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Abstract 20 

 21 

As fire seasons in Brazil lengthen and intensify, the need to enhance fire simulations and 22 

comprehend fire drivers becomes crucial. Yet determining what drivers burning in different 23 

Brazilian biomes is a major challenge, with the highly uncertain relationship between drivers 24 

and fire. Finding ways to acknowledge and quantify that uncertainty is critical in ascertaining 25 

the causes of Brazil’s changing fire regimes. We propose FLAME (Fire Landscape Analysis 26 

using Maximum Entropy), a new fire model that integrates Bayesian inference with the 27 

Maximum Entropy (MaxEnt) concept, enabling probabilistic reasoning and uncertainty 28 

quantification. FLAME utilizes bioclimatic, land cover and human driving variables to model 29 

fires. We apply FLAME to Brazilian biomes, evaluating its performance against observed data 30 

for three categories of fires: all fires (ALL), fires reaching natural vegetation (NAT), and fires 31 

in non-natural vegetation (NON). We assessed burned area responses to variable groups. The 32 

model showed adequate performance for all biomes and fire categories.  Maximum temperature 33 

and precipitation together are important factors influencing burned area in all biomes. The 34 

number of roads and amount of forest boundaries (edge densities), and forest, pasture and soil 35 

carbon showed higher uncertainties among the responses. The potential response of these 36 

variables displayed similar spatial likelihood of the observations given the model, between the 37 

ALL, NAT and NON categories. Overall, the uncertainties were larger for the NON-category, 38 
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particularly for Pampas and Pantanal. Customizing variable selection and fire categories based 39 

on biome characteristics could contribute to a more biome-focused and contextually relevant 40 

analysis. Moreover, prioritizing regional-scale analysis is essential for decision-makers and fire 41 

management strategies. FLAME is easily adaptable to be used in various locations and periods, 42 

serving as a valuable tool for more informed and effective fire prevention measures. 43 

 44 

Keywords: Burned Area. Brazilian biomes. Maximum Entropy. Bayesian Inference. Climate. 45 

Fragmentation. Land Use. 46 

 47 

 48 

1 INTRODUCTION 49 

 50 

The complexity of the interactions and feedbacks between fire, climate, people, and other earth 51 

system components makes it challenging to be highly confident about what drives fires in 52 

specific locations. Various methods assess the drivers of historical fire events. Some studies 53 

correlate individual drivers with burned area but overlook the interaction of multiple factors 54 

(ANDELA et al., 2017; BARBOSA et al., 2019). Fire Danger Indices capture simultaneous 55 

drivers to gauge fire risk. However, they overlook human-driven ignition causes 56 

(ZACHARAKIS; TSIHRINTZIS, 2023) and typically fail to capture the impact of fuel 57 

availability on burning (KELLEY; HARRISON, 2014). Fire-enabled Land Surface Models 58 

account for these drivers, simulating observable fire regime measures. However, they often 59 

lack accuracy for year-to-year fire patterns and required accuracy to determine fire drivers 60 

(FORKEL et al. 2019) and the causes of individual fire seasons (HANTSON et al., 2020). 61 

Quantifying uncertainty is critical for assigning fire drivers because it allows for a more 62 

accurate assessment of the confidence in our predictions and helps identify the most influential 63 

factors under varying conditions. In this sense, research applying the Maximum Entropy 64 

framework combined with Bayesian Inference can address these gaps.  65 

 66 

The Principle of Maximum Entropy (MaxEnt) states that when trying to estimate the 67 

probability of an event and the information is limited, you should opt for the distribution that 68 

preserves the greatest amount of uncertainty (i.e., maximizes entropy) while still adhering to 69 

your given constraints (PENFIELD, 2003). These constraints reflect prior knowledge about the 70 

probability distribution of a phenomenon of interest (i.e., burned area) based on its relationship 71 

with independent variables. This approach ensures you do not introduce extra assumptions or 72 

biases into your calculations. MaxEnt has its roots in statistical mechanics (JAYNES, 1957). 73 
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However, the use of its concept in a species distribution model (PHILLIPS et al., 2006) 74 

popularized the approach in several other study areas, including ecology, geophysics, and fires 75 

( JIN et al., 2020;  LI et al., 2019; FONSECA et al., 2017).  Incorporating Bayesian Inference 76 

alongside the MaxEnt framework further enhances this approach. Bayesian techniques 77 

integrate prior knowledge and observed data to continuously refine the estimation of 78 

uncertainty in the influence of drivers on fire, thereby improving the confidence in a 79 

relationship we find. By leveraging both MaxEnt and Bayesian Inference, we can develop more 80 

robust models that account for the complex and dynamic nature of fire regimes. 81 

 82 

The MaxEnt species distribution model estimates the probability of target presence for given 83 

local conditions (PHILLIPS et al., 2006). Unlike many traditional models, MaxEnt makes 84 

minimal assumptions about the relationships between variables, making it more flexible and 85 

adaptable to complex ecological interactions. Rather than estimating a single value, MaxEnt 86 

models a full probability distribution (ELITH et al., 2011), providing a comprehensive view of 87 

potential outcomes. This probabilistic nature enables the incorporation of prior information 88 

into the modeling process, enhancing its accuracy. Additionally, MaxEnt enables the 89 

quantification of uncertainties (CHEN et al., 2019), providing valuable insights into the 90 

reliability and confidence of model predictions. 91 

 92 

Recognizing that fires can be treated as a species due to their strong dependence on 93 

environmental factors, utilizing the MaxEnt species model has yielded valuable insights into 94 

the field (FERREIRA et al., 2023; FONSECA et al., 2019). However, the MaxEnt model relies 95 

on presence-only or presence/absence data, which means it primarily considers locations where 96 

the target (in this case, fires) has occurred. This limits fire research using MaxEnt as it does not 97 

allow continuous data, such as burned area fraction over a larger region. Moreover, the 98 

constraints and structure of the underlying model are fundamentally related to species 99 

distributions (PHILLIPS et al., 2006) rather than fires, which may not capture the nuances of 100 

fire behavior. 101 

 102 

The simulation of fires in heterogeneous territories such as Brazil is incredibly challenging. 103 

Wildfires have become a pressing concern in the country, causing significant socioeconomic 104 

and environmental losses (CAMPANHARO et al., 2019; BARBOSA et al., 2022; WU et al., 105 

2023). Since 1980, more than 1,857,025 km² of Brazil's terrain has been negatively impacted 106 

by fires (MAPBIOMAS, 2023), reflecting a need for effective and adaptive fire management 107 
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strategies. Nonetheless, quantifying the influence of these drivers can be difficult - many 108 

interactions between fire and its drivers are non-linear, and drivers heavily interact with each 109 

other, making confidently identifying drivers of fire regimes in such diverse landscapes tricky 110 

from observations alone (KRAWCHUK and MORITZ 2014). While traditional fire models 111 

provide useful broadscale information on fire, land, and climate interactions, they do not 112 

quantify the uncertainty in these relationships and rely on other studies to infer relationships 113 

between drivers and burning (HANTSON et al., 2016).  114 

 115 

Improving fire simulations and understanding the underlying drivers of fires in Brazil is 116 

essential to address the challenges associated with preventing fires, firefighting, and managing 117 

their aftermath. Here, we present and evaluate a novel fire model, FLAME (Fire Landscape 118 

Analysis using Maximum Entropy), based on a Bayesian inference implementation of the 119 

MaxEnt concept. This combination allows us to incorporate uncertainty and probabilistic 120 

reasoning into fire modeling. In this sense, the model aims to precisely measure uncertainties 121 

of the simulations. The model optimizes key driving variables relationship with fires. Here we 122 

apply FLAME to the biomes in Brazil, and assess the performance against observations. 123 

 124 

2 METHODS 125 

 126 

2.1 Datasets and preprocessing   127 

 128 

We used the MCD64A1 burned area product from MODIS collection 6 as our target variable 129 

(GIGLIO et al., 2018). This data was regridded from 500m to 0.5º spatial resolution.The burned 130 

area data was used in its totality (ALL) and divided into two other categories based on the 131 

LULC data from the Mapbiomas project (https://brasil.mapbiomas.org/en/): fires reaching 132 

natural vegetation (NAT) and fires reaching non-natural vegetation (NON) (Fig. 1).  133 

 134 

We computed all burned areas within forests, grasslands, and savannas for the NAT and the 135 

NON within pasture, cropland, and forest plantation, aggregated with croplands. The 136 

categorization of fires aims to assess whether there are distinct drivers for NAT and NON and 137 

to exemplify the potentialities of the model for assessing more than one fire category across 138 

different vegetation types. Amazonia and Atlantic Forest are fire-sensitive biomes (Fig. 1) that 139 

are highly susceptible to damage or destruction by fire. Cerrado, Pampa and Pantanal have 140 
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evolved to depend on fire as part of their life cycle and are considered fire-dependent biomes. 141 

