies significantly based on the vegetation species. At MOFLUX, 277 

monoterpene had an average mixing ratio of less than 0.2 ppb, as shown in Figure 3. Throughout the measurement 278 

duration, the maximum mixing ratio of monoterpene was 0.9 ppb. This ambient level is similar to a prior measurement 279 

at the MOFLUX site (Seco et al., 2015), as well as observations of monoterpene in other temperate forests in 280 

Wisconsin, USA, and Wakayama, Japan (Vermeuel et al., 2023; Ramasamy et al., 2016). Particle size distribution 281 

analysis (see Figure S2) at our temperate forest indicated no evident particle formation events. Particles >50 nm in 282 

diameter were observed with no apparent aerosol growth (see Figure S2). The average geometric mean diameter in 283 
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MOFLUX site was 85.53 ± 16.68 nm. Prior study also showed less frequent new particle formation events, particularly 284 

during the influence of southerly air masses rich in BVOCs (Yu et al., 2014). The most probable reason for the 285 

presence of these particles was the isoprene-rich condition of the temperate forest that impacted the aerosol nucleation, 286 

even with enough monoterpene and ozone available for particle formation. Prior plant chamber analysis indicated that 287 

the suppression of new particle formation was dependent on the ratio of isoprene carbon to monoterpene carbon 288 

(Kiendler-Scharr et al., 2009). The mixing of isoprene and monoterpene also impacts the atmospheric oxidation 289 

capacity, in which isoprene scavenges the OH radicals (Mcfiggans et al., 2019). Recent studies also showed that the 290 

mixing of isoprene to monoterpene reduced C20 dimers that drive aerosol formation at mixed biogenic precursor 291 

systems (Heinritzi et al., 2020). At MOFLUX, the median ratio of isoprene carbon to monoterpene carbon was 42, 292 

which is significantly higher compared to measurements in forests in Alabama (Lee et al., 2016), Michigan (Kanawade 293 

et al., 2011), the Amazon (Greenberg et al., 2004), and Finland (Spirig et al., 2004). Ratios above 20 completely limit 294 

the formation of aerosols, which is consistent with the observations at MOFLUX.  295 

 296 

Besides biogenic VOCs, several anthropogenic-related VOCs were detected in the temperate forest. The site is about 297 

5 km away from a major highway, which possibly contributed to the diversity of VOCs at MOFLUX. During the 298 

measurement period, benzene, a VOC usually emitted from automobile exhausts, had a mean mixing ratio of  299 

0.42 ppb, with a maximum of 2.2 ppb. Benzene had mixing ratio peaks consistent with the traffic (8:00 and 20:00) 300 

with no evident noontime peak. Similar to biogenic precursors, benzene can also initiate particle formation events, 301 

particularly at low NOx conditions (Ng et al., 2007; Li et al., 2016). The mixing of the biogenic (e.g., isoprene and 302 

monoterpene) and anthropogenic VOCs (e.g., benzene) at MOFLUX can introduce unaccounted-for molecular 303 

interactions (Voliotis et al., 2021) that can influence the formation of aerosols in the forest. Toluene, another important 304 

aromatic VOC from urban emissions, was also observed at a significant amount at the site (~0.3 ppb, mean) with a 305 

max mixing ratio of 3.4 ppb. The noontime peak of the toluene daily cycle was unexpected because it usually tracks 306 

with traffic conditions. Interference of para-cymene fragmentation in the drift tube of the PTR-ToF-MS at mass 93 307 

(Ambrose et al., 2010) might have impacted the observed concentrations at MOFLUX although we also do not 308 

discount the emission of toluene from vegetation (Heiden et al., 1999) .   309 

3.2 Impact of Extreme Temperatures on VOCs 310 

During some parts of the measurement period, mid-Missouri experienced extreme temperature conditions that 311 

impacted the physiochemical processes of the vegetation and the atmosphere. During the measurement period, the 312 

average temperature was 26°C, and the highest hourly value was 38°C. The average temperature was close to the 313 

reported long-term mean temperature in the region; however, the period of measurement exhibited extreme 314 

temperatures that impacted VOC emissions. Diurnal profile temperature showed a daily peak occurring at 15:00, 315 

which typically had a 29.9°C mean temperature. The extreme temperature, defined by an hourly mean temperature 316 

over 32 °C, was similar to the projected climate scenarios that temperature will increase by 2–4°C by 2100 (Collins 317 

et al., 2013). The extreme temperature defined in this study aligns with the heatwave definition (Perkins and 318 

