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Abstract.

The radiative forcing of black carbon (BC) is subject to many complex, interconnected sources of uncertainty. Here we

isolate the role of the refractive index, which determines the extent to which BC absorbs and scatters radiation. With other pa-

rameterizations held constant, varying BC’s refractive index from m550nm = 1.75−0.44i to m550nm = 1.95−0.79i increases

simulated absorbing aerosol optical depth (AAOD) by 42% and the effective radiative forcing from BC-radiation interactions5

(BC ERFari) by 47%. The AAOD increase is comparable to that from recent updates to aerosol emission inventories, and in

BC source regions, a third as large as the difference in AAOD retrieved from MISR and POLDER-GRASP satellites. The

BC ERFari increase is comparable to the scale of the uncertainty in recent literature assessments. Although model sensitivity

to the choice of BC refractive index is modulated by other parameterization choices, our results highlight the importance of

considering refractive index diversity in model intercomparison projects.10

1 Introduction

Black carbon (BC), formed as a result of incomplete combustion, is the most strongly warming of the aerosols (Szopa et al.,

2021), with particularly important impacts in the Arctic (AMAP, 2021; Sand et al., 2016; von Salzen et al., 2022). Although

its effective radiative forcing (ERF; Boucher et al., 2013) is understood to be positive, the magnitude of this forcing remains

uncertain (AMAP, 2021; Bond et al., 2013; Szopa et al., 2021; Thornhill et al., 2021).15

This uncertainty stems from many sources, including uncertainty in the optical properties of freshly emitted BC (Bond and

Bergstrom, 2006; Bond et al., 2013; Liu et al., 2020) and the changes in these properties as BC ages (Hu et al., 2023; Peng

et al., 2016; Taylor et al., 2020); in the total burden and vertical distribution of BC (Gliß et al., 2021; Samset et al., 2013; Sand

et al., 2021), which are themselves complicated by uncertainties in the emissions (Bond et al., 2013; Hoesly et al., 2018; Wang

et al., 2021) and lifetime (Gliß et al., 2021; Hodnebrog et al., 2014; Lund et al., 2018) of BC; and uncertainty in the details of20

BC-cloud interactions (Koch and Del Genio, 2010; Szopa et al., 2021; Zanatta et al., 2023).

Constraining these uncertainties is complicated by the fact that models and observations frequently disagree, but it is not

always clear which – if either – is correct (Samset et al., 2018b). For example, models tend to simulate lower absorption aerosol

optical depth (AAOD) than is measured by AERONET stations (Bond et al., 2013; Samset et al., 2018b; Sand et al., 2020). This
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can be interpreted to mean that models underestimate AAOD, perhaps because of too-low emissions or too-vigorous removal25

(Bond et al., 2013) or because the simulated aerosols are insufficiently absorbing (Bond and Bergstrom, 2006; Liu et al.,

2020). Alternatively it could indicate that AERONET overestimates AAOD, as suggested by Andrews et al. (2017) based on

comparisons between AERONET and in-situ aircraft measurements. It is also possible that both models and observations are

reasonably accurate, and that the apparent discrepancy comes from comparing point-source measurements of a very spatially

heterogeneous quantity against model grid cell averaged fields (Schutgens et al., 2021; Wang et al., 2016, 2018).30

In this work we investigate the sensitivity of BC AAOD and radiative forcing to one key source of uncertainty: the complex

refractive index, which determines the degree to which an aerosol absorbs and scatters radiation. Lab-based estimates of the

BC refractive index (BCRI) show remarkable diversity (Bond and Bergstrom, 2006) and this diversity is reflected in the range

of values commonly used in Earth system models (Table 1). Recent studies (Sand et al., 2021; Gliß et al., 2021) suggest

that uncertainty in the choice of BCRI may, along with uncertainties in the treatment of mixing and ageing, contribute to the35

diversity in BC absorption simulated by Earth system models; however, no study has to date isolated the impact of BCRI

on key BC fields in a single model with other aerosol treatments held constant. Here we select three values of the BCRI

commonly used in Earth system models, summarized below, and use them to run otherwise-identical ensembles of simulations

in the atmospheric model CanAM5.1-PAM. We then contextualize the resulting spread in climate-relevant quantities including

AAOD and the effective radiative forcing from aerosol-radiation interactions (ERFari) by comparing with a sample of other40

known uncertainties.

2 The Refractive Index of Black Carbon

The refractive index m = n− ik is a complex, wavelength-dependent parameter that determines the extent to which an aerosol

absorbs or scatters radiation. It cannot be measured directly but is inferred by fitting laboratory measurements to an assumed

optical model, such as Mie theory or Rayleigh-Debye-Gans theory, that describes the optical properties of an aerosol as a45

function of refractive index. For BC, these may be measurements of the scattering and absorption of light by flame-generated

BC particles or of the reflectance at different angles by a compressed BC sample (Bond and Bergstrom, 2006). In either case,

measurements are typically taken at only one or a few wavelengths, so additional assumptions are required to extrapolate the

full spectrally-dependent refractive index.

