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Abstract. In this study, we extend the application of the Maximum Entropy model (MaxEnt), 

traditionally applied to ecological research and less explored in natural hazard studies, to a novel context 15 
by characterising a multi-hazard scenario (i.e., flood-triggered sinkholes) in the Orléans karst region 

(Val d’Orléans) of France. Many regions of the world exhibit complex hazard landscapes where 

networks of multi-hazard interrelationships (cascades) pose challenges due to the potential interactions 

between hazards and the different temporal and spatial scales of hazard events. While mountainous, 

coastal and volcanic regions have been recognised as multi-hazard forming zones, karst terrains have 20 
received little attention despite being prone to multi-hazard events due to their distinct geology, 

geomorphology, hydrogeology and other environmental characteristics. Incorporating karst-specific 

multi-hazard scenarios supports disaster risk reduction efforts by raising the awareness of citizens, 

protecting elements at risk and facilitating decisions on disaster prevention. To support this aim, we 

developed a multi-hazard susceptibility map for the karst region of Val d’Orléans that characterises 25 
flood-triggered sinkholes. We applied MaxEnt, a machine learning method, to forecast the spatial 

probability distribution of flood-triggered sinkholes. Model inputs included the location of past sinkhole 

occurrences and geo-environmental factors contributing to sinkhole formation (e.g., topography, local 

geology, hydrology and flood hazard). We validated the performance of the model by initially using 

70% of the sinkhole inventory data and keeping the remaining 30% for testing. This validation process 30 
assessed the model’s performance using the Area Under the Curve of the Receiver Operating 

Characteristic (AUC-ROC). The resulting map reveals areas located up to 1 km south of the Loire River 

and areas with lowest elevation with highest susceptibility to flood-triggered sinkholes. We conclude 

that our approach to producing this type of multi-hazard scenario and map is useful for identifying 

flood-triggered sinkholes in Val d’Orléans and other karst areas around the globe, supporting effective 35 
land use planning. 
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1 Introduction 40 

 

The identification and characterisation of multi-hazard regions (i.e., contexts affected by multiple, 

interrelating hazards) and the delineation of potential multi-hazards scenarios can support forward-

looking approaches to risk reduction (Liu et al., 2016; Ward et al., 2022). The effectiveness of hazard 

mitigation measures partially depends on the capacity to collectively consider, visualize, and evaluate 45 
the complexity of hazards (Pourghasemi et al., 2020). As emphasized in the Sendai Framework for 

Disaster Risk Reduction (UNDRR, 2015), multi-hazard approaches are critical for a range of 

stakeholders including local developers, urban planners, and local and national authorities.  

 

Across the globe, there are several types of geographical regions affected by multiple natural hazards, 50 
which can interrelate, and therefore, have the intrinsic potential to form a network of hazard 

interrelationships. Mountainous, coastal and volcanic regions are commonly recognised multi-hazard-

forming zones, where hazards interact with each other in different forms such as simultaneously, 

cascadingly or cumulatively (Kappes et al., 2012; Gill and Malamud, 2016; de Ruiter et al., 2020; 

Gallina et al., 2020). Several studies have mapped out the typical multi-hazard scenarios in mountainous 55 
regions (see Yousefi et al., 2020; Tsereteli et al., 2018; Pourghasemi et al., 2019; Terzi et al., 2019). In 

mountain environments, an earthquake or heavy rainfall can trigger flooding, landslides or debris flows, 

which then by blocking a river or breaching a river’s dam can generate further hazards, such as flooding 

(Kappes et al., 2012; van den Bout et al., 2022). For example, the 2015 Gorkha earthquake event in the 

Himalayan-nation of Nepal triggered more than 24,000 landslides adding to a death toll of nearly 9000 60 
people (Collins et al., 2015).  

 

In coastal environments, a hurricane can cause strong wind and storm surges, which trigger flooding, 

mudslides and landslides (Appelquist and Balstrøm, 2015; López-Saavedra and Martí, 2023). For 

example, on 14th September 2022, in Puerto Rico, hurricane Fiona (Category 1)unleased more than 30 65 
inches of rain resulting in widespread flooding. Consequently, this flooding triggered numerous 

mudslides and landslides (Richard et al., 2023). There have been several attempts to characterize and 

map coastal multi-hazards (see Marignani et al., 2017; Gallina et al., 2020).  

 

Similarly, in volcanic regions, a volcanic eruption can cause a range of hazards (e.g., tephra fall, 70 
pyroclastic density currents, lava flows, and gas emissions) that can combine with other hazards to 

trigger new hazards (e.g., rainfall mobilising tephra deposits as lahars). Volcanic unrest may trigger 

landslides or earthquakes, and in some cases tsunamis (Gill et al., 2021). The eruption of Mount 

Pinatubo in the Philippines in 1991 can be a notable example, which was accompanied by an earthquake 

triggered lahars. The combination of these events led to over 300 casualties, displacement of more than 75 
2 million people, and damaged 800 houses(de Ruiter et al., 2020). Several multi-hazard scenario 

identification and mapping tools for volcanic settings can be found in the literature (Neri et al., 2013; 

López-Saavedra and Martí, 2023).  
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Another multi-hazard forming landscape, often overlooked in the multi-hazard literature, is karst 80 
terrain. Karst terrain is created from the dissolution of soluble rocks (carbonates and/or evaporites) and 

is characterized by distinct landforms such as springs, caves and sinkholes (Waltham et al., 2005). These 

landscapes, with their distinct geology, geomorphology, hydrogeology, and other environmental 

characteristics, are prone to multi-hazard events (Gill and Malamud, 2014; Parise et al., 2018). While 

previous studies recognize the potential for heavy rainfall events and flooding to trigger sinkholes in 85 
karst environments and emphasize the need to include karst landscapes in multi-hazard discussions (Lei 

et al., 2013; Lei et al., 2016; Xiao et al., 2016; Xiao et al., 2018; Kwak et al., 2020), sinkhole mapping 

in karst areas has predominantly focused on single hazards (Subedi et al., 2019; Kim et al., 2022). 

 

Methods used for mapping sinkhole hazard can be broadly categorized into qualitative, quantitative, 90 
and hybrid/semi-quantitative approaches (Galve et al., 2008; Galve et al., 2009). Qualitative methods 

typically encompass descriptive representations that rely on the expertise of local specialists such as the 

Analytical Hierarchy Process (AHP), which may introduce subjective biases (Taheri et al., 2015; Subedi 

et al., 2019; Qiu et al., 2020). Hybrid/semi-quantitative approaches often combine expert judgment with 

spatial pattern analyses such as the Nearest Neighbour Index and kernel density estimation, and field 95 
observations. Both of these methods are data-limited and rely on interpretive perspectives of the experts 

involved (Clark and Evans, 1954; Hyatt and Jacobs, 1996; Galve et al., 2009).  

 

Quantitative approaches, however, rely on numerical data and statistical analysis to explain phenomena. 