Finally, Caatinga is a fire-independent biome that is generally not significantly affected by fire 142 

or does not require fire as part of its vegetation dynamics. This categorization follows Hardesty 143 

et al. (2005), based on the predominant vegetation type that defines the biome. However, all 144 

biomes contain vegetation types with different sensitivities to fire. We adopt a broad approach 145 

to encompass the various biomes in Brazil; however, any type of categorization is permissible, 146 

and further studies could focus on even finer stratification, e.g. fires reaching fire-sensitive 147 

vegetation and fire-dependent vegetation within each biome.  148 

 149 

 150 

Figure 1: (A) Brazilian biomes classified as Fire-sensitive, Fire-independent and Fire-151 

dependent on the left (HARDESTY et al. 2005) and Natural vegetation (Forests, 152 

Grasslands and Savannas) and Non-natural vegetation (Pasture, Cropland and Forest 153 

Plantations) in 2019 in Brazil on the right.  (B) NAT’s mean burned area percentage per 154 
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pixel is on the left and NON is on the right. The maps show the mean for August, 155 

September and October from 2002 to 2019. 156 

 157 

The target and independent variables were extracted for August, September, and October, from 158 

2002 to 2019, representing the general peak of the fire season in Brazil. This time frame is the 159 

most extended overlapping period between the datasets which we further divided into a training 160 

phase from 2002 to 2009 and a validation phase from 2010 to 2019. The independent variables 161 

were divided into five groups (climate, anthropogenic and natural ignition, fuel, LULC and 162 

forest metrics) and are described in Table 1. We acquired climate variables from the first 163 

component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison 164 

Project (ISIMIP3a, https://www.isimip.org/). ISIMIP is a collaborative effort to compare and 165 

evaluate the outputs of various climate and impact models (FRIELER et al., 2023). This data 166 

represents the historical simulations using climate-forcings from GSWP3-W5E5, available 167 

from 1901 to 2019 at a 0.5° spatial resolution. 168 

We obtained soil, vegetation carbon and soil moisture from the Joint UK Land Environment 169 

Simulator Earth System impacts model at version 5.5 (JULES-ES; MATHISON et al., 2023) 170 

and driven by ISIMIP3a GSWP3-W5E5 as per Frieler et al. (2023), which is freely available 171 

at https://www.isimip.org/impactmodels/details/292/. JULES-ES has previously been used as 172 

input for Bayesian-based fire models (e.g. UNEP et al., 2022). JULES dynamically models 173 

vegetation, carbon fluxes and stores in response to meteorology, hydrology, nitrogen 174 

availability, and land use change. JULES-ES has been extensively evaluated against snapshots 175 

and site-based measurements of vegetation cover and carbon (MATHISON et al., 2023; 176 

WILTSHIRE et al. 2021; BURTON et al.,2019; BURTON et al. 2022). As per UNEP et al. 177 

(2022), vegetation responses to JULES-ES’s internal fire model were turned off so as not to 178 

double-count the effects of burning. The maps, therefore, represent environmental carbon 179 

potential and are applicable to FLAME as the model only assumes that variable ranges are 180 

correctly ranked – i.e. areas of low/high carbon content correspond with real-world areas of 181 

low/high carbon and not that the absolute magnitude is correct. 182 

Regarding ignition variables, Population Density data was also obtained from the ISIMIP3a 183 

protocol and based on data from the History Database of the Global Environment (HYDE) v3.3 184 

(VOLKHOLZ et al., 2022). Lightning was prescribed as a monthly climatology from LIS/OTD 185 

data (CECIL, 2006). The LIS/OTD Climatology datasets comprise gridded climatologies that 186 
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document the lightning flash rates detected by the Optical Transient Detector (OTD) and the 187 

Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measuring Mission (TRMM). 188 

We collected road density data from the Global Roads Inventory Project (GRIP) (MEIJER et 189 

al. 2018), using total density in m/km2, which we regridded to the 0.5-degree grid used by the 190 

rest of the data using linear interpolation in the Iris Python package (MET OFFICE, 2023). 191 

 192 

We used the collection 7 LULC data from the MapBiomas project, which produces annual 193 

LULC mapping for the Brazilian territory. They were regridded from 30 m to 0.5∘ to match 194 

the coarser resolution and interpolated from an annual to a monthly time step.  195 

 196 

The forest metrics variables were calculated into the 0.5º grid based on the forest data from the 197 

Mapbiomas at 30m resolution using the package ‘landscapemetrics’ available in R 198 

(HESSELBARTH et al., 2023). The metrics were number of patches (NP) and edge density 199 

(ED):  200 

 201 

                                                              𝑁𝑃 =  𝑛𝑖                                                                  (1) 202 

where  𝑛𝑖  is the number of patches belonging to class i. NP is an ’Aggregation metric’ and 203 

describes the fragmentation of a class, in this case, forest formations.  204 

 205 

                                                          𝐸𝐷 =  
∑𝑒𝑖

𝐴
                                                                 (2) 206 

where 𝑒𝑖 is the total edge length in meters, and A is the total landscape area in square meters. 207 

It quantifies edge density by summing up all edges within class i in relation to the overall 208 

landscape area. This metric provides insights into the landscape's configuration. We 209 

incorporated these metrics to integrate fragmentation variables - studies suggest that these are 210 

linked to fire occurrence in Amazonia and Cerrado (SILVA JUNIOR et al., 2022; ROSAN et 211 

al., 2022) but remain unexplored in the other biomes.  212 

 213 

 214 
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Group Variable Abbreviat

ion 

Source 

 

 

 

 

 

CLIMATE 

Maximum Temperature (ºC)   tmax  

 

 

 

 

 

 

 

ISIMIP3a 

FRIELER et al. 

(2023) 

 

Precipitation (m/sec)    ppt 

    Vapor pressure deficit (Pa)  vpd 

Relative Humidity 

(fraction) 

          rh 

 

 

Consecutive number of 

dry days (days) 

 

 

 

dry_days 

    Soil  Moisture (fraction)   soilM 

 

         JULES-ES 

 

 

 

 

IGNITION 

  Lightning (flashes/km/day)   lightn  

      ISIMIP3a 

FRIELER et al. 

(2023) 

 

 

 

Population density 

(people/1000 km2) 

   

 

         pop 

     

      Road density (m/m2) 

 

        road 

      GRIP global 

(MEIJER et al., 2018) 

 

                

 

     FUEL 

Vegetation carbon 

(kg/m2) 

   

  cveg 

 

        JULES-ES 

Soil carbon 

(kg/m2) 

 

  csoil 

 

  JULES-ES 

 

 

 

    LULC 

Forest (%)   forest  

 

 

   MAPBIOMAS, 2022 
Grassland (%)   grass 

 Savanna (%)   sav 

 Cropland (%)   crop 
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      Table 1. Initial list of explanatory variables.  215 

2.2 Variables selection  216 

 217 

In constructing our predictive model, we considered the interrelationships among different 218 

variables to ensure a robust and coherent analysis. The selection of variables was guided by 219 

their correlation, aiming for a set of features that provided information without redundancy. 220 

For this, we calculated the Spearman correlation coefficient (SPEARMAN, 1961) presented in 221 

Fig. 4.2. We chose Spearman rank over other correlation metrics as our model has a non-linear 222 

relationship between drivers and fires (Section 2.3), making it a better assessment than 223 

parametric comparisons. We identified variables that exhibited strong relationships by 224 

examining the correlation matrix, which we removed from the final model. We used a threshold 225 

higher than 0.6 from Spearman’s coefficient for this. The selection was also based on previous 226 

knowledge about the variables relationship with burned area. For example, we did not include 227 

lightning even though it presented low correlation with other variables. Fires caused by 228 

lightning are uncommon and usually occur during the wet season (MENEZES et al., 2022) 229 

which is out of scope of our analysis. 230 

 231 

 232 

Pasture (%)   pas 

 

 

FOREST 

METRICS 

Number of patches     np  

 

Calculated from 

MAPBIOMAS, 

2022 

 

 

 

 

      Edge density (m/m²) 

 

 

   ed 
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 233 

Figure 2: Spearman correlation of the explanatory variables. Crossed values indicate no 234 

correlation, values near 1 [magenta] indicate a strong positive correlation and near -1 235 

[cyan] a strong negative correlation.  236 

We adopted a more streamlined approach by opting for a shorter list of variables and by 237 

grouping them in the variables analysis to capture their compound effect. Initially, we selected 238 

7 variables as input for the final model (Fig. 3) from the 18 initial variables. These variables 239 

were chosen based on their correlation, ensuring that at least one variable from each group was 240 

selected (Climate, Fuel, LULC, Ignition and Forest Metrics). Next, we divided the variables 241 

into three groups. Group 1 is composed of climate variables Maximum Temperature and 242 

Precipitation; Group 2 includes the variables Edge Density and Road Density which are related 243 
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with landscape fragmentation; and Group 3 encompasses Forest cover, Pasture cover and 244 

