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Abstract. Accurate modeling of troposphere delay is important for high-precision data analysis of space geodetic techniques, 

such as the Global Navigation Satellite System (GNSS). The empirical troposphere delay models provide zenith delays with 10 

an accuracy of 3 to 4 cm globally and do not rely on external meteorological input. They are thus important for providing a 

priori delays and serving as constraint information to improve the convergence of real-time GNSS positioning, and in the latter 

case, the proper weighting is critical. Currently, the empirical troposphere delay models only provide the delay value, but not 

the uncertainty of the delay. For the first time, we present a global empirical troposphere delay model, which provides both 

the zenith delay and the corresponding uncertainty, based on 10 years of tropospheric delays from the Numerical Weather 15 

Model (NWM). The model is based on a global grid, and at each grid point a set of parameters that describes the delay and 

uncertainty by the constant, annual, and semi-annual terms. The empirically modeled zenith delay has an agreement of 36 and 

38 mm compared to three years delay values from NWM and four years estimates from GNSS stations, which is comparable 

to the previous models such as GPT3. The modeled ZTD uncertainty shows a correlation of 96% with the accuracy of the 

empirical ZTD model over 380 GNSS stations over the four years. For GNSS stations where the uncertainty annual amplitude 20 

is larger than 20 mm, the temporal correlation between the uncertainty formal error and smoothed accuracy reaches 85%. 

Using GPS pseudo-kinematic PPP solutionsobservations from of ~200 globally distributed IGS stations processed in kinematic 

PPP mode over four months in 2020, we demonstrate that using the proper constraints can improve the convergence speed. 

The uncertainty formal error modeling is based on a similar dataset as the GPT series, and thus it is also applicable for these 

empirical models.   25 

1 Introduction 

For space geodetic techniques such as Global Navigation Satellite System (GNSS), Very Long Baseline Interferometry (VLBI), 

and satellite altimetry, the microwave signals transmitting through the troposphere are delayed and bent due to the non-vacuum 

conditions of the troposphere, causing the tropospheric delay. The total tropospheric delay could be divided into the hydrostatic 

and wet parts. The former accounts for 90% of the total delay and is strongly dependent on the atmospheric pressure, and at 30 

the height of sea level, it is around 2 meters in the zenith direction. The latter is closely related to the water vapor, and can 

hardly be modeled due to the unpredictability of water vapor in spatial and temporalspace and time. In data processing of these 

space geodetic techniques, the tropospheric delay is usually modeled as the zenith delay (zenith hydrostatic delay ZHD and 

zenith wet delay ZWD) and the mapping functions, and in high-precision applications, the horizontal gradients should also be 

considered (Böhm and Schuh, 2013). 35 

Tropospheric zenith delay could be derived from in situ meteorological observations using the Saastamoinen or Hopfield 

function (Askne and Nordius, 1987; Hopfield, 1969; Saastamoinen, 1972), radiosonde observations which give the vertical 

profiles of meteorological data (Chen and Liu, 2016; Liou et al., 2001; Wu et al., 2019), numerical weather model (NWM) 

(Böhm et al., 2007; Kouba, 2007; Landskron and Böhm, 2017), and other instruments such as water vapor radiometer (Braun 
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et al., 2003; Niell et al., 2001). Despite the relatively high accuracy of these models, that is, varying from 5 mm to 2 cm, all 40 

these methods require accurate meteorological information, which is not always available for real-time GNSS users. 

Tropospheric zenith delay can be derived using several approaches, including in situ meteorological observations combined 

with models such as the Saastamoinen or Hopfield function (Askne and Nordius, 1987; Hopfield, 1969; Saastamoinen, 1972); 

radiosonde measurements, which provide vertical profiles of meteorological data (Chen and Liu, 2016; Liou et al., 2001; Wu 

et al., 2019); and water vapor radiometers, which directly measure atmospheric water vapor content (Braun et al., 2003; Niell 45 

et al., 2001). Additionally, numerical weather models (NWMs) offer tropospheric delays on a global scale by integrating 

meteorological data vertically (Böhm et al., 2007; Kouba, 2007; Landskron and Böhm, 2017). Although these approaches can 

yield high accuracy, typically within 5 mm to 2 cm, they all require access to accurate meteorological information, which may 

not be available to real-time GNSS users. Another option is the empirical tropospheric delay model, which aims to represent 

the tropospheric delay with a set of simplified parameters. The empirical tropospheric delay model usually only requires the 50 

user’s location (latitude, longitude, and height) and time as input. Therefore, it has the advantage of being free of external data 

communication and easy to compute. However, the empirical models usually have an accuracy of 3 to 5 cm with respect to 

NWM or GNSS estimates, depending on the resolution of the model and more importantly, the water vapor content of the 

location (Böhm et al., 2015; Ding and Chen, 2020; Kos et al., 2009; Li et al., 2014; Penna et al., 2001; Yao et al., 2016; Yao 

et al., 2015) 55 

The empirical tropospheric delay models are usually based on radiosonde observations (Leandro et al., 2007) or NWM-derived 

products (Böhm et al., 2015; Lagler et al., 2013; Landskron and Böhm, 2017; Li et al., 2012; Yao et al., 2015), and the zenith 

hydrostatic and wet delays are provided via global grids, spherical harmonic functions, or look-up tables. In the Global Pressure 

and Temperature (GPT) models (Böhm et al., 2015; Kouba, 2009; Lagler et al., 2013; Landskron and Böhm, 2017), 

atmospheric pressure, temperature, and water vapor are provided given the location and time, and thus the zenith delays can 60 

be calculated using the Saastamoinen (Saastamoinen, 1972) and Asknew & Nordius (Askne and Nordius, 1987) equations. 