The most applied ones are the frequency ratio (Ozdemir, 2015), multivariate statistical methods such as 100 
logistic regression, artificial neural network, and support vector machine (Taheri et al., 2015; Kim and 

Nam, 2017; Kim et al., 2022) and weight-of evidence (Perrin et al., 2015). Recently Machine Learning 

(ML) approaches have advanced prediction techniques, resulting in enhanced and more effective 

solutions (Taheri et al., 2019; Nachappa et al., 2020; Tehrani et al., 2022). Different ML algorithms 

have been applied to sinkhole mapping including decision trees (Gao and Alexander, 2008), Random 105 
Forest which is an extension to decision trees promising less overfitting models compared to the 

traditional decision tree models (Breiman, 2001; Elmahdy et al.,2022), and Bayes-based machine 

learning algorithms (e.g., Naïve Bayes, Bayes Net), Logistic Regression, and Bayesian Logistic 

Regression (Taheri et al., 2019; Tehrani et al., 2022). In this study, we use Maximum Entropy Model 

(MaxEnt)., an ML algorithm, originally introduced by ecologists (Phillips et al., 2006) with wide 110 
applications in natural, social and computational sciences Bianchin et al. (2022) carried out one of the 

first applications of MaxEnt to sinkhole mapping, demonstrating its potential in karst contexts. Here, 

we build on the work of Bianchin et al. (2022) to explore the use of MaxEnt in mapping flood-triggered 

sinkholes multi-hazard.  

 115 
We applied the MaxEnt method to Val d’Orléans in France with an area of 260 km² and about 70,000 

inhabitants belonging to 31 municipalities (Serrhini et al., 2023). In 2016, Val d’Orléans experienced a 
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multi-hazard event where a flood triggered by rainfall resulted in the collapse of more than 100 

sinkholes (Noury et al., 2018). This impacted the main highway between Orléans and Paris, four small 

towns, and an industrial park, and resulted in financial loss of over €20 million (Luu et al., 2019). It 120 
remains unclear if the flood directly triggered sinkhole formations or triggered the collapse of pre-

existing sinkholes. Therefore, here we use the term “flood-triggered sinkholes” for both scenarios. 

 

Previous research in the region can be divided to before and after the 2016 event. Cerema (2014) 

mapped the karst hazard, assessing five criteria contributing to sinkhole formation (proximity to the 125 
Loire River, density of sinkholes, thickness of alluvium, presence of paleochannels, and the presence 

of drainage axes in the Beauce Aquifer). Perrin et al. (2015) produced a karst susceptibility map 

applying the statistical “weight-of-evidence theory” method using four factors (thickness of low 

permeability and saturated layers, distance to streams, and alluvium thickness). Their resulting map 

indicated that nearly the entire region falls into high hazard zones, challenging its usability in land use 130 
planning, management and decision-making. Following the 2016 flood and sinkhole collapses event, 

Noury et al. (2018) and Luu et al. (2019) focused on simulating the internal soil erosion during floods 

(including the 2016 flood in Val d'Orléans). Noury et al. (2018) found that intense rainfall and floods 

significantly increased sinkhole formation in this region with rates up to 24,000 times higher than 

normal. In a subsequent study aiming to understand how different erosion regimes accelerated internal 135 
erosion during the 2016 flood, which led to various sinkhole shapes (hourglass and inverted bowl 

sinkholes), Luu et al. (2019) applied different hydraulic pressures, underground conduit sizes, and the 

particle cohesion of granular media. They identified two distinct erosion processes: the upward growth 

of cavities (resulting in dropout sinkholes) and the downward flow of granules (resulting in subsidence 

sinkholes) in cohesive soil. 140 
 

In the context of increasing momentum and demand for a shift from single layer multi-hazard 

approaches to more comprehensive multi-hazard assessments that consider hazard interrelationships 

(e.g., see Kappes et al., 2012; Gill and Malamud, 2014; Ward et al., 2022), this study has three main 

objectives: (1) to enhance the recognition of karst terrains as multi-hazard forming area, (2) to advocate 145 
for a shift in multi-hazard assessment methodologies, moving from a multi-layer single hazards 

(Serrhini et al., 2023) to a multi-hazard approach (see Gill and Malamud, 2014; Gill and Malamud, 

2016), considering the interconnected effects between floods and sinkholes, and (3) to evaluate the 

potential for the MaxEnt model to be used in multi-hazard mapping, in the context of flood-triggered 

sinkholes. 150 
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2 Karst terrains as a multi-hazard-forming environment 

2.1 Exploring a potential multi-hazard scenario  155 

Given the definition of the multi-hazard term as “the specific contexts where hazardous events may 

occur simultaneously, cascadingly or cumulatively over time” (UNDRR, 2017), multi-hazard forming 

environments are where different geophysical processes have the potential to overlap in various ways 

(adopted from UNDRR, 2017). It can, therefore, be argued that karst landscapes, covering about 20 to 

25% of the land surface (Waltham et al., 2005), exhibit such properties. In karst terrains, meteorological 160 
events could act as a trigger to activate a cascade of hazards. The existing body of literature extensively 

explores the impact of severe rainfall and flood events on sinkhole collapses (Hyatt and Jacobs, 1996; 

Brinkmann and Parise, 2008; Martinotti et al., 2017; Parise et al., 2018; Noury et al., 2018; Xiao et al., 

2018 Luu et al., 2019; Kwak et al., 2020). For instance, the flooding of the Flint River in 1994 triggered 

312 sinkholes in the karst Dougherty Plain at Albany, Georgia, with 88% of these collapses occurring 165 
within the spatial extent affected by flooding (Hyatt and Jacobs, 1996). In Florida, the tropical storm 

Debby in June 2012 caused a prolonged rainfall event followed by a period of drought. The flood caused 

by the storm triggered hundreds of sinkholes collapsing, damaging infrastructure, buildings and forcing 

the inhabitants to evacuate their homes (Brinkmann, 2013). Similarly, during a 2012 heavy rainfall in 

Liuzhou city of Guangxi province, south China, a cascade of sinkhole collapse events occurred with an 170 
initial sinkhole collapse resulting in 37 further sinkholes within a span of 5 days (Lei et al., 2016).  

 

In a karst terrain (Fig. 1), the slightly acidic rainwater stored in subterranean soluble rocks percolate 

down through the existing cracks. The exposure of groundwater and easily eroded rocks (carbonate and 

evaporate rocks) results in the rock dissolution creating small cavities or voids deep underground 175 
(Lewin and Woodward, 2009; Xiao et al., 2016). Over time, those cavities grow larger and the overlying 

surficial soils move downwards to fill in the cavities, resulting in upward/downward erosion of soil 

particles beginning from bottom/above of the overlying surficial soils (to know more about this process 

please see Noury et al., 2018; Luu et al., 2019). Eventually, when surface soils fall into the subterranean 

voids due to a loss of compaction, a sinkhole, the most common hazard in karst areas, occurs (Waltham 180 
et al., 2005). 
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Figure 1. A simplified sequential diagram of the potential multi-hazard interactions in karst covered 185 
terrains. The diagram illustrates the sequence of events starting with (1) Precipitation, which triggers (2) 

Flooding (solid arrow). Flooding increases the likelihood of or trigger (3) Sinkhole formation due to the 

dissolution of soluble bedrock by acidic water (dashed arrow from precipitation to dissolution, an ongoing 

process over time). Sinkhole collapses can then lead to (4) Secondary flooding (e.g., through breached 

riverbanks, indicated by the solid arrow from sinkholes to flooding). The dashed bidirectional arrow 190 
shows the feedback mechanism where initial flooding can exacerbate subsequent flooding events. The 

arrows underneath the sinkholes depict the flow of water into underground cavities, contributing to the 

dissolution process and potential further collapse. 

