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Abstract. Upcoming submillimeter wave satellite missions require an improved understanding of the sea ice emissivity to

separate atmospheric and surface microwave signals under dry polar conditions. This work investigates hectometer-scale air-

borne sea ice emissivity observations between 89 and 340 GHz combined with high-resolution visual imagery from two Arctic

airborne field campaigns in summer 2017 and spring 2019 northwest of Svalbard, Norway. We identify four distinct sea ice

emissivity spectra through K-Means clustering, which occur predominantly over multiyear ice, first-year ice, young ice, and5

nilas. Nilas features the highest, and multiyear ice features the lowest emissivity among the clusters. Each cluster exhibits

similar nadir emissivity distributions from 183 to 340 GHz. To relate hectometer-scale airborne to kilometer-scale satellite

footprints, we quantify the reduction of airborne emissivity variability with increasing footprint size. At 340 GHz, the emis-

sivity interquartile range decreases by almost half from the hectometer scale to a footprint of 16 km, typical for satellite

instruments. Furthermore, we collocate the airborne observations with polar-orbiting satellite observations. After resampling,10

the absolute relative bias between airborne and satellite emissivities at similar channels lies below 3 %. Additionally, spectral

nadir emissivity variations on the satellite scale are low, with slightly decreasing emissivity from 183 to 243 GHz, which occurs

for all hectometer-scale clusters except for predominantly multiyear ice. Our results will enable the development of microwave

retrievals and assimilation over sea ice from current and future satellite missions such as Ice Cloud Imager (ICI) and European

Polar System (EPS) Sterna.15

Copyright statement. TEXT

1 Introduction

Passive microwave observations from polar-orbiting satellites continuously monitored polar regions with high spatial coverage

for over five decades (Comiso and Hall, 2014). They are essential for atmosphere (e.g., Triana-Gómez et al., 2020; Perro et al.,

2020) and sea ice (e.g., Spreen et al., 2008; Kilic et al., 2020; Soriot et al., 2023) or joint atmosphere–sea ice retrievals (e.g.,20

Scarlat et al., 2020; Rückert et al., 2023; Kang et al., 2023). Such satellite-based retrievals help to understand the accelerated
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Arctic near-surface warming compared to the global mean (Rantanen et al., 2022; Wendisch et al., 2023). However, the highly

variable sea ice emission causes uncertainties in satellite retrievals and severely limits the use of surface-sensitive microwave

channels in operational numerical weather prediction data assimilation compared to open ocean (Lawrence et al., 2019). There-

fore, current research aims to improve the assimilation of microwave observations over sea ice, e.g., Bormann (2022) showed25

improved performance when assuming Lambertian instead of specular reflection in forward simulations.

Further spaceborne capabilities will become available through the novel Ice Cloud Imager (ICI; Buehler et al., 2007) and

European Polar System (EPS) Sterna (Albers et al., 2023) instruments, with first-time operational channels above 200 GHz.

These channels provide higher sensitivity to small cloud ice particles than the current passive microwave sensors (Buehler

et al., 2012; Wang et al., 2017a; Eriksson et al., 2020). However, variable emission of polar surfaces also adds significantly to30

the atmospheric signal received at the 243 (only ICI) and 325 GHz channels due to the dry atmosphere (Wang et al., 2017b).

While considerable interest exists in expanding the sea ice emissivity estimates to submillimeter waves, few field obser-

vations cover this frequency range. The first brightness temperature (TB) observations of sea ice at 220 GHz were obtained

using an airborne cross-track scanning radiometer (Hollinger et al., 1984). However, the sea ice emissivity was derived only

at lower frequencies up to 140 GHz due to high TB noise and low atmospheric transmissivity at 220 GHz during the field35

study. The observations revealed similar nadir emissivities at 90 and 140 GHz with higher emissivity over young ice (0.96)

and lower emissivity over multiyear ice (0.68). Airborne observations with along-track scanning radiometers by Hewison and

English (1999) provide detailed emissivity spectra for typical sea ice types and snow from 24 to 157 GHz and demonstrate

the importance of volume scattering within snow at 157 GHz. Hewison et al. (2002) calculated nadir emissivities from 24 to

183 GHz of sea ice with different development stages from new to multiyear ice with similar instrumentation as in Hewison40

and English (1999). New ice emissivities were highest and slightly decreased from 0.95 at 89 GHz to 0.9 at 183 GHz. First-

year ice emissivities decreased from 24 to 157 GHz and slightly increased from 157 to 183 GHz. This emissivity increase

towards higher frequencies was also found for multiyear ice. Haggerty and Curry (2001) observed first-time emissivities up to

243 GHz at nadir at about 1 km2 resolution. However, leads, which are typically smaller, could not be resolved. The 340 GHz

channel on board the same aircraft was insensitive to surface emission due to the low atmospheric transmissivity. Airborne45

observations in Wang et al. (2017b) measured sea ice emissivities up to 325 GHz that reveal high spatial variability, but the

driving sea ice properties at this frequency could not be estimated.

While the field studies demonstrate the high sensitivity of microwaves to sea ice and snow properties for limited regions,

only global sea ice emission information allows for atmospheric retrievals from satellites. As modeling of sea ice emission

is computationally expensive and requires detailed knowledge of the sea ice and snow properties (Royer et al., 2017; Picard50

et al., 2018; Rückert et al., 2023), which is missing on global scales, spaceborne emissivity climatologies were developed

(Wang et al., 2017b; Munchak et al., 2020). The Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter

Waves (TELSEM2; Wang et al., 2017b) climatology for sea ice and land surfaces additionally extrapolates the emissivity up to

700 GHz to provide first-guess emissivities for upcoming satellite missions such as ICI. To simultaneously retrieve atmospheric

and sea ice and snow properties, radiative transfer models of sea ice and atmosphere are combined (Rückert et al., 2023; Kang55

et al., 2023). Kang et al. (2023) additionally simulated sea ice growth to increase the temporal consistency of the retrieved
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sea ice and snow properties. However, the sea ice radiative transfer models might only be valid below 100 GHz. Recently,

observed snow emissivities up to 243 GHz were successfully simulated based on realistic snow properties (Wivell et al., 2023).

This result highlights the need for similar sea ice emissivity field observations up to submillimeter waves to improve future

modeling studies of sea ice. These field observations must also be related to satellite observations, which resolve the surface at60

a much coarser resolution.

The limitation of sea ice emissivity observations at submillimeter waves and its relevance for future satellite missions moti-

vates our study, which is structured around two objectives. First, we aim to identify critical physical sea ice and snow properties

affecting emissivity up to submillimeter waves observed during two airborne field campaigns. We calculate the sea ice emissiv-

ity from TBs at 89 (25◦ incidence angle, horizontal polarization), 183, 243, and 340 GHz (nadir) from the airborne Microwave65

Radar/Radiometer for Arctic Clouds (MiRAC; Mech et al., 2019). Then, we characterize typical emissivity spectra with air-

borne visual imagery and surface temperature observations. Second, we aim to relate the observed hectometer-scale emissivity

observations to the satellite scale. This includes an assessment of the emissivity variability as a function of footprint size. Fur-

thermore, we collocate MiRAC with observations from polar-orbiting satellites and analyze the spectral emissivity variations

observed at satellite resolution from 89 to 340 GHz relevant for upcoming satellite missions such as ICI and EPS Sterna.70

The manuscript is outlined as follows. Section 2 describes the airborne field data, microwave instruments, and auxiliary data.

Section 3 details the emissivity calculation. Section 4 identifies relevant sea ice and snow properties that affect emissivity from

airborne observations. The comparison of emissivity between airborne and satellite observations is presented in Sect. 5 before

the study is summarized and concluded in Sect. 6.

2 Data75

2.1 Field data

We use airborne observations from two campaigns, i.e., Arctic Cloud Observations Using Airborne Measurements during Polar

Day (ACLOUD) from 23 May to 26 June 2017 (Wendisch et al., 2019; Ehrlich et al., 2019b) and Airborne Measurements of

Radiative and Turbulent Fluxes of Energy and Momentum in the Arctic Boundary Layer (AFLUX) from 19 March to 11 April

2019 (Mech et al., 2022a). Both campaigns were conducted as part of the Arctic Amplification: Climate Relevant Atmospheric80

and Surface Processes, and Feedback Mechanisms ((AC)3) research project (Wendisch et al., 2023). The research flights (RFs)

with the Polar 5 aircraft (Wesche et al., 2016) from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine

Research (AWI) covered the Fram Strait northwest of Svalbard, Norway (Fig. 1). Polar 5 carried the microwave package

MiRAC, the thermal infrared sensor KT-19, and a visual camera, among other instruments. Various sea ice characteristics

were observed with Polar 5 during ACLOUD, i.e., RF23 on 25 June and RF25 on 26 June 2017, and AFLUX, i.e., RF08 on 3185

March, RF14 on 8 April, and RF15 on 11 April 2019, under clear-sky conditions over sea ice suitable for emissivity estimation.