Unlike the GPT series which are based on the European Centre for Medium-Range Weather Forecasts (ECMWF) products, 

the TropGrid2 model is based on the National Center for Environmental Prediction (NCEPNECP) product and directly 

provides ZHD and ZWD instead of the meteorological parameters (Schüler, 2013). Similarly, the IGGtrop models are also 

based on the NCEP products and directly provide zenith delays (Li et al., 2014; Li et al., 2018; Li et al., 2012); the Global 65 

Zenith Tropospheric Delay (GZTD) models are based on the ECMWF-derived VMF products and provide zenith delay via a 

spherical harmonic function (Yao et al., 2016); the Improved Tropospheric Grid (ITG) model provides tropospheric delays 

and additional meteorological data (Yao et al., 2015). Slight improvements are reported with refined modeling methods, such 

as including the diurnal periodical terms, adopting more complicated functions in modeling the altitude scaling, and increasing 

the spatial resolution (Hu and Yao, 2018; Huang et al., 2021; Huang et al., 2022; Mao et al., 2021; Sun et al., 2019; Wang et 70 

al., 2022; Xu et al., 2020; Zhou et al., 2022; Zhu et al., 2022). Chen et al. (2020) presented an empirical ZTD model over 

mainland China based on the GNSS ZTD estimates, and Li et al. (2021) combined radiosonde observations with NWM 

products to determine empirical meteorological models. The accuracy agreement of these empirical models to other sources, 

for example, GNSS estimates or radiosonde observations, varies between 3 to 5 cm, mainly depending on the references used 

for model evaluation, for example, the GNSS stations and radiosonde observations with different distributions.  75 

Due to the correlation between receiver clocks, tropospheric parameters, and station coordinates, using accurate external 

tropospheric delay products with proper weighting can improve the convergence of Precise Point Positioning (PPP), especially 

in real-time applications where a fast convergence is of great interest. NWM-derived ZTD usually agrees with GNSS at the 

level of 1 to 1.5 cm, and regional tropospheric delay modeling could reach an accuracy of below better than 1 cm, they are 

therefore used in enhancing real-time PPP convergence time (Cui et al., 2022; de Oliveira et al., 2016; Douša et al., 2018; Lu 80 

et al., 2017; Takeichi et al., 2009; Wilgan et al., 2017; Zhang et al., 2017; Zheng et al., 2017). In situ instruments such as water 

vapor radiometer and Raman lidar could provide high-precision tropospheric delays (within 1 cm) and are also investigated in 
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improving precise GNSS data processing (Alber et al., 1997; Bock et al., 2001; Bosser et al., 2009; Wang and Liu, 2019; Ware 

et al., 1993). It is also demonstrated that empirical tropospheric delay models can improve the convergence of GNSS PPP 

(Chen et al., 2020; Yao et al., 2017; Yao et al., 2014). Due to the different accuracies of these external tropospheric delay 85 

products, it is necessary to properly weight them when constrained in GNSS analysis. A too-tight constraint would introduce 

errors and degrade the accuracy of estimates, whereas a too-loose constraint can hardly contribute to reducing the convergence 

time. When using the NWM-derived or regional-modeled tropospheric delays, the weighting strategy is usually based on either 

the statistic of a large number of stations or numerically tested criteria. 

Currently, most empirical tropospheric delay models only provide the delay values, but not the uncertainty for these delays. 90 

Chen et al. (2020) proposed a regional empirical ZTD model based on GNSS ZTD estimates in the mainland China region 

where formal errors are also provided. Motivated by using empirical tropospheric delay models in enhancing real-time GNSS 

positioning, in this work, we aim to provide both tropospheric delays and the corresponding uncertainties on a global scale. 

We first fit the ZTD time series using the commonly adopted functions, that is, the constant plus annual and semi-annual 

periodical terms. The VMF ZTD global grids with a temporal resolution of 1°×1° in the period of 2009 to 2018 are used. After 95 

obtaining the fitting residuals at each grid point, we further model the squared residuals using a similar function as the ZTD 

modeling with only the constant and annual periodical terms. Eventually, we provide a set of coefficients that can present the 

zenith tropospheric delays and their uncertainty using a global grid, which can be used by real-time GNSS users to achieve 

faster convergence. The model is evaluated using both NWM-derived delays over three years (2019−2021) and 380 GNSS 

stations over four years (2017−2020). 100 

Following this introduction, we present the empirical modeling method and results of both ZTD and the corresponding 

uncertainties in Section 2. The model is evaluated using both NWM-derived tropospheric delays in Section 3 and GNSS ZTD 

estimates in Section 4. The impact of applying the model in kinematic PPP solutions is demonstrated in section 5. We 

summarize the major findings and conclude this work in Section 6. 

2 Empirical Modeling of ZTD and Uncertainty 105 

In this work, the empirical modeling is based on the ZTD of the VMF3 operational tropospheric products (Landskron and 

Böhm, 2017), which is derived from the ECMWF NWM. The VMF3 tropospheric delay products are provided using a global 

grid with the spatial resolution of both 5°×5° and 1°×1°, and we use the latter to obtain a better spatial resolution. The temporal 

resolution is 6 hours, and we only use the epoch of 00:00 UTC. As we focus on the long-term signals of ZTD, including annual 

and semi-annual terms, the short-term fluctuations are smoothed out in the fitting, and, thus, taking one epoch per day does 110 

not affect our modeling results. More details about the VMF products can be found on the official website 

(https://vmf.geo.tuwien.ac.at/). We only give the ellipsoidal height of the grid points in Figure 1Figure 1. 

 

https://vmf.geo.tuwien.ac.at/
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 115 
Figure 1: Altitude (ellipsoidal height) of the VMF3 grid points (left) and the distribution of GNSS stations (right). The GNSS stations 

used for ZTD comparison and PPP validation are given in white blue and red dots, respectively. 

