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Abstract 1 

In ocean or Earth system model applications, the riverine freshwater inflow is an important flux 2 
affecting salinity and marine stratification in coastal areas. However, in climate change studies, 3 
the river runoff based on climate model output often has large biases on local, regional or even 4 
basin-wide scales. If these biases are too large, the ocean model forced by the runoff will drift 5 
into a different climate state compared to the observed state, which is particularly relevant for 6 
semi-enclosed seas such as the Baltic Sea. In order to meet the requirements for low biases in 7 
river runoff, we have developed a three-part bias correction that includes different correction 8 
factors for low, medium and high percentile ranges of river runoff over Europe. Here, we 9 
present an experimental setup using the Hydrological Discharge (HD) model and its high-10 
resolution (1/12°) grid. First, bias correction factors are derived at the locations of the 11 
downstream stations with available daily discharge observations for many European rivers. 12 
These factors are then transferred to the respective river mouths and mapped to neighbouring 13 
grid boxes belonging to ungauged catchments. The results show that the bias correction 14 
generally leads to an improved representation of river runoff. Especially over Northern Europe, 15 
where many rivers are regulated, the three-part bias correction provides an advantage compared 16 
to a bias correction that only corrects the mean bias of the river runoff. Evaluating two NEMO 17 
ocean model simulations in the German Bight indicated that the use of the bias corrected 18 
discharges as forcing leads to an improved simulation of sea surface salinity in coastal areas. 19 
Although in the present study, the bias correction is tailored to the high-resolution HD model 20 
grid over Europe, the methodology is suitable for any high-resolution model region with a 21 
sufficiently high coverage of river runoff observations. It is also noted that the methodology is 22 
applicable to river runoff based on climate hindcasts as well as on historical climate simulations 23 
where the sequence of weather events does not match the actual observed history. Therefore, it 24 
may also be applied in climate change simulations. 25 

Keywords: Bias correction, river runoff, discharge, high resolution, Europe 26 

 27 

1 Introduction 28 

River runoff (or discharge/streamflow) is an important component of the global hydrological 29 
cycle, accounting for about one-third of precipitation over land areas. It closes the water cycle 30 
between land and ocean and influences various ocean properties, in particular the salinity of 31 
coastal and semi-enclosed seas (e.g. Väli et al., 2013), the ocean stratification in shelf areas 32 
(e.g. Hordoir and Meier, 2010) such as the German Bight (Becker et al., 1992), and the 33 
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thermohaline circulation in different regions (e.g. Hordoir et al., 2008; Lehmann and 34 
Hinrichsen, 2000; Marzeion et al., 2007). In addition, river runoff and associated nutrient loads 35 
are important factors influencing marine ecosystem functioning (Daewel and Schrum, 2017).  36 

Consequently, river runoff needs to be adequately represented in studies of the impacts of 37 
climate change on the marine environment or in coupled Earth system studies. In such studies, 38 
the atmospheric data used to force the respective ocean model are usually taken from climate 39 
models, reanalysis products or hydrological models. Here, it is desirable that the river runoff is 40 
consistent with the atmospheric forcing. In previous modelling studies, runoff was often taken 41 
from climatology or discharge observations, especially when hindcasts were used. However, 42 
this is not a recommended approach for climate change studies where consistently simulated 43 
river runoff should be used. Runoff from the driving climate, land surface or hydrological model 44 
will contain biases, e.g., due to biases in precipitation and/or uncertainties in the land surface 45 
representation of the model. Many simulations of historical daily river runoff show common 46 
biases in the tails of their distributions, with high discharges underestimated and low discharges 47 
overestimated (Farmer et al., 2018, and references therein). If the basin-wide biases are too 48 
large, a bias correction of the simulated discharge would be necessary to avoid the ocean model 49 
drifting into a different climate state compared to the observed state. This is particularly relevant 50 
for semi-enclosed seas such as the Baltic Sea. For example, for Baltic Sea ocean models, the 51 
mean long-term bias of river runoff must be less than 7% (Hagemann and Stacke, 2022). 52 

The bias correction of river runoff is an approach that has been used particularly for short-53 
term hydrological forecasts and ensemble predictions of up to six months. Here, Kim et al. 54 
(2021) provide examples of related studies. Recently, bias correction of river runoff has also 55 
been applied in the context of climate change. Quantile mapping based approaches are often 56 
used for such bias correction, as this usually leads to a large improvement in the representation 57 
of discharge of the considered river. For example, Budhathoki et al. (2022) used quantile 58 
mapping to correct discharge bias in the Chao Phraya River basin (Thailand), and Daraio (2020) 59 
used it for two basins in New Jersey (USA). However, Madadgar et al. (2014) noted that 60 
quantile mapping was not always successful in improving the initial forecast trajectory. In their 61 
application for the Sprague River (southern Oregon, USA), the skill of the forecast actually 62 
deteriorated when the quantile mapping technique was used. Similarly, Malek et al. (2022) used 63 
a quantile mapping based bias correction of discharge and showed that ex-post corrections of 64 
simulated discharge do not necessarily reduce biases in the simulation of key processes and in 65 
some cases can severely degrade system simulations. 66 

Consequently, the aim of the present study was to develop a bias correction method sufficient 67 
to meet the requirements of ocean models in large-scale climate change studies. Note that we 68 
did not aim for the most accurate reproduction of observed discharge characteristics, as required 69 
for short-term hydrological predictions and flood forecasts used by water resource decision 70 
makers (e.g. Shi et al., 2008). In order to maintain a high degree of consistency of simulated 71 
runoff with the meteorological patterns in the driving (on- or offline) climate model (or data), 72 
a bias correction with as little modification of the daily runoff curves as possible is desired. 73 
Thus, our target is a simple bias correction that corrects the mean bias and the tail biases of the 74 
discharge distribution in climate change applications of ocean or coupled system models. The 75 
bias correction factors should be transferable from downstream stations to river mouths as well 76 
as to neighbouring ungauged catchments. Furthermore, it should be applicable to climate model 77 
or Earth system model data that lack the observed sequence of actual discharge events. 78 
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The manuscript is organised as follows. Section 2 describes how the simulated discharges 79 
were generated and the newly developed bias correction methodology, as well as the data, 80 
models and metrics used in this study. Sections 3 and 4 evaluate the simulated and bias corrected 81 
discharges and present the effects of the bias correction for station locations and sea basin 82 
inflows, respectively. Finally, Section 5 concludes with a summary and conclusions. 83 