During the two ACLOUD flights, melt ponds formed on the sea ice with open water between individual ice floes. During the

three AFLUX flights, snow-covered sea ice, mostly multiyear ice (Fig. A1), prevailed with nilas in refrozen leads between

individual ice floes. Higher fractions of open water during AFLUX were observed only in the marginal sea ice zone of RF08.
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Figure 1. All Polar 5 flights, clear-sky segments over sea ice, and mean sea ice concentration (Spreen et al., 2008) during (a) ACLOUD from

23 May to 26 June 2017 and (b) AFLUX from 19 March to 11 April 2019.

The infrared-based mean surface temperatures lie near the freezing point with 0.8 to 1◦C during both ACLOUD flights and90

well below the freezing point with -22 to -17◦C during the three AFLUX flights. The integrated water vapor, derived from in

situ observations (see Sect. 2.4), is about 10 to 10.3 kgm−2 during the two ACLOUD flights and 1.3 to 2 kgm−2 during the

three AFLUX flights, which indicates reduced water vapor emissions and high atmospheric transmissivity during AFLUX.

2.2 Airborne microwave instruments

Polar 5 carried the MiRAC package, which includes the combined active–passive component MiRAC-A mounted inside a95

belly pod underneath the aircraft’s fuselage and the solely passive component MiRAC-P deployed inside the aircraft cabin

(Mech et al., 2019). MiRAC-A consists of a 94 GHz cloud radar and a passive 89 GHz channel with horizontal polarization and

measures with a 25◦ incidence angle backward. MiRAC-P measures at six double-side band water vapor channels (183.31±0.6,

±1.5, ±2.5, ±3.5, ±5.0, and ±7.5 GHz) and two window channels (243 and 340 GHz) at nadir (see Table 1). Both MiRAC

components measure with a temporal resolution of 1 s. We omit MiRAC-A observations during low flights, i.e., with a slant100

path between the instrument and surface below 500 m, due to contamination from back-scattered broadband noise of the

cloud radar. This threshold excludes MiRAC-A entirely during ACLOUD RF25 where the flight altitude during the clear-sky

transects over sea ice ranges from 60 to 350 m. For the other four flights, the typical flight altitudes range from 60 m to

3 km with about 80 % (15 %) of the time below 500 m (above 2.5 km). Furthermore, we exclude observations with aircraft

roll or pitch angles above 10◦. The flight distance over which MiRAC provides emissivities depends on the channel, ranging105

from 400 km at 89 GHz to 1,700 km at 243 GHz. For about 200 km of this distance, all MiRAC-A and -P channels provide
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emissivities nearly instantaneously, i.e., the spatially matched footprint centers of MiRAC-P and the inclined MiRAC-A are

less than 200 m apart.

The instrument receivers were calibrated with a two-point calibration using liquid nitrogen and an internal target at the

beginning of each campaign. In addition, MiRAC-A performed gain calibrations every 15 min, and MiRAC-P every 20 min110

during flights using an internal target (Mech et al., 2019). After the campaign, we applied a bias correction of the 89 GHz

TBs following Konow et al. (2019) based on Passive and Active Microwave Radiative Transfer (PAMTRA; Mech et al., 2020)

forward simulations by using dropsonde profiles under clear-sky conditions over the open ocean extended by ERA5 reanalysis

(Hersbach et al., 2020) to the top of the atmosphere and a sea surface temperature analysis (UK Met Office, 2012) as input. The

added 89 GHz TB offset for the ACLOUD (AFLUX) flights in this study is 11 (32) K and decreases linearly towards higher115

TBs. This high calibration offset occurred due to difficult weather conditions during the liquid nitrogen calibration. We estimate

the accuracy of the offset correction to be 2 K. For MiRAC-P, no such calibration issues occurred due to its location inside

the aircraft cabin (Mech et al., 2019). The TB noise is about 0.5 K for MiRAC-A (Küchler et al., 2017) and -P (Mech et al.,

2019), which is an upper bound of the observed TB noise of 0.2 to 0.3 K depending on the channel from a homogeneous time

series during ACLOUD RF10. This random noise cancels out when averaging, but we do not consider this here as systematic120

effects dominate the overall emissivity uncertainty (see Sect. 3.2). Hence, we assume the overall TB uncertainty from bias

correction and noise to be 2.5 K at 89 GHz and 0.5 K at all other frequencies. The footprint size at 60 ms−1 flight velocity

with 1 s integration time is about 70×130 m2 at 3 km and 1×60 m2 at 60 m flight altitude at 183 GHz, i.e., at nadir with an

opening angle of 1.3◦ (see Table 1). We shift MiRAC’s measurement time by 1 to 2 s (2 to 5 s) during ACLOUD (AFLUX)

relative to the infrared radiometer KT-19 based on lagged correlations between 243 GHz TBs and KT-19 infrared TBs during125

the clear-sky sea ice emissivity flight segments. Note that the 243 GHz channel showed the highest correlation of all MiRAC-P

channels with the infrared TB during both campaigns due to its high atmospheric transmission compared to the other MiRAC-P

channels.

2.3 Satellite microwave instruments

We focus on commonly used cross-track and conical scanning polar-orbiting microwave radiometers. These are the Microwave130

Humidity Sounder (MHS; EUMETSAT, 2010), the Advanced Technology Microwave Sounder (ATMS; Kim et al., 2014), the

Special Sensor Microwave Imager/Sounder (SSMIS; Kunkee et al., 2008), and the Advanced Microwave Scanning Radiometer

2 (AMSR2; JAXA, 2016) with their platforms and specifications summarized in Table 2. To ensure consistency among the

sensors, we use inter-calibrated Level 1C TB data (NASA Goddard Space Flight Center and GPM Intercalibration Working

Group, 2022). This inter-calibration corrects offsets between the constellation satellites using the well-calibrated Global Pre-135

cipitation Mission (GPM; Hou et al., 2014) Microwave Imager (GMI), which covers up to 65◦ N, as a reference (Berg et al.,

2016).

MHS and ATMS scan cross-track at incidence angles up to 59 and 64◦, respectively, and SSMIS and AMSR2 scan conically

at an incidence angle of 53 and 55◦, respectively. MHS and ATMS measure TBs with nominal vertical (QV) or horizontal
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Table 1. Specifications of the passive MiRAC-A channel and MiRAC-P.

Instrument Channel Frequency Polarization Incidence angle Field of view

[GHz] [◦] [◦]

MiRAC-A 1 89 H 25 0.85

MiRAC-P

1 183.31±0.6 V 0 1.3

2 183.31±1.5 V 0 1.3

3 183.31±2.5 V 0 1.3

4 183.31±3.5 V 0 1.3

5 183.31±5.0 V 0 1.3

6 183.31±7.5 V 0 1.3

7 243 H 0 1.25

8 340 H 0 1.0

polarization (QH) at nadir rotating with view angle α as140

Tb,QV = Tb,V cos2(α)+Tb,H sin2(α) (1)

and

Tb,QH = Tb,H cos2(α)+Tb,V sin2(α). (2)

We use MHS and ATMS only with incidence angles from 0 to 30◦ because these provide similar observing conditions as

MiRAC. Moreover, fewer footprints with higher incidence angles collocate with MiRAC, and their increased footprint sizes145

make comparisons more uncertain. With this incidence angle filter for MHS and ATMS, the footprint sizes are mostly around

16×16 km2 with the highest resolution of 3×5 km2 by AMSR2. MHS on board the NOAA-18 spacecraft operated only

during ACLOUD, and the Metop-C and NOAA-20 spacecraft operated only during AFLUX. The 150 GHz channel of SSMIS

on board the DMSP-F18 was not available due to its failure (Berg et al., 2016).

MiRAC overlaps spectrally with MHS, ATMS, and SSMIS at 89 and 183 GHz and AMSR2 at 89 GHz. However, MiRAC’s150

89 GHz channel, which measures under horizontal polarization at 25◦, is not directly comparable with the satellite channels

because MHS and ATMS measure mostly vertically polarized TB near this incidence angle, and SSMIS and AMSR2 measure

at higher incidence angles. Only MiRAC’s 183 GHz near-nadir channel is directly comparable with near-nadir observations

from MHS and ATMS.

2.4 Ancillary observations155

The emissivity retrieval requires ancillary information on the atmospheric thermodynamic profile and surface temperature. We

construct the thermodynamic profile below 3 km altitude from measurements of the aircraft’s nose boom and dropsondes and
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Table 2. Specifications of MHS, ATMS, SSMIS, and AMSR2 channels used in this study. The instantaneous field of view (IFOV) of MHS

and ATMS is given for nadir. The polarizations of MHS and ATMS are either nominal vertical at nadir rotating with view angle (QV) or

nominal horizontal at nadir rotating with view angle (QH). The polarizations of SSMIS and AMSR2 are either horizontal (H) or vertical (V).

