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Abstract 1 

In ocean or Earth system model applications, the riverine freshwater inflow is an important flux 2 
affecting salinity and marine stratification in coastal areas. However, in climate change studies, 3 
the river runoff based on climate model output often has large biases on local, regional or even 4 
basin-wide scales. If these biases are too large, the ocean model forced by the runoff will drift 5 
into a different climate state compared to the observed state, which is particularly relevant for 6 
semi-enclosed seas such as the Baltic Sea. To achieve low biases in riverine freshwater inflow 7 
in large-scale climate applications, a bias correction is required that can be applied in periods 8 
where runoff observations are not available and that allows spatial transferability of its 9 
correction factors. In order to meet these requirements for low biases in river runoff, we have 10 
developed a three-part-quantile bias correction that includes different correction factors for low, 11 
medium and high percentile ranges of river runoff over Europe. Here, we present an 12 
experimental setup using the Hydrological Discharge (HD) model and its high-resolution 13 
(1/12°) grid. First, bias correction factors are derived at the locations of the downstream stations 14 
with available daily discharge observations for many European rivers. These factors are then 15 
transferred to the respective river mouths and mapped to neighbouring grid boxes belonging to 16 
ungauged catchments. The results show that the bias correction generally leads to an improved 17 
representation of river runoff. Especially over Northern Europe, where many rivers are 18 
regulated, the three-part-quantile bias correction provides an advantage compared to a bias 19 
correction that only corrects the mean bias of the river runoff. Evaluating two NEMO ocean 20 
model simulations in the German Bight indicated that the use of the bias corrected discharges 21 
as forcing leads to an improved simulation of sea surface salinity in coastal areas. Although in 22 
the present study, the bias correction is tailored to the high-resolution HD model grid over 23 
Europe, the methodology is suitable for any high-resolution model region with a sufficiently 24 
high coverage of river runoff observations. It is also noted that the methodology is applicable 25 
to river runoff based on climate hindcasts as well as on historical climate simulations where the 26 
sequence of weather events does not match the actual observed history. Therefore, it may also 27 
be applied in climate change simulations. 28 

Keywords: Bias correction, river runoff, discharge, high resolution, Europe, sea-surface 29 
salinity 30 
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1 Introduction 33 

River runoff (or discharge/streamflow) is an important component of the global hydrological 34 
cycle, accounting for about one-third of precipitation over land areas. It closes the water cycle 35 
between land and ocean and influences various ocean properties, in particular the salinity of 36 
coastal and semi-enclosed seas (e.g. Väli et al., 2013), the ocean stratification in shelf areas 37 
(e.g. Hordoir and Meier, 2010) such as the German Bight (Becker et al., 1992), and the 38 
thermohaline circulation in different regions (e.g. Hordoir et al., 2008; Lehmann and 39 
Hinrichsen, 2000; Marzeion et al., 2007). In addition, river runoff and associated nutrient loads 40 
are important factors influencing marine ecosystem functioning (Daewel and Schrum, 2017).  41 

Consequently, river runoff needs to be adequately represented in studies of the impacts of 42 
climate change on the marine environment or in coupled Earth system studies. In such studies, 43 
the atmospheric data used to force the respective ocean model are usually taken from climate 44 
models, reanalysis products or hydrological models. Here, it is desirable that the river runoff is 45 
consistent with the atmospheric forcing (e.g. Vinayachandran et al., 2015; Hagemann and 46 
Stacke, 2022), i.e. that the impact of weather events and trends in the atmospheric forcing is 47 
transferred via the river runoff into the ocean. In previous modelling studies, runoff was often 48 
taken from climatology or discharge observations, especially when hindcasts were used. 49 
However, this is not a recommended approach for climate change studies where consistently 50 
simulated river runoff should be used. Runoff from the driving climate, land surface or 51 
hydrological model will contain biases, e.g., due to biases in precipitation and/or uncertainties 52 
in the land surface representation of the model. Many simulations of historical daily river runoff 53 
show common biases in the tails of their distributions, with high discharges underestimated and 54 
low discharges overestimated (Farmer et al., 2018, and references therein). If the basin-wide 55 
biases are too large, a bias correction of the simulated discharge would be necessary to avoid 56 
the ocean model drifting into a different climate state compared to the observed state. This is 57 
particularly relevant for semi-enclosed seas such as the Baltic Sea. For example, for Baltic Sea 58 
ocean models, the mean long-term bias of river runoff must be less than 7% (Hagemann and 59 
Stacke, 2022). 60 

The bias correction of river runoff is an approach that has been used particularly for short-61 
term hydrological forecasts and ensemble predictions of up to six months. Here, Kim et al. 62 
(2021) provide examples of related studies. However, these approaches (see, e.g., those listed 63 
in Kim et al., 2021; Madadgar et al., 2014)are often specifically trimmed to flood forecasts. 64 
Therefore, they often require the existence of observed values from previous time steps so that 65 
that are not applicable in climate change studies, such as autoregression models (Kim et al., 66 
2021) or components of a Bayesian forecasting system (Krzysztofowicz and Maranzano, 2004). 67 
Others like non-parametric methods based on Bayesian approaches as proposed by Brown and 68 
Seo (2010; 2012) need a large number of ensemble members (Madadgar et al., 2014). 69 

Recently, bias correction of river runoff has also been applied in the context of climate 70 
change. Quantile mapping based approaches are often used for such bias correction, as this 71 
usually leads to a large improvement in the representation of discharge of the considered river. 72 
For example, Budhathoki et al. (2022) used quantile mapping to correct discharge bias in the 73 
Chao Phraya River basin (Thailand), and Daraio (2020) used it for two basins in New Jersey 74 
(USA). A criticism of using quantile-mapping in flood forecasting is that it does not maintain 75 
the pairing of corresponding simulated and observed flows (Madadgar et al., 2014).However, 76 
Madadgar et al. (2014) also noted that quantile mapping was not always successful in improving 77 
the initial forecast trajectory. In their application for the Sprague River (southern Oregon, 78 
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USA), the skill of the forecast actually deteriorated when the quantile mapping technique was 79 
used. Similarly, Malek et al. (2022) used a quantile mapping based bias correction of discharge 80 
and showed that ex-post corrections of simulated discharge do not necessarily reduce biases in 81 
the simulation of key processes and in some cases can severely degrade system simulations. 82 