Uncertainty can arise from the measurements themselves, from the applicability of the assumed optical model to the BC50

sample being measured, and from the representativity of this BC sample to the BC which one aims to describe. For instance,

measurements of scattering and absorption by flame-generated particle may be fit to Mie theory (assuming spherical particles)

or Rayleigh-Debye-Gans theory (assuming aggregates). If the particles being measured are aggregates but Mie theory is as-

sumed, not only will the scattering and absorption be underpredicted, but the inferred BCRI will be for a combination of pure

BC and the air contained within the aggregates’ voids (Bond and Bergstrom, 2006). Furthermore, the inferred BCRI will be for55

BC generated by a simple, clean laboratory flame, which likely has a different temperature history – and thus, generates BC

particles with different optical and structural properties – than the more complex sources that generate most atmospheric BC
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(Bond and Bergstrom, 2006). To complicate matters further, there is ambiguity in what precisely constitutes BC: for instance,

some authors use the terms BC and soot interchangeably while others consider them to be separate materials. An extensive

review of these uncertainties is provided by Bond and Bergstrom (2006).60

In this work we select three values of the BCRI from the literature, quoted here at 550 nm: m550nm = 1.75− 0.44i

(d’Almeida et al., 1991), m550nm = 1.75−0.63i (Bond and Bergstrom, 2006), and m550nm = 1.95−0.79i (Bond and Bergstrom,

2006), described below. We will refer to these selections as the low, medium, and high BCRI respectively, based on their values

of the absorption function E(m) at 550nm:

E(m) = Im
(

m2− 1
m2 + 2

)
(1)65

(Bohren and Huffman, 1983). Higher values of E(m) indicate an increased tendency for absorption, and the mass absorption

cross section of an aerosol is a linear function of E(m) although the details of this relationship depend on aerosol morphol-

ogy (Liu et al., 2020). The three BCRI used here have E(m550nm) of 0.177, 0.248, and 0.255 respectively. Their absorption

functions are approximately constant through the mid-visible range and increase to both the ultraviolet and infrared, with the

difference in absorption between the three BCRI increasing in both directions (d’Almeida et al., 1991; Chang and Charalam-70

popoulos, 1990).

2.1 Low BC Refractive Index: m550nm = 1.75 − 0.44i

Use of the “low” BCRI can be tracked to back to the 1970s at least. d’Almeida et al. (1991) tabulated the refractive indices

of dust-like, water-soluble, soot, oceanic, sulfate, and mineral aerosol components at wavelengths from 0.300-40 microns. The

refractive indices of soot, which is frequently used as interchangeable with BC, were drawn from the tabulation of Shettle and75

Fenn (1979) which itself compiled data from pre-existing measurements.

More recent evidence (Bond and Bergstrom, 2006; Liu et al., 2020) suggests that the BCRI proposed by d’Almeida et al.

(1991) is inconsistent with observations, and that the corresponding absorption is too low. Nevertheless, this BCRI has been

very widely used in the climate modeling community (Table 1) and it is the default BCRI in CanAM5.1-PAM.

2.2 Medium and High BC Refractive Indices: m550nm = 1.75 − 0.63i and m550nm = 1.95 − 0.79i80

Bond and Bergstrom (2006) compiled and reviewed laboratory measurements of the optical properties of BC, and from

these data, proposed a range of BCRI values lying along the so-called “void fraction line.” These BCRI describe the effec-

tive refractive indices of BC with varying degrees of air included within its structure. We select m550nm = 1.75− 0.63i and

m550nm = 1.95− 0.79i, the lowest and highest values proposed by Bond and Bergstrom (2006), for this analysis.

Unlike d’Almeida et al. (1991), Bond and Bergstrom (2006) only provide estimates of the BCRI at 550nm. Flanner et al.85

(2012) obtained full spectral information for m550nm = 1.95− 0.79i using the expressions derived by Chang and Charalam-

popoulos (1990). We use this dataset for our “high” BCRI, and apply an equivalent scaling to the equations of Chang and

Charalampopoulos (1990) to obtain the spectrally varying “medium” BCRI for m550nm = 1.75− 0.63i.
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Aerosol scheme Host model References

Low RI (m550nm = 1.75− 0.44i)

AM4.0 GFDL Zhao et al. (2018)

CLASSIC ACCESS-ESM1-5, HadGEM2-ES Bellouin et al. (2011); Ziehn et al. (2020)

GOCART GEOS Chin et al. (2002); Colarco et al. (2010)

SPRINTARS MIROC-ES2L Takemura et al. (2002); Hajima et al. (2020)

(unnamed) OsloCTM3 Myhre et al. (2009)

PAM CanAM5.1-PAM von Salzen (2006); Cole et al. (2023)

High RI (m550nm = 1.95− 0.79i)

ATRAS CAM5-ATRAS Matsui (2017)

MAM4 CESM1, E3SM-1-1 Liu et al. (2012); Wang et al. (2019)

MASINGAR MRI-ESM2-0 Yukimoto et al. (2019)

OsloAero6 NorESM2-LM Seland et al. (2020)

Alternate recommendation from Bond and Bergstrom (2006) (m550nm = 1.85− 0.71i)

GLOMAP UKESM Sellar et al. (2019)

HAM-M7 ECHAM-HAM Tegen et al. (2019)

SALSA ECHAM-SALSA Bergman et al. (2012)

TM5-mp3.0 EC-Earth3-AerChem van Noije et al. (2021))
Table 1. Illustrative sample of aerosol schemes that use our selected BCRI; see Section 2 for descriptions of the indices. To the best of our

knowledge no aerosol schemes currently use our intermediate-absorption BCRI (m550nm = 1.75−0.63i, the lowest value recommended by

Bond and Bergstrom (2006)). However, a number of aerosol schemes use m550nm = 1.85−0.71i, an alternate recommendation from Bond

and Bergstrom (2006) that falls between our intermediate and high BCRI, and we include a selection of those schemes here.