Only 0 to 30◦ incidence angles from MHS and ATMS are used here.

Instrument Channel Frequency Polarization Incidence angle IFOV

[GHz] [◦] [km2]

MHS (Metop-A, -B, -Ca, NOAA-18b, -19)

1 89 QV 0–30 16×16

2 157 QV 0–30 16×16

5 190.31 QV 0–30 16×16

ATMS (SNPP, NOAA-20a)

16 88.2 QV 0–30 32×32

17 165.5 QH 0–30 16×16

18 183.31±7 QH 0–30 16×16

SSMIS (DMSP-F16, -F17, -F18)

17 91.655 V 53 9×15

18 91.655 H 53 9×15

8 150 H 53 9×15

9 183.31±6.6 H 53 9×15

AMSR2 (GCOM-W1)
13 89 V 55 3×5

14 89 H 55 3×5

aSatellite operated only during AFLUX
bMHS on board NOAA-18 operated only during ACLOUD

above 3 km altitude from radiosondes (Maturilli, 2020) launched at the AWIPEV station operated jointly by AWI and the

Polar Institute Paul Emile Victor (IPEV) in Ny-Ålesund, Svalbard, Norway (Neuber, 2003). We assume constant temperature

and humidity from the lowest flight altitude of about 100 m down to the surface if no dropsonde information is available160

over sea ice. The air temperature measured at these heights differs less than 5 K from the mean surface temperature, which

indicates that the profiles capture typical Arctic surface temperature inversions (e.g., Tjernström and Graversen, 2009). The

uncertainties of temperature and relative humidity are ±0.2 K and ±2 % for dropsondes (Vaisala, 2010), ±0.2–0.4 K and

±3–4 % for radiosondes (Maturilli, 2020), and ±0.3 K and ±0.4 % for the nose boom (Ehrlich et al., 2019b).

The KT-19 on board Polar 5 provides infrared TBs integrated over the atmospheric window from 9.6 to 11.5 µm with 1 s165

resolution under an opening angle of 2◦ at nadir. Hence, its opening angle is slightly higher than MiRAC’s opening angles.

The accuracy of KT-19 is about ±0.5 K. The infrared TB is converted to surface skin temperatures with an infrared emissivity

of 0.995 similar to Høyer et al. (2017) and Thielke et al. (2022), which approximates the infrared emissivity of typical sea

ice types and ocean with an accuracy of 0.01 to 0.02 (Hori et al., 2006). We use KT-19 as input to the sea ice emissivity

calculation for MiRAC. We also require an accurate description of the surface temperature at the satellite footprint scale with170
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higher spatial coverage than KT-19. Therefore, we use the daily Level 4 Arctic sea and ice surface temperature reanalysis

with a resolution of 0.05×0.05◦ (Nielsen-Englyst et al., 2023), which matches the AMSR2 satellite footprint size, hereafter

referred to as NE23. The product derives daily gap-free sea and ice surface temperatures from clear-sky thermal infrared

satellite observations sensitive to the upper few millimeters of the snow or ice (Warren, 1982) and passive microwave-based

sea ice concentration. A comparison between the airborne surface temperature based on KT-19 and the NE23 temperature175

reveals biases of 4 to 6 K during ACLOUD and -1 to 1 K during AFLUX (KT-19 minus NE23). During ACLOUD, the KT-19

temperatures lie close to the melting point, which agrees with observed melting conditions with a snow liquid water fraction

around 15 % (Rosenburg et al., 2023). We use the nearest NE23 ice surface temperature pixel to the satellite footprint as input

to the sea ice emissivity calculation for satellites. Furthermore, a downward-looking camera equipped with a fish-eye lens

operating in the visible spectrum (red, green, and blue) on board Polar 5 provides information on the sea ice characteristics180

every 4 to 6 s. Finally, three data products add surface information, i.e., daily sea ice concentration maps of the University of

Bremen with 6.25×6.25 km2 resolution based on AMSR2 (Spreen et al., 2008), daily wintertime multiyear ice concentration

maps of the University of Bremen with 12.5×12.5 km2 resolution based on AMSR2 and the Advanced Scatterometer (ASCAT;

Melsheimer and Spreen, 2022), and Sentinel-2B Level 2A visual images with 20×20 m2 resolution (European Space Agency,

2021). Although the multiyear ice concentration product incorporates microwave observations of AMSR2 and ASCAT that185

might correspond to those at MiRAC frequencies, the implemented temperature and drift corrections increase independence

between multiyear ice concentration and MiRAC TB.

We utilize topographic data from the Norwegian Polar Institute to exclude observations over land and near the coastline

(Norwegian Polar Institute, 2014). Specifically, we exclude data within 150 m from the shoreline for MiRAC and within about

one footprint radius of 2.5 km (8 km) for AMSR2 (MHS, ATMS, and SSMIS).190

2.5 Collocation of MiRAC with satellites

To compare MiRAC with satellites, we need nearly simultaneous and spatially aligned observations. We ensure simultaneous

observations by filtering collocations within a ±2 h window, which maximizes the number of satellite overpasses and mini-

mizes the effects of sea ice drift. The sea ice drift during the flights is less than 1 kmh−1 based on data from the National Snow

and Ice Data Center (NSIDC; Tschudi et al., 2020), and spatial variability exceeds temporal variability (not shown). Further-195

more, we spatially align MiRAC with the nearest satellite footprints for each satellite overpass by imposing specific criteria:

a footprint center distance threshold of about one footprint radius of 2.5 km (8 km) for AMSR2 (MHS, ATMS, and SSMIS)

and a minimum of 17 (50) MiRAC footprints within the AMSR2 (MHS, ATMS, and SSMIS) footprint. The latter criterion

translates to a straight flight distance exceeding approximately 20 % of the satellite footprint diameter (10 % for ATMS at 89

GHz).200

The number of satellite overflights during ACLOUD (AFLUX) with collocated footprints from MHS, ATMS, SSMIS, and

AMSR2 is 15 (23), 0 (8), 11 (26), and 2 (9), respectively. We matched channels near 89 GHz with MiRAC-A and above

100 GHz with MiRAC-P. The number of satellite footprints collocated with MiRAC at 89 GHz during ACLOUD (AFLUX) is

87 (86), 0 (34), 107 (175), and 23 (159) for MHS, ATMS, SSMIS, and AMSR2, respectively. The number of satellite footprints
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collocated with MiRAC above 100 GHz during ACLOUD (AFLUX) is 222 (138), 0 (46), and 277 (261) for MHS, ATMS, and205

SSMIS, respectively. Around 70 MiRAC footprints occur within each of the satellite footprints at 89 GHz and about 200 above

100 GHz. The difference relates mainly to the higher resolution at 89 GHz for AMSR2.

3 Methodology

3.1 Effective sea ice emissivity calculation

We directly derive effective sea ice emissivity from observed clear-sky TBs and infrared-based skin temperature following210

Prigent et al. (1997). Typically, the skin temperature differs from the emitting sea ice or snow layer temperature (Tonboe, 2010).

The depth of the emitting layer or penetration depth depends on sea ice and snow properties and decreases with increasing

frequency (Tonboe et al., 2006). Emissivities based on skin temperature are commonly referred to as effective emissivity, but

hereafter, we use the term “emissivity” for better readability.

Harlow (2011) compared methods for estimating emitting layer temperature from 183 GHz observations. However, their215

applicability to our data is limited by the absence of simultaneous downwelling 183 GHz TB measurements and uncertainties

in the atmospheric profile impacting surface temperature estimates. Other studies employ pre-calculated penetration depths and

observed sea ice temperature profiles for specific ice types (Mathew et al., 2008, 2009), which does not apply to the diverse

sea ice conditions presented here.

The emissivity calculation is based on the non-scattering radiative transfer (RT), valid under clear-sky conditions. The TB220

observed at aircraft or satellite height, denoted as Tb, is given by

Tb = Ts · e · t+T ↓
b · t · (1− e)+T ↑

b , (3)

with the surface emissivity e, surface temperature Ts, atmospheric transmissivity in viewing direction between the surface and

the aircraft or satellite height t, downwelling atmospheric radiation at the surface T ↓
b , and upwelling atmospheric radiation at

the observation height T ↑
b . Solving Eq. (3) for the surface emissivity leads to225

e=
Tb −T ↑

b −T ↓
b · t

(Ts −T ↓
b ) · t

. (4)

Equation (4) can be solved using two RT simulations with e= 0 and e= 1 (Mathew et al., 2008)

e=
Tb −Tb(e= 0)

Tb(e= 1)−Tb(e= 0)
. (5)

We perform RT simulations for the Polar 5 or satellite height with PAMTRA. In PAMTRA, we select the Rosenkranz (1998)

gas absorption with modifications of the water vapor continuum absorption (Turner et al., 2009). We simulate specular and230

Lambertian reflections separately.