Consequently, the aim of the present study was to develop a bias correction method sufficient 83 
to meet the requirements of ocean models in large-scale climate change studies. Note that we 84 
did not aim for the most accurate reproduction of observed discharge characteristics, as required 85 
for short-term hydrological predictions and flood forecasts used by water resource decision 86 
makers (e.g. Shi et al., 2008). In order to maintain a high degree of temporal consistency of 87 
simulated runoff with the meteorological patterns in the driving (on- or offline) climate model 88 
(or data), a bias correction with as little fitting or modification of the daily sequence of runoff 89 
curves as possible is desired. Thus, our target is a simple bias correction that corrects the mean 90 
bias and the tail biases of the discharge distribution in climate change applications of ocean or 91 
coupled system models. The bias correction factors should be transferable from downstream 92 
stations to river mouths as well as to neighbouring ungauged catchments. Furthermore, it should 93 
be applicable to climate model or Earth system model data that lack the observed sequence of 94 
actual discharge events. Therefore, we decided to not apply methods that employ detailed 95 
modifications of the discharge curves for specific rivers such as those methods that use complex 96 
matrix arithmetic of observed and simulated discharge time series (e.g. Zhao et al., 2011), or 97 
the common quantile-mapping approaches, The latter are conducted using a lot of bins, so that 98 
the bias in the discharge curve of a specific river can be strongly reduced. However, these 99 
detailed correction factors for every bin may likely not be transferred to other locations. It may 100 
work for the same river if station and river mouth are relatively close to each other, but certainly 101 
may not be valid for the transfer to neighbouring catchments. 102 

The manuscript is organised as follows. Section 2 describes how the simulated discharges 103 
were generated and the newly developed bias correction methodology, as well as the data, 104 
models and metrics used in this study. Sections 3 and 4 evaluate the simulated and bias corrected 105 
discharges and present the effects of the bias correction for station locations and sea basin 106 
inflows, respectively. Finally, Section 5 concludes with a summary and conclusions. 107 

2 Data and Methods 108 

To generate the freshwater inflow from rivers to the ocean, we used an experimental setup 109 
analogous to Hagemann and Stacke (2022). Here we used two atmospheric forcing datasets 110 
(Sect. 2.1) and the same model chain of two large-scale hydrological models. The global 111 
hydrological model HydroPy (Sect. 2.2) was used to generate the input to the Hydrological 112 
Discharge (HD) model (Sect. 2.3) at the resolution of the atmospheric forcing data (0.5°). These 113 
input data of surface and sub-surface runoff were then interpolated onto the HD model grid and 114 
the HD model was used to simulate daily discharges from land to sea. Subsequently, we bias 115 
corrected these time series as described in Section 2.4 to generate bias corrected discharges at 116 
coastal ocean boxes of the European HD model domain from 1901-2019. Note that we 117 
combined the simulations based on two different atmospheric forcing datasets to cover the 118 
whole 20th century and to include the more recent years in the bias corrected discharge time 119 
series. Such an approach was also used in the second phase (ISIMIP, 2023) of the Inter-Sectoral 120 
Impact Model Inter-Comparison Project (ISIMIP; Warszawski et al., 2014). Figure 1 121 
summarises the experimental setup. Section 2.5 refers to the observational data that are used in 122 
the evaluation of the model results. Finally, the evaluation metrics used in the analysis of the 123 
results are presented in Sect. 2.7.  124 
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 125 

 126 

Figure 1. Overview on the main steps of generating bias corrected river discharge at HD 127 
river mouths. 128 

 129 

2.1 Atmospheric forcing 130 

We used two atmospheric datasets comprising daily data of various near-surface atmospheric 131 
variables. They have been used as meteorological forcing datasets in several climate impact 132 
assessments and are recommended by ISIMIP (2023). Both datasets were specifically generated 133 
for forcingto force global hydrological models for hindcast simulations. They are based on re-134 
analysis products from different weather forecast centres and bias-correction procedures were 135 
applied by the respective creators to improve their data.  136 

The Global Soil Wetness Project Phase 3 (GSWP3; Dirmeyer et al., 2006; Kim, 2017) 137 
dataset is available at 0.5° resolution from 1901-2014. To generate the GSWP3 dataset, Kim 138 
(2017) dynamically downscaled the 20th Century Reanalysis (Compo et al., 2011) was first 139 
dynamically downscaled onto the T248 (~0.5°) grid using a spectral nudging technique 140 
(Yoshimura and Kanamitsu, 2008) in a Global Spectral Model (GSM). Observation-based bias 141 
correction procedures were then applied to the downscaled data to obtain daily time series.  142 

To generate the WFDE5 dataset, Cucchi et al. (2020) applied, the WATCH Forcing Data 143 
(WFD) methodology (Weedon et al., 2011) was applied to surface meteorological variables 144 
from the ERA5 reanalysis (Hersbach et al., 2020) to obtain bias corrected time series. ERA5 is 145 
the fifth generation of atmospheric reanalysis produced by the European Centre for Medium-146 
Range Weather Forecasts (ECMWF). WFDE5 is provided at 0.5° spatial resolution from 1979-147 
2019. Mengel et al. (2021) stated that WFDE5 is considered as the more realistic dataset, 148 
especially with respect to day-to-day variability for variables for which the monthly mean 149 
values were bias corrected, such as precipitation and temperature. For more information on 150 
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application and evaluation of both datasets, see, e.g., Mengel et al. (2021) and references 151 
therein, Hassler and Lauer (2021), (Arora et al., 2023). 152 

2.2 HydroPy setup 153 

HydroPy (Stacke and Hagemann, 2021) is a state-of-the-art global hydrology model for 154 
which no model calibration was performed for its setup. Within global hydrological modelling, 155 
the usage of uncalibrated models is rather common (see, e.g., Haddeland et al., 2011), even 156 
though some models exist that are calibrated for global studies. In the present study, HydroPy 157 
was driven by daily forcing data from 1901-2019. Daily input fields of surface and subsurface 158 
runoff were generated at a resolution of 0.5°. Analogous to the ERA5 forced simulation in 159 
Hagemann and Stacke (2022), precipitation, 2m temperature, downwelling shortwave and 160 
longwave radiation, 2m specific humidity, surface pressure and 10m wind are used as forcing 161 
from the respective forcing dataset. We performed a spin-up simulation over 50 iterations of 162 
the year 1901 with the GSWP3 forcing (cf. Stacke and Hagemann, 2021) to initialize the 163 
storages in the HydroPy model and to avoid any drift during the actual simulation period. We 164 
then forced HydroPy with the GSWP3 data from 1901-1978 and continued with the WFDE5 165 
data from 1979-2019. We also conducted a GSWP3 forced simulation from 1979-2014 in order 166 
to derive bias correction parameters for the earlier period. For our analysis, we focus on the 167 
years from 1950 onwards so that we have an additional transient spin-up of 49 years. 168 

2.3 HD model setup 169 

To simulate discharge, tThe HD model (Hagemann et al., 2020) is a well-established river 170 
routing model that is implemented in a range of global and regional model systems. As noted 171 
in Hagemann et al. (2020), no river specific parameter adjustments were conducted in the HD 172 
model to enable its applicability for climate change studies and over catchments, where no daily 173 
discharges are available at a downstream station. To simulate discharge with the HD model, we 174 
used the daily input fields of surface and subsurface runoff that were generated by HydroPy 175 
from the GSWP3 and WFDE5 data (see Sect. 2.2). As the time step of these runoff data is one 176 
day, the time step of the HD model was also set to one day. However, an internal time step of 177 
0.5 hours is used for the flow within the river, as the minimum travel time through a grid box 178 
is limited by the chosen time step. The HD model v5.2.0 (Hagemann et al., 2023) was applied 179 
over the European domain, which covers the land areas between -11°W to 69°E and 27°N to 180 
72°N. The domain, along with a number of rivers specifically noted in this study, is shown in 181 
Figure 2. In the following, we refer to the WFDE5-based discharges as HD5-WFDE5W and to 182 
the GSWP3-based discharges as HDG5-GSWP3. The corresponding bias-corrected discharges 183 
are referred to as HD-BC in general and HDW-BC and HDG-BC in particular. 184 
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 185 