Alexander, 2013; Perkins-Kirkpatrick and Gibson, 2017), wherein the 90th percentile temperature for the month of 319 
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July from 2015 to 2024 is 32°C. The extreme temperature occurred for more than 100 hours (see Figure S1 for 320 

histogram).  321 

 322 

Figure 4. (A-B) Comparison of VOC mixing ratios for temperatures below and above 32°C. Catechol, not shown 323 
here, showed no evident difference between the two conditions (~30 ppt). The error bars in the bar chart are 324 
represented by standard error. (C-F) The correlation analysis of temperature with biogenic VOCs and benzene mixing 325 
ratios (in ppb). Correlation analysis of other major VOCs is provided in the supplement. Black symbols are the hourly 326 
data, whereas the red lines indicate the best-fit line of the binned mixing ratio of VOCs according to 1.0°C of 327 
temperature. The equation of the exponential fit line and correlation coefficients are given on the right side of the 328 
plot. 329 

The major BVOCs, isoprene and monoterpene, increased with temperature, as shown in Figure 4. Under extreme 330 

temperatures, the isoprene and monoterpene mixing ratios were 23 and 0.32 ppb, respectively, which were three times 331 

higher than the concentrations observed at temperatures below 32°C. The enhancement of isoprene and monoterpene 332 

also increased the reactivity of the atmosphere in the temperate forest, based on the calculated 8.31 s-1 increase in OH 333 

reactivity.  Furthermore, Figure 4 shows the evident exponential relationship between temperature and the major 334 

BVOCs, consistent with previous studies in which temperature controls the emission of isoprene and monoterpene 335 
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(Hu et al., 2015; Selimovic et al., 2022; Guenther et al., 2012). The empirically determined coefficients (β) for isoprene 336 

and monoterpene are 0.13 and 0.12, respectively. The emission of isoprene is linked to plant thermotolerance, which 337 

is the ability of plants to endure and adapt to high temperatures without experiencing detrimental effects on their 338 

growth (Sharkey et al., 2007; Duncan et al., 2009). While the dependence of monoterpene emissions on temperature 339 

appears similar, based on the empirically determined coefficients calculated in this study, the mechanisms for 340 

monoterpene release from vegetation differ from those of isoprene. This variation is primarily due to plants' ability to 341 

store monoterpenes and their high- water solubility and elevated temperature leads to vaporization of stored 342 

monoterpenes.  (Loreto and Schnitzler, 2010; Malik et al., 2019; Malik et al., 2023) 343 

MVK and MACr produced from the oxidation of isoprene showed a strong association with temperature. MVK and 344 

MACr reached a 20-ppb average mixing ratio during extreme temperature conditions. As shown in Figure 4, the 345 

concentration of MVK/MACr doubled during extreme temperature conditions compared at low temperatures. This is  346 

consistent with a prior study that showed the yield of MVK increased with temperature (Navarro et al., 2013) .  347 

 348 

Anthropogenic tracers such as benzene and xylene did not show dependence on temperature, unlike some BVOCs.  349 

Remarkably, the toluene mixing ratio (0.73 ppb) doubled at higher temperatures, unlike the benzene and xylene. This 350 

result further supports our initial claim that the compound occurring at mass 93 originates from the fragmentation of 351 

monoterpene or from the emission of toluene from biogenic activities. The correlation plot in the supplement (Figure 352 

S4) shows a direct relationship between the two compounds. 353 

 354 

Overall, extreme temperature conditions had a mixed impact on the VOCs observed in the temperate forest. Urban 355 

and wildfire markers showed insensitivity to temperature variation. On the other hand, BVOCs such as isoprene, 356 

MVK+MACr, and monoterpene showed exponential responses but at varying rates. The alteration of VOC distribution 357 

due to enhanced temperature has implications on the formation of secondary aerosols, particularly under expected 358 

elevated temperatures under future climate regimes. Recent laboratory chamber studies have shown that unexpected 359 

interaction of individual VOCs (e.g., isoprene, monoterpene, toluene, xylene, and trimethylbenzene) during the 360 

oxidation process produced intermediates and products that impacted the yields, volatility, and other physiochemical 361 

properties of aerosols (Voliotis et al., 2021; Takeuchi et al., 2022; Chen et al., 2022).  362 