Satellite-based emissivity studies typically limit the emissivity calculation to channels with high atmospheric transmissivity.

From aircraft, we can increase the transmissivity by flying at low altitudes. However, in addition to the transmissivity, the
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contrast between surface temperature and atmospheric downwelling TB dominates the surface sensitivity, i.e., the sensitivity

of the observed TB to emissivity changes. This can be seen when calculating the partial derivative from Eq. (3) as235

∂Tb

∂e
= (Ts −T ↓

b ) · t= Tb(e= 1)−Tb(e= 0). (6)

This term equals the denominator in Eq. (5) and should be maximized to avoid noisy emissivity estimates. We identify 40 K as

a reasonable threshold below which emissivity noise exceeds typical signatures of sea ice. Observed mean surface sensitivities

during AFLUX are 200 K (50 K) at 89 GHz (340 GHz). Only 183 and 340 GHz observations during ACLOUD lie below the

surface sensitivity threshold and are excluded to avoid highly uncertain emissivity estimates.240

3.2 Emissivity uncertainty estimation

We estimate the emissivity uncertainty by propagating errors from TB (see Sect. 2.2), air temperature, relative humidity, and

surface temperature. The assumed uncertainties for air temperature and relative humidity are ±2 K and ±5 %, respectively. This

assumed uncertainty is higher than the dropsonde and radiosonde uncertainty to account for the representability error along

the flight path. The assumed uncertainty in surface temperature is ±3 K during ACLOUD and ±8 K during AFLUX. The245

surface temperature uncertainty for ACLOUD mainly accounts for errors in the infrared emissivity and KT-19 measurement

uncertainty. The higher surface temperature uncertainty for AFLUX compared to ACLOUD accounts for the spread between

surface skin temperature and emitting layer temperature, which can deviate by up to 10 K over multiyear ice at 89 GHz due to

insulating snow (Tonboe, 2010). During ACLOUD, we expect mostly isothermal sea ice due to surface melt (Perovich et al.,

1997). The uncertainty estimation is performed only on aircraft and not on satellite observations because the MiRAC channels250

already include most satellite channels. A notably higher emissivity uncertainty occurs for satellites near 183 GHz compared

to MiRAC due to the higher atmospheric contribution.

3.3 Surface reflection model

The surface reflection model affects the direction from which downwelling atmospheric radiation is reflected at the surface.

Typically, the surface is approximated either purely specular or Lambertian. Over specular surfaces, the incidence angle255

matches the reflection angle, whereas Lambertian surfaces follow isotropic and unpolarized reflection. High sensitivity to

the assumed surface reflection type occurs at nadir where MiRAC measures and low sensitivity at incidence angles between 50

to 60◦ where imagers like SSMIS and AMSR2 measure (Matzler, 2005; Karbou and Prigent, 2005).

Guedj et al. (2010) present a method to constrain the surface reflection model at 50 GHz sounding channels by combining

TB measurements with an emissivity retrieval. They calculate the emissivity at a wing channel of the absorption line to simulate260

an adjacent inner channel, which indicates Lambertian reflection over Antarctica in winter and seasonal variations of specular

contributions. Here, we adapt the method to 183 GHz MiRAC observations during the three AFLUX flights by following

three steps. First, we calculate emissivities at 183.31±7.5 GHz under specular and Lambertian reflection. Second, we use

the emissivities derived at 183.31±7.5 GHz to simulate TBs at 183.31±5 GHz with PAMTRA under the respective surface

reflection. Third, we compare the simulation with the observed TB at 183.31±5 GHz. The bias distribution lies closest to zero265
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Figure 2. Histogram and mean of the difference between observed (Tb,obs) and simulated 183.31±5 GHz TB (Tb,sim) using

183.31±7.5 GHz emissivities under Lambertian and specular surface reflection during AFLUX. The TB bin width is 0.5 K.

under the Lambertian assumption (Fig. 2). Despite the relatively high uncertainty near the water vapor absorption line, the

results confirm Lambertian behavior of sea ice at 183 GHz as found by Harlow (2011) and Bormann (2022).

In the following, we present only emissivities calculated under Lambertian surface reflection from aircraft and satellites

based on the findings at 183 GHz. Hence, we assume a similar surface reflection behavior at 89, 243, and 340 GHz. Addi-

tionally, we assume that the reflection type identified during AFLUX also represents ACLOUD observations where we lack270

183 GHz surface emissivity. However, at 89 GHz, it is well known that sea ice exhibits a distinct polarization signature

(NORSEX Group, 1983), indicating a specular contribution to the reflection. While we are still able to reproduce polarization

signatures from satellites close to 50◦ incidence angle (Matzler, 2005), the specular contribution modifies the magnitude of

simulated 25◦ reflected downwelling atmospheric TB. For MiRAC observations at 89 GHz, fully specular emissivities exceed

fully Lambertian emissivities by about 6 to 2 % during ACLOUD and 3 to 1 % during AFLUX for Lambertian emissivities275

from 0.6 to 0.8. This emissivity uncertainty is in the order of or lower than the uncertainty due to the surface temperature

assumption since sea ice is not fully specular at 89 GHz (Bormann, 2022).

4 Airborne observations

4.1 Case study

In this section, we first illustrate the available airborne observations along an 11 km transect during AFLUX RF08 on 31 March280

2019 (Fig. 3). Satellite observations indicate about 75 % multiyear ice within the area (Fig. A1). The sea ice types along the

transect are distinguishable in airborne visual camera observations (Fig. 3a–d) and Sentinel-2B imagery (Fig. 3e). We observe
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predominantly snow-covered sea ice from 0 to 7 km. Notably, surface structural variations from 3 to 4 km suggest the presence

of young ice, which defines ice in the transition stage between nilas and first-year ice (World Meteorological Organization,

2014), possibly formed within leads among the thicker multiyear ice. Progressing from 7 to 11 km, we encounter refrozen285

leads with nilas attached to individual snow-covered ice floes. The observed surface temperatures reflect the changing sea ice

and snow properties with almost constant temperatures of -24◦C over snow-covered sea ice and up to -18◦C over nilas. The

TBs vary much more than the 6 K in surface temperature with a range of 76, 47, 48, and 30 K at 89, 183.31±7.5, 243, and

340 GHz, respectively. This high variability demonstrates the importance of surface emissivity variations on the observed TB.

The difference between the minimum and maximum sea ice emissivity decreases with frequency, i.e., 0.35, 0.27, 0.24,290

and 0.21 at 89, 183.31±7.5, 243, and 340 GHz, respectively. The higher 89 GHz emissivity variability compared to the

other frequencies likely relates to its horizontal polarization at 25◦ incidence angle. Previous studies show that horizontal

polarization exhibits a higher sea ice emissivity variability at 89 GHz than vertical polarization at an incidence angle of 53◦

(e.g., Shokr et al., 2009). This relates to the enhanced sensitivity to sea ice and snow properties at horizontal polarization.

Similar effects likely occur at 25◦ incidence angle. Furthermore, the horizontal polarization at 89 GHz accounts for up to 0.05295

lower emissivities compared to nadir depending on the sea ice type as shown by past airborne observations under varying

incidence angles (Hewison and English, 1999). This partly explains the low 89 GHz emissivity observed here compared to the

other nadir-viewing channels.

Despite the implications of incidence angle and polarization differences on spectral features, this transect showcases typical

sea ice emission signatures. Over nilas from 7 to 11 km, the sea ice emissivity increases at all channels with values between300

0.9 and 1. Hewison and English (1999) and Hewison et al. (2002) observed similar emissivities at 89 and 183 GHz over bare

ice under the same observing geometry as MiRAC. The sea ice emissivity over multiyear ice within the first 7 km is lower than

over nilas at all frequencies. The snow-covered and refrozen lead from 3 to 4 km causes higher emissivities only at 89 GHz,

likely due to the higher sensitivity to sea ice and snow properties at the horizontal polarization of this channel. Multiyear ice

observed at nadir in Hewison et al. (2002) lies close to multiyear ice observations along this transect. The 243 GHz nadir305

emissivity lies close to the mean emissivity of 0.84 at 220 GHz observed by Haggerty and Curry (2001). The consistency

of MiRAC emissivity features with past sea ice emissivity studies provides confidence in the 243 GHz emissivity resolved

at the hectometer scale. Moreover, the high similarity between 243 and 340 GHz emissivities shows that MiRAC provides

submillimeter sea ice emissivities with a clear dependence on distinct sea ice types for the first time.