Carbon in dead vegetation which are associated with fuel availability. 245 

 246 

 247 

Figure 3: Mean of the selected explanatory variables for August, September and October 248 

from 2002 to 2019.  249 

 250 

2.3 Relationship curves 251 

 252 

The constraints or priors of the model were added as parameters of different functions, which 253 

we refer to as relationship curves. We included the linear and power functions (Fig. 4) 254 

according to known relationships between fires and environmental variables. This means that 255 

some environmental variables, when presenting higher values, are likely to increase fires. In 256 

comparison, others have an inverse relationship where lower values of the variable coincide 257 

with an increase in burned area. We expect our selected variables to have the following 258 

relationship with fires:  259 

1. Maximum Temperature, Carbon in dead vegetation and Pasture are expected to increase 260 

burning with the increase of the variable (CANO-CRESPO et al., 2015; DOS SANTOS 261 

et al., 2021; LIBONATI et al., 2022);   262 

2. Precipitation and Forest, which we expect to increase burning with the decrease of the 263 

variable (ARAGÃO et al., 2008; BARBOSA et al., 2022); 264 

3. Edge Density and Roads are expected to have more uncertain response across the 265 

biomes. High density of edges can lead to more fires into forest ecosystems 266 
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(ARMENTERAS et al., 2013; SILVA-JUNIOR et al., 2022) but fragmentation can also 267 

reduce fires by impeding fire spread (DRISCOLL et al., 2021). Regarding Road 268 

Density, while more fires are expected surrounding roads (ARMENTERAS et al., 269 

2017), less fires are expected with increased density due to urbanization. 270 

 271 

The model then estimates the contribution of each curve to the final model. Even though it is 272 

possible to include more relationship curves, we decided to keep it at a minimum to avoid 273 

making too many assumptions and unstable results due to computational efficiency.  274 

 275 

 276 

Figure 4: Graphical representation of the relationship functions implemented in the 277 

model. The one on the left is a linear function and on the right is a power function. 278 

 279 

 280 

2.4 Model optimization  281 

 282 

The model was optimized for each Brazilian biome separately using the MCD64A1 product 283 

from 2002 to 2009. This process used the PyMC5 Python package (ABRIL-PLA et al., 2023), 284 

employing 5 chains each over 1000 iterations using the No-U-Turns Hamilton Monte Carlo 285 

sampler (HOFFMAN and GELMAN 2014) while utilizing 20% of the data or a minimum of 286 

6000 grid cells. While the runs were conducted individually for each Biome, the results were 287 

aggregated to facilitate visualization. The code used to develop this model is available on 288 

GitHub repository (https://github.com/malu-barbosa/FLAME). 289 

 290 

In Bayesian inference, we update our beliefs or knowledge about a system or event by 291 

incorporating new evidence or data (LAPLACE, 1820; GELMAN et al., 2013). It allows us to 292 
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quantify and update our uncertainty using probability distributions. By maximizing entropy, 293 

we aim to achieve the most unbiased, information-rich distribution that satisfies this prior 294 

knowledge. In this sense, the likelihood (or posterior probability) of the values of the set of 295 

parameters, β, given a series of observations 𝑂𝑏𝑠𝑖 and explanatory variables (𝑋𝑖𝑣, from section 296 

2.2) is proportional (∝) to the prior probability distribution of 𝑃(𝛽) multiplied by the 297 

probability of the observations given the parameters tested. 298 

 299 

                        𝑃( 𝛽 | {𝑂𝑏𝑠𝑖} , {𝑋𝑖𝑣})  ∝  𝑃(𝛽)  × 𝛱𝑖 𝑃(𝑂𝑏𝑠𝑖| {𝑋𝑖𝑣}, 𝛽)                                  (3) 300 

 301 

Where {𝑂𝑏𝑠𝑖} is a set of our target observations, and i is the individual data point and {𝑋𝑖 𝑣} is 302 

the set of explanatory variables, v, for data point i. The pi notation (𝛱) indicates repeated 303 

multiplication. Maximum Entropy in species distribution modeling assumes that individual 304 

observations  (𝑂𝑏𝑠𝑖) are either 1 when there is a fire or 0 when there is not, and that: 305 

    𝑃(1| {𝑋𝑣}, 𝛽)  =  𝑓({𝑋𝑣}, 𝛽) and   𝑃(0| {𝑋𝑣}, 𝛽)  =  1 − 𝑓({𝑋𝑣}, 𝛽 )              (4) 306 

Where 𝑃(1| 𝑋, 𝛽) is the probability of a fire to occur, 𝑃(0| 𝑋, 𝛽) is the probability of no fire. 307 

The term 𝑓(𝑋, 𝛽) is defined below: 308 

           𝑓({𝑋𝑣}, 𝛽)  =  1/(1 + 𝑒)−𝑦({𝑋𝑣},𝛽)                                                       (5) 309 

where 𝑦({𝑋𝑣}, 𝛽)  = linear function + power function (section 2.3): 310 

  𝑦({𝑋𝑣}, 𝛽)  =  𝛽0 + 𝛴𝑣(𝑏0,𝑖 × 𝑋𝑣  + 𝑏1,𝑣 𝑐
𝑋𝑣)                                                (6)     311 

 312 

This works for single land points, where a location burns or does not burn. We extend this 313 

concept to derive the Maximum Entropy solution for fractional burned area by integrating over 314 

a larger grid cell area. Here we consider that when dividing a gridcell indefinitely, the subcell 315 

sizes approach infinitesimally small values and the data within each subcell starts to behave 316 

like continuous data. We adapted Eq. (3) and (4) to work with continuous data: 317 

                 𝑃( 𝛽 | {𝑂𝑏𝑠𝑖} , {𝑋𝑖𝑣} )  ∝  𝑃(𝛽)  ×   𝛱𝑖
𝑛𝛱𝑗

𝑠𝑃(𝑂𝑏𝑠𝑖𝑗|{𝑋𝑖𝑣} , 𝛽)1/𝑠                          (7) 318 

Where n is the observations sample size, j is the individual subgrid, and s is the subgrid sample 319 

size.  If, for a given 𝑂𝑏𝑠𝑖, m of the s subgrid cells burn, then we can adapt Eq. (4) to get: 320 
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𝑃(𝑚/𝑠 | {𝑋𝑖𝑣}, 𝛽)  =  𝛱𝑗
𝑠𝑃(1 | {𝑋𝑖𝑣}, 𝛽) 𝑚  × 𝑃(0 | 𝛽)𝑠−𝑚  321 

   =   𝑓({𝑋𝑖𝑣}, 𝛽)𝑚  ×  (1 − 𝑓({𝑋𝑖𝑣}, 𝛽))𝑚−𝑠                 (8) 322 

and therefore:  323 

   𝑃( 𝛽 | {𝑚𝑖/𝑠𝑖}, {𝑋𝑖𝑣}  )  ∝  𝑃(𝛽)  ×  𝛱𝑖
𝑛 𝑓({𝑋𝑖𝑣}, 𝛽)𝑚/𝑠  ×  (1 − 𝑓({𝑋𝑖𝑣}, 𝛽))(𝑚−𝑠)/𝑠      (9) 324 

When 𝑠 → ∞,  m/s becomes burned area fraction (BF). Then:    325 

     𝑃( 𝛽 | {𝐵𝐹𝑖} , {𝑋𝑖𝑣} ) ∝  𝑃(𝛽)  ×  𝛱𝑖
𝑛𝑓({𝑋𝑖𝑣}, 𝛽)𝐵𝐹𝑖  ×  (1 −  𝑓({𝑋𝑖𝑣}, 𝛽))1−𝐵𝐹𝑖            (10) 326 

This solution assumes that burning conditions at a specific location solely explain the 327 

likelihood of burning. In reality, fires spread and, particularly at higher burned areas, they may 328 

overlap. We, therefore, modify 𝑂𝑏𝑠𝑖 so that it represents what the burned fraction of a gridcell 329 

would looks like if it was one large fire with no overlapping burning: 330 

𝑂𝑏𝑠𝑖  =  𝑂𝑏𝑠𝑖,0  × (1 +  𝑄) /(𝑂𝑏𝑠𝑖,0  ×  𝑄 +  1)                                       (11) 331 

Where 𝑂𝑏𝑠𝑖,0 is the true observation, and Q is a modifier parameter to remove the effects of 332 

fire overlap.  333 

Lastly, to account for variations in land cover to assign between natural and non-natural 334 

vegetation, which can be very small in some cells, we introduced a weighting factor w when 335 

assessing fire categories. This weighting factor considers the individual area of each grid cell, 336 

ensuring that cells with smaller vegetation cover contribute proportionally to the analysis, as 337 

in Eq. 12 below:  338 

       𝑃( 𝛽 | {𝐵𝐹} , {𝑋𝑖𝑣} ) ∝  𝑃(𝛽)  ×  𝛱𝑖
𝑛𝑓({𝑋𝑖𝑣}, 𝛽)𝐵𝐹𝑖×𝑤  ×  (1 −  𝑓({𝑋𝑖𝑣}, 𝛽))(1−𝐵𝐹) × 𝑤  (12) 339 