3.3 Transport of Emissions from Forest Fires 363 

In 2023, severe wildfires that were initiated by summer lightning storms occurred over several boreal forests in 364 

Canada, which resulted in burning of more than 156,000 km2 of cumulative area that accounted for at least 1.7% of 365 

Canada’s land area (Wang et al., 2023). Between May and September of 2023, carbon emissions from fires reached 366 

more than 638 Tg C based on satellite observations (Byrne et al., 2023). In MOFLUX, typical gas phase BB tracers 367 

were observed in substantial amounts. Acetonitrile, one of the prominent BB markers (Huangfu et al., 2021), had 368 

mean and maximum mixing ratios of 1.56 ppb and 4.45 ppb, respectively. Such values are beyond the mixing ratio 369 

range (0.047 to 1.08 ppb) of acetonitrile recorded in Asian, US, and European regions (Huangfu et al., 2021), implying 370 

the severe impact of BB. Acetonitrile did not exhibit a typical daily cycle, aligning with the unpredictable emissions 371 



 

14 
 

and transport dynamics characteristic of biomass burning events. Another prominent BB marker measured at the site 372 

was catechol, an aromatic compound directly emitted from wildfire processes. At MOFLUX, catechol had a mean 373 

level of 30 ppt but increased significantly to 300 ppt on some days. Catechol had a minor peak during the daytime, 374 

which can be attributed to the photochemical processing of phenol (Finewax et al., 2018), another aromatic VOC 375 

emitted during BB events. Moreover, acetonitrile (r = 0.53) and catechol (r = 0.017) also did not follow the trend of 376 

temperature  377 

 378 

Two air pollution episodes (June 24 to July 1 and July 15 to 17) resulting from these wildfires affected the field 379 

measurement at MOFLUX. Figure 5 shows the HRRRR- derived smoke concentration measured at MOFLUX. The 380 

two pollution episodes had different levels of smoke, the second period having stronger enhancements compared to 381 

the first. Wildfire emissions during the first episode were substantially transported to Europe, whereas the second 382 

impacted the USA to a considerable extent (Wang et al., 2023). A wildfire that occurred between July 12 and 19 383 

primarily near Fort Nelson, Northwest Canada, was transported to the MOFLUX site. Back trajectory analysis (see 384 

Figure 5) indicated that the plumes arriving at the site during the same period originated from the northwest, suggesting 385 

a significant long-range transport of wildfire products to the MOFLUX temperate forest. Atmospheric dispersion of 386 

the smoke in Missouri is presented in Figure S5. 387 

 388 

389 
Figure 5. (A) Smoke profile observed during the field measurement. The red highlighted area is the period with intense transport 390 
of BB plumes. (B) Backward air parcel trajectory analysis of plumes arriving on the 16th of July (Stein et al., 2015). A larger image 391 
with higher resolution of the trajectory is presented in Figure S5. (C) Percent change of the mixing ratios of major VOCs measured 392 
during days with no wildfire event (July 12) and with significant transport of BB markers (July 16).  393 

Figure 5 shows a comparison of the VOC mixing ratios during the impact of wildfire plume (July 16) and non-BB 394 

event day (July 12), together with smoke mixing ratio observed at MOFLUX. Among the major VOCs, acetonitrile 395 

and benzene appeared to be associated with the transport of the wildfire plumes. These two VOCs had day average 396 

mixing ratios of 2.15 (acetonitrile) and 0.34 (benzene) ppb on July 16, corresponding to increases of 139% and 269%, 397 

respectively, compared to July 12, which is non-BB day. The major source of benzene shifted from vehicular 398 
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emissions to BB, highlighting the diverse activities influencing the variability of benzene at the temperate forest, as 399 

shown in the time series profile of benzene and Smoke (see Figure S6 in supplement). 400 

3.4 Expanded List of VOCs and Their Response to Enhanced Temperature and Long-Range Transport of 401 
Wildfire Emissions 402 