 

As illustrated in Fig. 1, intense rainfall and flooding can apply load to underground cavities that are 195 
close to the surface through saturating and liquefying overburden (Hyatt and Jacobs, 1996) and can 

accelerate the internal erosion processes by a sudden massive infiltration of water (Noury et al., 2018; 

Luu et al., 2019). The failure happens when the applied stress by flood or hydraulic load is sufficient to 

overcome the resisting forces of the material covering up the cavities structure. Additionally, in a 

hypothetical scenario, where multiple cavities exist close to each other, the collapse of one could cause 200 
a cascade effect for others, creating bigger sinkhole collapses. Depending on the location of sinkholes, 

the collapses can increase the probability for another hazard. For example, if the collapse of a sinkhole 

breaks a river’s dykes, another flood could be triggered, adding to the hazard chain. In multi-hazard 

literature, this relationship is called a bi-directional relationship or feedback mechanism where a 

primary hazard can produce itself (Gill and Malamud, 2016; Ciurean et al., 2018). Furthermore, this 205 
chain of hazards can potentially continue if debris produced by a flood blocks the sinkholes’ conduits, 
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resulting in water not being able to infiltrate into the ground at sufficient speed, and therefore, causing 

flooding (Zhou, 2007; Xiao et al., 2016). 

 

 210 

2.2 Study area: the region of Orléans (Val d’Orléans) 

Val d’Orléans is located in the Loiret department, within the Centre-Val de Loire region of France.The 

geography of Val d’Orléans is characterized by an extended basin that stretches for approximately 36 

km from east to west and spans 7 km from north to south (Blanchard, 1903) (Fig 2). This basin is 

bordered by the Forest of Orléans to the north and the plateau of Sologne to the south. The Loire River, 215 
the longest river in France with a length of 1012 km, (Auterives et al., 2014), meanders with sinuous 

curves through the region. It extends over a distance of 33 km, from Sigloy in the east to the confluence 

of the Loire-Loiret in the west within this larger basin. The Val d’Orléans is a large depression and an 

alluvial plain within the major bed of the Loire River (Desprez, 1967). 

 220 
The bedrock in this region is composed of highly fissured karstic limestone called Beauce limestone 

(“Calcaire de Beauce”), a carbonate lacustrine deposit, with a thickness ranging from 50 to 90 meters 

and situated at a depth of up to10 meters below the surface (Jozja et al., 2010). This geological structure 

is overlaid with alluvial sediments originating from the Loire River. The intensive karstification of the 

Beauce limestone in this region is attributed to the subterranean water flows of the Loire. Consequently, 225 
the formation of voids frequently results in the appearance of sinkholes and subsidence on the valley’s 

surface (Cerema, 2014). The process of karstification in the region likely started during the Würm 

glacial period (approximately 115,000 to 11,700 years ago) when the recession of the sea triggered 

increased erosion activities; leading to the gradual erosion of the less permeable sediments covering the 

limestone in Val d’Orléans. This erosion event caused a significant influx of water from the Loire River 230 
and its tributaries into the limestone formations (Perrin et al., 2015). The karst aquifer overlain by the 

Quaternary alluvial of the Loire River (Auterives et al., 2014) is characterised by a complex geological 

setting, which consists of a multi-layered system of clay interbedded with limestone (Lepiller, 2006).  

 

The region of Orléans experienced a multi-hazard event in 2016. Five consecutive days of heavy rainfall 235 
led to flooding across a 30-km area including the overflow of an artificial canal near the Loire River 

spreading the flood over a 1 km2 area (Noury et al., 2018; Luu et al., 2019). The floodwater as a primary 

hazard triggered more than 100 sinkhole collapses, which are attributed to be mainly karst collapses as 

opposed to anthropogenic, with 12 sinkholes observed within a 1 km² area during a 10-day flood period 

(Noury et al., 2018; Luu et al., 2019). The flood-induced sinkholes happened near the Loire River, 240 
breaching the river dyke, and causing another flooding.  
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 245 
Figure 2. Geographical location of the study area situated within the Loiret department, France. The inset 

map shows the location of the study area (red circle) in France. 

 

 

3 Methods and datasets 250 

This section outlines the application of the MaxEnt model for multi-hazard susceptibility assessment, 

discussing its advantages, limitations, and the steps taken to address common issues such as model 

variability and collinearity among variables. Additionally, we provide an overview of the data sources 

and variables used in our analysis. 

 255 

3.1 Multi-hazard susceptibility assessment (MaxEnt application)  

 

We apply the MaxEnt method to identify the spatial distribution of flood-triggered sinkholes and 

represent these in the form of a multi-hazard susceptibility map. Susceptibility assessment denotes the 

relative probability of a hazard event without reference to any specific time interval (Gutiérrez et al., 260 
2008). As post-event sinkhole surveys often cannot provide the necessary information to precisely 
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support hazard modelling, for example, the exact occurrence time (Parise et al., 2018), this study adopts 

a susceptibility assessment approach as opposed to hazard assessment. 

 

Over the past decade, many studies have assessed the MaxEnt model in addressing various single 265 
natural hazards including landslides (Park, 2015; Mokhrari and Abedian, 2019; Liu et al., 2022), floods 

(Siahkamari et al., 2018; Mobley et al., 2019), gully erosion (Pournader et at., 2018; Azareh et al., 2019) 

and more recently, sinkholes (Bianchini et al., 2022). MaxEnt model has also been used to explore 

multi-hazards, including flood, landslides, wildfire and gully erosion (Javidan et al., 2021; Rusk et al., 

2022). Previous work suggests that the MaxEnt model can generate outcomes useful for identifying 270 
areas that are susceptible to given natural hazards. Some key advantages of MaxEnt include: 1) a solid 

mathematical foundation avoiding the black box nature of many machine leaning models, 2) an open-

source software for public users, and 3) robust multivariate analyses enabling data iteration for 

enhancing the model’s predictive accuracy (Phillips et al., 2006; Sillero et al., 2021). Note that in the 

context of this research, the term “prediction” refers to the process of forecasting the potential future 275 
trends or outcomes based on current data and models.  

 

A notable limitation in using MaxEnt and other machine learning methods arises from the inherent 

variability of model outputs when the same dataset is applied repeatedly (Phillips et al., 2006; 2017; 

Sillero and Barbosa, 2021) and the issue of collinearity among variables used in the model (Sillero and 280 
Barbosa, 2021; Sillero et al., 2021). The former can be addressed by running the model multiple times, 

ideally a minimum of 10 to higher numbers like 50 or 100 times, depending on the available computer 

time and storage (Phillips et al., 2006; Sillero and Barbosa, 2021)), on the same dataset and calculating 

the average and standard deviation of the results to evaluate if outcomes are consistent across datasets. 

The latter (variables collinearity) can occur when a wide range of variables is used in the model without 285 
assessing the potential collinearity among them. High collinearity among variables can lead to unstable 

estimates of the model parameters, making it difficult to distinguish the individual effect of each 

predictor on the response variable. Yet, these crucial steps are frequently overlooked in the literature. 

In the current research, we have addressed these common issues by both calculating the collinearity 

among variables and replicating the model 50 times. 290 
 

A methodological flowchart, as illustrated in Fig. 3, provides a comprehensive overview of the process 

used to generate and explore outputs from MaxEnt. In the following sub-sections, we will explain the 

MaxEnt theory, discuss each selected contributing factor, and explore the application of MaxEnt in 

generating a multi-hazard susceptibility assessment. 295 
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Figure 3. The methodological flowchart. The modelling process is divided into four stages: 1) input 

data (data collection); 2) spatial data processing, 3) model validation; and 4) model application (analysis 300 
and results). 