The ±8 K surface temperature uncertainty causes the highest emissivity uncertainty for all channels (not shown). The310

uncertainty magnitude varies highly between the channels. The lowest uncertainty range occurs at 89 and 243 GHz, and the

highest at 183.31±2.5 GHz, which is the channel closest to the 183.31 GHz water vapor absorption line that exceeds the 40 K

surface sensitivity threshold. In the following, we only show the 183.31±7.5 GHz channel due to its higher surface sensitivity

and similar emissivity as the inner 183 GHz channels (Fig. 3j). The measured emissivity difference between multiyear ice and

nilas exceeds the emissivity uncertainty at all frequencies, while no significant variations occur in the first 7 km at 340 GHz.315

Overall, this case study demonstrates the relevance of sensitivity tests in interpreting the retrieved emissivities to distinguish
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Figure 3. Observations along an 11 km transect from 4.28◦ E to 4.91◦ E at 81.01◦ N about 100 km north of the sea ice edge during AFLUX

RF08 (31 March 2019). Polar 5 flew westward (right to left here) at an altitude of 540 m within about 4 min starting at 11:39 UTC. (a–d)

Fish-eye lens images with a 100 m diameter nadir reference circle at (I) 11:42:16 UTC, (II) 11:41:32 UTC, (III) 11:40:20 UTC, and (IV)

11:40:00 UTC. (e) Sentinel-2B L2A natural-color image at 14:37 UTC, flight track with surface skin temperature from KT-19, and location

of the airborne imagery. (f) Surface skin temperature from KT-19. (g, i, k, m) TB at all MiRAC channels. (h, j, l, n) Emissivity and uncertainty

from MiRAC’s surface-sensitive channels, i.e., except for the two inner 183 GHz channels. The Sentinel-2B image was shifted by 2.5 km

northward to correct for sea ice drift.

emissivity features from uncertainties inherent to the assumptions of the emissivity calculation due to unknown sub-surface

temperature and uncertain atmospheric thermodynamic profiles.
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4.2 TB and emissivity variability

In the following, we analyze TB and emissivity distributions observed during all clear-sky flights over sea ice during ACLOUD320

and AFLUX (Fig. 4). The 89 GHz and 183 to 340 GHz histograms include different samples due to the exclusion of low flight

altitudes at 89 GHz, which introduces a potential inconsistency (Table 3). Therefore, we compared these histograms with

those from instantaneous measurements where all channels sample the same sea ice, and we found no changes in the shapes

of the histograms that exceed the estimated emissivity uncertainties (not shown). Hence, we present all the available obser-

vations here. The TB variability during AFLUX exceeds that during ACLOUD at all frequencies (Fig. 4a–d). The 183, 243,325

and 340 GHz ACLOUD TBs show low variability and higher values due to the increased atmospheric water vapor and surface

temperature. Two distinct peaks occur at 89 and 243 GHz during AFLUX. These peaks become even more pronounced in the

emissivity distributions around 0.7 to 0.85 and 0.9 to 1, respectively (Fig. 4e–h). Their emissivity corresponds to multiyear ice

and nilas in the AFLUX RF08 case (see Sect. 4.1). The histograms derived for 243 GHz are broader than the 220 GHz emis-

sivities by Haggerty and Curry (2001) due to MiRAC’s higher resolution that captures previously unresolved leads. MiRAC’s330

340 GHz emissivity distribution follows a similar shape as the 183 and 243 GHz channels. The broader emissivity distribution

at 340 GHz could be related to the higher emissivity uncertainty of 9 % compared to 183 GHz (6 %) and 243 GHz (5 %) dur-

ing AFLUX (Table 3). The apparent shape difference of the 89 GHz distribution and the two times higher interquartile range

(Table 3) indicate that this horizontally polarized and 25◦ inclined channel is more sensitive to sea ice and snow properties

than the other channels at higher frequencies. The narrower 89 GHz distribution during ACLOUD compared to AFLUX in the335

presence of melting sea ice agrees with findings by Haggerty and Curry (2001). Lower emissivities during ACLOUD, i.e., the

two lower peaks around 0.65, correspond to regions with lower sea ice concentrations. These emissivities should be treated

with care due to the specular contributions of the sea surface.

4.3 Influence of sea ice and snow properties

In this section, we aim to relate the observed sea ice emissivity variability to sea ice and snow properties visible from fish-eye340

lens images and surface skin temperature. Previous airborne studies classified the sea ice based on airborne imagery or visual

inspection and calculated emissivity spectra for each sea ice type (e.g., Hewison and English, 1999). However, this approach

requires sea ice classification on a high temporal resolution. Therefore, we use K-Means clustering to extract distinct emissivity

spectra similar to previous sea ice and snow emissivity studies (Wang et al., 2017b; Wivell et al., 2023). First, we perform a

normalization, subtracting the mean emissivity and dividing it by the standard deviation at each channel to ensure equal channel345

weighting. Then, we cluster the normalized emissivity spectra across all four MiRAC frequencies with K-Means to identify

distinct sea ice emissivity spectra.

The crucial hyperparameter of K-Means clustering is the total number of clusters. Therefore, we analyze the three heuristics

distortion (Thorndike, 1953), Calinski–Habarasz index (Calinski and Harabasz, 1974), and silhouette score (Rousseeuw, 1987),

which yield an optimal cluster number of four (Appendix B). However, not all clusters separate clearly due to transitional stages350
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Figure 4. Histograms of (a–d) TB and (e–h) emissivity at (a, e) 89, (b, f) 183, (c, g), 243, and (d, h) 340 GHz during ACLOUD and AFLUX.

The TB bin width is 5 K, and the emissivity bin width is 0.025. The 183 and 340 GHz observations during ACLOUD lie below the surface

sensitivity threshold and are therefore excluded in (f) and (h). The histograms at 183, 243, and 340 GHz contain more samples than the

89 GHz histogram (see Table 3).

and inhomogeneous sea ice properties within MiRAC’s footprint (Fig. B1b). Fish-eye images for all samples underline the high

diversity in sea ice and snow properties (Fig. B2).

The occurrence of each cluster varies between the flights. Cluster 1 (C1) occurs more often than the other clusters with 52 %

during RF08, C2 with 68 % during RF14, and C3 with 48 % during RF15. C4 occurs about 20 % of the time during RF08 and

RF14, and 8 % of the time during RF15. It is unclear whether these changes relate to sea ice drift or temporal changes in ice355

properties due to the coarse temporal resolution and potential bias due to the flight pattern.

Each cluster shows distinct emissivity features (Fig. 5a). The lowest emissivity prevails in C1 and the highest in C4. C1

occurs over snow-covered sea ice (Fig. 5c) that might be classified as multiyear ice, which dominates during the AFLUX

flights (Fig. A1). This also corresponds to the low skin temperature of 250 K for this cluster compared to the other clusters

(Fig. 5b). Few open leads occur within C1 as water shows a spectral signature similar to this cluster. C4 occurs over nilas in360

refrozen leads (Fig. 5c). This agrees with generally warmer skin temperature compared to the other clusters (Fig. 5b). C4 is

distinct from the other three clusters at 183, 243, and 340 GHz. C2 emissivities lie in between C1 and C4 at all frequencies.

This cluster occurs over various surface types, predominantly over ice with visual properties of first-year ice. C3 emissivities

lie close to C4 at 89 GHz and close to C1 at 243 and 340 GHz. This cluster occurs over young ice with more snow cover
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Table 3. Sea ice emissivity at MiRAC frequencies during individual flights and all flights of ACLOUD and AFLUX. Values denote the

sample count (Cnt.), median (Mdn.), interquartile range (IQR), and relative uncertainty averaged over all samples (Unc.). The 183, 243, and

340 GHz sample count is the same except for ACLOUD, where 183 and 340 GHz emissivities are not available.

Campaign/RF 89 GHz 183 GHz 243 GHz 340 GHz

Cnt. Mdn. IQR Unc. Cnt. Mdn. IQR Unc. Mdn. IQR Unc. Mdn. IQR Unc.

[%] [%] [%] [%]

ACLOUD RF23 3,431 0.7 0.06 2 15,152 0.74 0.04 8

ACLOUD RF25 1,595 0.87 0.06 5

AFLUX RF08 1,955 0.78 0.17 4 4,632 0.77 0.08 5 0.75 0.07 4 0.74 0.07 7

AFLUX RF14 638 0.81 0.15 4 2,358 0.83 0.07 6 0.79 0.06 4 0.78 0.08 8

AFLUX RF15 1,097 0.88 0.14 4 4,662 0.82 0.05 6 0.73 0.05 5 0.71 0.09 10

ACLOUD 3,431 0.7 0.06 2 16,747 0.74 0.04 8

AFLUX 3,690 0.81 0.17 4 11,652 0.81 0.08 6 0.75 0.07 5 0.74 0.08 9

than the sea ice in C4. Hence, scattering within the upper snow layer could explain the lower emissivity at 243 and 340 GHz365

compared to C4. However, the emissivity is lower than in C2, where snow is also present, which indicates the importance of

other factors such as snow density and grain size.

The evaluation of airborne emissivities reveals (1) low differences in median emissivity and interquartile range at 183, 243,

and 340 GHz, (2) higher emissivities over nilas compared to multiyear ice at all frequencies, and (3) four distinct emissivity

spectra. The similarity between 243 and 340 GHz implies a lower spectral sea ice emissivity variation in the submillimeter370

wave range. However, the emissivity variability at both frequencies is still notable and depends on the sea ice type, with the

highest contrast between multiyear ice and nilas.