We use weak, uninformed prior distributions for our Eq. (6) parameters. 𝛽
0 

, 𝑏0,𝑖 and 𝑏1,𝑖 priors 340 

were set as a normal distribution with a mean of 0 and a standard deviation of 100, and c a 341 

lognormal with a 𝜇 of 0 and a 𝜎 of 1. 342 

 343 

 344 

2.5 Model evaluation 345 

 346 

The model's main goal is to accurately quantify uncertainties, which we tested by analyzing 347 

where the observations fell in the model's posterior probability distribution (Eq. 10). If more 348 
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than 20% of the observations fall outside the 10th-90th percentile range, the uncertainty range 349 

is too narrow. Conversely, if observations cluster around 50%, the uncertainty range is too 350 

wide. We aim to minimize uncertainty constraints without compromising accuracy. When 351 

evaluating the model against 2010-2019 observations, we also investigated how likely the 352 

observations are given the optimized model (P(Observed|Simulated)), as per Kelley et al. 353 

(2021). Using a different time period from the optimization, we ensure an independent model 354 

evaluation. If the out-of-sample observations are more likely given the model, then the model 355 

performs well. We use a likelihood of 50% to indicate adequate performance.  356 

 357 

We calculate the probability of an observation given our model by integrating the observation’s 358 

likelihood across parameter space, weighted by the parameter likelihood given our training in 359 

section 2.4:  360 

                     𝑃( 𝑌| (𝑋, 𝛽| {𝐵𝐹0} , {𝑋0} ))  =  ∫
𝛽

 𝑃(𝛽| {𝐵𝐹𝑖}})  × 𝑃(𝑌|𝛽) 𝑑𝛽                            (13) 361 

 362 

which, combined with Eq. (10), gives us: 363 

           364 

              𝑃( 𝑌| (𝑋, 𝛽| {𝐵𝐹0} , {𝑋0} )) =  ∫
𝛽

 𝑃(𝛽| {𝐵𝐹𝑖}) × 𝑓(𝑋, 𝛽)𝑌 × (1 − 𝑓(𝑋, 𝛽))1−𝑌     (14) 365 

 366 

Where Y is an observation and X corresponds to the model inputs at the time and location of 367 

Y. We approximate this by sampling 200 parameter ensemble members from each of our five 368 

chains, providing us with 1000 ensemble members. The frequency of these 1000 in parameter 369 

gives us “𝑃(𝛽|{𝐵𝐹𝑖})” in Eq. (14). We then drive the model with each parameter combination 370 

to give us 𝑓(𝑋, 𝛽). We used the iris package (MET OFFICE, 2023) with Python version 3 371 

(Python Software Foundation, https://www.python.org/) for sampling. 372 

 373 

We also determined the percentile of our observations within the model's posterior probability 374 

distribution. In an unbiased model, we expect the observation position to be essentially random, 375 

with the mean over many samples tending towards the middle of the distribution (i.e., a 376 

percentile of 50%). We mapped out the mean position of the observations for the 30 time steps 377 

(3 months, August, September, October, for 10 years) tested (Fig. 6).  The p-value in Fig. 7 378 

uses the student t-test to ascertain if the mean of the posterior position of the monthly 379 

observations for a given gridcell (mean bias) is significantly different 50% (i.e, the model is 380 

biased). A mean bias near 0 indicates that observations are consistently smaller than the 381 
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simulations, and near 1 indicates that the observations are greater than the simulations. Low p-382 

numbers indicate where the model is biased towards a probability distribution, which tends to 383 

suggest too low or high burning. 384 

 385 

2.6 Variables analysis 386 

 387 

We assessed the behavior of the variables against the burned area simulations by generating 388 

response maps for our variable groups in a similar way to Kelley et al. (2019). In the potential 389 

maps, we set each variable in the group to their median and kept the others at their original 390 

values. The median, representing the middle value in a dataset, was chosen because it is less 391 

affected by extreme values compared to the mean. The maps were subtracted from the original 392 

simulations (control - potential response) to quantify the influence of the target group on the 393 

model's response. This approach enables the assessment of burned area response when the 394 

variable deviates from the median and assumes its original values. The agreement maps for the 395 

potential response are then the percentage of the modeled distribution that shows an increase 396 

in burning in each Biome. To compute the sensitivity response, we took the difference between 397 

a simulation where we subtracted 0.05 and added 0.05 fraction of the training range of the 398 

variable of interest. The goal was to understand how burned area responds to marginal 399 

variations in the variables. 400 

 401 

3 RESULTS 402 

 403 

We present the results in two sections. The first section focuses on the model's performance in 404 

simulating the observations, while the second section delves into the simulation’s response to 405 

the predictor variables. 406 

 407 

3.1 Model simulations and performance  408 

 409 

We performed simulations of burned area across each Brazilian biome and fire category, and 410 

the resulting maps are shown in Fig. 5. The three simulation runs (ALL, NAT, and NON) 411 

successfully captured uncertainties in all Biomes, with most observations falling within the 412 

10th to 90th percentiles of the model. However, the model exhibits variations in uncertainties 413 

based on the simulation category. For instance, in Amazonia, a biome characterized by a vast 414 

expanse of natural vegetation, uncertainties were smaller in NAT simulations, contrasting with 415 

larger uncertainties observed in NON-simulations, especially in areas where observed burned 416 
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areas are small or zero (Fig. 5). Similarly, the Pantanal displayed lower uncertainties in NAT 417 

simulations, with values reaching up to 10%, while NON simulations registered uncertainties 418 

up to 20% of burned area. The Atlantic Forest, a biome distinguished by non-natural vegetation, 419 

exhibited smaller uncertainties in NON simulations. These findings indicate that the 420 

segregation of fire categories (ALL/NAT/NON) substantially impacts the model's response. 421 

Conversely, the model struggles to accurately capture large burned areas (> 10%) in central 422 

regions of Brazil across all three simulations, mostly where the Cerrado biome is located. 423 

 424 

Figure 5: Maps of modeled and observed % burned area. First row: observed burned area, 425 

July-September 2002-2009 annual average for ALL (left), NAT (middle) and NON (right). 426 

Second and third row: as top row but simulated by the model 10th and 90th percentiles, 427 

respectively.  428 

 429 
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In Bayesian inference, the likelihood expresses the probability of observing a particular event    430 

given the model's parameters. Our results imply a strong agreement between the parameters of 431 

the model and the observations (Table 2), even during the months when the observations were 432 

less likely. The mean likelihood during these months was above 90% across all Biomes in all 433 

simulations, except for the Pantanal, where the likelihood was lower (78% for ALL and 87% 434 

for NON) but still satisfactory. The percentiles indicated that in the Pantanal, the likelihood of 435 

the observations for ALL varied between 59% to 91%. In contrast, other Biomes presented a 436 

minimum likelihood of 80%. During months of best performance, most biomes aligned with 437 

the observations, achieving its maximum likelihood (100%) on average. The Pantanal, 438 

however, presented the lowest values, with 97% for both ALL and NON simulations. 439 

 440 

Table 2. Likelihood (%) per biome of the observations given the model parameters over all 441 

cells and timesteps. 10% (left) indicates months/cells with worst performance, while 90% 442 

(right) indicates best performance. 443 

 444 

 445 

   446 

Figure 6 presents the likelihood per pixel. Areas without values indicate zones where  burned 447 

area is zero, making the likelihood calculations inapplicable. The spatial likelihood analysis 448 
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provides additional insights into the model's robustness across different biomes and fire 449 

categories. The results underscore the model's effective performance across the biomes. 450 

Notably, the likelihood remained very high for the Atlantic Forest, Caatinga, and Pampa 451 

biomes even in the months and locations where observations were less likely. A high likelihood 452 

is also observed for NAT in Amazonia, except for the south and east, which contain most of 453 

the non-natural vegetation. Lower performance is evident in the simulations for both ALL and 454 

NON in this Biome, indicating that stratifyingfire categories by vegetation type could be a good 455 

strategy to enhance model performance in Amazonia, or isolating fire categories where the 456 

model has higher predictive ability. Similarly, the Pantanal showed the best performance for 457 

NAT, but lower performance for ALL and NAT across the majority of the Biome. In contrast, 458 

Cerrado performed better than most biomes for NON during the months of worst performance. 459 

 460 

 461 

 462 

Figure 6: Spatial likelihood of the observations given the model parameters considering the 463 

months with worst performance (top row) and the months with best performance (bottom 464 

row). A satisfactory performance of the model is considered with values above 0.5.  465 

 466 
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 467 

Despite the high likelihood associated with the observations, the model simulations exhibit a 468 

certain degree of bias across the three categories. A mean bias near 0.5 indicates no bias, as the 469 

observations fall in the middle of the model's distribution. Amazonia and Cerrado showed mean 470 

biases of 0.28 and 0.29 for ALL respectively, indicating an overestimation by the simulations 471 

at lower burned areas. The Atlantic Forest presented a mean bias of 0.51, suggesting that, 472 

overall, the model is unbiased although some pixels may still be biased. Similarly, Pampa 473 

(0.42) and Caatinga (0.61) showed values near 0.5, indicating a lower degree of bias. In 474 

contrast, a mean bias of 0.17 in the Pantanal suggests an overestimation of burned area by the 475 

model, especially at lower levels. However, the model can distinguish between lower and high 476 

burned areas in Pantanal (Fig. 5), indicating its ability to identify periods and locations of more 477 

extreme burning, even if it does not exactly capture the correct magnitude.  478 

 479 

Generally, higher uncertainties are observed for NAT and NON simulations, but a notable 480 

improvement in bias is evident when compared to the ALL simulations. In the NAT 481 

simulations, the model achieved its most favorable outcomes in Pampa (0.53) and Amazonia 482 