The “high” BCRI is used by a number of aerosol schemes. To our knowledge, no schemes currently use our “medium” BCRI,

although some use intermediate values from Bond and Bergstrom (2006), most commonly m550nm = 1.85− 0.71i (Table 1).90

Nevertheless we select m550nm = 1.75− 0.63i as our intermediate BCRI in order to span the range of estimates from Bond

and Bergstrom (2006).

3 Methods

Simulations are conducted with the Canadian Atmospheric Model version 5.1 (CanAM5.1; Cole et al., 2023; Sigmond et al.,

2023) using the Piecewise Lognormal Approximation (PLA) Aerosol Model (PAM; von Salzen, 2006). A detailed description95

of CanAM5.1-PAM can be found in Appendix A.

We simulate three sets of “core ensembles”: one control ensemble and one perturbed ensemble for each of the BCRI de-

scribed above. Each ensemble consists of nine short simulations (2014-2019) and one long simulation (1949-2019). The first

year of each is discarded as spinup. In the control ensemble, all emissions of aerosols and greenhouse gases are transient; in the
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perturbed ensemble, all emissions are transient except for BC which is set to 1850 levels. ERF is then calculated from the differ-100

ence in top of atmosphere flux between pairs of control and perturbed runs, following the “ERF_trans” method of Forster et al.

(2016). Finally, the total BC ERF is decomposed into contributions from aerosol-radiation (ERFari), aerosol-cloud (ERFaci),

and albedo (ERFalb) interactions following Ghan (2013). In this work we exclusively consider shortwave ERF. Longwave BC

ERF is small in CanESM5.1-PAM, consistent with previous findings for models that do not parameterize aerosol impacts on

ice and mixed phase clouds (Heyn et al., 2017). Although PAM includes representations of the albedo effects on BC deposited105

on snow and ice (Namazi et al., 2015) and absorption of solar radiation by BC-containing cloud droplets (Li et al., 2013), in

this work we only vary the refractive index of atmospheric BC. ERFaci and ERFalb are thus expected to be similar between

the three core ensembles.

The influence of the BCRI on AAOD, ERFari, and tropospheric temperature are quantified by comparing these fields between

the three core ensembles. We then compare the changes in ensemble-median AAOD and ERFari that arise from the choice of110

BCRI to the variation that can be obtained from other uncertain factors. This comparison is not intended as a comprehensive

analysis of BC uncertainties, but rather presents an illustrative sample of relevant uncertainties other than the BCRI.

Our first comparison investigates the impact that recent updates to aerosol emission inventories have on simulated AAOD.

In the core ensembles, anthropogenic aerosol emissions are taken from the Community Emissions Data System (CEDS) 2021-

04-21 release (O’Rourke et al., 2021). CEDSv2021 emissions not only extend the historical emissions used in CMIP6 to115

more recent years but also include several back-corrections, most notably reducing the emissions of BC, organic carbon, and

sulfur dioxide over China (O’Rourke et al., 2021; Wang et al., 2021). Biomass burning emissions in the core ensembles are

taken from the CMIP6 historical inventory for 1950-2014 and the Global Fire Emissions Database (GFED v4.1s; van der

Werf et al., 2017) for 2015-2019. To investigate the impact of these selections, we run a single simulation forced with the

more commonly used CMIP6 historical and SSP2-4.5 anthropogenic and biomass burning emissions, otherwise identical to120

the low-absorption core ensemble. We compare the AAOD from this simulation against each realization of the low-absorption

ensemble in turn, yielding a 9-member ensemble of differences. We emphasize that this comparison does not represent the

total uncertainty in either anthropogenic or biomass-burning aerosol emissions, as we are comparing two versions of the same

anthropogenic emissions inventory and extending the biomass burning emissions with the same observational product as was

used in the creation of the CMIP6 historical and SSP inventories. Instead this comparison shows the sensitivity of AAOD to125

recent improvements in both sets of emissions.

Our second comparison considers observational uncertainty. We compare estimates of AAOD from the Multi-angle Imaging

SpectroRadiometer (MISR; Diner et al., 1998) and the Polarization and Directionality of the Earth’s Reflectances instrument

with the Generalized Retrieval of Atmosphere and Surface Properties algorithm (POLDER-GRASP; Dubovik et al., 2011),

selected for their availability in Level 3 gridded format. MISR and POLDER-GRASP bracket the range of AAOD simulated by130

current Earth system models (Figure A1). We consider satellite observations rather than ground-based or in-situ measurements

due to the challenge in comparing point-source data against gridded model results (Wang et al., 2016, 2018; Schutgens et al.,

2021). POLDER-GRASP data are not available for the 2015-2019 study period, so we instead compare these satellites over

the 5-year period 2007-2011. The difference between MISR results for 2015-2019 and 2007-2011 is substantially smaller than
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the difference between MISR and POLDER-GRASP data for 2007-2011, indicating that use of these alternate years is unlikely135

to affect our conclusions. This comparison is not intended to be a detailed evaluation of the uncertainty in remotely-sensed

AAOD; such assessments can be found in, for example, Schutgens et al. (2021). Instead it provides an estimate of the range of

AAOD that can be obtained from different instruments. As such it does not account for differences in sampling between the

two satellites or between the observed and simulated AAOD fields.