Figure 2. European HD model domain and catchment areas for selected rivers 186 

2.4 Bias correction of river runoff 187 

We have developed a bias correction method for river runoff that uses correction factors for 188 
three quantiles and includes a spatial transfer of these factors. We note that our three-quantile 189 
bias correction is similar to a very coarse quantile mapping. The latter has been introduced in 190 
climate change impact research to correct for significant biases in data produced by global and 191 
regional climate models. Quantile mapping is a distribution mapping in which the distribution 192 
function of climate values is corrected to match the observed distribution function. Details of 193 
such mapping applied to precipitation and surface air temperature can be found, for example, 194 
Piani et al. (2010) and Teutschbein and Seibert (2012). Our bias correction method involves 195 
several steps. First, three-part bias correction method for river runoff with different correction 196 
factors for low, medium and high percentiles. These are first calculated at the station locations 197 
and then applied to at the respective river mouths. Finally, an interpolation is performed to 198 
neighbouring coastal mouth points for which no downstream observations are available in the 199 
respective catchment. This procedure is summarised in Figure 3. The three percentile ranges 200 
for daily discharge qi are classified by 201 

 Low (L): 𝑞௜ ≤ 𝑄௣ 202 
 Medium (M): 𝑄௣ < 𝑞௜ < 𝑄ଵ଴଴ି௣ 203 
 High (H): 𝑞௜ ≥ 𝑄ଵ଴଴ି௣ 204 

Here, Qp denotes the pth percentile of the daily discharge and p was set to 20. The percentiles 205 
Qp and Q100-p were determined separately for the observed and the simulated discharges at the 206 
downstream station locations and then the mean discharges 𝑞ோതതത were calculated for the three 207 
percentile ranges 𝑅 ∈  {𝐿, 𝑀, 𝐻}. Note that for these calculations only those days were 208 
considered for which an observed discharge was available. Then, the mean bias bR (in %) was 209 
calculated for each percentile range and a correction factor fR to remove the bias was derived as 210 

𝑓ோ =
100

𝑏ோ + 100
 211 
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 212 

 213 

Figure 3. Steps to derive bias corrected discharge at river mouths from simulated 214 
discharges. 215 

For the evaluation of the bias correction in Sect. 3, these correction factors were applied to 216 
the simulated discharges at the station locations. As the correction factors are independent of 217 
the absolute amount of discharge, they could be applied to the respective river mouths. For each 218 
river mouth with more than one inflow (j > 1) for which a correction factor fR,j is determined, a 219 
combined correction factor is obtained by calculating an average weighted by the respective 220 
mean inflows Qj.  221 

𝑓ோ
ഥ =  

∑ 𝑓ோ,௝ ∗ 𝑄௝௝

∑ 𝑄௝௝
 222 

From these river mouths, an interpolation is performed to neighbouring coastal mouth points 223 
for which no downstream observations are available in the respective catchment. This 224 
interpolation was motivated by the fact that the general pattern of bias of neighbouring rivers 225 
is often similar (cf. Sect. 3.1). The interpolation is performed by inverse distance weighting 226 
from the four closest (or fewer) river mouths within a search radius of 200 km. If no river mouth 227 
with a correction factor was found within the search radius, the correction factor was set to one 228 
(i.e. no correction). 229 

Note that the bias correction can lead to spurious daily jumps in discharge when the 230 
percentile boundary is crossed and the bias correction factors differ between the percentile 231 



 

 

8 

ranges. In order to reduce this effect, a smoothing radius of s = 0.05 was introduced around 232 
the percentile boundaries, which was applied at both station locations and river mouths. 233 

For (1 − ∆𝑠) ∗ 𝑞𝑄௣ < 𝑞௜ < (1 + ∆𝑠) ∗ 𝑞𝑄௣:  234 

𝑞ప෥ = 𝑞௜ ∗ (𝑓௅ + (𝑓ெ − 𝑓௅) ∗
(𝑞௜ − (1 − ∆𝑠) ∗ 𝑞𝑄௣)

2 ∗  ∆𝑠 ∗ 𝑞𝑄௣
 235 

For (1 − ∆𝑠) ∗ 𝑞𝑄ଵ଴଴ି௣ < 𝑞௜ < (1 + ∆𝑠) ∗ 𝑞𝑄ଵ଴଴ି௣:  236 

𝑞ప෥ = 𝑞௜ ∗ (𝑓ெ + (𝑓ு − 𝑓ெ) ∗
(𝑞௜ − (1 −  ∆𝑠) ∗ 𝑞𝑄ଵ଴଴ି௣)

2 ∗  ∆𝑠 ∗ 𝑞𝑄ଵ଴଴ି௣
 237 

The bias correction procedure corrects the days that fall into the different percentile ranges. 238 
However, this does not necessarily mean that it also corrects the whole distribution into the 239 
three percentile ranges. Particularly, if the biases in these ranges are quite different, the days 240 
may change their class and order within the distribution. 241 

In order to apply the three-part-quantile bias correction to the simulated discharge time series 242 
from 1901-2019, two sets of bias correction factors were derived. The first set uses HDW5-243 
WFDE5 and discharge station observations for the period 1979-2014. This set was used to bias 244 
correct the simulated discharge at HD river mouths from 1979-2019. The second set uses a 245 
further discharge simulation where we continued HDG5-GSWP3 utilizing the GSWP3 forcing 246 
up to 2014. Again, the set of bias correction factors was derived for the period 1979-2014 using 247 
discharge station observations. This set was then used to bias correct the simulated discharge at 248 
the HD river mouths from 1901-1978. 249 

2.5 Observed discharge data 250 

We used available daily discharge data from downstream gauges for many rivers across Europe 251 
with a catchment area of about 1000 km² or more. These station data were obtained from Global 252 
Runoff Data Centre (GRDC) and various agencies and institutions listed in table 2 of Hagemann 253 
and Stacke (2022). In addition, French discharge data were accessed from the E.U. Copernicus 254 
Marine Service Information. In order to allow an assessment of the discharge at the river 255 
mouths, we considered basin-wide estimates from three different sources.  256 

For the Baltic Marine Environment Protection Commission – also known as the Helsinki 257 
Commission (HELCOM), Svendsen and Gustafsson (2022) provided annual waterborne 258 
inflows into the seven main sub-basins of the Baltic Sea (Figure 4 – upper panel) from 1995 to 259 
2020. Waterborne inflows comprise the sum of river runoff and direct inflows, i.e. flows from 260 
point sources discharging directly into the Baltic Sea. These point sources are not included in 261 
our experimental setup or in the bias correction. However, their contribution to the total 262 
waterborne inflow to the Baltic Sea is only about 1% (HELCOM, 1998). 263 
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 264 