 

 

3.2 Maximum Entropy Model (MaxEnt) 

 305 
When there is incomplete and unknown information about a system’s probability distribution, Jaynes 

(1957) suggests that the best estimation is to choose the distribution that maximizes entropy, given the 

constraints (i.e., environmental variables) (Jaynes, 1957). This concept is known as the maximum-

entropy principle (Phillips et al., 2006). Maximum Entropy Model (MaxEnt) is a statistical–

probabilistic machine learning algorithm which quantitatively estimates the probability distribution (P) 310 
of target occurrences over the set locations/ pixels (X) within the study area based on known 

contributing factors (Elith et al., 2011) using the Bayesian rule (Rahmati et al., 2016; Shi, 2022). 

MaxEnt achieves this by dividing the study area into locations or pixels X, each representing a 

computing unit with a probability value (π(x)) indicating the relative chance of a target event 
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occurrence. The distribution π allocates a positive probability π(x) to every point x, and the sum of these 315 

probabilities equals 1. 

 

The response variable (y) represents whether a computing unit experiences a target event (e.g., flood-

triggered sinkholes) (y =1) or not (y = 0). To calculate the probability of a given event occurring at a 

particular point (P (y=1|x)), Rahmati et al (2016) summarises the main aspect of the model extracted 320 
from Phillips et al. (2006) and Elith et al. (2011) as follows:  

   

𝑃(𝑦 = 1|𝑥) =
P(y= 1)P(x|y = 1)

P(x)
 = 

P(y= 1)Φ(x)
1

|x|

                                                             (1) 

Where P (y = 1|x) is the probability of a hazard at a specific point, P (y = 1) is the probability of event 

y being equal to 1, without considering any other variables. It is the marginal probability of variable y 325 
taking the specific value 1. P (x | y = 1) is the conditional probability of event x occurring, given that 

event y is equal to 1. P(x) is the probability of event x occurring without considering any other variables. 

It is the marginal probability of variable x. The MaxEnt algorithm estimates Φ(x) as equivalent to a 

Gibbs probability distribution. The Gibbs probability distribution is denoted as Eq. (2): 

 330 

qλ (x) = 
1

𝑍𝜆 (𝑥) 
 exp ( ∑ λ𝑖 

𝑛
𝑖=1 𝑓𝑖(𝒙))                                                                (2)                        

 

Zλ (x) and λi represent a normalization constant (ensuring qλ (x) sums to one across the study area) and 

the vector of weights assigned to the features, respectively. During the estimation phase of qλ (x), 

MaxEnt modeling seeks to pinpoint the distribution that follows closely to the constraints. To prevent 335 
overfitting, it utilizes l1 regularization. Therefore, the MaxEnt model aims to discover the Gibbs 

probability distribution that maximizes penalized log-likelihood values.  

Additionally, if there are m occurrences in the study area, the difference between regularization and 

log-likelihood, which should be maximized, is denoted as: 

 340 

 𝛹(𝜆) = 1/m ∑ 𝐼𝑛 (𝑚
𝑖=1 qλ (𝑥𝑖)) − ∑ 𝛽𝑗|𝜆𝑗𝑛

𝑗=1                                               (3) 

 

Where βj represents the regularization parameter for the jth feature (fj). All input conditioning factors 

are treated as random variables in the model, following the MaxEnt algorithm. 

 345 

3.3 Natural sinkhole inventory 

The first step in sinkhole-related hazard mapping is to create a sinkhole inventory map showing the 

locations of the previously identified sinkholes (Kim and Nam, 2018). In France, sinkhole events under 

the title of ground movements (BD Cavité, BDMVT database) are recorded by the French Geological 

Survey (BRGM) and are publicly available on the national cavity database website 350 
(www.georisques.gouv.fr/, last access: 5 June 2024). In this study, 915 sinkhole locations with natural 
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origins are considered. Even though it is unclear how many are triggered by floods, the location of 

sinkholes suggests that about 58% of sinkholes have occurred within approximately one kilometre of 

the Loire River (Fig. 4). This observation raises concern about the occurrence of more collapses in case 

of a flood event. 355 
 

 

 

 
 360 
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Figure 4. (Top) The location of past sinkhole events shown in black circles (915 events). (Bottom) 

Number of sinkholes and their distance from Loire River’s dyke. 

 

3.4 Geo-environmental factors for flood-triggered sinkholes 365 

The process of selection of geo- environmental factors was driven by the principle of parsimony, aiming 

to strike a balance between model simplicity and explanatory power. The concept of parsimonious 

models, rooted in Occam’s razor, emphasizes the importance of using the fewest necessary elements to 

explain a phenomenon effectively (Baker, 2003; Shatz, 2019). We selected six primary factors (Table 

2), with the ability to provide substantial explanatory and predictive capabilities while minimizing 370 
unnecessary complexity. These factors are topography (elevation and slope), geology (surficial geology 

and alluvium thickness) and hydrology (groundwater level and flood hazard zones). The selection 

process was informed by previous studies including geotechnical work carried out in the Val d’Orléans 

area (Cerema, 2014; Noury et al., 2018; Luu et al., 2019).  For each factor, a map was generated using 

Arc GIS Pro 3.1.3 software (Fig. 5). Below, we explain each factor and the datasets used in map 375 
generation. 

 

 

Table 2. Geo- environmental factors included in the MaxEnt model and data sources.  

 380 

Variables Data Source 

Digital Elevation Model BD ALTI® (géoservices.ign.fr) 

Slope (m) 
Extracted from DEM layer using 

GIS Pro 

Surficial geology 

BD – Charm-50, the geological 

map (1/50,000), (BRGM) 

 

Groundwater (m) 
Groundwater national portal 

(ades.eaufrance.fr) 

 Flood hazard zones (floodwater height 

for a 100-year return period) 

Plan de Prévention des Risques 

d'Inondation (PPRi, 2015) 

Alluvium thickness (m) 
 Extracted from Perrin et al. 

(2015) 

 

 

 

 

 385 
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3.4.1 Topography (Elevation and Slope) 

 

Both flood and sinkholes typically occur in low-elevation areas. Low-elevation karst landscapes 

facilitate the overflow of water during intense rainfall events. This overflow can lead to higher 

groundwater levels, which may accelerate karst maturation processes and increase pressure on 390 
subsurface voids (Kovačič and Ravbar, 2008). These combined effects can increase the risk of sinkhole 

formation and collapse during flooding events. The Elevation data used in this study were obtained 

from the Digital Elevation Model (DEM) available on the national website BD ALTI® 

(géoservices.ign.fr, last access: 5 June 2024). The region of Orléans is a relatively low-lying region with 

the elevation ranging from nearly 82 to 126 m (Fig. 5a). The elevation decreases from east to west in 395 
the area where more sinkholes are concentrated. The terrain is characterised by a low to moderate slope 

gradient (0-71 degrees), with noticeable variation observed alongside the river, where the slope 

becomes relatively steeper (above 20 degrees) (Fig. 5b). 