Our final comparison considers the range of AAOD and ERFari reported in recent multimodel assessments from the lit-140

erature. This comparison folds in many sources of model uncertainty, including differences in the treatment of mixing state

which has been shown to have substantial impact on simulated BC absorption (Sand et al., 2021; Gliß et al., 2021), as well as

differences in the parameterization of aerosol transport and deposition. The individual assessments are described in Section 4.

4 Results

4.1 Absorption Aerosol Optical Depth145

Modifying the BCRI directly modifies BC absorption, and we thus begin by assessing the its impact on AAOD (Figure 1). By

changing from the low to medium (high) BCRI, global-mean 2015-2019 AAOD increases by 8.09×10−4 or 27% (1.26×10−3

or 42%). Absolute increases are, unsurprisingly, largest over major source regions, but both medium- and high-absorption

ensembles are statistically significantly different from the low-absorption ensemble everywhere (Figure 1b, c). There is no

overlap between the low- and medium- or high-absorption ensembles of global-mean AAOD (Figure 1d,e), and as absorption150

increases, so too does the magnitude of the trend in AAOD over 1950-2019 (Figure 1d).

Figure 1f compares the regional increases in AAOD from varying the BCRI to the increases obtained by varying the aerosol

emissions and to the differences in observed AAOD from the MISR and POLDER-GRASP satellites. Region definitions are

provided in Appendix B. The “near-global” and “Northern Hemisphere” domains exclude latitudes poleward of 60◦ where the

satellite retrievals are poorly sampled. Most of the regional variation in the increase of AAOD caused by varying the BCRI155

comes from differences in the local BC burden (Figure B1); the relative increase is fairly consistent, varying from 39-47%.

The choice of aerosol emission inventory has the greatest impact in regions where the two inventories are the most different

and where the baseline emissions are high. The largest emissions-based AAOD increase, both in absolute terms and relative

to the BCRI increase, occurs in East Asia where both conditions are satisfied; the smallest occurs in South Asia where the

two inventories are nearly identical. These increases are a factor of 1.5 larger than, and a factor of 16 smaller than, the BCRI160

increases respectively; the 60◦S-60◦N average is approximately 60% of the BCRI increase. Note that these values do not

indicate the overall uncertainty in global or local emissions, only the spatial distribution of updates to the inventories being

considered. For example, Pan et al. (2020) report a factor of seven difference in Southeast Asian biomass burning emissions

from different inventories (a more accurate representation of emission uncertainties in this region), whereas we see almost no

change between the inventory versions considered in this assessment.165

In all regions the range of AAOD between different satellites is substantially larger than the range of simulated AAOD in

CanAM5.1-PAM under different configurations. This is expected given the challenges in constraining remotely sensed AAOD
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Figure 1. Maps show ensemble-median, 2015-2019 mean AAOD in (a) the low-absorption ensemble, (b) medium minus low absorption

ensemble, (c) high minus low absorption ensemble. Stippling in (b) and (c) indicates regions where the difference between time-averaged

ensembles is statistically significant at the 5% level according to a two-sided Students t-test; the global-mean AAOD difference is statistically

significant for both medium- and high-absorption ensembles. Timeseries show global-mean AAOD in the low (purple), medium (magenta),

and high (orange) absorption ensembles, over (d) 1950-2019 and (e) 2015-2019. Panel (f) compares the difference in ensemble-median,

2015-2019 mean AAOD between low and high absorption ensembles (dark pink) to the spread in AAOD obtained from simulations using

different emission inventories (gold) and to the range in remotely-sensed AAOD from different satellites (teal) in 8 different geographic

regions, and to the overall range in AAOD from AeroCom Phase III models (Sand et al., 2021) for the near-global region only (indigo).

Shaded envelopes in panels (d) and (e), and error bars in panel (f), denote the 5th-95th percentile range across ensembles.
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(Samset et al., 2018b). Even so, in regions where the BC burden is high the impact of BCRI on AAOD can be as much as a third

as large as the difference between satellites. Averaged over the near-global domain, the inter-satellite discrepancy is a factor

of seven larger than the BCRI-based AAOD increase. The satellite differences will be largest in regions where characteristics170

of the geography increase retrieval uncertainty (e.g. regions with more reflective surfaces) and in regions where the satellites

differ in their sensitivity to the dominant aerosol type.

Finally, for the near-global domain only we compare with the spread in global-mean AAOD from AeroCom Phase III models

(Sand et al., 2021). AeroCom Phase III estimates of the global-mean AAOD in simulations forced with 2010 emissions range

from 2.04× 10−3 to 9.78× 10−3 for an overall range of 7.75× 10−3 or approximately 6 times that obtained by varying the175

BCRI alone. This is similar to the range of AAOD between satellites, and as shown in Figure A1, the distribution of zonal-mean

AeroCom Phase III AAOD is approximately bracketed by the zonal-mean AAOD from MISR and POLDER-GRASP. The 15

AeroCom models have BCRI spanning between our low and high values, but the BCRI alone does not explain the intermodel

spread, as discussed further in Section 5.

Overall, the sensitivity of simulated AAOD to the choice of BCRI is comparable to its sensitivity to recent updates to the180

aerosol emission inventory within the same model. Between models, or between satellites, the AAOD spread is a factor of 6 to

7 larger.