Beyond the major VOCs discussed above, more than 250 compounds with a mass to charge ratio (m/z) of at least 40 403 

and with mixing ratios 5 ppt above the blank measurements were identified. The proposed molecular ion formulas are 404 

listed in Table S1. The compounds have a wide variety of molecular compositions, with maximums of 14, 23, 5, 3, 405 

and 2 numbers of carbon, hydrogen, oxygen, nitrogen, and sulfur, respectively, with a median formula of C4H6O and 406 

a mode of 2 degrees of unsaturation. The numbers of VOCs according to atomic content were as follows: 36 CxHy, 93 407 

CxHyOw, 17 CxHyNz, 60, CxHyOwNz, and 10 CxHyOwSv, where v, y, x, y, and z are positive integers. The median 408 

oxygen-to-carbon ratio (O:C) and hydrogen-to-carbon ratio (H:C) of all the identified ions were 0.2 and 1.4. The O:C 409 

ratio was similar to a measurement in a boreal forest in southern Finland, which can be explained by the similarity of 410 

the measurement technique applied (i.e., Vocus PTR-ToF-MS), capturing fewer oxygenated compounds compared to 411 

other ionization techniques (i.e., Br and NO3 instead of the hydronium ion) (Huang et al., 2021). The average log 412 

saturation vapor concentration for all the compounds was 7.50 µg m−3, and 100 and 136 compounds were classified 413 

as intermediate and volatile organic compounds, respectively. Log Csat values below 3 µg m−3 were recorded for three 414 

compounds (i.e., C6H3NO3, C10H10O3, and C12H23NO3), which categorized them as semivolatile VOCs. 415 

 416 

We analyzed July 8 through 17 to develop a deeper understanding of how the extended list of VOCs was influenced 417 

by both extreme heat and wildfire plumes. Note that in these analyses, the concentrations of acetone, isoprene, and 418 

MVK+MACr were not included to focus on the extended list of VOCs. During this period, the average VOC mixing 419 

ratio was 78 ppb with a standard deviation of 31.5. Figure 6 also shows the profile of the total VOC mixing ratios, 420 

which depicts a mixing ratio range between 23 to 147 ppb. Figure 6 illustrates the profiles of the weighted average of 421 

the O:C ratio, H:C ratio, and volatility of the VOCs. The O:C ratio was stable, ranging between 0.4 and 0.55. However, 422 

the apparent transport of the wildfire plume to the site decreased the ratio to less than 0.3 due to increase in reactive 423 

organic carbon. This is consistent with a prior study that reported a low O:C ratio (0.25) during intense biomass 424 

burning plume, compared to the measurement period when the smoke became diluted and impact of biogenic was 425 

emission enhanced (O:C =0.7) (Brito et al., 2014). The H:C ratio (1.8) was increased at the start period, characterized 426 

by low temperatures, which signifies the presence of highly unsaturated compounds such as aromatics. As the 427 

temperature increased, H:C values (1.5) decreased except during the period with BB emissions (1.75), implying the 428 

alteration of VOC distribution. Lastly, elevated temperature resulted in the emission of more volatile compounds, as 429 

the weighted average volatility reached 8.5 µg m−3. The atmosphere over MOFLUX was further enriched with volatile 430 

compounds during the passage of the wildfire plume, as the mean log Csat reached 9 µg m−3.  431 

 432 

Also in Figure 6 is the time series of the calculated OH reactivity during the intensive period influenced by extreme 433 

heat and wildfire plumes between July 8 to 17. Note that the calculation of reactivities included isoprene, acetone, and 434 

MVK+MACr. During this period, the average OH reactivity was 100.53 ± 10.79 s⁻¹, which was evidently higher 435 
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compared to previous measurements in urban environment in California, USA (Hansen et al., 2021), sub-urban site in 436 