2.1 Modeling of Zenith Total Delay 

Following the previous works (Böhm et al., 2007; Böhm et al., 2015; Böhm et al., 2006; Lagler et al., 2013; Landskron and 

Böhm, 2017), at each grid point we first fit the ZTD value 𝑍𝑇𝐷(𝑡) at epoch 𝑡all the ZTDs using the following function, which 120 

considers constant, annual, and semi-annual terms. 

𝒁𝑻𝑫(𝒕) = 𝒁𝟎 + 𝒁𝒔𝟏 𝒔𝒊𝒏 (
𝟐𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝒁𝒄𝟏 𝒄𝒐𝒔 (

𝟐𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝒁𝒔𝟐 𝒔𝒊𝒏 (

𝟒𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝒁𝒄𝟐 𝒄𝒐𝒔 (

𝟒𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕)  (1) 

𝑍0 is the constant term which presents the average ZTD over a long term, 𝑍𝑠1 and 𝑍𝑐1 are the sine and cosine coefficients of 

the annual term, and 𝑍𝑠2  and 𝑍𝑐2  the sine and cosine coefficients of the semi-annual term. The epoch time 𝑡 is given in 

Modified Julian Date (MJD).  125 

Figure 2 gives the fitting results of the VMF ZTD products in the period of 2009 to 2018. As we do not model the diurnal 

variation, only the results of epoch 00:00 UTC is considered. The fitting residuals are related to both the altitude and latitude, 

and show regional patterns. On the one hand, the grid points with a higher altitude, for example, the Tibetan Plateau, Andes 

mountain, and the Antarctic, all have a smaller RMS value, mainly due to the less water vapor content at such a high altitude. 

On the other hand, the RMS of fitting residuals also show a regional pattern. One example is the North Atlantic, where the 130 

RMS value around the Canary Current on the east side is much smaller than that around the Gulf Stream on the west side. The 

RMS value varies from 10 to 70 mm with 99% of the grid points within 60 mm (90% within 50 mm), and the average value 

is 36.0 mm. As for the average ZTD value, that is, the 𝑍0 term, it shows a strong dependence on the latitude and altitude of the 

grid points, especially the latter, mainly due to the distribution of atmospheric pressure. The value varies between 1100 mm in 

the high-altitude regions and 2700 mm in the tropical regions. The coefficients of the annual term have the opposite pattern in 135 

the North and South Hemispheres, especially the sine term, and that of the semi-annual term show more regional patterns. 
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Figure 2: Fitting results of zenith total delay derived from the VMF global grid product from 2009 to 2018. Upper left: RMS of the 140 
ZTD fitting residuals. The rest subplots give the fitting coefficients of ZTD. 

Note that we do not fit the ZTD time series with the function of amplitude 𝐴 and initial phase 𝜑, that is, 𝐴 ∙ sin (
2𝜋

365.25
𝑡 + 𝜑). 

The reason is that without the coefficient of the initial phase, the fitting is numerically more stable. The initial phase and 
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amplitude can always be retrieved given the sine and cosine coefficients, for example, the annual amplitude using 𝐴1 =

√𝑠1
2 + 𝑐1

2. To better illustrate the annual and semi-annual variations of ZTD, we present the amplitude of the annual and semi-145 

annual terms in Figure 3. The annual amplitude is less than 160 mm, and large values are observed in the north Indian 

subcontinent, between Sahara and Sub-Saharan Africa, and around Japan. The semi-annual amplitude is usually within 30 mm 

in most regions but extremely large values up to 60 mm also exist, which has a similar distribution as the large annual 

amplitudes. The average value of annual and semi-annual amplitude on a global scale is 34.6 and 9.8 mm, respectively, and 

the 95% confidence interval is 78.4 and 22.2 mm. 150 

 

 

 

Figure 3: Annual (left) and semi-annual (right) amplitude from the numerical fitting of NWM-derived ZTD from 2009 to 2018. 

2.2 Modeling of ZTD formal error 155 

Having the ZTD fitting residuals, that is, the ZTD from NWM-derived values minus that from the fitted values, we further 

model the formal errors 𝜎(𝑡) (in the unit of mm), i.e., the uncertainty information of the empirical delay model by fitting the 

squared ZTD residuals 𝑅𝑒𝑠(𝑡)2 using the following equation, which considers constant, annual, and semi-annual periodical 

terms and minimizes the differences between the squared formal error and the squared ZTD residuals. 

∆= 𝜎(𝑡)2 − 𝑅𝑒𝑠(𝑡)2 160 

𝝈(𝒕)𝟐 = 𝑹𝟎 + 𝑹𝒔𝟏 𝒔𝒊𝒏 (
𝟐𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝑹𝒄𝟏 𝒄𝒐𝒔 (

𝟐𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝑹𝒔𝟐 𝒔𝒊𝒏 (

𝟒𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) + 𝑹𝒄𝟐 𝒄𝒐𝒔 (

𝟒𝝅

𝟑𝟔𝟓.𝟐𝟓
𝒕) (2) 

Similar to the ZTD modeling, 𝑅0 gives the average value of the squared residuals over a long period, 𝑅𝑠1 and 𝑅𝑐1 are the sine 

and cosine coefficients of the annual term, and Rs2 and Rc2 are the sine and cosine coefficients of the semi-annual term. ∆ is 

the difference between the squared formal error and the squared residuals of ZTD. Note that their units are all mm2 given that 

the unit of the observations, that is, squared ZTD residualsRes(t)2, is mm2. We fit the squared residuals Res(t)2 instead of the 165 

absolute value of ZTD residuals due to the following two reasons. First, the accuracy of tropospheric delay models is always 

evaluated by the root mean squares of the residuals, and numerically the statistic of absolute residuals is not equivalent to that 

of the RMS of the residuals, which means a scaling coefficient is required (Chen et al., 2020). Second, in enhancing GNSS 

positioning via constraining the tropospheric delay, the weighting of the tropospheric delay which serves as pseudo-range 

observation is based on the squared value of the formal error.  170 

Figure 4Figure 4 presents the fitting results of the squared ZTD residuals. The constant term R0 follows the distribution of the 