Despite the fact that BC generally makes up a small fraction of total aerosol extinction (Bond et al., 2013), we do see

regionally significant increases in total AOD when BC absorption is increased (Appendix C). These changes are particularly

evident in Central and South Africa, South America, and the northern latitudes. These are all regions with high emissions from185

biomass burning, which are associated with a higher ratio of BC emissions. Heavily polluted regions, such as South and East

Asia, do not show an AOD dependence on BCRI, likely because AOD in these regions is dominated by sulfate. There is not a

statistically significant difference between globally-averaged AOD in the three core ensembles.

4.2 Aerosol-Radiation Forcing

The BCRI directly affects the interaction of BC with incoming solar radiation and therefore the aerosol-radiation forcing190

ERFari. Figure 2 summarizes the variation in shortwave BC ERFari across our three ensembles.

Changing from the low to medium (high) BCRI increases global-mean BC ERFari from 0.19 W/m2 to 0.25 W/m2 (0.28

W/m2), an increase of 32% (47%). These increases are largely confined to the Northern Hemisphere, and for the high-

absorption ensemble, are statistically significant in most regions where the low-absorption BC ERFari is significantly nonzero

(Figure 2c). Global-mean BC ERFari in both the medium- and high-absorption ensembles are significantly different from the195

low-absorption level at the 5% level. There is more interannual variability in the timeseries of global-mean BC ERFari than

there is in AAOD, likely due to the dependence of ERFari on cloud fields (Figure 2d,e). Despite this variability, ERFari trends

over 1950-2019 increase with BCRI as the AAOD trends do.

The uncertainty in BC ERFari attributable to the choice of BCRI can be compared to results from two recent literature

assessments. We first compare with the multimodel range of BC ERFari assessed by Thornhill et al. (2021), and then with200

the statistical uncertainty in BC ERFari reported by the Artic Monitoring and Assessment Program (AMAP) 2021 report.
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Figure 2. Panels (a-e): as Figure 1 but for BC ERFari. Heavy lines in (d) show 11-year rolling means. Panel (f) compares the difference

in BC ERFari between low and high absorption ensembles to the multimodel range from the Thornhill et al. (2021) assessment (blue), and

to the statistical uncertainty in the AMAP (2021) assessment (tan). The global-mean increase of 0.09 W/m2 referenced in the title of panel

c does not match the median increase of 0.11 W/m2 shown in panel f because panel c shows the difference between ensemble medians,

whereas panel f shows the ensemble distribution of global-mean differences between individual realizations.
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We emphasize that these are fundamentally different quantities with different interpretations. Furthermore, Thornhill et al.

(2021) and AMAP (2021) estimate ERF for different time periods, assuming different emission inventories, and using different

methodology in their calculations, so the studies’ best estimates are not directly comparable to our results or to each other.

The comparisons are nevertheless useful in contextualizing how much of an impact uncertainty in the BCRI has on that of BC205

ERFari.

Thornhill et al. (2021) calculated ERF for numerous aerosol and greenhouse gas species for 1850-2014 based on results

from AerChemMIP (Collins et al., 2017). Eight models provided estimates of total BC ERF but only four decomposed this

ERF into contributions from radiation, cloud, and surface albedo forcings. These four models (CNRM-ESM2, MRI-ESM2,

NorESM2, and UKESM1) simulated BC ERFari of 0.37 W/m2, 0.13 W/m2, 0.35 W/m2, and 0.26 W/m2 respectively, for210

an overall range of 0.24 W/m2. This is a factor of 2.5 larger than the difference in ERFari simulated by our low- and high-

absorption ensembles. The four models use a narrow range of high-absorption BCRI: m550nm = 1.95− 0.79i (MRI-ESM2

and NorESM2), m550nm = 1.85−0.71i (UKESM), and m550nm = 1.83−0.74i (CNRM-ESM2). The assessed range thus did

not stem from differences in the BCRI, although differences in the treatment of mixing states could still result in different

levels of BC absorption. The results of Thornhill et al. (2021) provide the basis for the assessed BC ERFari in the latest215

Intergovernmental Panel on Climate Change (IPCC) assessment report, AR6 (Szopa et al., 2021); as AR6 did not itself quote

an uncertainty range for BC ERFari, we do not otherwise include it in this comparison.

AMAP (2021) assessed radiative forcing for 1850-2015 using a different aerosol emission inventory than Thornhill et al.

(2021). Five models contributed data for BC ERF, but only two provided the decomposition into ERFari: MRI-ESM2 and

our own CanAM5-PAM, with BCRI of m550nm = 1.95−0.79i and m550nm = 1.75−0.44i respectively. The reported ERFari220

derived from these two models was 0.27 ± 0.04 W/m2. Unlike the Thornhill et al. (2021) and AeroCom results discussed

above, this ± 0.04 W/m2 is an estimate of statistical uncertainty rather than a multimodel range. It represents the precision to

which ERFari can be determined when derived from 100-year integrations of two Earth system models. The overall uncertainty

range of 0.08 W/m2 is ∼80% of the range we obtain by varying the BCRI within one model, suggesting that a different choice

of BCRI in either model could have materially impacted the assessed ERFari.225

Varying the BCRI, and thus the absorption, of atmospheric BC is found not to have a statistically significant impact on the

aerosol-cloud forcing or total BC forcing. This experiment did not vary the BCRI within cloud droplets or when deposited on

snow, so the only impact on clouds would be via the impact of changes in atmospheric temperature profiles, discussed below.