2 Data and Methods 84 

To generate the freshwater inflow from rivers to the ocean, we used an experimental setup 85 
analogous to Hagemann and Stacke (2022). Here we used two atmospheric forcing datasets 86 
(Sect. 2.1) and the same model chain of two large-scale hydrological models. The global 87 
hydrological model HydroPy (Sect. 2.2) was used to generate the input to the Hydrological 88 
Discharge (HD) model (Sect. 2.3) at the resolution of the atmospheric forcing data (0.5°). These 89 
input data of surface and sub-surface runoff were then interpolated onto the HD model grid and 90 
the HD model was used to simulate daily discharges from land to sea. Subsequently, we bias 91 
corrected these time series as described in Section 2.4 to generate bias corrected discharges at 92 
coastal ocean boxes of the European HD model domain from 1901-2019. Note that we 93 
combined the simulations based on two different atmospheric forcing datasets to cover the 94 
whole 20th century and to include the more recent years in the bias corrected discharge time 95 
series. Such an approach was also used in the second phase (ISIMIP, 2023) of the Inter-Sectoral 96 
Impact Model Inter-Comparison Project (ISIMIP; Warszawski et al., 2014). Figure 1 97 
summarises the experimental setup. Section 2.5 refers to the observational data that are used in 98 
the evaluation of the model results. Finally, the evaluation metrics used in the analysis of the 99 
results are presented in Sect. 2.7.  100 

 101 

 102 

Figure 1. Overview on the main steps of generating bias corrected river discharge at HD 103 
river mouths. 104 

 105 

https://doi.org/10.5194/egusphere-2024-1774
Preprint. Discussion started: 12 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

4 

2.1 Atmospheric forcing 106 

We used two atmospheric datasets specifically generated for forcing global hydrological 107 
models.  108 

The Global Soil Wetness Project Phase 3 (GSWP3; Dirmeyer et al., 2006; Kim, 2017) 109 
dataset is available at 0.5° resolution from 1901-2014. To generate the GSWP3 dataset, the 20th 110 
Century Reanalysis (20CR; Compo et al., 2011) was first dynamically downscaled onto the 111 
T248 (~0.5°) grid using a spectral nudging technique (Yoshimura and Kanamitsu, 2008) in a 112 
Global Spectral Model (GSM). Observation-based bias correction procedures were then applied 113 
to the downscaled data to obtain daily time series.  114 

To generate the WFDE5 dataset (Cucchi et al., 2020), the WATCH Forcing Data (WFD) 115 
methodology (Weedon et al., 2011) was applied to surface meteorological variables from the 116 
ERA5 reanalysis (Hersbach et al., 2020) to obtain bias corrected time series. ERA5 is the fifth 117 
generation of atmospheric reanalysis produced by the European Centre for Medium-Range 118 
Weather Forecasts (ECMWF). WFDE5 is provided at 0.5 spatial resolution from 1979-2019. 119 

2.2 HydroPy setup 120 

HydroPy (Stacke and Hagemann, 2021) was driven by daily forcing data from 1901-2019. 121 
Daily input fields of surface and subsurface runoff were generated at a resolution of 0.5°. 122 
Analogous to the ERA5 forced simulation in Hagemann and Stacke (2022), precipitation, 2m 123 
temperature, downwelling shortwave and longwave radiation, 2m specific humidity, surface 124 
pressure and 10m wind are used as forcing from the respective forcing dataset. We performed 125 
a spin-up simulation over 50 iterations of the year 1901 with the GSWP3 forcing (cf. Stacke 126 
and Hagemann, 2021) to initialize the storages in the HydroPy model and to avoid any drift 127 
during the actual simulation period. We then forced HydroPy with the GSWP3 data from 1901-128 
1978 and continued with the WFDE5 data from 1979-2019. We also conducted a GSWP3 129 
forced simulation from 1979-2014 in order to derive bias correction parameters for the earlier 130 
period. For our analysis, we focus on the years from 1950 onwards so that we have an additional 131 
transient spin-up of 49 years. 132 

2.3 HD model setup 133 

To simulate discharge, the HD model (Hagemann et al., 2020) used the daily input fields of 134 
surface and subsurface runoff that were generated by HydroPy from the GSWP3 and WFDE5 135 
data (see Sect. 2.2). As the time step of these runoff data is one day, the time step of the HD 136 
model was also set to one day. However, an internal time step of 0.5 hours is used for the flow 137 
within the river, as the minimum travel time through a grid box is limited by the chosen time 138 
step. The HD model v5.2.0 (Hagemann et al., 2023a) was applied over the European domain, 139 
which covers the land areas between -11°W to 69°E and 27°N to 72°N. The domain, along with 140 
a number of rivers specifically noted in this study, is shown in Figure 2. In the following, we 141 
refer to the WFDE5-based discharges as HD5-WFDE5 and to the GSWP3-based discharges as 142 
HD5-GSWP3. 143 
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 144 

Figure 2. European HD model domain and catchment areas for selected rivers 145 

2.4 Bias correction of river runoff 146 

We have developed a three-part bias correction method for river runoff with different correction 147 
factors for low, medium and high percentiles. These are first calculated at the station locations 148 
and then applied to the respective river mouths. Finally, an interpolation is performed to 149 
neighbouring coastal mouth points for which no downstream observations are available in the 150 
respective catchment. This procedure is summarised in Figure 3. The three percentile ranges 151 
for daily discharge qi are classified by 152 

 Low (L): 𝑞 ≤ 𝑄  153 
 Medium (M): 𝑄 < 𝑞 < 𝑄  154 
 High (H): 𝑞 ≥ 𝑄  155 

Here, Qp denotes the pth percentile of the daily discharge and p was set to 20. The percentiles 156 
Qp and Q100-p were determined separately for the observed and the simulated discharges at the 157 
downstream station locations and then the mean discharges 𝑞  were calculated for the three 158 
percentile ranges 𝑅 ∈  {𝐿, 𝑀, 𝐻}. Note that for these calculations only those days were 159 
considered for which an observed discharge was available. Then, the mean bias bR (in %) was 160 
calculated for each percentile range and a correction factor fR to remove the bias was derived as 161 