RMS of ZTD residuals in Figure 2, as expected. Interestingly, the fitting accuracy of the ZTD residuals, that is, the upper left 

panel of Figure 4Figure 4, also follows the distribution of the ZTD residuals. The spatial distribution of the annual and semi-
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annual periodical terms does not show an obvious correlation with the latitude or altitude of the grid points, and will be 

converted into amplitude in the following part and discussed there. 175 

 

 

 

Figure 4 Fitting results of the squared ZTD residuals from 2009 to 2018. Upper left: fitting RMS; upper right: constant term; middle 

left and right: sine and cosine coefficients of the annual periodical term; lower left and right: sine and cosine coefficients of the semi-180 
annual periodical term. Note the different scales between different panels. 
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The coefficients of annual and semi-annual amplitudes are given in Figure 5. The two amplitudes are the calculated as: 

𝑎𝑚𝑝𝑅1 = √𝑅𝑠1
2 + 𝑅𝑐1

2  and 𝑎𝑚𝑝𝑅2 = √𝑅𝑠2
2 + 𝑅𝑐2

2 , and thus the unit is mm2. Note that the presented amplitudes do not give the 

peak-to-peak values of the empirically modeled formal error, and only illustrate the strength of the annual and semi-annual 

signals. The annual amplitude is rather significant in several regions, such as Northeast China, the middle and western part of 185 

Australia, and around the Bay of Bengal (northeastern part of the Indian Ocean). The semi-annual amplitudes are smaller than 

the annual one, and the distribution generally follows that of the annual one, and large values are observed mainly in the middle 

and low latitude regions such as the East China Sea between China and Japan, northeast India, and Arabian Sea between India 

subcontinent and Arabian Peninsula. 

 190 

 

 

Figure 5 Coefficients of annual (left) and semi-annual (right) amplitude for the ZTD formal error modeling. 

In Figure 6, we further compare the RMS values of ZTD modeling residuals (upper left) and the constant term of ZTD formal 

error (upper right). An excellent agreement is observed as the differences are negligible (lower left panel). The annual 195 

amplitude of formal error is also given (lower right panel). The calculation of the annual term does not follow that of the ZTD, 

as the formal error modeling is based on the squared residuals. Therefore, we simply take half of the peak-to-peak value as the 

annual amplitude, and do not present the semi-annual amplitude of the formal error. Note that the unit of amplitude is mm. 

As shown in the lower right panel of Figure 6, the annual amplitude of formal error shows a correlation with the latitude, and 

that at high latitude regions is below 10 mm. The average amplitude is 6.2 mm on a global scale, and 95% of the grid points 200 

are within 16.3 mm. Despite that only a few grid points have large amplitude, the value could still reach up to 30 mm, such as 

the Northeast China, around the Bay of Bengal (northeastern part of the Indian Ocean), and on the west coast of Africa.  
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Figure 6 Fitting results of the ZTD formal error. Upper left: RMS of ZTD fitting residuals; upper right: average value of formal 205 
error; lower left: the difference between RMS of ZTD fitting residuals and average formal error; lower right: amplitude of the sine 

and cosine coefficients of the annual periodical term. The annual amplitude is calculated as half of the peak-to-peak value. 

2.3 Modeling the vertical variation ZTD 

It is well known that the tropospheric delay has a strong dependence on station altitude due to the altitude dependence of 

atmospheric pressure (Dousa and Elias, 2014; Wang et al., 2022). Considering that the delays of VMF products refer to a 210 

certain altitude of the grid points (shown in Figure 1Figure 1), users need to apply the height-related correction. Usually, the 

first-order exponential function can very well describe the vertical lapse of tropospheric delay, especially for the empirical 

modeling of tropospheric delay which aims at an accuracy of several centimeters. A higher-order exponential function could 

further improve the vertical modeling precision (Wang et al., 2022), which is not necessary for this work. We adopt the 

following equation to account for the correction due to the difference between the altitude of the user ℎ and that of the grid 215 

point ℎ0. 

𝒁𝑻𝑫(𝒉) = 𝒁𝑻𝑫(𝒉𝟎) ∙ 𝒆𝒙𝒑 (−
𝒉−𝒉𝟎

𝜷
)     (3) 

𝛽 is the scaling height. In this work we use 𝛽 = 7.6 km, which is based on the numerical fitting of NWM-derived ZTD from 

all grid points in 2009−2018. 

As for the modeling of formal error, it can be easily derived by adopting Eq. (4). 220 
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𝜎𝑍𝑇𝐷(ℎ)
2 = 𝜎𝑍𝑇𝐷(ℎ0)

2 ∙ (exp (−
ℎ−ℎ0

𝛽
))

2

     (4) 

2.4 An empirical ZTD modeling with uncertainty 

Eventually, we present the empirical model to provide both zenith delays and the corresponding uncertainty information, which 

is based on the ZTD from NWMi from 2009 to 2018. The model is based on a 1°×1° global grid, which has the same altitude 

as the VMF grid product (https://vmf.geo.tuwien.ac.at/station_coord_files/gridpoint_coord_1x1.txt). At each grid point, five 225 

coefficients are used to describe the zenith delay, including one for the constant coefficient, two for the annual, and two for 

the semi-annual terms, as shown in Eq. (1); five coefficients are used to describe the uncertainty, adopting the similar format 

as the zenith delay. In addition, the correction of zenith delay and uncertainty caused by the station height is based on one 

lapse rate presented in Sect. 2.3.  

To obtain the zenith delay and uncertainty at a location, the user needs to (a) find four grid points around the user given the 230 

latitude and longitude, (b) calculate the zenith delays and uncertainties at these four points using the ten coefficients, (c) apply 

the altitude corrections for zenith delays and uncertainties with Eq. (3) and Eq. (4) to obtain the values at the user’s height, (d) 

apply the bi-linear interpolation to obtain the values at the user’s location. 