4.3 Temperature and Precipitation

Black carbon influences global and regional temperature (AMAP, 2021; Bond et al., 2013; von Salzen et al., 2022), mean and230

extreme precipitation (Samset et al., 2016; Samset, 2022; Sand et al., 2020), and the Asian monsoon (Ganguly et al., 2012;

Li et al., 2016; Westervelt et al., 2020; Xie et al., 2020). The sensitivity of these fields to the BCRI cannot be assessed in this

study as the three ensembles used the same set of prescribed sea surface temperatures. We can, however, examine temperature

changes from the radiative heating of the atmosphere by BC in the mid and upper troposphere, and draw on other works to

estimate potential precipitation changes.235
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Figure 3. Difference between vertical temperatures in the high- and low-absorption ensembles. (a) Vertical profile of zonal-mean temperature

differences. (b): spatial distribution of temperature differences at 850 hPa. Stippling indicates statistically significant temperature anomalies.

Figure 3 illustrates the vertical distribution of temperature changes obtained by varying the BCRI. Although near-surface

air temperatures are constrained by the prescribed sea surface temperatures, statistically significant zonal-mean warming is

evident over the northern midlatitudes starting at about 850 hPa. At 600 hPa and above, this warming is mostly confined to

regions above and downwind of East and South Asia; at lower altitudes, significant warming is also apparent over or downwind

of Africa and South America. Large temperature responses are apparent at the poles in Figure 3a but note that these changes240

are not statistically significant, and that they correspond to small geographic areas. The mid-tropospheric warming does not

appear sufficient to impact local cloudiness in our model: there are not statistically significant differences between the low- and

high-absorption cloud fractions at these levels.

To estimate the potential impact of BCRI on precipitation, we draw on the results of Samset (2022) who derived an expression

for global-mean precipitation suppression as a function of changes in AAOD:245
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∆P =
dP

dAbs
× dAbs

dAAOD
∆AAOD =−4646± 1600mmy−1(unitAAOD)−1 (2)

where P denotes the precipitation rate in mm/year and Abs denotes atmospheric absorption, defined as the difference be-

tween top of atmosphere and surface radiative forcings in units of Wm−2. A numerical estimate of the first term in Equation

2 was derived from historical simulations in AeroCom Phase II and CMIP6 models, and the second term was drawn from the

results of Samset et al. (2016) and Persad et al. (2022). Applying Equation 2 to the global-mean, ensemble-median increase in250

AAOD obtained by changing from the low to high BCRI yields an estimated precipitation suppression of 5.9 ± 2.0 mm/year.

It is extremely unlikely that this signal would be detectable in the global mean. It is possible, however, that regional changes

could be considerably larger.

5 Discussion

We have demonstrated that increasing the BCRI across the range of values commonly used in the climate modeling literature255

can increase global-mean AAOD by 42% and BC ERFari by 47%. The resulting increase in the absorption of solar radiation

can increase temperatures in the mid and upper troposphere by as much as 0.4◦C over major BC source regions, even without

considering the potential impacts of BC on sea surface temperatures and sea ice which we have not addressed. For these key

BC-relevant fields, therefore, the choice of BCRI is an important and perhaps underappreciated one.

In order to motivate their review on constraining global and regional aerosol absorption, Samset et al. (2018a) briefly ex-260

plored the effects of modifying the optical properties of BC in CESM1.2. They modified the BCRI by an amount sufficient to

increase the resulting AAOD by approximately one standard deviation of the reported AAOD range from AeroCom Phase II

(Myhre et al., 2009). Although they do not report the change in BCRI that was necessary to obtain this increase, the result was

an increase in AAOD from 3.0× 10−3 to 4.3× 10−3 (+1.3× 10−3 or 43%), almost identical to the difference between our

low- and high-BCRI ensembles. This increase in absorption led to a global-mean instantaneous ERF of 0.2 W/m2 relative to265

the control configuration. In our analysis the median increase in total BC ERF was 0.1 W/m2, but was not statistically different

from zero.

Diversity in simulated aerosol absorption in AeroCom Phase III models was investigated by Sand et al. (2021). As described

in Section 4.1, AeroCom Phase III models exhibited a wide range of absorption, with global-mean AAOD attributable to BC

ranging from 0.7×10−3 to 7.7×10−3. However, they did not display a clear relationship between BCRI and overall absorption.270

Aerosol absorption is not purely a function of BCRI but rather the result of many competing and uncertain processes (Gliß

et al., 2021; Koch et al., 2009; Myhre et al., 2009; Sand et al., 2021). Sand et al. (2021) attribute the AeroCom Phase III spread

to three main factors: diversity in the simulated mass load, which ranged from 0.13 to 0.51 mg/m2, driven by differences in

deposition processes and thus in aerosol lifetime; diversity in the prescribed density of black carbon, which ranged from 1.0

to 2.3 g/cm3; and diversity in the BCRI, which ranged from 1.75-0.44i to 1.95-0.79i. These three factors contributed similarly275

to the overall model spread. There was also substantial diversity in the treatment of mixing state, both in terms of the mixing
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itself and in the calculation of resultant effective optical properties of the mixture, between the participating models. Between

the diversity in effective refractive index due to differences in absorption enhancement from mixing, and the diversity of

assumed BC density, the correlation between BCRI and mass absorption cross section was found to be low (0.2). Thus while

BCRI is an influential parameter choice when all else is held equal, its impact is modulated by the competing effects of other280

parameterizations.