𝑓 =
100

𝑏 + 100
 162 

 163 
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 164 

Figure 3. Steps to derive bias corrected discharge at river mouths from simulated 165 
discharges. 166 

For the evaluation of the bias correction in Sect. 3, these correction factors were applied to 167 
the simulated discharges at the station locations. As the correction factors are independent of 168 
the absolute amount of discharge, they could be applied to the respective river mouths. For each 169 
river mouth with more than one inflow (j > 1) for which a correction factor fR,j is determined, a 170 
combined correction factor is obtained by calculating an average weighted by the respective 171 
mean inflows Qj.  172 

𝑓 =  
∑ 𝑓 , ∗ 𝑄

∑ 𝑄
 173 

From these river mouths, an interpolation is performed to neighbouring coastal mouth points 174 
for which no downstream observations are available in the respective catchment. This 175 
interpolation was motivated by the fact that the general pattern of bias of neighbouring rivers 176 
is often similar (cf. Sect. 3.1). The interpolation is performed by inverse distance weighting 177 
from the four closest (or fewer) river mouths within a search radius of 200 km. If no river mouth 178 
with a correction factor was found within the search radius, the correction factor was set to one 179 
(i.e. no correction). 180 

Note that the bias correction can lead to spurious daily jumps in discharge when the 181 
percentile boundary is crossed and the bias correction factors differ between the percentile 182 
ranges. In order to reduce this effect, a smoothing radius of s = 0.05 was introduced around 183 
the percentile boundaries, which was applied at both station locations and river mouths. 184 
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For (1 − ∆𝑠) ∗ 𝑞 < 𝑞 < (1 + ∆𝑠) ∗ 𝑞 :  185 

𝑞 = 𝑞 ∗ (𝑓 + (𝑓 − 𝑓 ) ∗
(𝑞 − (1 −  ∆𝑠) ∗ 𝑞 )

2 ∗  ∆𝑠 ∗ 𝑞
 186 

For (1 − ∆𝑠) ∗ 𝑞 < 𝑞 < (1 + ∆𝑠) ∗ 𝑞 :  187 

𝑞 = 𝑞 ∗ (𝑓 + (𝑓 − 𝑓 ) ∗
(𝑞 − (1 − ∆𝑠) ∗ 𝑞 )

2 ∗  ∆𝑠 ∗ 𝑞
 188 

The bias correction procedure corrects the days that fall into the different percentile ranges. 189 
However, this does not necessarily mean that it also corrects the whole distribution into the 190 
three percentile ranges. Particularly, if the biases in these ranges are quite different, the days 191 
may change their class and order within the distribution. 192 

In order to apply the three-part bias correction to the simulated discharge time series from 193 
1901-2019, two sets of bias correction factors were derived. The first set uses HD5-WFDE5 194 
and discharge station observations for the period 1979-2014. This set was used to bias correct 195 
the simulated discharge at HD river mouths from 1979-2019. The second set uses a further 196 
discharge simulation where we continued HD5-GSWP3 utilizing the GSWP3 forcing up to 197 
2014. Again, the set of bias correction factors was derived for the period 1979-2014 using 198 
discharge station observations. This set was then used to bias correct the simulated discharge at 199 
the HD river mouths from 1901-1978. 200 

2.5 Observed discharge data 201 

We used available daily discharge data from downstream gauges for many rivers across Europe 202 
with a catchment area of about 1000 km² or more. These station data were obtained from Global 203 
Runoff Data Centre (GRDC) and various agencies and institutions listed in table 2 of Hagemann 204 
and Stacke (2022). In addition, French discharge data were accessed from the E.U. Copernicus 205 
Marine Service Information. In order to allow an assessment of the discharge at the river 206 
mouths, we considered basin-wide estimates from three different sources.  207 

For the Baltic Marine Environment Protection Commission – also known as the Helsinki 208 
Commission (HELCOM), Svendsen and Gustafsson (2022) provided annual waterborne 209 
inflows into the seven main sub-basins of the Baltic Sea (Figure 4 – upper panel) from 1995 to 210 
2020. Waterborne inflows comprise the sum of river runoff and direct inflows, i.e. flows from 211 
point sources discharging directly into the Baltic Sea. These point sources are not included in 212 
our experimental setup or in the bias correction. However, their contribution to the total 213 
waterborne inflow to the Baltic Sea is only about 1% (HELCOM, 1998). 214 

Under the umbrella of the OSPAR Convention (Convention for the Protection of the Marine 215 
Environment of the North-East Atlantic), the IGC-EMO (Intersessional Correspondence Group 216 
for Eutrophication Modelling) database (Lenhart et al., 2010) of daily riverine freshwater 217 
inflows and nutrient loads was compiled by Van Leeuwen and Lenhart (2021), covering the 218 
major rivers discharging into the Baltic Sea, the North Sea and the Northeast Atlantic. An 219 
updated database covering a total of 370 rivers was mapped onto the flow grid of the European 220 
1/12° domain of the HD model by Van Leeuwen and Hagemann (2023). The associated 221 
catchment areas of these rivers, which flow into a particular specific sea basin, do not cover the 222 
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entire catchment area of the respective basin (see Table 1) so that the total inflow of the sea 223 
basin is underrepresented by the IGC-EMO data. To generate basin-wide estimates, we have 224 
up-scaled these values by dividing the integrated IGC-EMO river discharges in a basin by the 225 
fractional coverage of the entire basin catchment on the HD grid. Basin estimates for which the 226 
fractional coverage is less than 75% are considered to be highly uncertain and are therefore 227 
provided for completeness only, but are not included in the assessment of simulated inflows. 228 

 229 

 230 

Figure 4. Selected HELCOM (upper panel) and OSPAR (lower panel) basins for which 231 
inflows are considered. For OSPAR, the Spanish Atlantic basin is limited to the coast 232 
of Northern Spain. 233 

 234 
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Table 1. Sea basin catchment areas on the HD model grid and the fractional catchment 235 
coverage of the associated IGC-EMO rivers. 236 

 HD Area [km²]  