(0.40), with the Pantanal also showing a noticeable improvement (0.34).  The biases of 0.74 in 483 

Caatinga and 0.72 in the Atlantic Forest indicate a trend toward underestimation in this fire 484 

category. In Cerrado, a bias value of 0.33 was observed for NAT, aligning with the pattern seen 485 

in the ALL simulations and suggesting a consistent overestimation, particularly for lower 486 

burned areas.  487 

 488 

In the NON simulations, Amazonia exhibited a bias of 0.38 but overestimated lower burned 489 

areas. Cerrado and Pantanal showed similar patterns to those in the NAT simulations, with 490 

respective mean biases of 0.36 and 0.31. The model tended to underestimate burned areas in 491 

the Caatinga (0.81), particularly at higher burned areas. While Atlantic Forest (0.58) and Pampa 492 

(0.59) showcased the most unbiased simulations for the NAT fire category, slight 493 

underestimation of burned areas were noted in some instances (Fig. 7). 494 

 495 

The spatial distribution of the mean bias, as depicted in Fig. 7, exhibits considerable variation. 496 

Pixels without values indicate zero burned area in the observations, where, by definition, the 497 

observation will always fall at the 0th percentile of the model posterior distribution. 498 

Consequently, the bias metric does not provide meaningful information for these pixels. The 499 

p-values reveal that in numerous areas, the bias is not statistically different from 0.5 (p-value 500 
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> 0.05; indicated by brown color), suggesting unbiased simulations in these regions. 501 

Specifically, lower fires in Amazonia tend to occur in areas of natural vegetation, where NAT 502 

simulations exhibit a non-significant bias. In these regions, ALL simulations tend to 503 

overestimate burned area. In southeastern Amazonia, fires were underestimated across all three 504 

fire categories, especially for NAT.  505 

 506 

In Caatinga, all three simulations exhibited similar performance, significantly underestimating 507 

fires, particularly in the northern part of the Biome. The Atlantic Forest displayed better results 508 

for both ALL and NON, with a substantial area exhibiting non-significant bias. The fragmented 509 

landscape of this Biome likely limits data availability for NAT, possibly explaining the lower 510 

performance in this fire category. In contrast, Cerrado demonstrated a consistent pattern across 511 

all three fire categories, predominantly overestimating fires, especially in the south and 512 

northeast. While some underestimation occurred in the central biome, it was mostly non-513 

significant. In Pantanal, the simulation consistently overestimated burned area across all three 514 

categories, with ALL simulations showing significant overestimation throughout the Biome. 515 

Finally, Pampa displayed a non-significant bias across  most of the region, except for the 516 

northwest, where the model underestimated burning in all three simulations.     517 

 518 

 519 
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 520 

Figure 7: Top row: Spatial mean bias of the modeled burned area to ALL (left), NAT 521 

(middle) and NON (right). Bottom row: Significance of the mean bias considering a 95% 522 

confidence level (p-value < 0 .05). Pixels with p-value > 0.05 (brown color) are not 523 

significantly different from 0.5 mean bias meaning that they are unbiased. 524 

 525 

3.2 Response of the modeled burned area to the explanatory variables  526 

 527 

We assessed the potential and Sensitivity responses of the variables (Fig. 8, 9 and 10). The 528 

potential response offers insights into changes in burned area when variables deviate from the 529 

median, thereby identifying areas where responses tend to drive or suppress burning. In 530 

contrast, the sensitivity response provides information on how marginal changes in variables 531 

affect burned area (KELLEY et al. 2019). Together, these analyses  highlight areas susceptible 532 

to more extreme burning (i.e., where the burned area is sensitive to variables that tend to cause 533 

higher potential burning).  534 

 535 

For ALL burned area (Fig. 8), variations of Group 1 (Maximum Temperature and Precipitation) 536 

from the median is very likely to lead to an increase in the burned area in 62.33% of Amazonia 537 

(with a likelihood of over 80%). This means that when these variables assume their actual 538 

values in this Biome, the burned area tends to be higher, with increases up to 1% in the western 539 

edge and 10% in the north, northeastern and southeastern of the biome. Conversely, these 540 

variations contributed to a reduced burned area in 33.57% of Amazonia, predominantly 541 

observed in the western and central areas, suggesting that Maximum Temperature and 542 

Precipitation tend to suppress burned area in these regions. In 4.08% of the biome, the influence 543 

of Group 1 variables on burned areas is not confidently predictable in terms of whether they 544 

will lead to an increase or decrease (with likelihood between 40% and 60%), and the model 545 

showed strong confidence only in the regions where these variables are major drivers and 546 

suppressors of burning. Our results indicate that the entire Amazon is highly sensitive to minor 547 

variations in Group 1 variables for ALL (Fig. 8). Nonetheless, the middle and western regions 548 

tended to be up to three times less sensitive than the rest of the biome.  549 

 550 

In the Atlantic Forest, approximately 63.33% of the biome will likely experience an increase 551 

in burned areas when Temperature and Precipitation assume their real vs median values, mostly 552 

limited to 1% extra burning. This small increase highlights that these drivers do not have a 553 

major influence on driving high levels of total burned area. Reduction of burned area is 554 
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observed in the western portion, encompassing 31.79% of the biome. Uncertainties linked to 555 

Group 1 variables were found in 4.87% of the Atlantic Forest. Moreover, this biome showed 556 

an overall lower sensitivity to climate.   557 

  558 

In Cerrado, Group 1 is likely to drive burned area up to 6% in 58.30% of the biome, primarily 559 

in the eastern part. Conversely, 37.16% of Cerrado is expected to observe a reduced burned 560 

area by up to 10%, showing quite a range in the influence in mean burned area from the variable 561 

group. The remaining 4.53% of the area remains uncertain. Cerrado exhibited high sensitivity 562 

to changes in Group 1, except for the central region of the biome, which showed comparatively 563 

lower sensitivity. In the Pantanal, the central and northern areas are likely to experience an 564 

increase in burned area by up to 1% due to variations in Group 1, accounting for 51.92% of 565 

their total area. Conversely, the borders of the Pantanal, particularly the south, exhibited a 566 

reduction in burned area (42.30% of the Pantanal). Approximately 5.76% of the Pantanal 567 

landscape remains uncertain regarding the direction of changes. The entire biome presented 568 

considerable sensitivity for small variations in Group 1. Pampa exhibited a high likelihood of 569 

increased burned area in 70.14% of the region, mainly limited to 1%. We found a high 570 

likelihood of reduction in 26.86% of Pampa, located in the northwestern, and in 2.98% of the 571 

biome it is unclear the direction of changes. Pampa’s west and southeastern edges showed to 572 

be more sensitive to Group 1. The southern and eastern portions of Caatinga are likely to face 573 

an increase in burned area by up to 4%, affecting 51.23% of the biome, attributable to the 574 

influence of Group 1. Conversely, 47.34% of Caatinga, particularly in the northern and western, 575 

is more likely that the burned area will diminish, while 1.41% is unclear. In general, the biome 576 

showed less sensitivity to Group 1, with slightly higher sensitivities observed in the central and 577 

northeast of the biome.  578 

 579 

For Group 2 variables (Edge Density and Road Density), 47.37% of Amazonia will likely 580 

experience an increase in burned area when these variables deviate from the median. This 581 

increase is predominantly limited to 1%, concentrated in the western, central, and northeast 582 

regions. Conversely, areas with higher edge and road densities show a reduced burned area of 583 

up to 11%, covering 51.82% of Amazonia. This is a 12% range in burned area, substantial for 584 

a fire-sensitive biome. Overall, the biome displays moderate sensitivity to minor variations in 585 

Group 2, with higher sensitivity observed along its borders. The response in the Atlantic Forest 586 

exhibited more uncertainty in the 10th and 90th percentiles. Still, the likelihood indicates that 587 

42.30% of the biome will likely experience increased burned areas of up to 2%, primarily 588 
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located in the north and eastern edges. Small reductions are found in 54.87% of the biome, 589 

limited to 0.2%. Regions where increases are more likely also demonstrate greater sensitivity 590 

to Group 2, showing the potential for these drivers to have a disproportionate influence on 591 

extreme levels of burning.  592 

 593 

The Cerrado biome exhibited high spatial variability in response to Group 2, with a nearly 594 

equal mix of pixels where an increase (47.28%) and decrease (44.56%) in burned area is more 595 

likely to occur, both limited to 2.5%. The northeast of the biome displayed higher sensitivity 596 

to Group 2. In Pantanal, the central and southern regions are more likely to experience a 597 

decreased burned area, encompassing 53.84% of the biome. However, an increase is found in 598 

42.30% of Pantanal, limited to 8%. The Pantanal demonstrated sensitivity to Group 2, 599 

especially in the north. In Pampa, 47.76% of the region exhibited increased burned areas, while 600 

reductions occur in 47% of it. Increases reached up to 4%, primarily in the western portion. 601 