 265 

Figure 4. Selected HELCOM (upper panel) and OSPAR (lower panel) basins for which 266 
inflows are considered. For OSPAR, the Spanish Atlantic basin is limited to the coast 267 
of Northern Spain. 268 

Under the umbrella of the OSPAR Convention (Convention for the Protection of the Marine 269 
Environment of the North-East Atlantic), the IGC-EMO (Intersessional Correspondence Group 270 
for Eutrophication Modelling) database (Lenhart et al., 2010) of daily riverine freshwater 271 
inflows and nutrient loads was compiled by Van Leeuwen and Lenhart (2021), covering the 272 
major rivers discharging into the Baltic Sea, the North Sea and the Northeast Atlantic. An 273 
updated database covering a total of 370 rivers was mapped onto the flow grid of the European 274 
1/12° domain of the HD model by Van Leeuwen and Hagemann (2023). The associated 275 
catchment areas of these rivers, which flow into a particular specific sea basin, do not cover the 276 
entire catchment area of the respective basin (see Table 1) so that the total inflow of the sea 277 
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basin is underrepresented by the IGC-EMO data. To generate basin-wide estimates, we have 278 
up-scaled these values by dividing the integrated IGC-EMO river discharges in a basin by the 279 
fractional coverage of the entire basin catchment on the HD grid. Basin estimates for which the 280 
fractional coverage is less than 75% are considered to be highly uncertain and are therefore 281 
provided for completeness only, but are not included in the assessment of simulated inflows. 282 

Table 1. Sea basin catchment areas on the HD model grid and the fractional catchment 283 
coverage of the associated IGC-EMO rivers. 284 

 HD Area [km²]  

Sea basin 
IGC-
EMO Total Coverage 

Baltic Sea 1513967 1671823 90.6% 

Bothnian Bay 238898 258420 92.4% 

Bothnian Sea 199908 219375 91.1% 

Gulf of Finland 379628 412412 92.1% 

Gulf of Riga 124386 134025 92.8% 

Baltic Proper 494929 551295 89.8% 

Danish Straits 6731 19417 34.7% 

Kattegat 69487 76876 90.4% 

Norwegian Barents Sea 0 81004 0.0% 

Norwegian Sea 0 58408 0.0% 

Skagerrak 89060 101787 87.5% 

North Sea 514334 599755 85.8% 

German Bight 201233 208807 96.4% 

Norwegian North Sea 4590 31327 14.7% 

English Channel 94327 122235 77.2% 

Celtic Sea 41122 44845 91.7% 

Irish Sea 29748 35584 83.6% 

French Atlantic 207657 257981 80.5% 

Northern Spanish Atlantic 17692 46574 38.0% 

 285 

In addition, we used estimates of long-term mean sub-basin-wide inflows to the North Sea 286 
and Northeast Atlantic, published directly by OSPAR (Farkas and Skarbøvik, 2021). Figure 4 287 
(lower panel) shows the selected OSPAR basins for which the inflows are considered. It should 288 
be noted that the sea basin inflows provided by the different OSPAR countries are not 289 
consistent. Some countries include discharge estimates for unmonitored areas, while others do 290 
not (Table 2). In addition, the sea basin catchment coverage of the monitored areas varies 291 
between the countries. Note also that we have excluded the Spanish Atlantic from our 292 
comparisons for the following reason. Here, we limited the Spanish Atlantic basin to the coast 293 
of northern Spain (see Figure 4 – lower panel) to allow a comparison with the IGC-EMO data 294 
as the IGC-EMO data only cover rivers in this region, hereafter referred to as NSpA. These 295 
rivers cover about 38% of the total NSpA area on the HD model grid (Table 1), while the 296 
OSPAR data for NSpA cover about 50% (23201 km²; Farkas and Skarbøvik, 2021). However, 297 
the associated IGC-EMO discharge from 1961-1990 (629 m³/s) is 75 % larger than the OSPAR 298 
long-term mean average (359 m³/s). Therefore, both inflow values are unlikely to be 299 
representative for the NSpA region and this region is not considered in the following.    300 
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 301 

Table 2. Country catchment coverage of OSPAR data and inclusion of estimates for 302 
unmonitored areas (Borgvang et al., 2008). NI means that no information on the 303 
coverage was provided.  304 

Country Coverage Unmonitored 

Belgium > 90% No 

Denmark NI Yes³ 

France 84% Yes 

Germany >90% No1 

Ireland NI Yes 

Netherlands >90% No 

Norway ca. 50% Yes 

Portugal NI No 

Spain NI No 

Sweden 88.7% Yes 

United Kingdom ca. 80%² No 
1 Only for Eider river 305 
2 10% in direct discharge 306 
3 e.g. Farkas and Skarbøvik (2021) 307 

2.6 Ocean model experiments 308 

To assess the effect of using bias corrected river discharge on simulated salinity in the German 309 
Bight, we used version 3.6 of the Nucleus for European Modelling of the Ocean (NEMO; 310 
Madec et al., 2017) and adopted a domain setup used by Ho-Hagemann et al. (2020). This 311 
domain covers the region of the north-west European shelf, the North Sea and the Baltic Sea 312 
between 19.89 E to 30.16 E and 40.07 N to 65.93 N with a resolution of two nautical miles (ca 313 
3.6 km). We used the atmospheric forcing from ERA5 and the ocean boundary forcing from 314 
the ECMWF Ocean Reanalysis System 5 (ORAS5; Zuo et al., 2019) to conduct two simulations 315 
from 2010 to 2018. Initial conditions were taken from a 20-years spin-up simulation driven by 316 
ERA5 data, so that the deeper ocean layers could adapt to the present-day climate (S. Grayek, 317 
pers. comm., 2023). Note that for the evaluation of results, we neglected the year 2010 to have 318 
an additional spin-up where NEMO could adapt to the specific transient conditions within each 319 
of the two experiments. For the German Bight, this spin-up of one year is sufficient as the 320 
residence time of water may comprise only up to four months (Becker et al., 1999). In these 321 
two simulationsexperiments, the daily riverine inflow into the ocean was taken from the 322 
uncorrected and bias corrected discharges of HD5-WFDE5HDW, which were converted to the 323 
NEMO grid using a procedure of Nguyen et al. (2024). For each HD model river mouth box, 324 
we associated the nearest coastal ocean box on the NEMO grid if such a box was found within 325 
a search radius of 200 km. Such a large radius is necessary because the NEMO coastline is very 326 
smooth, so many estuaries and bays in the HD model grid are not resolved by NEMO. If no 327 
ocean box was found, the corresponding HD model box was not linked. Consequently, the 328 
simulated discharge data at the river mouths were placed as freshwater inflow into the 329 
corresponding NEMO grid boxes. 330 