 

 400 

3.4.2 Surficial geology 

In most karst areas, sinkholes do not result from the collapse of the soluble bedrock. Instead, they 

predominantly occur due to ground failure where soil rapidly washes into bedrock cavities that have 

developed over geological timescales (Waltham et al., 2005). For this reason, we used surficial 

geological data instead of the underlying bedrock (limestone) in our analysis. The spatial data were 405 
extracted from the geological map of the area, published by BRGM at 1/50,000 scale, using the BD-

charm-50 database available on the BRGM official website (infoterre.brgm.fr/, last access date: 5 June 

2024) (Fig. 5c). The area is mainly covered by mostly permeable Holocene and Pleistocene alluvium.  

 

3.4.3 Alluvium thickness  410 

The accumulation of river sediments over time contributes to the increased thickness of alluvium in the 

central part of the region (2°2'-2°10'E), which also has a low elevation (81 m to 95 m). In these areas, 

the Beauce limestone is covered by Quaternary alluvial deposits with a thickness of up to 20 m. Noury 

et al. (2018) note that sinkholes in this region mainly occur due to suffosion (i.e., down washing of the 

cover material). Therefore, it is reasonable to expect that the thinner the alluvium is, the more likely 415 
that cavities are exposed at the surface. Originally generated by BRGM, the alluvium thickness data 

were extracted from Perrin et al. (2015) by applying the Inverse Distance Weighting (IDW) method to 

create a raster map (Fig. 5d). Sinkholes in the area mainly occur in the alluvial deposits ranging from 1 

to 5 m in diameter (median 2.8 m) and between 1 and 4 m (median 2 m) in depth (Perrin et al., 2015). 

 420 
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3.4.4 Groundwater level 

Subsurface cavities, when exposed to groundwater flow, can enlarge and migrate towards the surface, 

driven by groundwater circulation, which facilitates the dissolution of specific rock formations (Pazzi 

et al., 2018). In karst regions underlain by soluble bedrock, continuous exposure to both subterranean 

and surface water can enhance the process of dissolution (Intrieri et al., 2018; Xiao et al., 2018). When 425 
the level of groundwater increases, it can lead to soil erosion by weakening the soil structure and 

facilitating the process of soil structure ravelling (Kim and Nam, 2018). Therefore, the level and the 

variation in piezometric levels are among the main factors to assess when evaluating the flood triggered 

sinkhole susceptibility. However, in the case of Val d’Orléans the hydraulic head difference measured 

in warm and cold seasons is about one meter (see Desprez, 1967). Therefore, in this study, we have 430 
considered the annual average of available ground water level data over an 11-year period (2012- 2023). 

 

The groundwater data were obtained from the groundwater national portal (ades.eaufrance.fr, last 

access: 23 April 2023). According to this portal, there are five active piezometer water wells in the Val 

d’Orléans. To enhance the accuracy of the interpolation for measuring groundwater levels, the five 435 
closest stations near the north, west, and northwest boundaries of the study area were selected. To 

interpolate and rasterize the data, we used Inverse Distance Weighting (IDW) in Arc GIS Pro (Fig. 5e). 

 

3.4.5 Flood hazard map 

We used the official flood hazard map for a 100-return period produced by PPRi (Plan de Prévention 440 
des Risques d'Inondation, 2015) (Fig. 5f). The map has been built based on topographical data from the 

airborne laser digital terrain model (i.e., represents only the bare ground surface) and the analysis of 

past floods for frequency and intensity calculations. Three major floods from the 19th century (1846, 

1856, and 1866) were chosen as the reference floods (PPRi, 2015). The hazard zones represent the 

floodwater height. There are four hazard zones, each separately incorporated into the MaxEnt model: 445 
Zone 1: Low (0 to 0.5 m), Zone 2: Moderate (0.5 to 1 m), Zone 3: High (1 to 2.5 m), and Zone 4: Very 

high (greater than 2.5 m). 

 

 

 450 
 

 

 

 

 455 
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Figure 5. The six thematic maps of geo-environmental factors for assessing the spatial distribution of 

flood-triggered sinkholes over the study are; a) Elevation: showing a low-lying area with  elevations 460 
ranging from 81.7 m to 126 m; b) Slope: depicting a degree of slopes from 0 to 71; c) Surficial geology: 

(a) 

(c) (d) 

(e) (f) 

(b) 
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consisting of new and old alluvium layers; d) Alluvium thickness: Quaternary alluvial deposits with a 

thickness up to 20 m; e) Groundwater level: the annual average level of groundwater based on 11 years 

of data; ranging from about 10 to 17 m; f) Official flood hazard map: classified into four levels of hazard 

(low, moderate, high and very high) (PPRi, 2015). 465 

 

 

3.5 Data processing and parameter setting 

To prepare the input data, we used MS Excel©, Arc GIS Pro 3.1.3, and R Studio program version 4.1.2. 

MaxEnt software version 3.4.4 was then used to generate the model and the susceptibility map. Using 470 
R Studio, we rasterized all the geo-environmental  layers so that they have the  same geographic 

boundary, cell size (10-meter pixel), and map projection (French coordinate system RGF 1993 Lambert-

93). The collinearity test was then applied to all the rasterised layers by calculating Variance Inflation 

Factor (VIF) using the ‘car’ package in R Studio. As discussed in Sect. 3.1, many modelling algorithms 

are affected by high correlation among predictor variables, with the following consequences: i) over-475 
fitted results, and ii) dependent response curves (Sillero and Barbosa, 2021; Sillero et al., 2021). The 

VIF measures the extent to which each variable is correlated with a combination of all other variables 

within the model (Sillero et al., 2021). According to Chatterjee and Hadi (2013), VIF values are 

interpreted as shown below: 

 480 
 VIF = 1: There is no correlation between the variable in question and the other variables. 

 1 < VIF < 5: This range suggests a moderate correlation among predictors, which is generally 

not problematic. 

 VIF >= 5: A VIF value in this range signals a high level of multi-collinearity, potentially 

problematic, and might require further analysis or corrective measures. 485 
 

The VIF for each variable is less than 1.50 (Table 3), suggesting there is no significant multi-

collinearity among the variables. 

 

Table 3. The VIF matrix for the six variables calculated by the ‘car’ package in R. 490 
 

Variable Elevation Slope 
Surficial 

Geology 

Alluvium 

Thickness 

Groundwater 

Level 

Flood 

Zones 

Elevation 1.00 1.056 1.145 1.010 1.075 1.245 

Slope 1.432 1.00 1.143 1.073 1.342 1.243 

Geology 1.435 1.056 1.00 1.074 1.353 1.158 

Thickness 1.349 1.058 1.146 1.00 1.306 1.295 

Groundwater 1.140 1.050 1.146 1.037 1.00 1.287 

Flood 1.379 1.016 1.025 1.075 1.345 1.00 
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From the sinkhole occurrence dataset, we randomly allocated 70% as training data to calculate the 

model, while the remaining 30% was set aside for validating the resultant models. This ratio is 

commonly used in machine learning methods, striking a balance between avoiding overfitting and 495 
model accuracy (Rahmati et al., 2016; Yousefi et al., 2020; Rusk et al., 2022). To ensure the 

convergence of our model towards an optimal solution, we set the maximum iterations parameter to 

1000. This iteration number allowed the MaxEnt algorithm sufficient opportunity to adjust its 

parameters iteratively, seeking to minimise prediction error and accurately reflect the observed 

distribution patterns of the data.  To assess the reliability, stability, and uncertainty of predictions, we 500 
employed 50 replicates in our MaxEnt analysis considering the available computational resources.  