5 Comparison with satellites

5.1 Spatial variability at sub-footprint scale

The airborne and satellite observations resolve sea ice emissivity on different spatial scales. Hectometer-scale airborne obser-375

vations resolve most leads, while kilometer-scale satellite observations partly smooth out these structures. Figure 6a showcases

a Polar 5 transect during AFLUX RF08, covering a 5 km lead mainly composed of nilas. MiRAC’s 89 GHz emissivity ex-

hibits a pronounced increase from multiyear or first-year ice to nilas and sharply decreases over a short section of open water.

Consequently, emissivity clusters shift from C1 over multiyear or first-year ice to C4 over younger sea ice. The 5 km AMSR2

footprints partially resolve the lead, with higher emissivities over nilas, whereas the 16×16 km2 MHS footprint cannot fully380
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Figure 5. Comparison of sea ice emissivity and surface temperature across K-Means clusters. (a) Tukey boxplot depicting the distribution of

sea ice emissivity at MiRAC frequencies within each K-Means cluster. (b) Tukey boxplot of the distribution of surface temperature within

each K-Means cluster. (c) Fish-eye lens images representing the K-Means cluster centroids, i.e., for emissivity samples similar to the mean

cluster emissivity, with a 100 m diameter nadir reference circle (see Fig. B2 for all images). It should be noted that the actual footprint might

not lie within the indicated region due to the aircraft attitude making MiRAC-P point off-nadir by a few degrees and potential temporal shifts

between the camera and MiRAC.

capture it. This example underscores the significance of sub-footprint-scale emissivity variations over spatially heterogeneous

sea ice.

Next, we examine how emissivity varies with footprint size from 0.1 to 20 km from all airborne observations. We cal-

culate the larger scale emissivity from mean airborne surface temperature and emission for each footprint size interval. The

interquartile range of the emissivity decreases rapidly with increasing footprint size during ACLOUD and AFLUX at all fre-385

quencies (Fig. 6b). For example, the variability of 100 m footprints at 340 GHz during AFLUX decreases by 42 % (65 %) at

5×5 km2 (16×16 km2) footprint size. The lowest decrease occurs at 89 GHz during ACLOUD with 21 % (20 %) at 5×5 km2

(16×16 km2) footprint size. Hence, the larger satellite footprint averages out small-scale emissivity variations.
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Figure 6. (a) Sea ice emissivity at 89 GHz from MiRAC (10:32 to 10:37 UTC), AMSR2 (11:02 UTC), and MHS/Metop-B (11:38 UTC) dur-

ing AFLUX RF08 on 31 March 2019. The MiRAC emissivity cluster is displayed 100 m eastward of the emissivity. The actual MiRAC foot-

prints lie in between the emissivity and emissivity cluster locations. The background is a Sentinel-2B L2A natural-color image at 14:37 UTC

shifted 4 km northward to correct for sea ice drift. (b) Emissivity interquartile range as a function of footprint size from 0.1 to 20 km for all

flights and channels. The spread represents the minimum and maximum interquartile range for each campaign.

5.2 Channel intercomparison

Before combining MiRAC with all satellite observations to study spectral variations on satellite scale up to 340 GHz, we must390

ensure that our collocation approach reproduces satellite observations at similar frequencies and observing geometries. The

near-nadir (0 to 30◦) 157 GHz MHS and 165.5 GHz ATMS channels are comparable to MiRAC’s nadir 183 GHz channel. We

compare these satellite channels instead of the 190.31 and 183.31±7 GHz channels due to their higher surface sensitivity and

lower uncertainty, although spectral emissivity gradients might occur (e.g., Hewison et al., 2002). Other channel or instrument

combinations differ in incidence angle or polarization, making footprint-level comparisons less meaningful.395

Figure 7 illustrates the resampling process, transitioning from MiRAC’s high-resolution emissivity to the satellite foot-

prints, followed by the corresponding satellite emissivity and their difference for all AFLUX flights. Notably, MiRAC reveals

hectometer-scale emissivity features, such as leads, which MHS and ATMS miss due to their 16×16 km2 footprint. This high

hectometer-scale variability consistently occurs within each satellite footprint (Fig. 7, right column) and diminishes after re-

sampling to the satellite footprint scale. The limited spatial coverage of MiRAC causes deviations from MHS and ATMS, as400

MiRAC only captures a narrow strip of the satellite footprint, e.g., during AFLUX RF08 near 80.4◦ N, 5◦ E (Fig. 7a) leading

to the highest emissivity bias (Fig. 7d). However, the collocation method is robust for most cases and yields MiRAC emis-

sivities representative for the 16×16 km2 satellite footprints. Moreover, the assessment of relative bias calculated as MHS or
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Table 4. Comparison of collocated emissivity from nadir 183 GHz MiRAC and near-nadir (0 to 30◦) 157 GHz MHS observations during

the three AFLUX flights. Values denote the number of collocated satellite footprints (Count), median, interquartile range (IQR), relative bias

(Rel. bias), i.e., MHS emissivity minus MiRAC emissivity divided by MiRAC emissivity, relative root-mean-square deviation (Rel. RMSD)

normalized by MiRAC emissivity, and Pearson’s correlation coefficient (Corr.).

Campaign/RF Count Median IQR Rel. bias Rel. RMSD Corr.

MiRAC MHS MiRAC MHS

[%] [%]

AFLUX RF08 36 0.79 0.81 0.04 0.04 1 5 0.56

AFLUX RF14 34 0.84 0.83 0.02 0.02 -1 2 0.48

AFLUX RF15 68 0.83 0.82 0.02 0.02 -1 2 0.5

Table 5. Comparison of collocated emissivity from nadir 183 GHz MiRAC and near-nadir (0 to 30◦) 165.5 GHz ATMS observations during

the three AFLUX flights. The columns are identical to Table 4.

Campaign/RF Count Median IQR Rel. bias Rel. RMSD Corr.

MiRAC ATMS MiRAC ATMS

[%] [%]

AFLUX RF08 18 0.81 0.81 0.04 0.04 1 4 0.63

AFLUX RF14 13 0.84 0.82 0.03 0.01 -3 4 0.58

AFLUX RF15 15 0.83 0.82 0.02 0.01 -1 3 0.42

ATMS minus MiRAC emissivity divided by MiRAC emissivity yields insights into the consistency of MiRAC observations

with satellites (Tables 4 and 5). This relative bias of -3 to 1 % lies well within MiRAC’s 6 % uncertainty range at 183 GHz405

(see Table 3). The correlation between MiRAC and MHS or ATMS ranges from 0.4 to 0.6 and reflects the partial footprint

overlap that reduces the representation of MiRAC for each satellite footprint. In summary, the comparison with MHS and

ATMS provides confidence in the accuracy of our airborne emissivity estimates and the conversion from hectometer to satellite

footprint scale. Hence, we can apply the same approach to other MiRAC channels up to 340 GHz.

5.3 Spectral variations410

In this section, we collocate MiRAC with MHS and ATMS for near-nadir incidence angles from 0 to 30◦, and SSMIS and

AMSR2 to analyze spectral sea ice emissivity variations from 88 to 340 GHz and angular and polarization effects. We group

all collocated emissivities by frequency, i.e., 88–92, 150–165 (only for satellites), 176–190, 243, and 340 GHz. The MiRAC

observations are averaged to the collocated footprints of each satellite instrument to ensure equivalent spatial sampling (see

Sect. 2.5).415
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Figure 7. Comparison of emissivity from nadir 183 GHz MiRAC and near-nadir (0 to 30◦) 157 GHz MHS and 165.5 GHz ATMS observa-

tions along the Polar 5 flight track during AFLUX RF08, RF14, and RF15 (rows). (a, f, k) MiRAC emissivity at original resolution. (b, g, l)

MiRAC emissivity resampled to satellite (Sat.) footprints. (c, h, m) satellite emissivity. (d, i, n) Emissivity difference between MiRAC and

satellites (satellite minus MiRAC). (e, j, o) The MiRAC emissivity interquartile range within the satellite footprint. No 183 GHz observations

from MiRAC were available during ACLOUD. The background images are MODIS/Terra composites of the same day (NASA Worldview).

All footprints are approximated as circles. MiRAC’s footprints are enlarged to 5 km diameter. The satellite footprint size corresponds to the

footprint size at nadir.

The channel-dependent emissivity variability observed on satellite scale during ACLOUD and AFLUX reveals distinct

features related to spectral, angular, and polarization differences (Fig. 8). Low spectral differences occur during ACLOUD
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near nadir from 89 to 243 GHz (MHS and MiRAC) and at vertical polarisation from 91 to 150 GHz (SSMIS; Fig. 8a). The

higher satellite emissivity can be explained by the underestimation of the NE23 skin temperature compared to KT-19. As

expected, the 89 GHz emissivity shows a polarization signal of about 0.1. This indicates a specular contribution to the surface420

reflection and an underestimation of the emissivity under purely Lambertian reflection at 89 GHz for MiRAC (see Sect. 3.3).