These regions where an increase is likely also showed higher sensitivities. In Caatinga, a 602 

reduction in burned area is likely to occur in 50.17% of the biome, while an increase is expected 603 

in 38.86% of it. Approximately 10.95% of the biome remains uncertain about the direction of 604 

change. In areas where results do suggest a confidence change, increases are mainly located in 605 

the middle of the biome. 606 

 607 

In the context of Group 3 variables (Forest, Pasture, and Carbon in dead vegetation), 608 

approximately 53% of Amazonia will likely experience larger burned areas, primarily 609 

concentrated in the arc of deforestation (along the southern and eastern edges of the Amazon), 610 

reaching up to 10%. Conversely, reductions are observed in 42% of the biome, with 4.23% 611 

remaining uncertain. While displaying less sensitivity to minor changes than other groups, 612 

certain areas such as the cross borders with Cerrado and north exhibit higher sensitivity within 613 

the biome. In the Atlantic Forest, increased burned areas are observed in 41.53% of the region, 614 

while reductions are noted in 54.87%. Decreases in the biome are primarily observed in the 615 

central southern and eastern areas, with magnitudes reaching up to 0.7%. Overall, the 616 

sensitivity in this biome is lower although the spatial variation shows heightened sensitivity in 617 

the 90th percentile for some pixels across the biome. 618 

 619 

In the Cerrado biome, burning in the middle south and northeast edges is not likely driven by 620 

Group 3 variables, covering 54.83% of the biome. Conversely, the north, northeast, and part of 621 

the south (39.72% of Cerrado) may experience increased burned areas of up to 10%. Regions 622 
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with higher likelihood of increase also demonstrate greater sensitivity to small variations in 623 

Group 3. Pantanal shows approximately 30.77% of its area likely to experience up to a 10% 624 

increase in burned areas, mainly in the north and southeastern regions. Conversely, edges and 625 

the southern part are more prone to reductions, encompassing 55.76% of the biome, while 13% 626 

remain uncertain. Pantanal demonstrates high sensitivity overall to Group 3. In Pampas, 627 

52.23% of the region is more likely to see increased burned areas of up to 3.5%, while 628 

reductions are observed in 44.77% of the area. The western part and eastern edges of the biome 629 

show greater sensitivity to minor changes in Group 3. In Caatinga, approximately 53.35% of 630 

the biome is likely to experience reduced burned area while 38.16% is likely to see up to 3% 631 

increases. The central and northeast regions, where increases are expected, also exhibit higher 632 

sensitivity to minor shifts in Group 3. 633 

 634 

https://doi.org/10.5194/egusphere-2024-1775
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

 635 

Figure 8: Response maps to ALL displaying the potential 10h percentile (first row), 90th 636 

percentile (second row), likelihood (third row) and sensitivity responses 10th percentile 637 

(fourth row) and 90th percentile (fifth rows). Each column presents the results for one 638 

group of variables. 639 

 640 

Similar spatial patterns to ALL were observed for NAT when considering Group 1 across all 641 

biomes (Fig. 9). In the Amazon, Group 1 will likely increase burned area in 63.79% of the 642 

biome. Reductions are found in 29.92%, while 6.27% display an unclear response. This 643 
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indicates a 2% increase in areas with uncertain responses, particularly in the southeastern 644 

region of the Amazon. Sensitivity analysis reveals that the borders of the Amazon are more 645 

sensitive to Group 1, whereas areas with forest cover < 83% (Fig. 3) exhibit lower sensitivity. 646 

In the Atlantic Forest, Group 1 is likely to drive burned area changes in 67.95% of the biome. 647 

Conversely, 19.23% is likely unaffected by Group 1, with 12.82% remaining unclear, 648 

representing an 8% increase compared to ALL. The Sensitivity to Group 1 was similar to ALL, 649 

generally lower for this biome.  650 

 651 

In Cerrado, Group 1 contributes to increased burned area in 61.78% of the biome. However, in 652 

32.78% of the area, Group 1 is likely not a driving factor for the burned area, and in 4.53%, 653 

the response is unclear. The biome also exhibits sensitivity to minor variations in Group 1 for 654 

NAT, albeit slightly lower in some areas (Fig. 9) than ALL. In Pantanal, 80.76% of its area 655 

likely has Group 1 as drivers of burned area in NAT, representing an increase of almost 30% 656 

compared to ALL. Areas not influenced by this group decreased by 25% compared to ALL 657 

(15.38% of Pantanal), while 3.84% remains unclear. The sensitivity analysis closely resembled 658 

ALL, with the entire biome significantly responding to variations in Group 1. In Pampas, it is 659 

likely that variations from the median lead to increased burning in 70.14% of the biome. 660 

Sensitivity is similar to ALL, primarily in the west but generally lower. Caatinga follows a 661 

similar pattern to ALL, with Group 1 influencing burning in 48.76% of the biome. Uncertainty 662 

increased to 4.94% of the biome, and sensitivity is similar, affecting mainly the middle and 663 

northeast regions. 664 

 665 

For Group 2, Amazon presented a more uncertain response between the 10th and 90th 666 

percentiles. However, the likelihood showed a marked pattern very similar to ALL where 667 

47.37% of the biome has Group 2 as a driver of burning. Similar to Group 1, the sensitivity 668 

was lower in highly forested areas. For NAT, the Atlantic Forest showed large areas with an 669 

unclear response (Fig. 9), covering 41.79% of the biome. The areas where burning is likely to 670 

be driven by Group 2 encompasses 26.41%, a reduction of 15% when compared to ALL. The 671 

sensitivity was similar to ALL, with slightly higher values in some pixels. The Cerrado showed 672 

variation within the biome, with 45.61% of its area identified as potentially driven by Group 2 673 

in NAT. While the sensitivity was lower than in ALL, it remained significant within Cerrado. 674 

Pantanal exhibited Group 2 as a driver of burning in 46.15% of the biome, displaying a spatial 675 

pattern for the likelihood very similar to ALL. However, sensitivity was lower in the middle 676 

of Pantanal compared to the North and edges. Similarly, Pampa presented a response similar 677 
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for both potential and sensitivity as in ALL, with 47.76% of areas likely to experience increased 678 

burning driven by Group 2. In Caatinga, areas likely to experience increased burning accounted 679 

for 37.45% of the biome, and the regions with unclear responses were 6.72% higher than in 680 

ALL (17.67%). Sensitivity showed the same pattern as in ALL. 681 

 682 

Amazonia showed a 4% increase in areas with unclear responses for Group 3 to 8.10% 683 

compared to ALL. Regions susceptible to burning due to this group totaled 54.74% of the 684 

biome. Densely forested areas also exhibited lower sensitivity to minor shifts in Group 3. In 685 

Atlantic Forest, Group 3 is likely to be a driver of burned area in 41.02% of the biome, very 686 

similar to ALL (41.53%). Similarly, the sensitivity followed the spatial pattern of ALL with an 687 

overall lower sensitivity presenting slightly higher in some pixels. Areas prone to burning in 688 

the Cerrado due to Group 3 reduced by 10.84%, totaling 43.95% compared to ALL. The 689 

reduction was concentrated in the northeast, while in the southwest there was an increase in 690 

the likelihood of burning due to Group 3. The sensitivity reduced in the northeast, varying 691 

across the biome. Within the Pantanal, regions susceptible to burning due to Group 3 comprised 692 

32.69% of the area. Regions with an unclear response increased by 4.30%, encompassing 693 

17.30% of the region and concentrated in the eastern edges.  694 

 695 

In Pampas, 44.77% of the biome is likely to burn due to Group 3, while 17.30% of the biomes 696 

showed an unclear response. The sensitivity pattern for NAT followed ALL, concentrated in 697 

the western and eastern edges. The Caatinga accounted for 35.68% of areas prone to burning, 698 

with higher sensitivities observed in the middle and eastern regions of the biome.    699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 
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 707 

        Figure 9: Same as Fig. 9 but for NAT. 708 

 709 

Higher uncertainties were found in the potential response for NON, meaning that the range of 710 

possible outcomes was generally larger for this category (Fig. 10). However, the likelihood 711 

showed similar spatial variation, although unclear responses increased. Group 1 acts as a driver 712 

of burning in 62.99% of Amazonia, a similar number when compared to NAT and ALL. The 713 
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main difference for this category is the magnitude of increase, which is higher at the edges and 714 

in the middle of the biome. Likewise, the sensitivity was higher, especially in the 90th 715 

percentile. The potential and sensitivity response of the Atlantic Forest was quite similar for 716 

the three categories, with 64.61% likely to have Group 1 increasing burning in the biome. 717 

Within the Cerrado, a 13.15% and 9.67% increase in areas susceptible to burning is observed 718 

compared to ALL and NAT respectively (totaling 71.45%). Unclear responses were higher and 719 

reached 9.21% of the biome. Sensitivity was higher in the northeast of the biome. For Pantanal, 720 

NON comprised 69.23% of areas likely to burn due to Group 1. An increase in unclear 721 

responses of 7.7% and 9.62% compared to ALL and NAT respectively was found (totaling 722 