Sea basin 
IGC-
EMO Total Coverage 

Baltic Sea 1513967 1671823 90.6% 

Bothnian Bay 238898 258420 92.4% 

Bothnian Sea 199908 219375 91.1% 

Gulf of Finland 379628 412412 92.1% 

Gulf of Riga 124386 134025 92.8% 

Baltic Proper 494929 551295 89.8% 

Danish Straits 6731 19417 34.7% 

Kattegat 69487 76876 90.4% 

Norwegian Barents Sea 0 81004 0.0% 

Norwegian Sea 0 58408 0.0% 

Skagerrak 89060 101787 87.5% 

North Sea 514334 599755 85.8% 

German Bight 201233 208807 96.4% 

Norwegian North Sea 4590 31327 14.7% 

English Channel 94327 122235 77.2% 

Celtic Sea 41122 44845 91.7% 

Irish Sea 29748 35584 83.6% 

French Atlantic 207657 257981 80.5% 

Northern Spanish Atlantic 17692 46574 38.0% 

 237 

In addition, we used estimates of long-term mean sub-basin-wide inflows to the North Sea 238 
and Northeast Atlantic, published directly by OSPAR (Farkas and Skarbøvik, 2021). Figure 4 239 
(lower panel) shows the selected OSPAR basins for which the inflows are considered. It should 240 
be noted that the sea basin inflows provided by the different OSPAR countries are not 241 
consistent. Some countries include discharge estimates for unmonitored areas, while others do 242 
not (Table 2). In addition, the sea basin catchment coverage of the monitored areas varies 243 
between the countries. Note also that we have excluded the Spanish Atlantic from our 244 
comparisons for the following reason. Here, we limited the Spanish Atlantic basin to the coast 245 
of northern Spain (see Figure 4 – lower panel) to allow a comparison with the IGC-EMO data 246 
as the IGC-EMO data only cover rivers in this region, hereafter referred to as NSpA. These 247 
rivers cover about 38% of the total NSpA area on the HD model grid (Table 1), while the 248 
OSPAR data for NSpA cover about 50% (23201 km²; Farkas and Skarbøvik, 2021). However, 249 
the associated IGC-EMO discharge from 1961-1990 (629 m³/s) is 75 % larger than the OSPAR 250 
long-term mean average (359 m³/s). Therefore, both inflow values are unlikely to be 251 
representative for the NSpA region and this region is not considered in the following.    252 

 253 

 254 
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Table 2. Country catchment coverage of OSPAR data and inclusion of estimates for 255 
unmonitored areas (Borgvang et al., 2008). NI means that no information on the 256 
coverage was provided.  257 

Country Coverage Unmonitored 

Belgium > 90% No 

Denmark NI Yes³ 

France 84% Yes 

Germany >90% No1 

Ireland NI Yes 

Netherlands >90% No 

Norway ca. 50% Yes 

Portugal NI No 

Spain NI No 

Sweden 88.7% Yes 

United Kingdom ca. 80%² No 
1 Only for Eider river 258 
2 10% in direct discharge 259 
3 e.g. Farkas and Skarbøvik (2021) 260 

2.6 Ocean model experiments 261 

To assess the effect of using bias corrected river discharge on simulated salinity in the German 262 
Bight, we used version 3.6 of the Nucleus for European Modelling of the Ocean (NEMO; 263 
Madec et al., 2017) and adopted a domain setup used by Ho-Hagemann et al. (2020). This 264 
domain covers the region of the north-west European shelf, the North Sea and the Baltic Sea 265 
between 19.89 E to 30.16 E and 40.07 N to 65.93 N with a resolution of two nautical miles (ca 266 
3.6 km). We used the atmospheric forcing from ERA5 and the ocean boundary forcing from 267 
the ECMWF Ocean Reanalysis System 5 (ORAS5; Zuo et al., 2019) to conduct two simulations 268 
from 2010 to 2018. In these two simulations, the daily riverine inflow into the ocean was taken 269 
from the uncorrected and bias corrected discharges of HD5-WFDE5, which were converted to 270 
the NEMO grid using a procedure of Nguyen et al. (2024). For each HD model river mouth 271 
box, we associated the nearest coastal ocean box on the NEMO grid if such a box was found 272 
within a search radius of 200 km. Such a large radius is necessary because the NEMO coastline 273 
is very smooth, so many estuaries and bays in the HD model grid are not resolved by NEMO. 274 
If no ocean box was found, the corresponding HD model box was not linked. Consequently, 275 
the simulated discharge data at the river mouths were placed as freshwater inflow into the 276 
corresponding NEMO grid boxes. 277 

2.7 Evaluation metrics 278 

The evaluation of the simulated discharge was performed for the grid boxes corresponding to 279 
the discharge station locations within the river network. For the evaluation at these station 280 
locations, we used the mean bias and the Kling-Gupta efficiency (KGE; Gupta et al., 2009; 281 
Kling et al., 2012). Both metrics were calculated with simulated and observed daily discharge 282 
time series for the period considered, using only those days for which observed data are 283 
available. The KGE is a quality metric combining bias, correlation and coefficient of variation. 284 
If a simulated discharge time series has a KGE > -0.41, then it is a better representation of the 285 
observations than the use of the observed long-term mean discharge (Knoben et al., 2019). Note 286 
that many ocean model applications still use the latter method. 287 
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3 Evaluation of the bias correction 288 

Below, various metrics have been calculated at the station locations and at the river mouths. 289 
However, these measures have been assigned to the respective catchment areas for the purpose 290 
of graphical presentation. 291 

3.1 Evaluation of simulated discharge 292 

The distribution of bias and KGE for HD5-GSWP3 and HD5-WFDE5 during 1979-2014 293 
(Figure 5) is quite similar to the pattern shown by Hagemann and Stacke (2022) for the ERA5-294 
based discharge. For both simulations, the general discharge behaviour is well captured (KGE 295 
> 0.4) for many European rivers, especially in Northern Iberia, Western and Central Europe, 296 
and over Northern Russia (Figure 5, lower row). As expected (cf. Hagemann et al., 2020), larger 297 
deviations of the simulated from observed discharges occur for rivers that are heavily 298 
influenced by human activities such as water abstraction, e.g. for irrigation, and regulation, e.g. 299 
by dams. This is the case for many Scandinavian and Turkish rivers as well as the Volga and 300 
Don.  301 

 302 

 303 
 304 

 305 

 306 
 307 

Figure 5. Mean discharge bias [%] (upper row) and Kling Gupta efficiencies (lower row) 308 
for HD5-GSWP3 (left) and HD5-WFDE5 (right) during 1979-2014.  309 