2.7 Evaluation metrics 331 
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The evaluation of the simulated discharge was performed for the grid boxes corresponding to 332 
the discharge station locations within the river network. For the evaluation at these station 333 
locations, we used the mean bias, the Pearson correlation coefficient and the Kling-Gupta 334 
efficiency (KGE; Gupta et al., 2009; Kling et al., 2012). Both All metrics were calculated with 335 
simulated and observed daily discharge time series for the period considered, using only those 336 
days for which observed data are available. The KGE is a quality metric combining bias, 337 
correlation and coefficient of variation. If a simulated discharge time series has a KGE > -0.41, 338 
then it is a better representation of the observations than the use of the observed long-term mean 339 
discharge (Knoben et al., 2019). Note that many ocean model applications still use the latter 340 
method. 341 

For the evaluation of simulated salinity in the NEMO experiments, we used daily values and 342 
considered  343 

 the mean bias  344 
 the correlation of simulated and observed time series expressed by the Pearson 345 

correlation coefficient 346 
 the variability ratio defined by the ratio of the simulated and observed coefficients of 347 

variation  348 
 the normalized root-mean-square-error (RSME) 349 
 the centered RSME. 350 

The first four metrics are described, e.g., in Hagemann et al. (2020), while the centered RSME 351 
is described, e.g., in Taylor (2001). 352 

3 Evaluation of the bias correction 353 

Below, various metrics have been calculated at the station locations and at the river mouths. 354 
However, these measures have been assigned to the respective catchment areas for the purpose 355 
of graphical presentation. 356 

3.1 Evaluation of simulated discharge 357 

The distribution of bias and KGE for HD5-GSWP3HDG and HD5-WFDE5HDW during 1979-358 
2014 (Figure 5) is quite similar to the pattern shown by Hagemann and Stacke (2022) for the 359 
ERA5-based discharge. For both simulations, the general discharge behaviour is well captured 360 
(KGE > 0.4) for many European rivers, especially in Northern Iberia, Western and Central 361 
Europe, and over Northern Russia (Figure 5, lower row). As expected (cf. Hagemann et al., 362 
2020), larger deviations of the simulated from observed discharges occur for rivers that are 363 
heavily influenced by human activities such as water abstraction, e.g. for irrigation, and 364 
regulation, e.g. by dams. This is the case for many Scandinavian and Turkish rivers as well as 365 
the Volga and Don.  366 

In general, the HD5-WFDE5HDW discharges are slightly drier than the HD5-GSWP3HDG 367 
discharges, as indicated by larger dry biases in Northern Europe and smaller wet biases in 368 
Central Europe. Despite the differences in bias distribution, the KGEs of HD5-WFDE5HDW 369 
are similar to or slightly better than those of HD5-GSWP3HDG. Compared to the ERA5-based 370 
discharge of Hagemann and Stacke (2022), HD5-WFDE5HDW tends to have smaller discharge 371 
biases and better KGEs. This is an expected behaviour caused by the application of a bias 372 
correction methodology to the ERA5 data in the generation of the WFDE5 data (cf. Sect. 2.1). 373 
An exception to this general improvement occurs over Northern Europe, where the dry bias of 374 
HD5-WFDE5HDW tends to be slightly larger and the KGEs lower. Note that Hagemann and 375 
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Stacke (2022) attributed the dry bias over Northern Europe to an overestimation of the 376 
evapotranspiration simulated by HydroPy. 377 

 378 

 379 

 380 

 381 

Figure 5. Mean discharge bias [%] (upper row) and Kling Gupta efficienciesKGE (lower 382 
row) for HD5-GSWP3HDG (left) and HD5-WFDE5HDW (right) during 1979-2014.  383 

In order to analyse how much the bias correction affects the daily sequence of river runoff 384 
at the station locations, we calculated the correlation between the simulated discharges and the 385 
observations. Supplementary Figure S1 shows that the correlation patterns of HDW and HDW-386 
BC with observed discharges are quite similar. For rivers where differences can be identified, 387 
the correlation mostly increases for HDW-BC. The correlation between HDW and HDW-BC 388 
is generally higher than 0.95, and only a very few rivers show correlations lower than 0.9. These 389 
rivers are usually rivers that are heavily influenced by human activities, such as the Volga and 390 
the Luleaelven. 391 

3.2 Added value of the three-part-quantile bias correction 392 

In this section, we consider the effect of the bias correction at the station locations and 393 
investigate whether the three-part-quantile bias correction adds value compared to using only 394 
the mean bias correction. For this purpose, we use HD5-WFDE5HDW and the period 1979-395 
2014. 396 

Both bias correction methods reduce the mean discharge bias to zero or close to zero in the 397 
case of the three-part-quantile bias correction due to the smoothing around the percentile range 398 
thresholds (see Table 3 for selected rivers). When the mean bias correction is applied, the KGEs 399 
(Figure 6 – left panel) are noticeably improved over Western and Central Europe. However, 400 
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with a few exceptions, the KGE pattern over Northern Europe and other areas remains largely 401 
unchanged. This indicates that a correction of the long-term bias in the annual mean discharge 402 
over these areas is not sufficient. Only with the three-part-quantile bias correction does the KGE 403 
(Figure 6 – right panel, Table 3 for selected rivers) improve considerably over these areas, with 404 
the largest improvements occurring over Scandinavia. The three-part-quantile bias correction 405 
also leads to some further improvements over Western and Central Europe, where the bias 406 
corrected discharge with the mean bias correction already shows relatively high KGE values, 407 
e.g. for the rivers Elbe, Rhine and Weser.  408 

Table 3. Mean bias and KGE of simulated (HD5-WFDE5HDW) and bias corrected 409 
discharge for selected rivers during 1979-2014 for selected rivers, where the three-410 
quantile bias correction led to a noticeable KGE improvement in comparison to the 411 
mean bias correction. 412 

 HD5-WFDE5 Mean Bias corr. 3-quantile Bias corr. 
River Bias KGE Bias KGE Bias KGE 
Dalaelven -32.02 % -0.32 0 % -0.28 0.01 % 0.48 
Elbe 36.44 % 0.46 0 % 0.60 -0.06 % 0.85 
Indalsaelven -19.32 % -0.79 0 % -0.78 -0.02 % 0.38 
Odra 41.30 % 0.14 0 % 0.25 0.01 % 0.75 
Rhine 14.60 % 0.74 0 % 0.78 -0.02 % 0.85 
Weser 33.15 % 0.55 0 % 0.70 -0.01 % 0.90 

 413 

 414 

 415 

 416 

Figure 6. Kling Gupta efficienciesKGE for bias corrected HDW5-WFDE5 discharges 417 
using the mean bias correction (left) and the three-part-quantile bias correction (right) 418 
during 1979-2014. 419 