Although our analysis encompasses the range of BCRI typically used in the climate modelling community, more extreme

values may be possible. Bescond et al. (2016) report a value of m532nm = 1.48− 0.84i derived from observations of ethylene

flame. With E(m532nm) = 0.407, compared to E(m550nm) = 0.177 to 0.255 in our core ensembles, this choice of BCRI

indicates far stronger absorption than we have considered in our main analysis. It is likely not representative of the BC being285

simulated by Earth system models, because most atmospheric BC comes from more complex sources such as coal, propane, or

biomass burning, and because BC undergoes rapid morphological transitions after its emission (Ramachandran and Reist, 1995)

which alter its optical properties. It nevertheless provides a useful upper limit on the range of plausible BCRI impacts. When

used in a fourth ensemble of simulations, the resulting global-mean, ensemble-median AAOD is 7.76× 10−3, an increase of

1.77×10−3 or 59% over the low-absorption ensemble. BC ERFari increases by 0.19 W/m2 or 100%. Although these increases290

are substantial, they do not affect our overall conclusions on the importance of BCRI relative to other sources of uncertainty.

6 Conclusions

The radiative forcing of black carbon is subject to many complex, interconnected sources of uncertainty. We have isolated one

key factor, the refractive index (BCRI), and demonstrated its impact on the simulation of several fields. With all other parame-

terizations held equal, increasing the BCRI from m550nm = 1.75− 0.44i to m550nm = 1.95− 0.79i can increase global-mean295

AAOD by 42% and BC ERFari by 47%. The impacts on AAOD are comparable to the effects of recent updates to anthro-

pogenic and biomass-burning aerosol emission inventories, and in BC source regions, the difference in AAOD between low-

and high-absorption ensembles is a third as large as the difference in AAOD retrieved from MISR and POLDER-GRASP

satellites. The increase in BC ERFari is comparable to the uncertainty in recent literature estimates. While we do not attribute

the spread in model estimates of AAOD and ERFari to diversity in BCRI – rather, the multimodel spread arises from a com-300

bination of BC parameter choices including BCRI and density, the treatment of mixing and ageing, and the parameterization

of transport and deposition processes, among other factors – the similar magnitude emphasizes the importance of considering

BCRI choices in model development and multimodel comparisons.

Code and data availability. The full CanESM5 source code is publicly available at https://gitlab.com/cccma/canesm/ (last access: 24 May

2024). Simulation data used in this project will be available from https://crd-data-donnees-rdc.ec.gc.ca/CCCMA/publications/ (data upload305

in progress). Figures were created using Matplotlib version 3.7.1 (Hunter, 2007; Caswell et al., 2023), available under the Matplotlib license

at https://matplotlib.org/. The analysis scripts are available via Zenodo (Digby, 2024).
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Several datasets were used to develop the aerosol emission inventories in this work. Anthropogenic emissions for the core ensembles were

taken from the CEDS v2021-04-21 data release (O’Rourke et al., 2021). Biomass burning emissions for 2015-2019 for the core ensembles

were taken from GFEDv4.1s, described in van der Werf et al. (2017) and available at https://www.geo.vu.nl/~gwerf/GFED/GFED4/. CMIP6310

anthropogenic and biomass burning emissions are available from the Earth System Grid Federation (ESGF) at https://aims2.llnl.gov/search/

input4mips/.

MISR satellite observations are available via the NASA Langley Atmospheric Science Data Center (NASA/LARC/SD/ASDC, 2008).

POLDER-GRASP observations are available from the POLDER Data Release site (POL, 2015); the “compnents” product was used in this

analysis. Level 3 monthly data at 1x1 degree resolution were used for both datasets.315

Appendix A: CanAM5.1-PAM

The Canadian Atmospheric Model version 5 (CanAM5; Cole et al., 2023) is the atmospheric component of the Canadian Earth

System Model CanESM5 (Swart et al., 2019). Here we use CanAM5.1, which contains a number of technical and scientific

updates. Most importantly for aerosol modeling, these updates eliminate the occasional formation of spurious tropospheric

dust storms seen in CanESM5 (Sigmond et al., 2023).320

CanAM5.1 can be run with either of two aerosol schemes: a bulk scheme, which simulates aerosol mass budgets and is

typically used for large ensembles, or the PLA Aerosol Model (PAM). PAM uses the Piecewise Lognormal Approximation

(von Salzen, 2006, PLA;) method to simulate aerosol size distributions using a series of truncated, non-overlapping lognormal

modes. Each truncated mode has a specified width; the magnitudes and mode radii are calculated from the predicted mean

masses and number concentrations in each section at each timestep.325

PAM accounts for internal and external mixing states (Riemer et al., 2019). Black carbon and organic carbon are emitted

as externally mixed, hydrophobic aerosol, represented by one mode each. Upon ageing (τ=1h/24h during the day/night) these

tracers are merged with pre-existing internally mixed aerosol, which is represented by 3 modes. Dust and sea salt are externally

mixed and are represented by two modes each. Sulfate aerosol can form from ternary homogeneous nucleation of water vapour,

gaseous sulfuric acid (H2SO4), and ammonia, after which point it grows by coagulation, or by condensation of water vapour,330

H2SO4, and secondary organic aerosol precursor gases (Dunne et al., 2016). All sulfate aerosol is contained within the 3

internally mixed modes and assumed to be fully neutralized by ammonium.