In general, the HD5-WFDE5 discharges are slightly drier than the HD5-GSWP3 discharges, 310 
as indicated by larger dry biases in Northern Europe and smaller wet biases in Central Europe. 311 
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Despite the differences in bias distribution, the KGEs of HD5-WFDE5 are similar to or slightly 312 
better than those of HD5-GSWP3. Compared to the ERA5-based discharge of Hagemann and 313 
Stacke (2022), HD5-WFDE5 tends to have smaller discharge biases and better KGEs. This is 314 
an expected behaviour caused by the application of a bias correction methodology to the ERA5 315 
data in the generation of the WFDE5 data (cf. Sect. 2.1). An exception to this general 316 
improvement occurs over Northern Europe, where the dry bias of HD5-WFDE5 tends to be 317 
slightly larger and the KGEs lower. Note that Hagemann and Stacke (2022) attributed the dry 318 
bias over Northern Europe to an overestimation of the evapotranspiration simulated by 319 
HydroPy. 320 

3.2 Added value of the three-part bias correction 321 

In this section, we consider the effect of the bias correction at the station locations and 322 
investigate whether the three-part bias correction adds value compared to using only the mean 323 
bias correction. For this purpose, we use HD5-WFDE5 and the period 1979-2014. 324 

Table 3. Mean bias and KGE of simulated (HD5-WFDE5) and bias corrected discharge 325 
for selected rivers during 1979-2014. 326 

 HD5-WFDE5 Mean Bias corr. 3-part Bias corr. 
River Bias KGE Bias KGE Bias KGE 
Dalaelven -32.02 % -0.32 0 % -0.28 0.01 % 0.48 
Elbe 36.44 % 0.46 0 % 0.60 -0.06 % 0.85 
Indalsaelven -19.32 % -0.79 0 % -0.78 -0.02 % 0.38 
Odra 41.30 % 0.14 0 % 0.25 0.01 % 0.75 
Rhine 14.60 % 0.74 0 % 0.78 -0.02 % 0.85 
Weser 33.15 % 0.55 0 % 0.70 -0.01 % 0.90 

 327 

 328 

 329 

 330 

Figure 6. Kling Gupta efficiencies for bias corrected HD5-WFDE5 discharges using the 331 
mean bias correction (left) and the three-part bias correction (right) during 1979-2014. 332 

Both bias correction methods reduce the mean discharge bias to zero or close to zero in the 333 
case of the three-part bias correction due to the smoothing around the percentile range 334 
thresholds (see Table 3 for selected rivers). When the mean bias correction is applied, the KGEs 335 
(Figure 6 – left panel) are noticeably improved over Western and Central Europe. However, 336 
with a few exceptions, the KGE pattern over Northern Europe and other areas remains largely 337 
unchanged. This indicates that a correction of the long-term bias in the annual mean discharge 338 
over these areas is not sufficient. Only with the three-part bias correction does the KGE (Figure 339 
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6 – right panel, Table 3 for selected rivers) improve considerably over these areas, with the 340 
largest improvements occurring over Scandinavia. The three-part bias correction also leads to 341 
some further improvements over Western and Central Europe, where the bias corrected 342 
discharge with the mean bias correction already shows relatively high KGE values, e.g. for the 343 
rivers Elbe, Rhine and Weser.  344 

To visualise the effect of the three-part bias correction on the simulated daily discharges, we 345 
consider the corresponding discharge curves for the period 2000-2009 for selected large rivers. 346 
The respective biases and KGE are shown in Table 3 for the period 1979-2014. For the rivers, 347 
Elbe, Weser and Oder, the peak discharges are generally overestimated, while the low flows 348 
are close to the observed values (Figure 7). The correction of the high percentiles leads to a 349 
considerable improvement in the representation of the peak discharges, while the change in the 350 
low flows is rather small. The discharge of the Rhine (Figure 7) is well represented by HD5-351 
WFDE5. However, the small downward correction of the peak discharges and the slight 352 
increase in the low flows still lead to an improved discharge curve, which is also indicated by 353 
the increased KGE (Table 3). 354 

As mentioned above, the greatest improvements from the three-part bias correction 355 
compared to the application of the mean bias correction occur over Scandinavia. Here many 356 
rivers are highly regulated. For this reason, the discharge curves of the Daleaelven and 357 
Indalsaelven rivers are examined in more detail in Figure 8. The observed discharges clearly 358 
show the effect of the human regulation, where regulation leads to the elimination of peak 359 
discharges, while maintaining certain flows during low flow periods. Figure 8 shows that, on 360 
the one hand, peak discharges are often suppressed or reduced, especially during the spring, 361 
and that, on the other hand, low-flow periods are either almost absent (especially for the 362 
Indalsaelven) or show a rather noisy, unnatural daily variability. Here, the bias correction 363 
partially mimics these regulation effects by reducing the peak discharges and increasing the low 364 
flows.  365 
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 366 

 367 

 368 

 369 

Figure 7. Observed and simulated daily discharges for the rivers Elbe (1st panel), Rhine 370 
(2nd panel), Weser (3rd panel) and Odra (4th panel) during 2000-2009.  371 

 372 
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 373 

 374 

Figure 8. Observed and simulated daily discharges for the rivers Dalaelven (1st panel) 375 
and Indalsaelven (2nd panel) during 2000-2009.  376 

3.3 Application of the bias correction for a different time period 377 

To consider the effect of the bias correction for the applications over different time periods, we 378 
derived bias correction factors for HD5-GSWP3 during 1979-2014 and applied the factors for 379 
the period 1950-1978. 380 