To visualise the effect of the three-part-quantile bias correction on the simulated daily 420 
discharges, we consider the corresponding discharge curves for the period 2000-2009 for 421 
selected large rivers. The respective biases and KGE are shown in Table 3 for the period 1979-422 
2014. For the rivers, Elbe, Weser and Oder, the peak discharges are generally overestimated, 423 
while the low flows are close to the observed values (Figure 7a,c,d). The correction of the high 424 
percentiles leads to a considerable improvement in the representation of the peak discharges, 425 
while the change in the low flows is rather small. The discharge of the Rhine (Figure 7b) is well 426 
represented by HD5-WFDE5HDW. However, the small downward correction of the peak 427 
discharges and the slight increase in the low flows still lead to an improved discharge curve, 428 
which is also indicated by the increased KGE (Table 3).  429 
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 430 

 431 

 432 

 433 

Figure 7. Observed and simulated daily discharges for the rivers a) Elbe, b(1st panel), 434 
Rhine, (2nd panelc), Weser (3rd panel) and d) Odra (4th panel) during 2000-2009.  435 

As mentioned above, the greatest improvements from the three-part-quantile bias correction 436 
compared to the application of the mean bias correction occur over Scandinavia. Here many 437 
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rivers are highly regulated. For this reason, the discharge curves of the Daleaelven and 438 
Indalsaelven rivers are examined in more detail in Figure 8. The observed discharges clearly 439 
show the effect of the human regulation, where regulation leads to the elimination of peak 440 
discharges, while maintaining certain flows during low flow periods. Figure 8 shows that, on 441 
the one hand, peak discharges are often suppressed or reduced, especially during the spring, 442 
and that, on the other hand, low-flow periods are either almost absent (especially for the 443 
Indalsaelven) or show a rather noisy, unnatural daily variability. Here, the bias correction 444 
partially mimics these regulation effects by reducing the peak discharges and increasing the low 445 
flows. 446 

 447 

 448 

Figure 8. Observed and simulated daily discharges for the rivers a) Dalaelven (1st panel) 449 
and b) Indalsaelven (2nd panel) during 2000-2009.  450 

3.3 Application of the bias correction for a different time period 451 

To consider the effect of the bias correction for the applications over different time periods, we 452 
derived bias correction factors for HDG5-GSWP3 during 1979-2014 and applied the factors for 453 
the period 1950-1978. 454 

For HD5-GSWP3G, the distributions of bias and Kling-Gupta efficienciesKGE are quite 455 
similar between the two periods 1950-1978 (Figure 9 – left column) and 1979-2014 (Figure 5 456 
– left column). Consequently, the bias correction leads to similar improvements in the KGE 457 
(Figure 9) as for the most recent period (not shown). The bias also becomes small for most of 458 
the rivers. Noticeable exceptions are the Dnjepr, Volga and some rivers in Southern Europe. 459 
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This may be related to differences in the anthropogenic influence on the discharge between the 460 
two periods, as is the case for the river Ebro. Here, the large wet bias (51.65 %) in the more 461 
recent period is contrasted with a small wet bias (12.05%) in the earlier period (Figure 10). 462 
Since large anthropogenic water abstractions occur in the Ebro River (Merchán et al., 2013), 463 
this seems to be related to the different irrigation activities in the two periods, which are much 464 
more pronounced in the more recent years. The latter can be seen by looking at the observed 465 
daily discharges between 1960-1969 and 2000-2009 (Figure 10). In the earlier period, the Ebro 466 
discharge still shows some variations according to the sequence of weather events in the dry 467 
season. However, in the later period, the observed discharge includes only very small variations 468 
during the dry season, indicating more intense human water abstraction than in the earlier 469 
period. Consequently, the bias correction based on the recent wet bias leads to a dry bias (-470 
25.78 %) in the corrected Ebro discharge in the earlier period. However, the KGE decreases 471 
only slightly from 0.68 to 0.63, so that the deterioration of the mean bias seems to be largely 472 
compensated by the correction of the different percentile ranges. 473 

 474 

 475 

 476 

 477 

Figure 9. Mean discharge bias [%] (upper row) and Kling Gupta efficienciesKGE (lower 478 
row) for HD5-GSWP3G (left) and bias corrected HDG5-GSWP3 BC data (right) 479 
during 1950-1978.  480 

3.4 Effect of the bias correction on contemporary trends 481 

As mentioned in Sect. 2.4, our three-quantile bias correction is similar to a very coarse quantile 482 
mapping, and quantile mapping has been flagged as potentially not suitable for climate 483 
simulations as it has been shown to modify trends (e.g. references in (e.g. references in Cannon 484 
et al., 2015). However, Maraun et al. (2017) pointed out that a debate has arisen about whether 485 
trend modification by variance-adjusting bias correction methods actually improves or degrades 486 
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the raw climate change signal. They further argued that purely statistical arguments cannot 487 
resolve this issue, which requires process understanding. With respect to runoff, the latter needs 488 
to take into account spatial and temporal characteristics of rivers and events, which is beyond 489 
the scope of the present large-scale study.  490 

 491 

 492 

Figure 9.Figure 10. Observed and simulated daily discharge based on HDGof HD5-493 
GSWP3 for the Ebro river during a) 1960-1969 (1st panel) and b) 2000-2009 (2nd 494 
panel).  495 

To investigate the effect of the bias correction on contemporary trends, we calculated trends in 496 
the annual maximum, mean and minimum discharge for the period 1979-2014 and compared 497 
the results for HDW and HDW-BC (Figure 11). The trend patterns are generally within the 498 
range spanned by the two datasets considered in  Hagemann and Stacke (2022). For the annual 499 
maximum and mean discharge, the trend patterns are only slightly changed by the bias 500 
correction. For the annual minimum discharge, the trend pattern is quite similar in HDW and 501 
HDW-BC. However, there are a few more rivers where the magnitude of the trend is affected 502 
by the bias correction. This is particularly the case over Scandinavia where many rivers are 503 
regulated, so that that the correction of the low percentile range is often strong to account for 504 
the effect of regulation on low flows (cf. Sect. 3.2). 505 
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 506 
 507 

 508 
 509 

 510 

 511 
Figure 10.Figure 11. Trends in annual maximum (1st row), mean (2nd row) and 512 

minimum (3rd row) discharge [%/a] for HDW (left column) and HDW-BC (right column) 513 
from 1979-2014. 514 

4 Evaluation of the inflow into sea basins 515 

To evaluate the simulated and bias corrected discharges at the river mouths, we considered the 516 
integrated inflow into different sea basins. First, we evaluated the discharges into the Baltic Sea 517 
using HELCOM and IGC-EMO data in Section 4.1. We then compared the discharges to the 518 
North Sea and the Northeast Atlantic with OSPAR and up-scaled (see Section 2.5) IGC-EMO 519 
data in Section 4.2.  520 

4.1 Baltic Sea 521 

In order to achieve a maximum overlap of the simulated discharge time series data with the 522 
HELCOM data (cf. Section 2.5), we considered 1995-2019 as the evaluation period for the 523 
Baltic Sea and its seven sub-basins (Figure 4 – upper panel). For the whole Baltic Sea and most 524 
of its sub-basins, the bias correction improves the basin inflows if compared to the HELCOM 525 



 

 