3 Evaluation with NWM Products 

First, the performance of the empirically modeled ZTD and formal error is evaluated using NWM-derived ZTD products, that 235 

is, the VMF product. Note that the model is established using the data in the period of 2009−2018, and for the evaluation in 

this section, we focus on the period of 2019−2021. Figure 7Figure 7 illustrates the time series at four selected grid points in 

different latitudes, covering different altitudes. The left panels show that the empirically modeled ZTD agrees well with the 

NWM-derived values, and the majority of the NWM-derived ZTD values are within the uncertainty line. The annual and semi-

annual variations of ZTD are also successfully presented by the empirical model. In the right panels, the ZTD modeling 240 

residuals and the ZTD formal errors are given. The formal error agrees well with the residuals at the four grid points, and ZTD 

residuals at the upper two grid points show more significant annual variations than the other two grid points. Moreover, for 

the periods with larger formal error, that is, the periods where the formal error has a peak value, the ZTD residuals could be 

extremely large. The reason is that at these periods the water vapor content is more abundant, and extreme weather conditions 

are also more likely to happen. Therefore, extremely large discrepancies are observed. For both ZTD and the residuals, the 245 

agreement between NWM-derived values and empirically modeled ones does not show a significant difference between the 

modeling period (2009−2018) and the prediction period (2019−2021). 

https://vmf.geo.tuwien.ac.at/station_coord_files/gridpoint_coord_1x1.txt
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Figure 7 Left: ZTD time series (light blue dot) and the empirically modeled values (red line). The formal errors are given in the blue 250 
dashed lines. Right: the absolute value of ZTD residuals (green dots), the smoothed RMS of residuals within a period of a 2-month 

window (green dot-line), and the ZTD modeling formal error (red line). The period for modeling and that for evaluation are 

separated by the black dashed line. Note the different vertical scales between different panels. The location of each grid point is 

given in the left panel. 

The statistics of the ZTD modeling error in different seasons of the predicted period, that is, from 2019 to 2021, are provided 255 

in the left panels of Figure 8 Figure 7. We also give the corresponding formal errors of ZTD in the right panels. The modeling 
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accuracy shows a clear seasonal dependence, and the error is larger in the Summertime, that is, Jun-Jul-Aug and Dec-Jan-Feb 

of the North and South Hemispheres, respectively. In the Summertime, the water vapor content is more abundant with more 

rapid variations which cannot be accurately represented using the empirical model, and thus the modeling errors are relatively 

large. The average RMS of all grid points from 20197 to 2021 is 35.3 mm, and the values in Mar-Apr-May, Jun-Jul-Aug, Sep-260 

Oct-Nov, Dec-Jan-Feb are 35.4, 35.0, 35.2, and 35.7 mm, respectively. The formal error shows the same distribution and 

magnitude as the RMS of ZTD residuals in the four seasons, which demonstrates that the formal error modeling can effectively 

present the ZTD accuracy with respect to the NWM-derived product. The average value of formal errors in the four seasons is 

35.5, 35.1, 35.3, and 35.8 mm, which agrees with the RMS of ZTD residuals at the level of 0.1 mm. We also calculate the 

differences between the RMS and formal error at each grid point, and the maximum discrepancy is only −0.2 mm, meanwhile, 265 

the RMS of the differences over all grid points is less than 0.1 mm. 
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Figure 8 RMS of the ZTD modeling errors (left panels) and the modeling formal errors (right panels) in different seasons from 20198 

to 2021. 270 

We further calculate the average values of all grid points within different latitude intervals day by day for both the RMS of 

ZTD residuals and the formal errors, which are presented in Figure 9. The global grid is divided with a latitude interval of 30°, 

and on each day we calculate the RMS of ZTD residuals from all grid points and the average formal error. Except for the 

region of 60°N−90°N where semi-annual signals are also visible, both the RMS of ZTD residuals at other latitudes show 

significant annual variations, and the formal errors also show a good agreement. The annual variation at the region of 30°N−60°275 

N and 30°S−60°S is larger than that of the other regions, which is mainly caused by the large amplitude of the annual term in 

modeling formal error in several locations such as north-east Asia, middle-west Australia (also shown in Figure 6). Moreover, 

the RMS values of ZTD residuals are smaller at higher latitudes than at lower latitudes, as the latter has more water vapor 

content which is more difficult to model empirically. However, the Pole regions (latitude higher than 60°), especially the north 

one, show larger temporal noises than other regions. 280 
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Figure 9 RMS of ZTD differences between the empirical model and the NWM-derived values, averaged value of all grid points in 

different latitude intervals (green dot), and the corresponding ZTD formal errors (red dot). On each day, the average value of all 285 
the grid points within the latitude range is presented.   
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Table 1 summarizes the yearly statistics of the Mean and RMS values in the prediction period (2019-2021). The year-to-year 

changes are rather stable, as the average bias varies within 1.5 mm and the average RMS varies within 1 mm. On the other 

hand, the maximum values can vary up to 10 mm, for example, the maximum bias of all grid points in 2019 is 41.2 mm and 

that in 2021 is 30.4 mm. This is expected as the minimum and maximum values are more relevant to local severe weathers 290 

and can change significantly. The average values indicate that the overall performance of the model is stable in different years. 

Table 1 Statistics of the ZTD differences between modeled values and NWM-derived values in the prediction period (2019-2021), 

including the yearly values and the value over the whole period. For each grid point we calculated the Mean and RMS values, and 

then present the average, 95% of absolute, minimum, and maximum values of all grid points. Units are mm. 