For HD5-GSWP3, the distributions of bias and Kling-Gupta efficiencies are quite similar 381 
between the two periods 1950-1978 (Figure 9 – left column) and 1979-2014 (Figure 5 – left 382 
column). Consequently, the bias correction leads to similar improvements in the KGE (Figure 383 
9) as for the most recent period (not shown). The bias also becomes small for most of the rivers. 384 
Noticeable exceptions are the Dnjepr, Volga and some rivers in Southern Europe. This may be 385 
related to differences in the anthropogenic influence on the discharge between the two periods, 386 
as is the case for the river Ebro. Here, the large wet bias (51.65 %) in the more recent period is 387 
contrasted with a small wet bias (12.05%) in the earlier period (Figure 10). Since large 388 
anthropogenic water abstractions occur in the Ebro River (Merchán et al., 2013), this seems to 389 
be related to the different irrigation activities in the two periods, which are much more 390 
pronounced in the more recent years. The latter can be seen by looking at the observed daily 391 
discharges between 1960-1969 and 2000-2009 (Figure 10). In the earlier period, the Ebro 392 
discharge still shows some variations according to the sequence of weather events in the dry 393 
season. However, in the later period, the observed discharge includes only very small variations 394 
during the dry season, indicating more intense human water abstraction than in the earlier 395 
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period. Consequently, the bias correction based on the recent wet bias leads to a dry bias (-396 
25.78 %) in the corrected Ebro discharge in the earlier period. However, the KGE decreases 397 
only slightly from 0.68 to 0.63, so that the deterioration of the mean bias seems to be largely 398 
compensated by the correction of the different percentile ranges. 399 

 400 

 401 
 402 

 403 

 404 

Figure 9. Mean discharge bias [%] (upper row) and Kling Gupta efficiencies (lower row) 405 
for HD5-GSWP3 (left) and bias corrected HD5-GSWP3 data (right) during 1950-406 
1978.  407 

4 Evaluation of the inflow into sea basins 408 

To evaluate the simulated and bias corrected discharges at the river mouths, we considered the 409 
integrated inflow into different sea basins. First, we evaluated the discharges into the Baltic Sea 410 
using HELCOM and IGC-EMO data in Section 4.1. We then compared the discharges to the 411 
North Sea and the Northeast Atlantic with OSPAR and up-scaled (see Section 2.5) IGC-EMO 412 
data in Section 4.2.  413 

 414 
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 415 

 416 

Figure 10. Observed and simulated daily discharge of HD5-GSWP3 for the Ebro river 417 
during 1960-1969 (1st panel) and 2000-2009 (2nd panel).  418 

4.1 Baltic Sea 419 

In order to achieve a maximum overlap of the simulated discharge time series data with the 420 
HELCOM data (cf. Section 2.5), we considered 1995-2019 as the evaluation period for the 421 
Baltic Sea and its seven sub-basins (Figure 4 – upper panel). For the whole Baltic Sea and most 422 
of its sub-basins, the bias correction improves the basin inflows if compared to the HELCOM 423 
estimates (Table 4, Figure 11). Only for the Gulf of Finland and the Gulf of Riga, the bias 424 
correction leads to a slightly larger bias while the biases of HD5-WFDE5 in these basins are 425 
relatively small. When the simulated inflows are compared with the IGC-EMO estimates, 426 
similar results are obtained, except for the Gulf of Riga. Here, the IGC-EMO estimates are 427 
about 32% larger than the HELCOM estimates, indicating a larger uncertainty in at least one of 428 
these two estimates. For the Gulf of Riga basin, the major part of the inflow is contributed by 429 
the Daugava river. In IGC-EMO, the discharge from the Daugava is based on observed time 430 
series from 1970-1990. These data were extended to earlier and later periods, e.g. by 431 
climatological values and trend preservation (Van Leeuwen and Hagemann, 2023). For 1970-432 
1990, the mean IGC-EMO discharge comprises 623 m³/s at the Daugava mouth, while this has 433 
increased by ca. 45% in 1995-2019 (902 m³/s). However, this strong increase cannot be seen in 434 
the observed discharge time series at the station Daugavpils that covers about three quarter of 435 
the Daugava catchment. Here, the discharge increases only slightly from 1970-1999 (439 m³/s; 436 
95% temporal data coverage) to 1995-2019 (452 m³/s; 83% temporal data coverage). This 437 
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indicates a large overestimation of the IGC-EMO Daugava discharge during 1995-2019 and, 438 
hence, also of the respective Gulf of Riga inflow. 439 

Table 4. Estimated and simulated inflows (unit: m³/s) into the Baltic Sea and its major 440 
sub-basins during 1995-2019. Note that for the Danish Straits no IGC-EMO estimate 441 
is provided as the respective catchment area coverage of the rivers in IGC-EMO is too 442 
low. 443 

Sea basin HELCOM IGC-EMO c. HD5-WFDE5 HD5 Bias C. 

Baltic Sea 15676 15286 14764 15995 

Bothnian Bay 3444 3420 2642 3369 

Bothnian Sea 2913 3038 2347 3391 

Gulf of Finland 3519 3448 3520 3612 

Gulf of Riga 1071 1411 1114 1017 

Baltic Proper 3436 2901 4070 3377 

Danish Straits 217 0 198 222 

Kattegat 1077 949 873 1008 

 444 

 445 

Figure 11. Relative difference in basin inflows compared to HELCOM data for 1995-446 
2019. Note that no IGC-EMO estimate is provided for the Danish Straits as the 447 
respective river catchment coverage in IGC-EMO is too small. 448 

4.2 North Sea and Northeast Atlantic 449 

Due to the different treatment of unmonitored regions by the OSPAR countries (cf. Section 450 
2.5), and thus of the respective sea basin areas, we have not corrected the OSPAR inflows. 451 
Instead, we have also considered up-scaled IGC-EMO data as alternative estimates of basin 452 
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inflow (as in Section 4.1). Table 5 shows simulated and estimated basin inflows for the 453 
considered OSPAR regions (cf. Figure 4 – lower panel). Note that IGC-EMO data for the 454 
Norwegian shares of the Barents Sea, Norwegian Sea and North Sea, and the North Spanish 455 
Atlantic are not included in the following comparisons due to their limited area coverage. When 456 
comparing the simulated sea basin inflows with the OSPAR and IGC-EMO data, we found that 457 
the bias correction improves the simulated inflows for most of the OSPAR regions (Figure 12). 458 
Exceptions are the values for the Celtic Sea and the Irish Sea. For the Celtic Sea, the bias 459 
corrected inflows are very close to the uncorrected inflows and the difference to the OSPAR 460 
data is rather small. For the Irish Sea, the bias corrected inflows are somewhat larger than the 461 
uncorrected ones, with both showing large differences (52.5% and 47.5%) to the OSPAR data. 462 
Here both inflows are closer to the IGC-EMO estimate, which exceeds the OSPAR estimate by 463 
about 40%.  464 

Table 5. Estimated and simulated inflows (unit: m³/s) into major sub-basins of the North 465 
Sea and the Northwest Atlantic during 1961-1990. Note that the North Sea does not 466 
comprise Skagerrak and the English Channel. Up-scaled IGC-EMO basin estimates 467 
for which the fractional area coverage of IGC-EMO rivers is less than 75% are 468 
considered as highly uncertain and are therefore only given in brackets (cf. Sect. 2.5). 469 
The same applies to the OSPAR inflow into the Northern Spanish Atlantic. 470 

Sea basin OSPAR IGC-EMO c. 
HD5-

WFDE5 HD5 BiasC. 