20 

estimates (Table 4, Figure 12). Only for the Gulf of Finland and the Gulf of Riga, the bias 526 
correction leads to a slightly larger bias while the biases of HD5-WFDE5HDW in these basins 527 
are relatively small. When the simulated inflows are compared with the IGC-EMO estimates, 528 
similar results are obtained, except for the Gulf of Riga. Here, the IGC-EMO estimates are 529 
about 32% larger than the HELCOM estimates, indicating a larger uncertainty in at least one of 530 
these two estimates. For the Gulf of Riga basin, the major part of the inflow is contributed by 531 
the Daugava river. In IGC-EMO, the discharge from the Daugava is based on observed time 532 
series from 1970-1990. These data were extended to earlier and later periods, e.g. by 533 
climatological values and trend preservation (Van Leeuwen and Hagemann, 2023). For 1970-534 
1990, the mean IGC-EMO discharge comprises 623 m³/s at the Daugava mouth, while this has 535 
increased by ca. 45% in 1995-2019 (902 m³/s). However, this strong increase cannot be seen in 536 
the observed discharge time series at the station Daugavpils that covers about three quarter of 537 
the Daugava catchment. Here, the discharge increases only slightly from 1970-1999 (439 m³/s; 538 
95% temporal data coverage) to 1995-2019 (452 m³/s; 83% temporal data coverage). This 539 
indicates a large overestimation of the IGC-EMO Daugava discharge during 1995-2019 and, 540 
hence, also of the respective Gulf of Riga inflow. 541 

 542 

Figure 11.Figure 12. Relative difference in basin inflows compared to HELCOM data 543 
for 1995-2019. Note that no IGC-EMO estimate is provided for the Danish Straits as 544 
the respective river catchment coverage in IGC-EMO is too small. 545 

Table 4. Estimated and simulated inflows (unit: m³/s) into the Baltic Sea and its major 546 
sub-basins during 1995-2019. Note that for the Danish Straits no IGC-EMO estimate is 547 
provided as the respective catchment area coverage of the rivers in IGC-EMO is too low. 548 

Sea basin HELCOM IGC-EMO c. 
HD5-

WFDE5HDW 
HDW-BC5 

Bias C. 

Baltic Sea 15676 15286 14764 15995 

Bothnian Bay 3444 3420 2642 3369 
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Bothnian Sea 2913 3038 2347 3391 

Gulf of Finland 3519 3448 3520 3612 

Gulf of Riga 1071 1411 1114 1017 

Baltic Proper 3436 2901 4070 3377 

Danish Straits 217 0 198 222 

Kattegat 1077 949 873 1008 

 549 

4.2 North Sea and Northeast Atlantic 550 

Due to the different treatment of unmonitored regions by the OSPAR countries (cf. Section 551 
2.5), and thus of the respective sea basin areas, we have not corrected the OSPAR inflows. 552 
Instead, we have also considered up-scaled IGC-EMO data as alternative estimates of basin 553 
inflow (as in Section 4.1). Table 5 shows simulated and estimated basin inflows for the 554 
considered OSPAR regions (cf. Figure 4 – lower panel). Note that IGC-EMO data for the 555 
Norwegian shares of the Barents Sea, Norwegian Sea and North Sea, and the North Spanish 556 
Atlantic are not included in the following comparisons due to their limited area coverage. When 557 
comparing the simulated sea basin inflows with the OSPAR and IGC-EMO data, we found that 558 
the bias correction improves the simulated inflows for most of the OSPAR regions (Figure 13). 559 
Exceptions are the values for the Celtic Sea and the Irish Sea. For the Celtic Sea, the bias 560 
corrected inflows are very close to the uncorrected inflows and the difference to the OSPAR 561 
data is rather small. For the Irish Sea, the bias corrected inflows are somewhat larger than the 562 
uncorrected ones, with both showing large differences (52.5% and 47.5%) to the OSPAR data. 563 
Here both inflows are closer to the IGC-EMO estimate, which exceeds the OSPAR estimate by 564 
about 40%.  565 

Table 5. Estimated and simulated inflows (unit: m³/s) into major sub-basins of the North 566 
Sea and the Northwest Atlantic during 1961-1990. Note that the North Sea does not 567 
comprise Skagerrak and the English Channel. Up-scaled IGC-EMO basin estimates 568 
for which the fractional catchment area coverage (see Table 1) of IGC-EMO rivers is 569 
less than 75% are considered as highly uncertain and are therefore only given in 570 
brackets (cf. Sect. 2.5). The same applies to the OSPAR inflow into the Northern 571 
Spanish Atlantic. 572 

Sea basin OSPAR IGC-EMO c. 
HD5-

WFDE5HD 
HD5 BiasC.-

BC 

North Sea 9190 6600 9798 9164 

Norwegian North Sea 3534 (1499) 2038 2856 

Norwegian Barents Sea 2294 - 1106 1723 

Norwegian Sea 3663 - 2242 2922 

Skagerrak 2544 2113 1956 2292 

German Bight 1344 1505 2025 1419 

English Channel 1250 1011 1498 1222 

Celtic Sea 976 839 1016 1016 

Irish Sea 672 939 992 1025 

French Atlantic 2862 2391 3147 2684 

Northern Spanish Atlantic (359) (1655) 1104 1550 

 573 
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While the OSPAR values from Ireland include estimates for unmonitored areas, this is not 574 
the case for the United Kingdom (Table 2). Farkas and Skarbøvik (2021) list the rivers 575 
contributing to the OSPAR value (560 m³/s) from the United Kingdom part of the Irish Sea 576 
catchment (35000 km²). Adding up the catchment areas of each river, obtained from various 577 
online resources, gives a coverage of about 70%. In order to account for this under-578 
representation of the catchment area, an up-scaling can be performed, similar to the treatment 579 
of the IGC-EMO data. This would give an estimate of about 803 m³/s for the UK Irish Sea 580 
inflow from the United Kingdom and thus 915 m³/s for the whole Irish Sea. The respective 581 
IGC-EMO inflow is close to this value (+2.6%) and the overestimation of inflows is less 582 
pronounced for HD-WFDE5 and bias corrected discharges with +8.4% and +12% respectively. 583 

 584 

Figure 12.Figure 13. Relative difference in basin inflows compared to OSPAR data 585 
for 1961-1990. IGC-EMO basin estimates for which the fractional area catchment 586 
coverage (see Table 1) is less than 75% are not shown. 587 

4.3 Simulated salinity in the German Bight 588 

Using the two experiments described in Sect. 2.6, we evaluated the simulated sea surface 589 
salinity (SSS) with satellite-based analyses and in-situ observations for the period 2010 to 2018. 590 
The SSS analyses were derived using a multivariate optimal interpolation algorithm that 591 
combines sea surface salinity images from several satellite sources, such as the National 592 
Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite 593 
and the European Space Agency (ESA) Soil Moisture Ocean Salinity (SMOS) satellite, with 594 
in-situ salinity measurements (Droghei et al., 2018). These SSS data are available with a spatial 595 
resolution of 0.125°. 596 