 

MaxEnt has four output formats (raw, cumulative, logistic and cloglog). Each has different theoretical 

justifications, with the choice of selecting one being highly dependent on the specific objectives of the 

analysis and data characteristics (Phillips et al., 2017). For this research, the logistic output was chosen 505 
which provides interpretable probability values (ranging from 0 to 1). This choice allows for the setting 

of thresholds that are consistent with the binary nature of presence/absence data, making the threshold 

settings clear and directly related to the probability values. Additionally, MaxEnt controls model 

complexity and prevents overfitting through regularization (Radosavljevic et al., 2014). For an in-depth 

understanding of the different tuning processes, refer to Radosavljevic et al. (2014). 510 
 

 

4 Results 

In this section, we present the outcomes of the MaxEnt modeling analysis, which include assessing 

model performance using the Receiver Operating Characteristic (ROC) test, generating a forecasted 515 
multi-hazard susceptibility map, and producing response curves for six flood-triggered sinkhole 

susceptibility factors. Additionally, we assess the importance of each factor using a jackknife test. 

Finally, we compare the existing flood hazard data with the resultant multi-hazard susceptibility map. 

 

4.1 Model validation 520 

The Receiver Operating Characteristic (ROC) graph is a commonly used method for quantitatively 

assessing the performance (discriminatory power) of a diagnostic test. To assess the model’s 

discriminatory power, we examine the relative trade-offs between the true positive rate (Sensitivity) 

and the false positive rate (1-Specificity) across all potential classification thresholds (Fawcett, 2006). 

This relationship is captured by the Area Under the Curve (AUC) metric, which ranges from 0 to 1. An 525 
AUC value of 0.5 signifies a model’s performance that is no better than random discrimination, serving 

as a critical benchmark. Thus, any AUC value above 0.5 indicates a model that discriminates between 

presence and absence more effectively than random guessing, demonstrating its predictive accuracy 

(Fawcett, 2006; Phillips et al., 2006; Sillero et al., 2021). Figure 6 shows the ROC curve for flood-

triggered sinkholes, plotted using the validation data, which includes both training and testing datasets. 530 
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The average test AUC over 50 MaxEnt replicate runs is 0.702, with a standard deviation of 0.055, 

indicating a satisfactory predictive performance of the model (to better understand the threshold 

performance, see Fawcett, 2006 and Phillips et al., 2006).  

 

 535 

 
 

Figure 6. The Area Under the Curve (AUC) results of the Receiver Operating Characteristic (ROC) 

analysis applied to both training and testing data. The black diagonal line represents a random chance. 

The red curve represents the mean response of the 50 replicate MaxEnt runs which is 0.702. The shaded 540 
blue area around the mean ROC curve represents the variability of the AUC ( +/- one standard 

deviation). 

 

 

4.2 Multi-hazard susceptibility mapping  545 
 

Based on MaxEnt logistic output, the calculated value of the model ranges from 0 to 1, with higher 

values indicating a higher probability of multi-hazard susceptibility. The map generated by MaxEnt 

model was reclassified into four susceptible zones: “Low”, “Moderate”, “High”, and “Very high” using 

the Natural Breaks (Jenks optimization) method, in ArcGIS Pro 3.1.3. Considering the actual 550 
distribution in the hazard data, this method, which is commonly used for hazard data classification, 
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proves useful for datasets that are not evenly distributed. It is particularly effective in identifying natural 

groupings of similar values, highlighting outliers (Herries, 2018). 

 

The classification of the multi-hazard susceptibility map into four distinct classes aligns strategically 555 
with the map classification guidelines outlined in the Plan de Prévention des Risques d'Inondation 

(PPRi, 2015), the official French document for flood risk prevention planning. Figure 7 illustrates the 

potential spatial distribution of the flood-triggered sinkholes across Val d’Orléans, presented as a raster 

surface with a resolution of 10 m per cell. The red-coloured areas denote a ‘very high’ level of 

susceptibility, covering 21.7% of the region with the relative probability distribution quantified from 560 
(0.53 - 0.90). Additionally, the distribution of susceptibility levels includes ‘high’ in orange (33.5%, 

probability 0.39 - 0.52), ‘moderate’ in light green (21.6%, probability 0.20 - 0.38), and ‘low’ in dark 

green (23.2%, probability 0.00 - 0.19). Most of the area is classified as High to Very high (~ 55 %, 

about 146 km2) where the majority of sinkholes are located. The western and most of the eastern parts 

are classified as Low to Moderate. 565 
 

 

 

 

 570 
 

Figure 7. Classified multi-hazard susceptibility map generated by MaxEnt model using the natural 

breaks method. The map on top is the same map overlaid with the sinkhole locations. Dark green 

indicates comparatively low hazard susceptibility, with a relative index of probability distribution 

ranging from 0.00 to 0.19; Light green corresponds to a moderate hazard level ranging from 0.29 to 575 
0.38. The orange and red colors represent the high and very high susceptible areas with probability 

distribution of 0.39 to 0.52 and 0.53 to 0.90, respectively. 
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4.1 Model-specific response curves and variable contributions 

 

Model-specific response curves (Fig. 8) are generated from MaxEnt models using one variable at a time 580 
to capture the influence of that variable in the presence of its correlations with other variables. The 

probability distribution of the flood-triggered sinkhole occurrences across six contributing factors can 

be summarised as follows. 

 

 The elevation curve (Fig. 8a) shows that starting at the lower elevation range, there is a 585 

relatively low probability of susceptibility. There is a distinct peak in the curve at around 90 

m to 105 m. This indicates the relative optimal elevation range, where the model forecasts the 

highest relative probability of finding flood-triggered sinkholes. After this peak, the curve 

drops sharply (from 105 m to 126 m), showing that the probability of the susceptibility 

decreases as the elevation continues to increase beyond the optimal range. As the elevation 590 
reaches the higher end of 110 m and above, the probability of presence flattens out to a very 

low value, suggesting that flood-triggered sinkholes are very unlikely to be present at these 

elevations (which are the highest elevation in the area). 

 The slope curve (Fig. 8b) exhibits a typical logistic (S-shaped) pattern, indicating an 

increasing probability of sinkhole occurrences with increasing slope steepness. Slopes with 595 
steepness of up to 10 degrees show a very low probability of flood-triggered sinkhole 

occurrences. Between approximately 10 to 50 degrees, there is a sharp, consistent increase in 

the probability. Between 50 and 71 degrees, the probability of sinkhole occurrence remains 

relatively high. 

 The geological response histogram (Fig. 8c), presented as a categorical layer, indicates that 600 
the highest probability value corresponds to the recent alluvium (Holocene in age). The 

predominant surficial geological layers in the area consist of both recent and older alluvium 

(Holocene and Pleistocene, respectively).  

 The alluvial thickness curve (Fig. 8d) shows a very low probability of flood-triggered 

sinkhole occurrences where the alluvial thickness is minimal (close to 0). As the alluvial 605 
thickness increases, there is a sharp and steady increase in the logistic output up to about 10 

m, indicating a higher probability of susceptibility with increased alluvial deposits. Beyond 

this point, the curve shows a more gradual yet consistent increase in the probability of sinkhole 

occurrence, which continues as the alluvial thickness reaches 20 m. 