 Mean RMS 

 Average 95% (abs) Min Max Average 95% (abs) Min Max 

2019 -2.7 15.2 -37.9 41.2 35.6 54.4 8.8 73.3 

2020 -2.3 14.2 -30.2 26.7 35.9 54.5 8.4 70.5 

2021 -1.2 13.9 -24.8 30.4 35.3 54.1 8.0 69.4 

2019-2021 -2.1 9.6 -23.6 14.9 35.7 53.8 8.7 67.2 

 295 

4 Evaluation with GNSS ZTD products 

In this section, we evaluate the empirical ZTD model using ZTD estimates from GNSS observations. We select 380 IGS 

stations that have good coverage from 2017 to 2020 (shown in Figure 1Figure 1) and use the ZTD estimates from the Nevada 

Geodetic Laboratory (NGL) product (Blewitt et al., 2018). The NGL tropospheric products are processed with the PPP method 

using the GipsyX software. The repro3 final orbit and clock products from the JPL analysis center are fixed. For tropospheric 300 

delay modeling, a priori delays and mapping functions are derived from the VMF1 product. The residual ZWD and horizontal 

gradients are estimated using the random walk processes with a temporal resolution of 5 min, and the corresponding stochastic 

noise is 5.d-8 and 5.d-9 km/sqrt(sec). More details can be found in the data processing strategy description file 

(http://geodesy.unr.edu/gps/ngl.acn.txt). The NGL tropospheric delay products are widely used in tropospheric delay empirical 

modeling, model evaluation, and comparison with NWM-derived products (Chen et al., 2020; Ding et al., 2022; Pearson et al., 305 

2020; Yu et al., 2021; Yuan et al., 2022). We selected the period of 2017 to 2020 because the modeling is based on the NWM-

derived product in the period of 2009 to 2018, and thus the period of 2019 and 2020 is always predicted. 

We first use six IGS stations as an example to present the ZTD modeling accuracy, which covers different latitudes and 

altitudes. Figure 10 gives the ZTD estimates from GNSS and from the empirical model (in light and dark blue lines, 

respectively). In general, the empirical model can effectively capture the long-term variation of ZTD, mostly the annual and 310 

semi-annual signals. However, the short-term fluctuations cannot be modeled empirically, leaving large residuals up to tens of 

centimeters, especially in the summertime.  The residuals at BRST are larger and that at DAV1 is smaller, mainly because 

BRST is located on the coast of France with high water vapor content and DAV1 is located in the Antarctic with lower water 

vapor content. Note that the ZTD at PIE1 is smaller than that at other stations, due to the higher station altitude. 

To inspect the modeling performance of formal error, we give the absolute values of the ZTD residuals (in light green line), 315 

that is, the GNSS estimates minus the empirical modeled values. Depending on the location, ZTD residuals show different 

variations. For instance, at ALIC (central Australia) the residuals show clear annual variations of several centimeters, which 

is consistent with the modeled amplitude of the formal error in Figure 6. The station PIE1 (Pie Town, southwest U.S.A.) also 

shows annual variations but the magnitude is much smaller, and the other four stations have no significant annual signals. We 

further compare the modeled formal error (“σ” in red dashed line) and the smoothed RMS of ZTD residuals (“RMSsmoothed” in 320 

dark green line), that is, one RMS of the residuals within a period of 2 months. The two values are overlapped to a large extent, 

meaning that the modeled formal error agrees well with the residuals.  
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Figure 10 ZTD estimates from GNSS (“ZTDGNSS”) and empirical model (“ZTDMOD”), and the corresponding residuals 325 
(“abs(ZTDresidual)”). The smoothed RMS of ZTD residuals within a 2-month window (“RMSsmoothed”) and the formal error of the 

empirical model (“σ”) are also given. Note that the absolute values of ZTD residuals are given. ZTD residuals, the RMS values, and 

the formal errors are shifted with the same bias for better visibility. The GNSS station name and location are given in the title of 

each panel. 
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The RMS of ZTD residuals within a 2-month period and the formal error at more GNSS stations are presented in Figure 11. 330 

We select one station every 5° in latitude, and in total 32 GNSS stations are given. As shown, the formal error has a very good 

agreement with the RMS of residuals at most of the stations. For stations with a small magnitude of formal error, the fluctuation 

of residual RMS also tends to be a straight line with some noises instead of showing any annual variations, and for stations 

with significant annual signals, the formal error also shows a very similar pattern.  Despite the generally good agreement 

between the RMS of ZTD residuals and formal error, it is worth mentioning that the short-term noises still exist, for instance, 335 

at station MRO1 (27°S) the RMS is about 30 mm larger than the formal error at the beginning period of the year 2017, and at 

station KIRI (1°N) the RMS value could be 20 mm smaller than the formal error in 2017. This is expected as the RMS values 

present the real accuracy of the empirical model whereas the formal error can only provide the average value and annual 

variation based on long-term numerical fitting. The semi-annual periodical signals are also significantly visible at several 

stations, such as BRMU (32°N), HYDE (17°N), MRO1 (27°S), and DGAR (7°S). 340 
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Figure 11 Smoothed RMS of ZTD modeling residuals using a 2-month window (green dots) and the formal errors (red dots) at 

selected GNSS stations. Stations in the North and South Hemispheres are given in left and right panels, respectively, sorted by 

latitude. The time series are shifted for better visibility. 345 

The agreement between the RMS of ZTD residuals and the formal errors is further analyzed in Figure 12. As shown in the left 

panel, the agreement is rather optimal and a strong correlation is observed. The correlation coefficient is 96%, meaning that 

the formal error can effectively present the accuracy of the empirical ZTD model over the four years, that is, 2017 to 2020. 

Both the overall RMS of the whole period (“RMSall”) and the average value of the smoothed RMS time series over the 2-

month periods show good agreement with the formal error. Taking all stations into consideration, the average bias of residual 350 

ZTD is −0.4 mm, the mean RMS of ZTD residuals is 38 mm, and the mean value of formal errors is 36 mm.  