The combination of both polarizations from SSMIS or AMSR2 to quasi-vertical polarization following Eq. (1) reduces the

absolute emissivity difference to the 0 to 30◦ emissivity of MHS. Furthermore, the horizontally polarized 89 GHz channel of

MiRAC lies closer to the horizontally polarized channels of SSMIS and AMSR2. Spectral differences during AFLUX exceed

those of ACLOUD, which might be explained by the contrasting sea ice properties with melting conditions during ACLOUD425

and much colder and dryer sea ice and snow during AFLUX (Fig. 8b). The near-nadir emissivity remains constant from 89 to

183 GHz and decreases toward 243 and 340 GHz. No significant spectral emissivity difference can be detected in the 165 to

183 GHz frequency range where all satellites fall within MiRAC’s 6 % uncertainty (see Table 3). The decrease toward 243 GHz

exceeds the 243 GHz emissivity uncertainty. The AFLUX emissivities show a lower polarization difference at 89 GHz than

ACLOUD, which can be explained by the lower amount of open water between ice floes during AFLUX. The emissivity of the430

89 GHz MiRAC channel lies in between the horizontally polarized AMSR2 and SSMIS and the near-nadir MHS and ATMS

channels.

Different instruments show similar emissivity distributions at similar channels. For example, the three MHS and ATMS

channels exhibit nearly identical distributions during AFLUX (see Fig. 8b). Additionally, the polarized 89 GHz channels of

SSMIS and AMSR2 show good agreement. However, during ACLOUD, emissivity differences between AMSR2 and SSMIS435

are noted for the vertically polarized channel, primarily due to the low number of collocated AMSR2 footprints with MiRAC.

For AFLUX, where the footprint count of SSMIS and AMSR2 is comparable, AMSR2 shows higher variability due to its

smaller footprint than SSMIS.

Furthermore, MiRAC distributions align with MHS and ATMS near nadir. The increased emissivity variability of MiRAC’s

25◦ inclined 89 GHz channel, compared to MHS and ATMS, may be explained by its horizontal polarization. When comparing440

the vertically and horizontally polarized SSMIS and AMSR2 channels, the horizontal polarization exhibits higher variability,

consistent with findings from experiments by Shokr et al. (2009).

The consistent outcomes from spaceborne and airborne observations unveil a first-time representation of sea ice emissivity

variability from 89 to 340 GHz. As detected by MiRAC, hectometer-scale emissivity variations smooth out when observed

from a satellite perspective. Our analysis shows a potential decline in emissivity from 183 to 243 GHz under cold and dry445

conditions during AFLUX. This spectral pattern occurs within airborne emissivity clusters C3 (young ice) and to some extent

in C2 (first-year ice) and C4 (nilas), but notably not in C1 (multiyear ice), and prevails after resampling onto satellite scale.

These cluster differences underscore the importance of the spatial distributions of sea ice types.
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Figure 8. Tukey boxplots of the collocated emissivity during (a) ACLOUD and (b) AFLUX for the frequency ranges 88–92, 150–165,

176–190, 243, and 340 GHz derived from MHS (0 to 30◦), ATMS (0 to 30◦), SSMIS (53◦), AMSR2 (55◦), and MiRAC (25◦ at 89 GHz

and 0◦ at 183, 243, and 340 GHz). The secondary axis denotes the count of collocated footprints. Quasi-vertical polarization in SSMIS QV

and AMSR2 QV is characterized by a dominant 64 and 67 % influence of horizontal polarization, respectively. The 88 to 92 GHz satellite

footprint count might be lower than above 150 GHz because satellite footprints are excluded if the nearest MiRAC channel contains no

emissivity. Note that no ATMS overpass occurred during ACLOUD.

6 Conclusions

The upcoming launches of ICI and EPS Sterna with novel frequencies above 200 GHz and AMSR3 with novel AMSR2-450

like resolution at 183 GHz require an improved understanding of the sea ice emissivity to separate atmospheric and surface

microwave signals under dry polar conditions (Wang et al., 2017b). However, few field observations measured sea ice emissivity

at such high frequencies at hectometer scale resolution. Therefore, we analyzed sea ice emissivity variations observed with the

microwave radiometer MiRAC during the airborne field campaigns ACLOUD (summer 2017) and AFLUX (spring 2019). The
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flights analyzed here covered about 1,700 km flight distance; 7,000 samples were collected at 89 GHz (25◦ incidence angle,455

H-pol); 28,000 samples at 243 GHz (nadir); and 11,000 samples at 183 and 340 GHz (nadir).

Our first objective was to identify critical physical sea ice and snow properties affecting emissivity up to submillimeter waves.

The sea ice emissivity exhibits a high variability from about 0.65 to 1, with the lowest emissivities at 89 GHz. The 89 GHz

distribution showed higher variability than the nadir channels due to its inclination and horizontal polarization. MiRAC resolves

sea ice emissivity features that align with sea ice and snow properties identified from visual imagery. Four emissivity spectra460

from 89 to 340 GHz could be identified through K-Means clustering. They occur predominantly over multiyear, first-year,

young ice, and nilas. However, the emissivity variability for each cluster is significant due to variations in snow or sea ice

microphysical properties and mixed types within the radiometer footprint. The lowest emissivity occurs over multiyear ice

and the highest emissivity over nilas as found in previous studies at 89 and 183 GHz (NORSEX Group, 1983; Hewison and

English, 1999; Hewison et al., 2002).465

Our second objective was to relate the observed hectometer-scale emissivity observations to the satellite scale. We collo-

cated MiRAC with MHS, ATMS, SSMIS, and AMSR2 for this. Satellite instruments do not resolve hectometer-scale sea ice

emissivity variations observed by MiRAC due to their larger footprints. By averaging the airborne observations, we estimated

the decrease in the emissivity interquartile range with increasing footprint size. The reduction in interquartile range is most

significant during AFLUX when leads induce significant hectometer-scale emissivity variations. For example, the emissivity470

interquartile range decreases by almost half from the hectometer scale to a footprint of 16×16 km2 typical for microwave satel-

lite instruments. We find high agreement between MHS and ATMS and MiRAC emissivities near 183 GHz. During AFLUX,

the emissivity decreases significantly from 183 to 243 GHz, while they remain almost constant during ACLOUD. The estimates

provided here might represent emissivities that future satellites such as ICI and EPS Sterna observe.

The study’s implications are as follows:475

– Hectometer-scale frequency dependency: The 183, 243, and 340 GHz channels exhibit similar hectometer-scale sea ice

emissivity variations at nadir independent of sea ice type, e.g., multiyear ice and nilas. This finding is crucial for the

development of airborne retrieval methods.

– Spatial and temporal representation: At the satellite footprint scale, hectometer-scale sea ice emissivity variations av-

erage out, which facilitates sea ice emissivity parameterization. However, these variations become relevant for higher-480

resolution channels, such as AMSR2.

– Emissivity frequency extrapolation: The relatively low spectral emissivity variation from 89 to 340 GHz at the satellite

scale at nadir supports the first-order approximation of constant emissivities over sea ice within existing parameteriza-

tions such as TELSEM2 (Wang et al., 2017b). Accounting for spatial and temporal emissivity variations appears more

relevant than spectral gradients.485

This study has several limitations:
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– Channel intercomparison: The 25◦ inclination and horizontal polarization of the 89 GHz channel affects the comparison

with the 183 to 340 GHz nadir-viewing channels by likely increasing its variability and lowering its emissivity compared

to an 89 GHz nadir-viewing channel. A quantification of this effect might be possible from the airborne HALO–(AC)3

campaign in spring 2022 (Wendisch et al., 2021).490

– Surface temperature assumption: Using the surface skin temperature instead of the emitting layer temperature imposes a

frequency-dependent bias on the emissivity during AFLUX.

– Sea ice and snow properties: The aerial images provide only a broad perspective on sea ice and snow properties, with

limitations in providing any (vertical profiles of) sea ice microphysics, such as density, grain size, or salinity.

– Spatial resolution: MiRAC’s hectometer scale may not resolve smaller sea ice features such as ridges or melt ponds,495

which could influence emissivity.

– Spatial and temporal limitation: Field observations are limited in space (approximately 100 km) and time (five days),

potentially restricting the generalizability of findings across polar regions.