 The response curve of groundwater level (Fig. 8e) indicates a low probability of flood-610 
triggered sinkholes at minimal groundwater levels in Val d’Orléans. This may reflect a 

buoyant force that stabilizes the ground, mirroring the isostatic principles seen in geological 

structures. As groundwater levels rise to around 15 m, sinkhole probability sharply increases. 

This is likely due to erosion of underground materials. At 15.5 m, conditions are optimal for 

sinkhole occurrence, but beyond this level, the probability swiftly declines.  615 
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 The curve of flood hazard zones (Fig. 8f) shows that as the flood hazard level increases, there 

is a general trend of increasing probability, suggesting a higher probability of sinkholes 

occurring in areas with more severe flood hazards where the level of floodwater during a 100-

year flood event could reach up to 2.5 m. This observation aligns with the empirical data, as 

about 58 % of the sinkholes were recorded within one kilometre from the river (Fig.4).  620 
 

 

 

 

 625 
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 635 
 

 

 

 

 640 
 

https://doi.org/10.5194/egusphere-2024-1779
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



23 
 

 
 

https://doi.org/10.5194/egusphere-2024-1779
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



24 
 

Figure 8. MaxEnt model response curves and histogram for flood-triggered sinkhole susceptibility 

factors. The curves and the histogram show the mean response of the 50 replicate MaxEnt runs (red) 645 
and the mean +/- one standard deviation (blue); each graph provides information of the impact of each 

factor and their correlations with other variables. a) Elevation Response Curve: Indicates a peak 

sinkhole occurrence probability between elevations of 90 m to 105 m. b) Slope Response Curve: 

Demonstrates an increasing probability of sinkholes with increasing slope values, suggesting higher 

susceptibility in relatively sloped areas. c) Geology Histogram: Displays the distribution of sinkhole 650 
probability across different geological units, highlighting that the highest value corresponds to the 

recent alluvium deposits (Holocene) signified the letter “Fz and Fy”; the letters “ Fw, Fw1,2,3” are 

associated with layers of older alluvium deposits (Pleistocene). d) Alluvial Thickness Response 

Curve: Shows a steady increase in the suitability of the occurrences as the thickness increases. e) 

Groundwater Response Curve: Reveals a distinct peak at about 15 m indicating the optimal 655 
groundwater level associated with higher sinkhole probability. f) Flood Hazard Response Curve: 

Shows a positive correlation between flood hazard and sinkhole formation potential. 

 

The jackknife test graph (Fig. 9) illustrates the influence of each contributing variable on the model’s 

AUC in two scenarios: with the variable (blue bar) and without it (green bar). The jackknife test, a 660 
resampling technique recognized for its efficacy in assessing variable importance within a model 

(Phillips et al., 2006), systematically omits one variable at a time from the dataset to re-evaluate the 

model’s predictive performance (Phillips et al., 2006). Results from the jackknife test reveals 

“Elevation” as a predominant variable, demonstrating the highest AUC value when it is the sole 

predictor, thus underscoring its criticality to the model’s forecasting ability. The second significant 665 
AUC value belongs to groundwater level followed by alluvial thickness and slope. Meanwhile, “Flood 

hazard zones” and “Geology”, although contributory to the overall AUC, shows a reduced impact when 

considered in isolation. 

 

 670 
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Figure 9. The plot of the jackknife test results of the averages over 50 replicate runs contributing factor 

importance. The green bar represents the AUC of the model without the corresponding variable, while 

the blue bar shows the AUC processed with only the corresponding variable. The longer the blue bar, 675 
the more important is the variable for model probability distribution. The red bar represents the AUC 

of the final model considering all the variables. 

 

For the purpose of land use planning and natural hazard mitigation measures in Val d’Orléans, we 

compared and visualised the spatial extents affected by flooding as a single hazard and those susceptible 680 
to flood-induced sinkholes, representing a complex multi-hazard scenario. It is important to 

acknowledge the inherent differences in the nature and methodologies employed in hazard mapping 

(considering magnitude and frequency) and susceptibility assessments (spatial probability distribution). 

However, we have focused on comparing the spatial overlaps by the means of classification approach 

representing an effort towards standardization to partially overcome the existing challenges in 685 
comparison of hazards within multi-hazard studies (Kappes et al., 2012). Figure 10 shows the extent to 

which different areas are affected by flood as a single hazard (the official map produced by PPRi, (2015) 

Fig. 5f) and susceptible to sinkholes triggered by flooding as a multi-hazard (Fig. 7). The areas 

classified as having a “Low” flood hazard and flood-triggered sinkholes account for 21% and 23.2%, 

respectively. The "Moderate" flood hazard areas cover 33.6% of the region, whereas the areas 690 
susceptible to flood-triggered sinkholes constitute significantly less, at 21.6%. This 12% discrepancy 

suggests that the factors contributing to flooding do not uniformly increase the risk for sinkholes, 

indicating that the other factors also are involved in flood-triggered sinkholes. The "High" susceptibility 

class shows a considerable difference between the two hazards, with a higher percentage of areas 

susceptible to flood-triggered sinkholes (33.5%) than to flooding (25%). For areas of "Very High" 695 
susceptibility, there is a notable spatial overlap between the flood hazard, which cover 20.4% of the 

area, and flood-triggered sinkholes, which cover 21.7%. This proves the spatial overlap of these two 

hazards. 
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 700 
 

 

Figure 10. Spatially comparing areas covered by different susceptibility classes for two related yet 

distinct hazards in the study area: flood and flood-triggered sinkholes. The black bars show the total 

areas affected by flood in both percentage and kilometre square. The grey bars illustrate the total areas 705 
affected by flood-triggered sinkholes in both percentage and kilometre square. 

 

 

 

5 Discussion and limitations 710 

 

The MaxEnt method was applied to model susceptibility to flood-triggered sinkholes, achieving a 

satisfactory result with a predictive accuracy of 0.702 for AUC. The model’s spatial distribution of 

relative probabilities indicates that approximately 55% of the study area (about 146 km2) falls within 

the High and Very high susceptibility categories. Elevation appears to be the main variable in detecting 715 
areas of higher susceptibility, particularly at elevations ranging from 90 m to 105 m. Additionally, areas 

with groundwater levels of about 15 m appear to be relatively more prone to sinkholes. This underlines 

that in the Val d’Orléans, characterized by its flood plains overlying karstic bedrock, factors such as 

elevation and groundwater levels significantly contribute to the likelihood of sinkholes occurring during 

flood events. Furthermore, areas within the region that have relatively steeper slopes (above 20 degrees), 720 
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greater alluvial thickness (about 10 m to 20 m), covered by recent alluvial (Holocene) units, and higher 

flood hazard scores, which correspond to higher water levels are more susceptible to flood-triggered 

sinkholes. The resultant jackknife test in MaxEnt outputs should be interpreted with caution as this test 

provides relative importance values that may not fully capture the multidimensional interactions among 

variables or the model’s transferability to different areas and conditions. Therefore, in our modelling, 725 
flood hazard zones and surficial geology datasets emerged as the least impactful factors compared to 

others. This cannot be directly interpreted as less important for flood-triggered sinkhole susceptibility. 

Instead, it may indicate that within the context of our dataset and model structure, these variables are 

overshadowed by more dominant variables. Moreover, this observation could be partly attributed to the 

spatial overlap of flood hazard zones and surficial geology factors as indicated by their slightly moderate 730 
correlation in the Variance Inflation Factor (VIF) test. However, as the model response histogram (Fig. 