We also give the correlation coefficients between the smoothed RMS of ZTD residuals within a 2-month period and the 

corresponding formal error in the right panel. For most stations, the correlation coefficients are quite large, especially for those 

with a large annual amplitude of formal error. The number of stations with a magnitude larger than 20 mm and between 10 and 

20 mm is 29 and 103, respectively, and the corresponding average correlation coefficient is 85% and 77%. The average value 355 

of all correlation coefficients, including those with a negative value, is 63%, and the median one is 70%. For stations with a 

small annual magnitude of formal error, the correlation coefficient is small or even negative. A small magnitude means that 

the formal error tends to be a straight line, for example, station THU2 (77°N), IQAL (64°N), and MAC1 (54°S) in Figure 11, 

and thus any discrepancy between the RMS of residuals and formal error caused by the noise of the RMS could degrade the 

correlation coefficient. 360 
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Figure 12 Left: ZTD modeling accuracy (vertical axis) and formal error (horizontal axis) at GNSS stations from 2017 to 2020. For 

each GNSS station, the RMS of all ZTD modeling residuals in 2017−2020 is given in the yellow orange dots (“RMSall”), and the 

average value of all RMS values in each 2-month window is given in the green dots (“RMSsmoothed”). Right: correlation coefficients 365 
between the ZTD formal error and RMS of a 2-month time window as a function of the formal error annual amplitude. The 

correlation coefficients in the right panel are all statistically significant with the p-value smaller than 0.05. 

The agreement of modeled ZTD w.r.t GNSS estimates is summarized inTable 2. The model shows no systematic biases as the 

averaged bias over all stations is -0.1 mm, despite that the maximum biases can reach up to 2 cm. The average absolute bias 

is 4.1 mm, which can be attributed to (1) the mismodeling effects at specific stations due to the deficiency of our model, which 370 

can be further improved by adopting a higher temporal resolution, and (2) the systematic biases of GNSS ZTD estimates due 

to the instrument effects (Ding et al. 2023). The RMS value varies from 19.2 to 63.8 mm, with an average value of 37.7 mm. 

Both the bias and RMS values agree well with previous investigations of the GPT3 empirical ZTD models and GNSS ZTD, 

for example, an RMS of 44.1 mm by Ding & Chen (2020), and an RMS of 38.56 mm reported by Yao et al. (2024). 

Table 2 Agreement of the modeled ZTD w.r.t. GNSS estimates. For each station, we calculated the Mean, Median absolute error 375 
(MAE), and RMS values of the ZTD differences over the four years (2017.00-2021.00), then the average, median, mean absolute 

value, maximum, minimum, and 95% values of all stations are given. Units are mm. 

 Mean Mean absolute error (MAE) RMS 

Average -0.1 30.7 37.7 

Median 0.4 29.5 37.1 
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Mean absolute value 4.1 30.7 37.7 

Max 21.8 54.2 63.8 

Min -23.6 14.9 19.2 

95% (abs) 13.0 47.0 57.0 

5 Impact on the convergence time of kinematic PPP solution 

To evaluate the impact of using the empirical ZTD model and the corresponding uncertainty information on GNSS positioning, 

we conduct a pseudo-kinematic PPP solution using the 200 globally distributed IGS stations (shown in Figure 1Figure 1) in 380 

2020. The 30-sec sampled GPS observations in DOY 001−030, 091−120, 180−210, and 271−300, which correspond to the 

four seasons, are processed. Each day, we cut the 24-hour data into six arcs, and process only four hours of data per solution. 

In total around 720 solutions sessions are processed for each station, depending on the availability of observations. 

The Positioning And Navigation Data Analyst (PANDA) software (Liu & Ge, 2003; Geng et al., 2008) with multi-technique 

processing developments (Wang et al., 2022) are used for the data processing. We adopt the conventions in the IGS third 385 

reprocessing campaign (Repro3, http://acc.igs.org/repro3/repro3.html) for the pseudo-kinematic PPP solutions, where the 

satellite orbits and clocks are fixed to ESA’s Repro3 products. For parameter estimation, we estimate ambiguity as constant 

per arc, epoch-wise station coordinates, receiver clocks, and zenith tropospheric delays mapped by the VMF3. The tropospheric 

gradients are not estimated as they are not critical for the kinematic PPP accuracy but degrade the convergence speed (Wang 

& Liu, 2019; Cui et al., 2022). A stochastic processing noise of 5 mm/sqrt(h) is applied to the epoch-wise ZTD estimates. The 390 

a priori ZHD is provided by the VMF3 products, and the a priori ZWD is provided by our empirical ZTD model, that is, the 

empirical ZTD minus the ZHD from VMF3. Note that it is also possible to adopt other empirical ZHD models, such as the 

GPT series. The ZWD estimates are constrained to the a priori delay with different weights: 1 m considered as a very loose 

constraint (solution “No”), one and two times the uncertainty from our empirical model (solution “1σ” and “2σ”, respectively). 

We evaluate both 5° and 15° cut-off elevation angles, which represent an ideal and a normal case, respectively. The positioning 395 

results are evaluated by comparing them with the IGS Repro3 combined coordinates. 