Shanghai, China (Yang et al., 2022),  and forest environments in Finland (Sinha et al., 2010) and France (Bsaibes et 437 

al., 2020). The elevated reactivity calculated in this study was attributed to the notable contributions from isoprene, 438 

acetone, ethylamine, and ethenone. To assess the impact of elevated temperatures and biomass burning on atmospheric 439 

reactivity, the data were categorized based on recorded ambient temperature and smoke concentration. The influence 440 

of biomass burning was evident from July 15 at 07:00 to July 17 at 20:00. Only one hour within this period had a 441 

temperature exceeding 32°C, and that data point was excluded from the average reactivity calculation. Conversely, 442 

the effect of extreme temperatures was evaluated using data recorded from July 8 at 01:00 to July 15 at 06:00. During 443 

this timeframe, 30 hours met the extreme temperature criteria (>32°C), allowing for an assessment of the potential 444 

impact of future warming on atmospheric reactivity. Periods with temperature conditions below 32°C that were not 445 

influenced by wildfire plumes were categorized as background.  The average OH reactivities for periods with enhanced 446 

temperatures (>32 °C) and with transported plumes were 106.37 ± 4.27 s⁻¹ and 106.22 ± 5.15 s⁻¹, respectively, both 447 

of which are substantially elevated compared to background conditions (98.78 ± 1.16 s⁻¹). The comparable OH 448 

reactivities of the two future climate scenarios highlight the reactive nature of biomass burning gas-phase species such 449 

as benzene and acetonitrile. Overall, the calculated averages during extreme heat and wildfires altered atmospheric 450 

reactivity in the forest. 451 

Figure 7 shows the profile of the extended list of VOCs, clustered according to atomic content. The decreasing order 452 

of average concentration was as follows: CxHyOw (41 ppb), CxHyOwNz (15 ppb), CxHy (11 ppb), CxHyNz (2.4 ppb), 453 

CxHyOwSv (0.48 ppb). Hydrocarbons (CxHy) had evident enhancement at elevated temperature, as well as during the 454 

later hours of the transport of the BB compounds on the 16th of July. Oxygenated hydrocarbons (CxHyOw) had a 455 

delayed response to temperature, in which peak concentration occurred around 18:00. Such categories also showed 456 

increased concentration during the initial hours of the wildfire plume arrival at MOFLUX. CxHyNz compounds such 457 

as acetonitrile showed clear augmentation during the initial hours of the plume transport but exhibited a less sensitive 458 

response to changes in temperature. For CxHyOwNz and CxHyOwSv compounds, temperature and BB had little to no 459 

effect on either group, except for the clear reduction during the latter hours of wildfire plume passage in the MOFLUX 460 

temperate forest. 461 

 462 

Several compounds among the extended list showed an enhanced mixing ratio at high temperatures (>32°C). Besides 463 

the major compounds such as isoprene and monoterpene, VOCs such as formic acid (CH2O2, 8%), acetic acid (C2H4O2, 464 

83%), acrolein (C3H4O, 62%), furan (C4H4O, 62%, 51%), methylglyoxal (C3H4O2, 51%), and glycolic acid (C2H4O3, 465 

68%) exhibited enhancement at the extreme temperature conditions, although it is equally possible that these 466 

compounds were also associated with transport of wildfire plumes. Values inside the parentheses are percent 467 

enhancement calculated using average concentrations at low (<32°C) and high (>32°C) temperature conditions. 468 

Formic and acetic acid, as two of the most dominant acids in the atmosphere, are key VOCs in aerosol growth, cloud 469 

precipitation, and rainwater acidity. Formic acid is primarily formed through photochemical production but can be 470 

emitted directly from vegetation, which is a temperature-dependent process (Millet et al., 2015).  471 
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 472 

 473 

Figure 6. (A) Time series profile of the smoke, and temperature observed at MOFLUX, (B) sum of VOC mixing ratio, 474 
(C) weighted O:C, (D) H:C ratios, (E) volatility, and (F) total reactivity during the intensive operational period 475 
between July 8 to 17. The shaded regions of O:C, H:C, and volatility are the weighted standard deviations.  476 
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 477 

Figure 7. (A) Time series and (B-E) diurnal profile of the clustering based on the atomic content of the VOCs during 478 
the intensive observation period with enhanced temperature and wildfire plume transport at MOFLUX. CxHyOwSv 479 
compounds were not included due to low mixing ratio compared to other categories. Time series profile of the percent 480 
contribution of each VOC class is presented in Figure S7. 481 

3.5 Source Apportionment of VOCs Measured during Extreme Temperature and Biomass Burning 482 

 483 
Figure 8. Stacked profile of the non-negative factors of species fingerprints from all the VOCs measured at 484 
MOFLUX. 485 