North Sea 9190 6600 9798 9164 

Norwegian North Sea 3534 (1499) 2038 2856 

Norwegian Barents Sea 2294 - 1106 1723 

Norwegian Sea 3663 - 2242 2922 

Skagerrak 2544 2113 1956 2292 

German Bight 1344 1505 2025 1419 

English Channel 1250 1011 1498 1222 

Celtic Sea 976 839 1016 1016 

Irish Sea 672 939 992 1025 

French Atlantic 2862 2391 3147 2684 

Northern Spanish Atlantic (359) (1655) 1104 1550 

 471 

While the OSPAR values from Ireland include estimates for unmonitored areas, this is not 472 
the case for the UK (Table 2). Farkas and Skarbøvik (2021) list the rivers contributing to the 473 
OSPAR value (560 m³/s) from the UK part of the Irish Sea catchment (35000 km²). Adding up 474 
the catchment areas of each river, obtained from various online resources, gives a coverage of 475 
about 70%. In order to account for this under-representation of the catchment area, an up-476 
scaling can be performed, similar to the treatment of the IGC-EMO data. This would give an 477 
estimate of about 803 m³/s for the UK Irish Sea inflow and thus 915 m³/s for the whole Irish 478 
Sea. The respective IGC-EMO inflow is close to this value (+2.6%) and the overestimation of 479 
inflows is less pronounced for HD-WFDE5 and bias corrected discharges with +8.4% and 480 
+12% respectively. 481 
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 482 

Figure 12. Relative difference in basin inflows compared to OSPAR data for 1961-1990. 483 
IGC-EMO basin estimates for which the fractional area coverage is less than 75% are 484 
not shown. 485 

4.3 Simulated salinity in the German Bight 486 

Using the two experiments described in Sect. 2.6, we evaluated the simulated sea surface 487 
salinity (SSS) with satellite-based analyses and in-situ observations for the period 2010 to 2018. 488 
The SSS analyses were derived using a multivariate optimal interpolation algorithm that 489 
combines sea surface salinity images from several satellite sources, such as the National 490 
Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite 491 
and the European Space Agency (ESA) Soil Moisture Ocean Salinity (SMOS) satellite, with 492 
in-situ salinity measurements (Droghei et al., 2018). These SSS data are available with a spatial 493 
resolution of 0.125°. 494 

Figure 13a shows the mean analysed SSS in the German Bight for the period 2010-2018, 495 
with lower salinities near the west coast of Germany and higher salinities towards the west. The 496 
NEMO simulation using the uncorrected discharges of HD5-WFDE5 (Figure 13c) has too low 497 
SSS in coastal areas, especially near the estuaries. This low bias is reduced using the bias 498 
corrected discharges (Figure 13d), as the general effect of the bias correction in the German 499 
Bight leads to reduced riverine inflows (cf. Figure 12) and hence increased SSS in coastal areas 500 
(Figure 13b).  501 

In addition, we had access to salinity measurements at three stations in the German Bight 502 
operated by the BSH as part of the Marine Environmental Monitoring Network in the North 503 
and Baltic Seas (MARNET). These three stations are Deutsche Bucht (DB; located at 54.17⁰N, 504 
7.45⁰E), EMS (54.17⁰N, 6.35⁰E) and Nordsee Boje II (NSB; 55⁰N, 6.33⁰E) and their locations 505 
are shown in Figure 13. In general, the bias corrected discharges lead to an improved simulation 506 
of the daily salinity at 6 m depth at the stations DB and EMS. Here the RSME decreases from 507 
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1.70 to 1.45 and from 1.43 to 1.32, respectively. It seems that in NEMO the positive effect of 508 
using bias corrected discharges is limited to near-surface salinities, as there is no noticeable 509 
effect at 30 m depth (not shown). NSB is not considered in detail as it is located further offshore 510 
where no noticeable SSS changes were introduced by using bias corrected discharges (Figure 511 
13b). 512 

 513 

Figure 13. Mean analyzed SSS: a) OBS and various SSS differences of the NEMO 514 
experiments in the German Bight for the period from 2010 to 2018. The SSS 515 
differences comprise b) HD5-Bias C. minus HD5-WFDE5, c) HD5-WFDE5 minus 516 
OBS, and d) HD5-Bias C. minus OBS. 517 

In summary, the results of the NEMO experiments indicate the beneficial effect of using bias 518 
corrected discharges on the simulated SSS in coastal areas. However, although the low SSS 519 
biases are reduced by using the bias corrected discharges, the simulated SSS is still 520 
underestimated in coastal areas, especially close to the estuaries of large rivers (Figure 13d). 521 
This may be attributed to the rather smooth coastline of the NEMO ocean grid. Here, most parts 522 
of the large estuaries of the rivers Elbe, Ems and Weser are not included. In reality, a major part 523 
of the mixing of the riverine freshwater inflow and the saline North Sea happens within these 524 
estuaries. In the NEMO model setup, the freshwater inflow is introduced at the respective river 525 
mouth points of the smooth NEMO coastline where it starts to mix with the saline North Sea 526 
water. Consequently, the simulated water at and near those points is much fresher than in reality, 527 
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which leads to the low SSS bias. Note that on the one hand such a smooth coastline is necessary 528 
in NEMO to avoid numerical instabilities. On the other hand, the spatial resolution of the 529 
NEMO grid is not high enough to adequately resolve parts of the longer estuaries.  530 

 531 

Figure 14. Observed and simulated daily time series of salinity in 6 m depth for the 532 
MARNET stations: a) DB and b) EMS. Unit: PSU 533 