Aerosol sinks in PAM include dry deposition, which depends on ground-surface properties and the near-surface aerosol

concentration (Zhang et al., 2001); wet deposition by below-cloud scavenging (Croft et al., 2005); and in-cloud scavenging in

convective and layer clouds (Croft et al., 2005; von Salzen et al., 2013). Both below-cloud and in-cloud wet deposition rates335

are proportional to the precipitation formation rate.

Aerosol activation and cloud droplet growth are determined using pre-calculated solutions to the cloud droplet growth

equation for an adiabatically rising air parcel near the cloud base (Wang et al., 2022). These solutions are stored in lookup

tables and referenced using a numerically efficient iterative approach. The simulated cloud droplet number concentration is

used to compute the effective radius of the cloud droplets (Peng and Lohmann, 2003) according to the first indirect effect340
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Figure A1. 2015-2019 zonal mean (left column) and seasonal cycle (right column) of AAOD in PAM ensembles (coloured lines), satellite

retrievals (yellow envelopes), and AerCom Phase III models as reported in Figure 2 of Sand et al. (2021) (pink envelope). For PAM models,

individual lines denote individual realizations, averaged over 2015-2019. For satellites, the width of the envelope shows the min-max range

over the 5 years in question (2015-2019 for MISR, the lower envelope, and 2006-2010 for POLDER-GRASP, the higher envelope). The

AeroComII envelope indicates the full min-max range across models, for simulations forced with 2010 emissions. PAM is generally in closer

agreement with MISR than POLDER-GRASP, and within the range of both zonal means and seasonal cycles simulated by AeroCom Phase

III models.
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(Lohmann and Feichter, 2005). In the model configuration used here, the second indirect effect is included via autoconversion

of cloud to rain droplets (Cole et al., 2023).

Aerosol optical properties in PAM are determined from pre-computed lookup tables, allowing us to generate separate lookup

tables for each choice of BCRI. These tables contain optical properties as a function of relative humidity, wavelength, and

particle size, calculated using Mie theory. For internally mixed aerosol an effective refractive index is simulated using the345

Maxwell-Garnett approximation (Wu et al., 2018).

CanAM5.1-PAM’s simulated AAOD is in good agreement with other Earth System models and, to the extent that this can be

determined given the associated uncertainties, with observations (Figure A1). The AMAP (2021) report found that CanAM5-

PAM was the only model among those assessed that was able to reproduce the observed vertical profile of BC in both the

Arctic and northern midlatitudes, although it overestimated BC concentrations near the surface for latitudes north of 60◦N.350

In this work we only vary the refractive index of atmospheric BC. PAM also includes representations of the albedo effects

on BC deposited on snow and ice (Namazi et al., 2015) and absorption of solar radiation by BC-containing cloud droplets (Li

et al., 2013), but the optical properties of BC in these settings are not modified in this work.

In the simulations conducted for this analysis, transient historical sea surface temperatures and sea ice concentrations were

specified using the PCMDI observational dataset (Taylor et al., 2000) and historical sea ice thickness for the Northern and355

Southern Hemispheres were taken from PIOMAS (Zhang and Rothrock, 2003) and ORAP5 (Zuo et al., 2017) reanalyses

respectively.
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Region longitude range [◦E] latitude range [◦N]

Near-Global 0, 360 -60, 60

Northern Hemisphere 0, 360 0, 60

East Asia 100, 145 20, 50

South Asia 60, 100 5, 30

Europe 0, 35 35, 60

USA 235, 290 25, 50

C. Africa 0, 40 -11, 15

S. America 280, 325 -40, 0
Table B1. Definitions of the regions used in Figures 1 and C1 and shown in Figure B1. The East Asia and South Asia definitions are taken

from the SREX regions used in IPCC AR5, and the C. Africa region combines the SREX regions EAF and WAF (excluding the portion of

WAF west of the prime meridian).

Appendix B: Region Definitions

The regions used in Figures 1 and C1 are defined in Table B1. Figure B1 shows these region boundaries overlaid on a map of

black carbon burden from the low-BCRI ensemble.360

BC burden in low-RI ensemble

10 7

10 6

kg
/m

2

Figure B1. Black carbon burden (2015-2019 mean, ensemble median) in the low-BCRI ensemble, with analysis regions indicated in blue.

Not shown are the near-global (60◦S-60◦N) and northern hemisphere (0◦N-60◦N) domains. Region definitions are listed in Table B1.
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Appendix C: Total-AOD Results

Figure C1 reproduces Figure 1 but for total AOD.
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Figure C1. As Figures 1 and 2 but for total aerosol optical depth. BC RI has regionally significant impacts on AOD but the global mean

does not differ significantly between low- and high-absorption ensembles. In panel (f), AOD retrievals are taken from MISR, the Moderate

Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2017; King et al., 2013), comparing Aqua and Terra results separately),

and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, Winker et al. (2009)). The AOD range is calculated as the difference

between the highest and lowest region-mean values, which in all regions considered turns out to be the difference between MODIS Terra and

MISR respectively.
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