 486 
To systematically investigate the pattern and contributions of the extended list of VOCs, a NNMF routine was applied 487 

to study the prominent sources of the VOCs in the forest between July 8 and 17. Based on the dominant tracers, 488 

response to the range of temperatures, impact of wildfire plume, and diurnal variations, five important categories were 489 

identified from the NNMF analysis: (i) Biogenic-related Compounds, (ii) Secondary Chemistry, (iii) Oxygenated BB 490 

compounds (O-BB), (iv) Hydrocarbon BB compounds (H-BB), and (v) Others. The “others” factor, with a substantial 491 
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number (N =137) of contributing compounds, remains unidentified. The time series of the factors are shown in Figure 492 

8. 493 

 494 

The biogenic factor, which consisted primarily of isoprene and monoterpene, followed the profile of temperature, 495 

which supports the attribution to biogenic sources. Two BB factors were accounted for, which were separated based 496 

on the chemical composition of the gases contributing to each factor. The median formulas for O-BB and H-BB were 497 

C4H5NO and C6H8, with a mode of 1 and 2 degrees of unsaturation, respectively. Pure hydrocarbons (CxHy) showed 498 

evident enhancement in the later hours of July 16. Also, the O-BB and H-BB factors are classified as volatile (log Csat 499 

> 6 µg m−3), based on the saturation mixing ratio values of 7.27 and 8.45 µg m−3. The prominent compounds under 500 

the O-BB factor were acetonitrile (C2H3N), formamide (CH3NO), maleic acid (C4H4O2), hydroxyfuranone (C4H4O3), 501 

butyramide or dimethylacetamide (C4H9NO), benzonitrile (C7H5N), and furaldehyde (C5H5O2), which were all 502 

previously detected in field- and lab-scale measurements of wildfire plumes (Jain et al., 2023; Stockwell et al., 2015; 503 

Coggon et al., 2019; Salvador et al., 2022). The H-BB factor was populated by unsaturated hydrocarbons such as 504 

butadiene (C4H6), butene (C4H8), pentenes (C5H10), benzene (C6H6), hexadiene (C6H10), and ethylbenzene (C8H10), 505 

although cyclic hydrocarbons are not discounted. Interestingly, monoterpene at C10H17
+ and its fragment at C7H8

+ had 506 

substantial contributions from the H-BB factor during this period. The inclusion of monoterpenes in the H-BB factor 507 

is unlikely due to the expected biogenic emissions in the forest, even though the biogenic factor accounted for the 508 

second-largest contribution at 34%. However, several prior studies have shown that monoterpene can also originate 509 

from anthropogenic sources and wildfire events (Coggon et al., 2021), particularly BB events (Wang et al., 2022). 510 

With the enhancement of monoterpene and other unsaturated hydrocarbons (e.g., butenes and ethylbenzene) during 511 

wildfire plumes, several changes in atmospheric reactivity are expected, such as photochemical ozone production, 512 

scavenging of OH radicals, and suppression or enhancement of aerosol formation.  513 

 514 

The secondary chemistry factor had a median chemical formula of C3H4O2 with two degrees of unsaturation. Among 515 

the factors identified, this factor had the highest oxygen content, with a median and max of 2 and 5, respectively. 516 

Similar to the oxygenated hydrocarbon group, this factor had a diurnal profile characterized by evening enhancement 517 

(~20:00). Also, the secondary factor is marked by compounds such as ethenone (C2H2O), acrolein (C3H4O), acetic 518 

acid (C2H4O2), MVK+MACr (C4H6O), hydroxyacetone (C3H6O2), and acetylacetone (C5H8O2). Isoprene also 519 

generates MVK during nighttime through the dominant β-RO2 isomer formation pathway (Ng et al., 2017). During 520 

the transport of BB plumes, the secondary factor had a relatively low increase in signal compared to both BB factors, 521 

which shows that secondary formation was predominately locally generated with little to no contribution from long-522 

range transport. BB tracers dominated the air mass of MOFLUX during the transport of the wildfire plume between 523 

July 15 and 17, which drastically affected the atmospheric chemistry of the area. This was corroborated by the  524 

enhanced reactivity (106.00 s⁻¹) during the transport of wildfire plume compared to background conditions (98.92 s⁻¹).  525 

 526 

  527 
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4. Summary and Conclusions 528 