5 Summary and Conclusions 534 

In the present study, we have introduced a methodology for the bias correction of European 535 
river runoff to provide corrected riverine inflows as forcing for ocean models in offline and 536 
coupled system model simulations. The central part of this methodology is a three-part bias 537 
correction, which can correct different biases for low, medium and high discharges. The bias 538 
correction parameters are derived in two steps. First, different correction factors for low, 539 
medium and high flows are derived for each river considered (cf. Sect. 2.5) at the location of 540 
the most downstream station for which daily discharge measurements were available. These 541 
factors were then transferred to the respective river mouth on the HD model grid and to adjacent 542 
coastal inflow points in its vicinity.  543 

The evaluation of the bias corrected discharge at the station location showed that the bias 544 
correction greatly improved the simulated discharges. For the evaluation of the bias corrected 545 
discharge at the downstream station locations, we considered the mean bias and the KGE, which 546 
is a quality metric combining bias, correlation and coefficient of variation. Considering the 547 
same period as used to derive the bias correction factors, the mean bias is trivially close to zero. 548 
However, the bias is also substantially reduced for most rivers if a different period is considered. 549 
Irrespective of the period, the KGE pattern generally improves for the bias corrected discharges 550 
and shows high values for many rivers. Exceptions are those rivers with a very strong 551 
anthropogenic distortion of the natural flow, e.g. by many dams or large water withdrawals. 552 
Here, despite of some improvements, the KGE values are still rather low, such as for the rivers 553 
Dnjepr, Volga, Luleälven and a few Turkish rivers flowing into the Black Sea. The KGE also 554 
shows the beneficial effect of the three-part bias correction, as correcting only the long-term 555 
mean annual discharge bias is not sufficient in many areas, especially in northern Europe. We 556 
found that the three-part bias correction often improves the KGE in regulated rivers, so that it 557 
appears to mimic the effect of regulation, where regulation leads to the elimination of peak 558 
flows while maintaining certain flow levels during low flow periods. 559 

The evaluation of riverine inflows to the sea at river mouths with observed daily discharge 560 
is rarely possible as there are usually no river gauges available. Even if there is a gauge at the 561 
mouth of a river, the measurements are often affected by tidal influences from the coast, so that 562 
the measured amounts may not represent the actual river discharge. For obvious reasons, it is 563 
also difficult to compare simulated inflows with observed discharges for unmonitored rivers. 564 
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Therefore, we compared the simulated and bias corrected discharges with long-term mean 565 
inflow estimates into different sea basins from HELCOM, OSPAR and IGC-EMO. For most of 566 
the basins considered, the bias correction improves the simulated inflows. This indicates a 567 
reasonable performance of the approach to transfer the bias correction factors obtained at the 568 
downstream stations to the respective river mouths and adjacent coastal areas. Exceptions are 569 
the Gulf of Finland, the Gulf of Riga, the Celtic Sea and the Irish Sea. For the Gulf of Finland 570 
and the Celtic Sea, the deviations of the uncorrected and bias corrected inflows from the inflow 571 
estimates are rather small. For the Gulf of Riga, the deviations of the uncorrected and bias 572 
corrected inflows from the HELCOM estimates are also small, but they significantly 573 
underestimate the IGC-EMO estimates. However, this could be due to a large overestimation 574 
of the Daugava discharge during the period 1995-2019 in the IGC-EMO data and thus also of 575 
the corresponding Gulf of Riga inflow. For the Irish Sea, IGC-EMO seems to be closer to reality 576 
as the OSPAR inflow does not cover the unmonitored rivers in the British part of the catchment.  577 

A caveat applies for rivers where the human influence on river flow has changed 578 
significantly over time. Applying bias correction factors derived for 1979-2014 to earlier 579 
periods may lead to errors for regulated rivers in years before these regulatory measures were 580 
implemented. This is the case for the Ebro, where irrigation activities have largely intensified 581 
during the period 1979-2014 compared to earlier periods (see Sect. 3.3). A detailed analysis of 582 
the rivers and periods concerned is beyond the scope of this study. However, at least for the 583 
period 1950-1978, the KGE distribution does not seem to be significantly affected, as there is 584 
no noticeable deterioration.  585 

We have shown that our bias correction method works well for Europe at the station 586 
locations as well as for the riverine inflow into northern and western European sea basins. Using 587 
two NEMO simulations in the German Bight, we have also shown that the use of the bias 588 
corrected discharges as forcing leads to an improved simulation of sea surface salinity in coastal 589 
areas. However, for the potential transfer of the bias correction methodology to other regions, 590 
it has to be pointed out that the application of the three-part bias correction over a region only 591 
makes sense if a large part of the catchment area is covered by available daily discharge 592 
measurements. As the three-part bias correction is based on biases in three percentile ranges of 593 
daily flows, it is also suitable for the use in climate change applications. Here the bias correction 594 
factors can be derived from a historical discharge simulation and then applied to future 595 
projections or past reconstructions. In addition, the bias correction can also be applied in 596 
Regional Coupled System Model (RCSM) simulations, where the bias correction factors can 597 
be derived from an initial simulation and then applied during the run-time of the actual RCSM 598 
simulation. This capability has been implemented in the HD model v5.2.2 (Hagemann et al., 599 
2023b) and is currently being applied in the GCOAST AHOI system (Ho-Hagemann et al., 600 
2020).  Finally, we note that the bias corrected discharges are available from the World Data 601 
Centre for Climate and are already used within the CoastalFutures project 602 
(https://www.coastalfutures.de).  603 

Data Availability Statement 604 

Many of the observed daily discharge data used can be obtained from the GRDC 605 
(https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html). Other data 606 
have been retrieved from public websites associated with the sources referred to in Sect. 2.5. 607 
GSWP3 data were retrieved from the ISIMIP data portal (https://data.isimip.org ) and WFDE5 608 
data were retrieved from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu). 609 
OSPAR data were taken from an OSPAR report (Farkas and Skarbøvik, 2021) or its associated 610 
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data available on the OSPAR webpage (https://odims.ospar.org/en/search/?dataset=rid-data-611 
reports). This study has been conducted using E.U. Copernicus Marine Service Information 612 
data on SSS (https://doi.org/10.48670/moi-00051) and some French discharge measurements. 613 
The daily data of surface runoff and subsurface runoff as well as the simulated and bias 614 
corrected discharge data (Hagemann and Stacke, 2023) can be accessed via the World Data 615 
Centre for Climate (WDCC) at DKRZ.   616 
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