Three primary challenges persist in comprehending sea ice emissivity variations to advance atmospheric and surface re-

trievals over sea ice. First, the relatively unexplored emissivity dependence on polarization and incidence angle, especially500

at frequencies above 200 GHz, demands comprehensive investigation. To address this, potential solutions include utilizing

shipborne or airborne observations with scanning radiometers. Second, the high uncertainty due to atmospheric emissions that

mask spectral emissivity features, particularly at 340 GHz and over the more reflective multiyear ice, requires the simultaneous

measurement of near-surface downwelling atmospheric TB for emissivity calculation. Third, observed emissivity spectra must

be combined with sea ice and snow microphysics in situ measurements to advance radiative transfer modeling. In summary,505

these challenges can help address remaining knowledge gaps in sea ice microwave emissivity, with implications for current and

upcoming satellite missions. Future work will focus on separating sea ice and atmospheric signals under all-sky conditions.

Code and data availability. The code for this study and a usage example of the published emissivity data is available on Zenodo at https:

//doi.org/10.5281/zenodo.11535477 (Risse, 2024). The MiRAC emissivity data are available on PANGAEA at https://doi.pangaea.de/10.

1594/PANGAEA.965569 (Risse et al., 2024). MiRAC-A measurements during ACLOUD were obtained from https://doi.pangaea.de/10.510

1594/PANGAEA.899565 (Kliesch and Mech, 2019) and during AFLUX from https://doi.org/10.1594/PANGAEA.944506 (Mech et al.,

2022b). MiRAC-P measurements during ACLOUD were obtained from https://doi.org/10.1594/PANGAEA.944070 (Mech et al., 2022c)

and during AFLUX from https://doi.org/10.1594/PANGAEA.944057 (Mech et al., 2022d). Camera images during AFLUX were obtained

from https://doi.org/10.1594/PANGAEA.901024 (Jäkel et al., 2021). KT-19 measurements during ACLOUD were obtained from https:

//doi.org/10.1594/PANGAEA.900442 (Stapf et al., 2019) and during AFLUX from https://doi.org/10.1594/PANGAEA.932020 (Stapf et al.,515

2021). Dropsonde measurements during ACLOUD were obtained from https://doi.org/10.1594/PANGAEA.900204 (Ehrlich et al., 2019a)

and during AFLUX from https://doi.org/10.1594/PANGAEA.922004 (Becker et al., 2020). Nose boom measurements during ACLOUD

were obtained from https://doi.org/10.1594/PANGAEA.902849 (Hartmann et al., 2019) and during AFLUX from https://doi.org/10.1594/
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PANGAEA.945844 (Lüpkes et al., 2022). Aircraft position and orientation were obtained from the ac3airborne intake catalog (Mech et al.,

2022e). Radiosoundings in Ny-Ålesund were obtained from https://doi.org/10.1594/PANGAEA.914973 (Maturilli, 2020). The sea–land520

mask for Svalbard was obtained from the Kartdata Svalbard 1:100 000 (S100 Kartdata) / Map Data of the Norwegian Polar Institute at https:

//doi.org/10.21334/npolar.2014.645336c7 (Norwegian Polar Institute, 2014). The SSMIS/DMSP-F16 L1C TB data were obtained from https:

//doi.org/10.5067/GPM/SSMIS/F16/1C/07 (Berg, 2021a). The SSMIS/DMSP-F17 L1C TB data were obtained from https://doi.org/10.5067/

GPM/SSMIS/F17/1C/07 (Berg, 2021b). The SSMIS/DMSP-F18 L1C TB data were obtained from https://doi.org/10.5067/GPM/SSMIS/F18/

1C/07 (Berg, 2021c). The AMSR2/GCOM-W1 L1C TB data were obtained from https://doi.org/10.5067/GPM/AMSR2/GCOMW1/1C/07525

(Berg, 2022a). The MHS/Metop-A L1C TB data were obtained from https://doi.org/10.5067/GPM/MHS/METOPA/1C/07 (Berg, 2022b).

The MHS/Metop-B L1C TB data were obtained from https://doi.org/10.5067/GPM/MHS/METOPB/1C/07 (Berg, 2022c). The MHS/Metop-

C L1C TB data were obtained from https://doi.org/10.5067/GPM/MHS/METOPC/1C/07 (Berg, 2022d). The MHS/NOAA-18 L1C TB data

were obtained from https://doi.org/10.5067/GPM/MHS/NOAA18/1C/07 (Berg, 2022e). The MHS/NOAA-19 L1C TB data were obtained

from https://doi.org/10.5067/GPM/MHS/NOAA19/1C/07 (Berg, 2022f). The ATMS/SNPP L1C TB data were obtained from https://doi.530

org/10.5067/GPM/ATMS/NPP/1C/07 (Berg, 2022g). The ATMS/NOAA-20 L1C TB data were obtained from https://doi.org/10.5067/GPM/

ATMS/NOAA20/1C/05 (Berg, 2022h). The NE23 Level 4 Arctic sea and ice surface temperatures were obtained from https://doi.org/10.

48670/moi-00123 (Nielsen-Englyst et al., 2023). The AMSR2 sea ice concentration data by the University of Bremen was retrieved from

https://data.seaice.uni-bremen.de/ (Spreen et al., 2008). The AMSR2/ASCAT multiyear ice concentration data by the University of Bremen

was retrieved from https://seaice.uni-bremen.de/multiyear-ice/data-access/ (Melsheimer and Spreen, 2022). Sentinel-2B L2A images were535

obtained from the Copernicus Data Space Environment https://doi.org/10.5270/S2_-znk9xsj (European Space Agency, 2021). MODIS/Terra

images were retrieved from the NASA Worldview application at https://worldview.earthdata.nasa.gov. The satellite bandpass information

was obtained from the EUMETSAT Numerical Weather Prediction Satellite Application Facility at https://nwp-saf.eumetsat.int/site/software/

rttov/download/coefficients/spectral-response-functions/ (NWP SAF, 2024). The sea ice drift data were retrieved from the NASA National

Snow and Ice Data Center Distributed Active Archive Center at http://nsidc.org/data/nsidc-0116/versions/4 (Tschudi et al., 2019)540

Appendix A: Multiyear ice concentration maps

We include maps of multiyear ice concentration for additional context to the three AFLUX flights (Fig. A1). The multiyear

ice concentration lies mainly around 50 % with higher concentrations in the northern parts of RF08 and RF14. The case study

transect during RF08 lies within a pixel of about 75 % multiyear ice concentration (Fig. A1a).

Appendix B: Optimal number of K-Means emissivity clusters545

The K-Means algorithm assigns a cluster to each normalized emissivity spectrum across the four MiRAC frequencies. The

normalization subtracts the mean and scales the emissivity of each channel to unit variance, which ensures equal weighting

between the four channels. However, the absolute number of clusters (K) is unknown and needs to be defined objectively.

Therefore, we evaluate three metrics for cluster sizes between two and ten to identify the optimal K (Fig. B1a). The distortion

represents the sum of squared distances across all samples to their assigned cluster centroid (Thorndike, 1953). The distortion550

ideally follows an elbow-shaped curve with a decrease until the optimal K value and constant distortion for higher K values.
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Figure A1. Maps of the Polar 5 flight track, sea ice edge indicated as 15 % sea ice concentration isoline (Spreen et al., 2008), and multiyear

ice concentration (Melsheimer and Spreen, 2022) during (a) AFLUX RF08 including the case study transect, (b) RF14, and (c) RF15.

The distortion curve of the emissivity samples flattens slightly after a K value of four. The Calinski–Habarasz index determines

the ratio of the sum of between-cluster dispersion and within-cluster dispersion, i.e., separation and cohesion (Calinski and

Harabasz, 1974). Higher Calinski–Habarasz index values correspond to optimal clustering with well-separated and dense

clusters. The index peaks at a K value of four and decreases for higher and lower values (Fig. B1a). The silhouette score555

represents the mean silhouette coefficient, i.e., the similarity of a sample to its own compared to other clusters (Rousseeuw,

1987). Silhouette coefficients of 1 (-1) indicate correct (wrong) class assignment. On average, the silhouette score is 0.37 for

two to ten clusters. The silhouette score is highest for two clusters and shows a secondary peak for four. All three metrics

indicate that the emissivity spectra divide optimally into four clusters. The two-dimensional principal component analysis

(Hotelling, 1933) compression shows the four identified emissivity clusters (Fig. B1b). Overall, the emissivity clusters are560

well-separated with gradual transitions due to mixed types within the radiometer’s footprint or transitional stages of the sea

ice. Fish-eye lens images resolve these mixed types and transitional stages (Fig. B2).
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Figure B1. (a) The K-Means clustering metrics distortion, Calinski–Habarasz index, and silhouette score as a function of number of clusters.

(b) Clustered emissivity spectra projected along the first two principal components (x1, x2) using K-Means. The K-Means cluster boundaries

are approximated as a Voronoi diagram based on the cluster centroid projection. The cluster numbers are located at the centroid position.

Figure B2. Fish-eye lens images corresponding to the emissivity samples in Fig. B1b. The K-Means cluster boundaries are approximated as

a Voronoi diagram based on the cluster centroid projection onto the first two principal components (x1, x2). The cluster numbers are located

at the centroid position.
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