13.45% of the biome). The magnitude of increase was also higher for NON. Sensitivity levels 723 

were mostly high across the biome. Within Pampas, 79.10% of the biome was considered likely 724 

to burn due to Group 1. The sensitivity was larger at the edges of the biome. The potential and 725 

sensitivity responses of Caatinga followed a similar pattern between the categories, where 726 

47.70% of the biome is likely to be susceptible to burning due to Group 1.  727 

 728 

Similarly, the main difference for Group 2 in Amazonia was the increase, which reached up to 729 

10% in the North and middle of the biome. Most of the biome shows high sensitivity. Within 730 

the Atlantic Forest, there was a notable reduction of 30.51% in regions with unclear responses 731 

compared to the NAT, where the proportion was 11.28%. Regions likely to increase burned 732 

area due to fragmentation comprise 41.28% of the biome, an increase of 14.87% compared to 733 

NAT. Sensitivity showed a similar pattern for the three categories where regions likely to 734 

increase burning presented higher sensitivities. In Cerrado, approximately 41.54% of its area 735 

is likely susceptible to increased burning due to fragmentation, with 15.70% exhibiting unclear 736 

responses. Higher sensitivity was observed in the northeastern region of the biome. Pantanal 737 

showed a 40.38% likely increase and a significant sensitivity across the biome. Pampas patterns 738 

for potential and sensitivity responses were similar to ALL and NAT, with 49.25% of the biome 739 

likely to increase burning. However, the likelihood was comparatively lower (between 60% 740 

and 80%). For Caatinga, it is likely to increase burning in 36.39% of the biome, while the 741 

regions with unclear response reached 21.90%. Sensitivity displayed a similar pattern to ALL 742 

and NAT with higher sensitivities in the middle and northeast. 743 

 744 

Group 3 exhibited higher uncertainties in Amazonia between the 10th and 90th percentiles. 745 

The likelihood of increase encompasses 44.59% of the biome, while areas with unclear 746 

responses surpass ALL and NAT, comprising 10.21%. Sensitivity was also higher, especially 747 
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in the north of Amazonia.  The Atlantic Forest showed a similar pattern compared to ALL and 748 

NAT with 38.71% of its area likely to increase and generally lower sensitivity to this group. 749 

Cerrado exhibited a marked pattern where burning in the north is likely driven by Group 3, 750 

encompassing 40.78% of the biome. These regions also exhibited higher sensitivity to minor 751 

variations in Group 3. Unclear responses were identified in 11.48% of the biome. This Group 752 

exhibited the highest level of unclear response in the Pantanal, totaling 30.77%. Meanwhile, 753 

regions with a likelihood of increased burning decreased to 25%. The sensitivity was generally 754 

high across the biome. This group also showed to be highly uncertain in Pampas, with 55.22% 755 

of the biome presenting unclear responses. The areas likely to increase burning comprised 756 

23.88% of Pampa, a reduction of 28.35% and 20.89% compared to ALL and NAT, 757 

respectively. The sensitivity was similar in the three categories with slightly higher sensitivity 758 

in the middle for NON. The Caatinga region exhibited a 35.33% portion of its area with a 759 

heightened likelihood of increased burning attributed to Group 3, displaying a similar pattern 760 

across all three categories concerning potential and sensitivity response. 761 

 762 
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 763 

   Figure 10: Same as Fig.9 but for NON. 764 

 765 

 766 

 767 

 768 

 769 
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4 DISCUSSION 770 

 771 

4.1 FLAME's performance in context 772 

 773 

Our proposed model uniquely combines two previously distinct approaches employed in fire 774 

modeling: Bayesian inference and Maximum Entropy (KELLEY et al., 2021; FERREIRA et 775 

al., 2023). This combination allows for a more comprehensive understanding of fire dynamics 776 

as it models a probability distribution rather than singular values, a departure from conventional 777 

models (e.g. HANTSON et al., 2016; RABIN et al., 2017). Notably, our approach employs 778 

Maximum Entropy to capture the most uncertain outcomes that align with our priors, reflecting 779 

the stochastic nature of real-world fires. This concept contributes to a more nuanced and 780 

realistic representation of fire behavior. We conducted our analysis by categorizing the burned 781 

area into three categories: fires in both natural and non-natural vegetation (ALL), fires reaching 782 

natural vegetation (NAT), and fires reaching non-natural vegetation (NON). This classification 783 

yielded distinct results for each category with an overall improvement across the biomes for 784 

the NAT and NON. Moreover, this approach allows us to make more targeted conclusions. 785 

 786 

The results demonstrate the robust performance of our model in capturing observations while 787 

providing a range of possible outcomes represented by the 10th and 90th percentiles. It is 788 

noteworthy that the model was capable of reproducing the observations in Pampa, Atlantic 789 

Forest and Caatinga, as these are areas where other methods used in previous studies have not 790 

performed well (NOGUEIRA et al. 2017, OLIVEIRA et al., 2022). Despite some level of bias 791 

in the results, even during periods of suboptimal performance, the likelihood of the 792 

observations remained consistently high, with the majority exceeding 80%. The Pantanal 793 

biome presented an exception, displaying a likelihood of 59% for the combined category 794 

(ALL), with improvement for specific categories, reaching 86% for NAT and 78% for NON. 795 

This biome encompasses a mosaic of vegetation types characterized by seasonally flooded 796 

areas which plays an important role on the fire dynamics of the region (DAMASCENO-797 

JUNIOR et al.,2021). Fire in these areas were not included in this study due to our general 798 

approach, posing a limitation for simulation within this biome. However, our framework's 799 

adaptability means that future work could look at different explanatory variables, relationship 800 

variables and fire categorizations that could target performance in places like the Pantanal. 801 

 802 
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The MaxEnt species distribution model, which uses the same Maximum Entropy concept 803 

applied here, became quite popular in fire modeling studies (e.g., FONSECA et al., 2017; 804 

BANERJEE, 2021; FERREIRA et al., 2023). However, the MaxEnt software provides default 805 

settings, based on average values which are likely to change according to species, study region 806 

and environmental data (PHILLIPS and DUDIK, 2008). Additionally, these current settings 807 

are estimated to result in excessively complex models, potentially leading to overfitting 808 

(RADOSAVLJEVIC and ANDERSON, 2013). When employing MaxEnt, it is crucial to 809 

utilize independent evaluation data (PETERSON et al., 2011) such as that used in the present 810 

study. However, many studies assess performance by randomly partitioning occurrence data 811 

into calibration and evaluation datasets (CHEN et al., 2015; GÖLTAS et al., 2024). This 812 

approach limits the ability to obtain reliable estimates of model performance, generality, and 813 

transferability. Finally, the area under the receiver operating characteristic (ROC) curve, 814 

commonly known as AUC, is widely used as a standard method to evaluate the accuracy of 815 

MaxEnt-based models. Nonetheless, this measure does not provide information about the 816 

spatial distribution of the model’s performance (LOBO et al., 2007; JIMÉNEZ-VALVERDE, 817 

2011) which also potentially masks the spatial variability of the explanatory variables 818 

contribution to the model. 819 

   820 

Currently, global fire models incompletely reproduce the observed spatial patterns of burned 821 

area. We found that FLAME captures high burning events, albeit not with the exact magnitude 822 

observed. This ability presents an advantage compared to many global fire models. While 823 

global fire modeling provides useful information into broad-scale patterns and trends, they are 824 

mostly designed to estimate global mean burned area (HANTSON et al., 2016; BURTON and 825 

LAMPE et al., 2023). As a result, its applicability to regional scales such as the Brazilian 826 

biomes is inherently limited. Furthermore, these models are typically constructed based on 827 

assumptions regarding variable relationships, which may not hold true in all locations due to 828 

variations in environmental conditions, ecosystem dynamics, and human activities. However, 829 

Earth System Models integrate feedback mechanisms between burned areas and predictor 830 

variables, enabling the evaluation of inter-variable effects. FLAME is not designed to capture 831 

these feedbacks, underscoring the need for tailored methodologies to address specific research 832 

questions.  833 

 834 

4.2 Burning controls across the biomes  835 

 836 
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We combined our variables into three groups to assess their compound effect on the burned 837 

area. This is a similar approach to Kelley et al. (2019) who also used a Bayesian framework to 838 

assess drivers of global fire regimes. Nonetheless, Kelley et al. (2019)  considered only linear 839 

responses which is especially challenging when considering the varying responses across the 840 

globe. Our results highlighted  the spatial variability of each variable group's influence on 841 

burning within and between each biome. The potential response displayed similar spatial 842 

likelihood variation between the ALL, NAT and NON categories. However, differences were 843 

still observed, especially for the fire-dependent biomes (Cerrado and Pantanal). Overall, the 844 

uncertainties were larger for the NON category, particularly for Pampas and Pantanal.  845 

 846 

For example, Maximum Temperature and Precipitation (Group 1) are likely drivers of burning 847 

in large portions of each biome during the fire peak, as demonstrated by the potential and 848 

sensitivity results. Our results indicate that in highly forested areas in Amazonia, climate alone 849 

does not control burning, suggesting that forests can potentially mitigate the effects of climate 850 

in burned area. These regions showed up to three times less sensitivity to minor variations of 851 

climate for NAT while ALL and NON displayed high sensitivity in the whole biome. However, 852 

natural landscapes, especially forests, are highly susceptible during extreme weather conditions 853 