8c) and curve (Fig. 8f) show, these two factors contribute the entire model performance. 

 

Our findings reveal that areas with the highest susceptibility are primarily located along the Loire River 

and close to the Loiret spring, pinpointing these zones as critical regions of concern for potential multi-735 
hazard occurrences. This pattern of susceptibility is underpinned by historical hydrological events; 

notably, Martin et al. (2003) document a significant event in 1907 where flooding led to the Loire 

River’s backflow into the Loiret. Consequently, the spatial analysis delineates the historically affected 

areas by this backflow between the Loire and Loiret as areas with High to Very high susceptibility. 

Meanwhile, the western sections of the study area (approximately ranging from longitude 1°43'E to 740 
1°54'E) are classified as having Low to Moderate susceptibility, although sporadic areas of High and 

Very high susceptibility exist near the Loire River, suggesting localized areas of susceptibility. In 

contrast, the eastern parts (approximately ranging from longitude 2°14'E to 2°20'E) are characterized 

by relatively Low susceptibility (areas in dark green), largely attributed to higher elevations (about 110 

to 126 m), which likely mitigate the impact of flood and sinkhole formations. The highest susceptibility 745 
probability in the most susceptible areas is a relative probability value of 9 and the lowest susceptibility 

probability is a relative value of 0.0001 suggesting that the model forecast a very low, but not 

necessarily zero of susceptibility. This information has relevance for policymakers and disaster risk 

management officials when prioritizing resources and efforts for areas with the highest risk, while not 

neglecting the lower risk areas. 750 
 

Our comparison of the existing flood hazard map and the new multi-hazard susceptibility map (this 

study) reveals that areas exhibiting both Very high and High overlaps in flood hazard and flood-

triggered sinkhole susceptibility, such as those observed along the Loire River (from 1°54'E to 2°12'E), 

require close evaluation for their potential sinkhole susceptibility. This underscores the necessity for 755 
integrated hazard assessments and mitigation strategies that consider both surface (i.e., floods) and 

subsurface (i.e., sinkholes) conditions. Furthermore, it becomes evident that areas prone to flood hazard 

do not always directly correlate with those susceptible to flood-triggered sinkholes, suggesting a 

spatially non-linear relationship, as seen in the eastern part (2°14'E to 2°20'E) and western part (1°43'E 
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to 1°54'E). This may indicate that even though the two hazards are related, they do not always happen 760 
in the same locations. This information can be used to enhance emergency planning and public 

awareness campaigns, ensuring they address specific risks presented by both hazards and support efforts 

to advance multi-hazard understanding and frameworks in risk assessment and disaster preparedness.  

 

There are some limitations that introduce uncertainties into the modelling of susceptibility in this study. 765 
The quality of predictive models depends heavily on the completeness and representativeness of the 

sinkhole inventory (epistemic uncertainty) (Galve et al., 2009; Taheri et al., 2019). Specifically, for 

mapping the susceptibility of flood-triggered sinkholes, having an inventory that documents only 

sinkhole collapses triggered by flood events might yield more accurate results. Nevertheless, obtaining 

this information typically presents challenges, such as data scarcity and potential limitations in 770 
coverage. This also underscores the importance of recording sinkhole triggers along with their 

respective locations, itself requiring sufficient monitoring to support identification of newly triggered 

sinkholes. 

 

Another limitation is that in an area characterised by a high flood hazard, particularly in the context of 775 
flood-triggered sinkholes, it becomes evident that there exist localized geological features that pose 

significant challenges for inclusion in modelling efforts. These localized factors are primarily related to 

the complex geological characteristics of the region. For instance, certain areas may exhibit distinct 

lines of geological weakness and fractures that facilitate the movement of water. Consequently, water 

is more likely to erode materials in these areas, increasing the risk of sinkhole formation. Integrating 780 
such fine-scale geological information into a model can be challenging, as it requires highly detailed 

geological maps with fine resolution. These features represent specific susceptibilities that may not be 

adequately accounted for in standard modelling approaches like MaxEnt. As a result, a more in-depth 

investigation, such as detailed mapping and site-specific assessments, becomes essential for gaining a 

comprehensive understanding of the likelihood and precise locations of flood-triggered sinkhole 785 
occurrences, especially in areas with complex geological characteristics. We also acknowledge that 

despite our careful and informed approach in choosing parameters for the MaxEnt model, there remains 

an inherent uncertainty associated with tuning the model parameter settings. 

 

The multi-hazard susceptibility map generated through this study serves as a communication tool to 790 
support decision makers involved in resource allocation and risk mitigation efforts. Additionally, it can 

be used for raising awareness among the public about the diverse risks they may encounter, fostering a 

culture of preparedness and resilience within community. While the probability of simultaneous 

occurrences of sinkholes triggered by flood events may be low, the consequences could be 

disproportionately high, requiring a proactive and preventive approach to community safety and disaster 795 
risk reduction. Since multi-hazard maps are a relatively recent addition to disaster risk management 

practices, further research is essential to seek stakeholders’ perspectives on the utility of multi-hazard 

maps, ensuring that generated maps support decision-making processes.  
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6 Conclusions 800 
 

In this study, we focus on a typical multi-hazard scenario prevalent in karst environments, specifically 

flood-induced sinkholes, using the Orléans region (Val d’Orléans), France, as a case study. We develop 

a multi-hazard susceptibility map that recognizes the spatial interrelationships of flooding and sinkhole 

occurrences, which to our best knowledge is the first attempt in producing multi-hazard susceptibility 805 
map in karst area of Val d’Orléans and in the multi-hazard literature. This map incorporates the official 

flood hazard map as a factor influencing sinkhole formation/collapses in the area. Using the MaxEnt 

model, we find elevation (90 m to 105 m) to be the key driving factor for flood-triggered sinkholes, 

followed by groundwater level (at or near 15 m) and alluvial thickness (10 m to 20 m). Our findings 

indicate that the middle parts of the study area and areas along the Loire River are highly susceptible to 810 
the combined flood/sinkhole hazard. Additionally, our comparison of existing single flood hazard map 

and the multi-hazard susceptibility map reveals a spatially non-linear relationship between the locations 

prone to flood hazards and sinkhole development. This finding indicates that while flood management 

is essential, it must be coupled with an understanding and anticipation of secondary hazards, such as 

sinkholes in kart terrains that may be triggered or exacerbated by flooding. This is particularly crucial 815 
in areas of High and Very high flood hazard zone, where the susceptibility to sinkholes is increased. 

This research contributes to our understanding of the application of the MaxEnt model to support 

characterisation of multi-hazard scenarios in karst environments.  

 

The application of the MaxEnt model and its 50 times replications in our study yielded results with the 820 
satisfactory forecasting outcomes meaning that the model could fitted well into the data. However, it is 

essential to approach MaxEnt findings with caution due to several limitations of the model at its current 

stage. Specifically, the model is sensitive to the extent of the study area, which can lead to inflation in 

the AUC score, and it is highly dependent on the choice of geo-environmental variables. MaxEnt is 

relatively new in the field of natural hazard and there is a need to explore this model further. Our study 825 
also provides a framework that can serve as guidance for multi-hazard scenarios in other karst 

environments, and motivate further work aimed at improving our forecasting of flood-triggered 

sinkholes.  
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