Figure 13 presents the RMS value of positioning errors in the first two hours of each solution. Note that we calculate the 

average RMS with a time window of 10-min. In general, applying a proper constraint to the a priori tropospheric delay can 

improve the positioning performance in the convergence period, that is, speeding up the convergence time, especially in the 

first 30 minutes. For the 15° cut-off elevation angle solutions, both 1σ and 2σ constraints improve the convergence speed, and 400 

the improvement of the first case is less significant after 40 minutes. As for the 5° cut-off elevation angle solutions, the 1σ and 

2σ constraints improve the convergence speed with respect to the loose-constrained solution in the first 20 minutes, whereas 

after that, only the 2σ solution is improved and the 1σ one gets degraded. The positioning results are combined contributions 

of both real GNSS observations and the axillary information, that is, the external tropospheric delays and the corresponding 

uncertainties in this case. When the contribution of GNSS observation is less robust, for example, at the beginning of a session, 405 

especially with a higher cut-off elevation angle, the observation geometry is not good enough to provide good estimates, and 

thus introducing external tropospheric delays and uncertainties contributes to stabilizing the solution and improving the 

convergence. When a good observation geometry is available, that is, after the convergence time or with more satellites 

available, GNSS observation itself can provide robust and accurate coordinates, and the additional tropospheric delay 

information does not contribute significantly. On the other hand, if a tight constraint is applied, the tropospheric delay error 410 

propagates into the coordinates and degrades the solution accuracy. 

http://acc.igs.org/repro3/repro3.html
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Figure 14 Positioning accuracy of pseudo-kinematic GPS PPP solutions with different constraints on tropospheric delays under 

different cut-off elevation angles. The RMS value in the first two hours of each solution over a 10-min time window is presented. 415 

6 Conclusions and Outlook 

Empirical tropospheric delay models are important for real-time GNSS applications as they provide precise a priori zenith 

delays with an accuracy of 3 to 4 cm and are easy to implement without any external meteorological input. They serve as both 

a priori delays and constraints to accelerate the convergence time, and in the latter case, uncertainty is required. Currently, 

most empirical delay models, such as the GPT series, provide only the delay values but not the uncertainty information. As a 420 

consequence, the users have to numerically test the impact of different values (Yao et al., 2017), which has a dependence on 

both the location and season. 

We present a global model to provide both zenith tropospheric delays and the corresponding uncertainties, which facilitates 

exploiting empirical delay models in enhancing real-time GNSS applications. Based on ten years (2009−2018) of NWM-

derived zenith delay grids with a spatial resolution of 1°×1°, we derive the numerically fitted coefficients, which can present 425 

ZTD with an accuracy of 36 mm on a global scale. After obtaining the fitting residuals of the delays, we further model the 

squared residuals using a function containing constant, annual, and semi-annual terms, which present the average value and 



22 

 

seasonal variations of the uncertainty (formal error). The constant term of formal error varies between 10 and 60 mm at 

different locations, and the annual amplitude could reach up to 30 mm and the global average value is 6.2 mm. Eventually, we 

provide a 1°×1° global grid, and at each grid point, five coefficients are used to present ZTD and five for formal error. 430 

To evaluate the proposed model, we use both NWM-derived delays in 2019−2021 and ZTD estimates from 380 GNSS stations 

in 2017−2020. The comparison with NWM-derived ZTD values shows that the model accuracy is around 35 mm, and the 

seasonal variations of the ZTD formal error agree with the ZTD accuracy within 0.1 mm on average. The agreement of our 

empirical ZTD model with GNSS ZTD estimates is 38 mm in terms of the RMS statistic, and the average bias is 0.4 mm. The 

modeled ZTD formal error has a strong correlation with the ZTD accuracy and the correlation coefficient is 96%. Inspecting 435 

the seasonal variations of the formal error, the stations with a larger annual amplitude of formal error have larger correlation 

coefficients. For example, for stations with an amplitude larger than 20 mm, the average correlation is 84%. 

Note that our empirical model does not aim for a higher modeling accuracy. Instead, we provide the additional uncertainty 

information of the delay values to users. On the one hand, the empirical modeling accuracy of zenith tropospheric delay is 

limited to 3 to 4 cm with the commonly used strategies. This can be easily verified by the numerical fitting of ZTD from NWM 440 

and/or GNSS. Given the NWM-derived ZTD time series, the numerical fitting accuracy of the typical method, that is, annual 

and semi-annual periodical terms, is around 36 mm (for example, in Figure 2). Considering that the ZTD agreement between 

NWM and GNSS estimates are around 1 to 1.5 cm (Zhou et al., 2020), the fitting accuracy of GNSS ZTD is expected to be at 

the same level (also see Chen et al. (2020)). In any case, to achieve better accuracy for the tropospheric delay empirical 

modeling, more sophisticated methods should be used in the future, such as machine learning and artificial intelligence, which 445 

are already utilized in the regional tropospheric delay augmentation and water vapor sensing (Miotti et al., 2020; Shehaj et al., 

2022; Zhang et al., 2022; Zheng et al., 2022). On the other hand, the uncertainty information is beneficial to real-time GNSS 

users, especially in the scenarios of enhancing the convergence speed. As the uncertainty shows large differences between 

different locations and seasons, it is not optimal to use arbitrary values, and our proposed model can thus provide a realistic 

reference. As the uncertainty modeling is based on a similar dataset as the GPT series, it is also applicable to the GPT series. 450 

Therefore, the modeled uncertainty information is also useful for GNSS integrity monitoring, where bounding the residual 

tropospheric delay is beneficial for the vertical alert limits (Lai et al., 2023; McGraw G, 2012; Rózsa et al., 2020; Su & Schön, 

2022; Yang et al., 2023). For future study, it would also be possible to provide the mapping function modeling error for the 

empirical mapping functions such as GPT3/VMF3, whereas how to utilize the uncertainty of mapping functions still needs 

investigation. 455 

Code Availability 

The model referred to as SHAtrop_Sigma is provided at https://zenodo.org/records/11563994 (doi: 10.5281/zenodo.11563993) 

and also available at the GNSS Analysis Center at Shanghai Astronomical Observatory: 

http://center.shao.ac.cn/shao_gnss_ac//index.html.  

Data Availability 460 

The tropospheric delay product from NWM is available at http://doi.org/10.17616/R3RD2H, the GNSS ZTD estimates are 

available at: http://geodesy.unr.edu/gps_timeseries/trop/.  

https://zenodo.org/records/11563994
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