(DOS REIS et al., 2021; BARBOSA et al., 2022). This suggests that projected climate change 854 

could greatly increase the risk of Amazon forest fires (FLORES et al., 2024). Moreover, non-855 

natural vegetation in Amazonia is mainly concentrated in the arc of deforestation, reducing the 856 

samples for this category in other parts of the Amazon and potentially influencing the model’s 857 

response. An opposite dynamic was found in Cerrado and Pantanal. Regions with large areas 858 

of natural vegetation were more likely to be influenced by climate. These regions were more 859 

sensitive to minor variations in climate for NON in Cerrado while the entire Pantanal displayed 860 

similar sensitivity in the three categories. This aligns with prior research showing that fires in 861 

Cerrado are linked with meteorological conditions, particularly rainfall and temperature 862 

(NOGUEIRA et al., 2017; LIBONATI et al., 2022; LI et al., 2022). Similarly, in Pantanal, the 863 

2020 fire season revealed the connections between meteorological conditions and increased 864 

burning in the biome (BARBOSA et al., 2022; LIBONATI et al. 2022b) and again during the 865 

2023 El Niño. Barbosa et al., (2022), reported that 84% of the 2020 record of fires in Pantanal 866 

occurred in natural vegetation, with a 514% increase from average within forests. Despite being 867 

a combination with land use, the precipitation and maximum temperature anomalies were 868 

particularly high in 2020, contributing to the spread of fires into fire-sensitive vegetation.  869 

 870 
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Group 2 (Edge density and Road density) encompasses variables expected to have uncertain 871 

response across the biomes. Within Cerrado, 40.63% of its area will likely decrease burned 872 

area for NAT due to Group 2. A high density of forest edges has been associated with a higher 873 

incidence of fires in forest ecosystems (ARMENTERAs et al., 2013; SILVA-JUNIOR et al., 874 

2022). However, fragmentation can also act as a barrier to fire spread, potentially reducing fire 875 

occurrences (DRISCOLL et al., 2021). Rosan et al., (2022), revealed that in Cerrado, 876 

fragmentation correlates with a decrease in burned area fraction, while in  Amazonia, it is 877 

linked to an increase in burning. Nevertheless, we found a decrease in burning where edge 878 

densities are concentrated in the Amazon. This could indicate that the edges of the Amazon are 879 

reaching a level of fragmentation that fires are impeded from spreading, considering the 880 

reduction of aboveground biomass near forest edges (NUMATA et al., 2017). However, further 881 

research is needed to test this hypothesis.   882 

 883 

Depending on the landscape, road densities can also exhibit contrasting relationships with fires. 884 

While more fires are expected surrounding roads (ARMENTERAs et al., 2017), less fires are 885 

expected with increased density due to urbanization. The Atlantic Forest is a very fragmented 886 

biome with very high densities of natural edges and roads (Fig. 3). We found an uncertain 887 

response for NAT in 41.79% of the Atlantic Forest and only 26.41% likely to increase. Singh 888 

and Huang (2022) suggests that the fragmentation partly explains burned area variation in the 889 

Atlantic Forest where small patches are more vulnerable to fires. The majority of Caatinga is 890 

likely to decrease burning due to Group 2. However, the sensitivity was up to three times higher 891 

in the middle and northeast, which is more likely to increase. Antongiovanni et al. (2020) 892 

discussed that fires in Caatinga occur at all edge distances, although they are slightly more 893 

frequent at fragment edges. Nonetheless, the limited amount of studies across the different 894 

biomes addressing these relationships makes it harder to understand the related uncertainties.  895 

 896 

Group 3 is likely to influence burning in 54.74% of Amazonia for NAT, particularly in the arc 897 

of deforestation. This suggests that the combination of less forest, increased pasture and more 898 

fuel (Fig. 3) increases burning in natural lands in Amazonia, corroborating previous findings 899 

(SILVEIRA et al., 2020; SILVEIRA et al., 2022). The relationship in Pantanal and Pampa 900 

showed that these variables increase burning in 32.69% (NAT) and 25% in Pantanal and 901 

44.78% (NAT) and 23.88% (NON) for Pampas. The regions with unclear responses were the 902 

highest for NON, 30.77% of Pantanal and 55.22% of Pampa. These biomes are characterized 903 

by lower forest and pasture cover (Fig. 3) with fires and cattle ranching mainly linked to 904 
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grasslands (BARBOSA et al., 2022; FIDELIS et al., 2022; CHIARAVALLOTI et al., 2023). 905 

Thus, incorporating grassland cover in the model will likely reveal further relationships 906 

between burned area and LULC in these biomes. Caatinga showed increased sensitivity where 907 

Group 3 is likely to increase burning, matching the area of influence of Group 2. This area is 908 

associated with low forest cover and soil carbon and moderate pasture cover. Araújo et al. 909 

(2012), observed that due to the intermittent and scattered characteristics of cattle ranching in 910 

the Caatinga, fires tend to occur mainly in natural vegetation, characterized by large cover of 911 

savanna vegetation. Although our study provides a general overview of burning dynamics in 912 

the biomes, targeting variables is highly recommended in future studies, especially where fires 913 

are poorly understood as in Caatinga.  914 

4.3 FLAME potentialities  915 

Further developments are recommended to improve FLAME’s capabilities. Exploring and 916 

incorporating better-informed and additional priors may constrain the variables' response 917 

uncertainties. Utilizing alternative metrics to assess drivers, particularly those tailored to 918 

specific biomes, could offer a more nuanced understanding of the influencing factors. It could 919 

also help improve biases in biomes such as the Pantanal. Customizing variable selection based 920 

on biome characteristics would also contribute to a more biome-focused and contextually 921 

relevant analysis. Consideration of different fire categories show how the model could be used 922 

in further research. For instance, a more detailed stratification could involve categorizing fires 923 

into distinct groups such as forest, agricultural, and deforestation fires. While deforestation data 924 

was not incorporated in this study, efforts should be made to integrate this valuable information 925 

where possible. Furthermore, accounting for the varying proportions of natural and non-natural 926 

lands within each pixel, as demonstrated in this study, provides a more accurate landscape 927 

representation. This contributes to improved simulations where these areas are very small. In 928 

addition, finer grids and the subdivision of the biomes may uncover local processes, though 929 

eventually fire spread between fine-scales would need to be considered. This could be crucial 930 

for understanding localized patterns and improving the model's predictive capabilities. Perilous 931 

modeling attempts often parameterize on a large regional basis. However, our approach allows 932 

for optimization on much smaller areas while still quantifying the confidence in the analysis. 933 

FLAME is flexible enough to be used in various locations and, through targeted benchmarking, 934 

holds the potential to evaluate extreme fires, inter-annual and seasonal variability of fires, 935 

project future fires, and simulate other hazards. With appropriate adaptations and 936 
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enhancements, FLAME has the potential to evolve into a robust model capable of simulating 937 

terrestrial impacts effectively. 938 

 939 

5 FINAL CONSIDERATIONS 940 

 941 

The self-reinforcing cycle between fires and climate change makes it fundamental to improve 942 

fire simulations. An understanding of what drives fires is essential for devising mitigation and 943 

adaptation strategies. However, it can be particularly challenging due to the intricate interplay 944 

of various factors, especially in a diverse country like Brazil. We propose a novel approach for 945 

simulating burned area in the Brazilian biomes that keeps assumptions at a minimum whilst 946 

quantifying uncertainties. The model performs well in all biomes, and enables the assessment 947 

of fire categories and the grouped effect of variables. Furthermore, conventional modeling 948 

efforts often parameterize at a large scale. FLAME enables optimization in smaller areas while 949 

still providing a means to quantify confidence in the analysis.  950 

 951 

Climate is an important factor in burned area in all biomes. Despite several studies showing 952 

this relationship, climate-related uncertainties had not been extensively quantified, a gap this 953 

research fulfills. Groups 2 (road and edge densities) and 3 (forest, pasture and soil carbon) and 954 

the NON category showed the highest uncertainties among the responses. This highlights the 955 

challenge in modeling human-related factors. Pantanal, Cerrado, and Amazonia showed higher 956 

sensitivity to minor variations in the variables. It is important to note that sensitivity is more 957 

important where burning is already high, which is the case in these biomes (ALENCAR et al., 958 

2022). None of the groups drive huge changes in burned area in the Atlantic Forest, though as 959 

it is fire-sensitive, it still can have a large impact. Uncertain responses compound the 960 

complexity of burned area drivers as different variables interact uniquely within each biome. 961 

The same vegetation type may show contrasting responses to the same drivers in different 962 

locations. Therefore, no universal fire management policies will fit the whole country. In 963 

particular, Caatinga, Atlantic Forest and Pampa require further investigation. Emphasizing 964 

regional-scale analysis is crucial for decision-makers and fire management strategies, enabling 965 

more informed and effective prevention of fires.  966 

 967 

CODE AVAILABILITY 968 

 969 

FLAME 1.0 model code is available at https://doi.org/10.5281/zenodo.13367375 (Barbosa et 970 

al., 2024a). 971 
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