VOCs, which have important contributions to several atmospheric processes, were continuously measured in a 529 

temperate deciduous and juniper forest in the midwestern US during the summer of 2023 using PTR-ToF-MS. During 530 

the measurement period, the forest included several sources of biogenic compounds and was influenced by short- and 531 

long-range transport of anthropogenic and wildfire emissions. Extreme heat and wildfire emissions impacted the 532 

atmospheric conditions of the forest during the field measurement; such emissions are vital phenomena that provide 533 

insights into future climate. Typical VOCs, consisting of methanol, acetone, isoprene, monoterpene, MVK+MACr, 534 

benzene, toluene, acetonitrile, and catechol, had an average total mixing ratio of 69 ± 34 ppb .  535 

  536 

Among the VOCs, isoprene had one of the highest recorded average mixing ratios (10 ± 9 ppb), next to methanol (23 537 

± 10 ppb) and acetone (22 ± 9 ppb). At the same time, monoterpene had three-fold enhancement at extreme 538 

temperatures. The large gap between the mixing ratios of isoprene and monoterpene suppressed the formation of 539 

aerosols due to the scavenging of OH radicals and reduction of C20 dimers. AVOCs such as benzene (0.42 ppb) and 540 

acetonitrile (1.52 ppb) responded much less to changes in temperature compared to the BVOCs. The varying 541 

enrichment of the major VOCs and their response to extreme temperatures influenced the atmospheric reactivity in 542 

the temperate forest. New studies indicated that the coexistence of multiple precursor VOCs can generate unexplored 543 

molecular-scale interactions, which is critical as current and future VOC distributions are expected to be widely 544 

different compared to current conditions. For instance, the coexistence of isoprene and monoterpene led to reduced 545 

hydroxyl radical availability, leading to a limited oxidation process (Mcfiggans et al., 2019).  546 

 547 

Besides the role of elevated temperature, the duration of the VOC measurement at MOFLUX was marked by sporadic 548 

transport of plumes from wildfires in Canada. The impending warming of the atmosphere is projected to potentially 549 

increase the frequency and duration of wildfires due to drier seasons. In MOFLUX, the profiles of the major VOCs 550 

such as benzene and acetonitrile changed notably with respect to the wildfire plumes, as their concentrations were 551 

enhanced by more than 100%. As benzene is a crucial precursor for ozone and a significant contributor to aerosol 552 

formation, the variability of such BB VOC should be incorporated into simulations of future atmospheric processes. 553 

 554 

Beyond the major VOCs, analysis of the whole mass spectra revealed more than 250 other compounds, the mixing 555 

ratios of which sum to as much as 78 ppb during a period with elevated temperature (>32 °C) and BB plumes (smoke 556 

> 100 mg m−3). With a similar mixing ratio sum to those of the VOCs, analysis of unaccounted-for VOCs is necessary 557 

to perform a realistic investigation of the relevant atmospheric processes at the MOFLUX site. The O:C and H:C ratios 558 

of the measured VOCs, as well as their volatility, provided insight into their response to future climate scenarios. 559 

During BB plume transport, hydrocarbons (CxHy) with high volatility were enhanced. CxHy and CxHyNz compounds 560 

dominated the total VOC mixing ratio during the initial and later hours of biomass transport, respectively, whereas 561 

oxygenated hydrocarbons persisted consistently during periods of elevated temperature. Furthermore, the analysis of 562 

the entire spectra pinpointed an additional 40 compounds that have at least 100% enhancement in mixing ratio at 563 
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extreme temperatures and/or during the transport of wildfire emissions. Two of them are formic (0.89 ppb) and acetic 564 

acid (3.29 ppb), which have a vital impact on atmospheric acidity and cloud formation.   565 

 566 

The highly variable profiles of the extended list of VOCs measured at MOFLUX indicated that species were impacted 567 

by a variety of emissions and processes. NNMF was applied to the VOC mixing ratios, and five factors were identified: 568 

two BB factors and one each for secondary chemistry, biogenic, and others. The two BB factors were resolved based 569 

on the chemical composition of the compounds contributing to each factor. With the high reactivity of such compounds 570 

to OH radicals, it is expected that BB altered the normal forest-dominated atmospheric processes. 571 

  572 
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