Figure 14a shows the mean analysed SSS in the German Bight for the period 2010-2018, 597 
with lower salinities near the west coast of Germany and higher salinities towards the west. The 598 
NEMO simulation using the uncorrected discharges of HD5-WFDE5HDW (Figure 14c) has 599 
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too low SSS in coastal areas, especially near the estuaries. This low bias is reduced using the 600 
bias corrected discharges (Figure 14d), as the general effect of the bias correction in the German 601 
Bight leads to reduced riverine inflows (cf. Figure 13) and hence increased SSS in coastal areas 602 
(Figure 14b). Similar improvements can also be seen in June 2013 when the Elbe flood is 603 
strongly influences the SSS of the German Bight (Figure S2). Here, the increase in salinity due 604 
to the bias corrected runoff (Figure S2b) is more pronounced than in the long-term mean (Figure 605 
14b). In addition, we found that use of the bias corrected river runoff also improves the SSS 606 
variability expressed by its coefficient of variation, shown in Figure 15. 607 

 608 

Figure 13.Figure 14. Mean analyzed SSS: a) Droghei et al. (2018) data (OBS) and 609 
various SSS differences of the NEMO experiments in the German Bight for the period 610 
from 2010 to 2018. The SSS differences comprise b) HD-BC5-Bias C. minus HD5-611 
WFDE5HDW, c) HD5-WFDE5HDW minus OBS, and d) HD-BC5-Bias C. minus 612 
OBS. 613 

 614 
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 615 

Figure 15. Coefficients of variation of SSS in the German Bight for the period from 2011-616 
2018: a) OBS, b) HDW and c) HD-BC 617 

 618 

Figure 16. Observed (OBS) and simulated daily time series of salinity in 6 m depth for the 619 
MARNET stations: a) Deutsche Bucht (DB) and b) EMS. Unit: PSU. The blue and red 620 
solid lines correspond to the HDW and HD-BC experiments, respectively. The green 621 
line separates the spin-up period in 2010 from the evaluation period 2011-2018. 622 

In addition, we had access to salinity measurements at three two stations in the German Bight 623 
operated by the German Federal Maritime and Hydrographic AgencyBSH as part of the Marine 624 
Environmental Monitoring Network in the North and Baltic Seas (MARNET). These three two 625 
stations are Deutsche Bucht (DB; located at 54.17⁰N, 7.45⁰E) and, EMS (54.17⁰N, 6.35⁰E) and 626 
Nordsee Boje II (NSB; 55⁰N, 6.33⁰E) and their locations are shown in Figure 14. In general, 627 
the bias corrected discharges lead to improved characteristics of the daily salinity at 6 m depth 628 
at the Deutsche Bucht and EMS stations (Figure 16, Table 6). Here the bias, normalized and 629 
centred RSME are decreased, and the coefficient of variation is closer to the salinity 630 
observations for HDW-BC. This means that the bias correction improves the mean and the 631 
variability of the simulated salinity at these stations. However, the correlation with the observed 632 
salinity measurements is somewhat reduced. Note that temporal SSS variations are strongly 633 
influenced by local currents, vertical mixing and wind-wave-surface interactions. Therefore, 634 
signals from an improved river runoff can easily be obscured by the noise from these processes, 635 
which can also differ at the point scale of the station measurements and at the grid scale of the 636 
respective NEMO grid box. This is reflected in the relatively low correlation values. 637 
Furthermore, this can be seen when the gridded SSS data of Droghei et al. (2018) are used as a 638 
reference for the metrics at the station locations (Supplementary Table S1). Here, all metrics 639 
improve with HDW-BC, even the correlation. However, the correlation is lower than with the 640 
station observations, which is also the case for the correlation of the gridded SSS data itself 641 
with the station observations (Deutsche Bucht: 0.15; EMS: 0.18). Considering only the year 642 
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2013, when the influence of the Elbe flood on the salinity at the Deutsche Bucht station is more 643 
pronounced (Nguyen et al., 2024), the correlation also improves when using HDW-BC for both 644 
references (Table 6 and S1).an improved simulation of the daily salinity at 6 m depth at the 645 
stations DB and EMS. Here the RSME decreases from 1.70 to 1.45 and from 1.43 to 1.32, 646 
respectively. It seems that in NEMO the positive effect of using bias corrected discharges is 647 
limited to near-surface salinities, as there is no noticeable effect at 30 m depth (not shown). 648 
This is consistent with the fact that the Deutsche Bucht and EMS stations are located in an area 649 
where the salinity is temporarily stratified, depending on the meteorological conditions and the 650 
intensity of river runoff (Klein and Frohse, 2008). NSB is not considered in detail as it is located 651 
further offshore where no noticeable SSS changes were introduced by using bias corrected 652 
discharges (Figure 13b). 653 

In summary, the results of the NEMO experiments indicate the beneficial effect of using bias 654 
corrected discharges on the simulated SSS in coastal areas. However, although the low SSS 655 
biases are reduced by using the bias corrected discharges, the simulated SSS is still 656 
underestimated in coastal areas, especially close to the estuaries of large rivers (Figure 14d). 657 
This may be attributed to the rather smooth coastline of the NEMO ocean grid. Here, most parts 658 
of the large estuaries of the rivers Elbe, Ems and Weser are not included. In reality, a major part 659 
of the mixing of the riverine freshwater inflow and the saline North Sea happens within these 660 
estuaries. In the NEMO model setup, the freshwater inflow is introduced at the respective river 661 
mouth points of the smooth NEMO coastline where it starts to mix with the saline North Sea 662 
water. Consequently, the simulated water at and near those points is much fresher than in reality, 663 
which leads to the low SSS bias. Note that on the one hand such a smooth coastline is necessary 664 
in NEMO to avoid numerical instabilities. On the other hand, the spatial resolution of the 665 
NEMO grid is not high enough to adequately resolve parts of the longer estuaries.  666 

Table 6. Various metrics (see Sect. 2.7) of the simulated salinity time series in 6 m 667 
depth compared with the observations at the stations Deutsche Bucht and EMS for 668 
2011-2018 and at Deutsche Bucht for 2013.  669 

  2011-2018 2013 

    Deutsche Bucht EMS Deutsche Bucht 
Metric HDW HDW-BC HDW HDW-BC HDW HDW-BC 
Bias [%] -4.5 -3.7 -4 -3.6 -3.2 -1.8 
Variability ratio [%] 142.7 125 151.5 136.1 82.9 74.2 
Normalized RMSE [%] 40.1 34.3 51.3 47.6 36.2 27.1 
Centered RMSE 0.94 0.89 0.73 0.72 0.97 0.89 
Correlation 0.24 0.21 0.48 0.39 0.20 0.28 

 670 

5 Summary and Conclusions 671 

In the present study, we have introduced a methodology for the bias correction of European 672 
river runoff to provide corrected riverine inflows as forcing for ocean models in offline and 673 
coupled system model simulations. The central part of this methodology is a three-part-quantile 674 
bias correction, which can correct different biases for low, medium and high discharges. The 675 
bias correction parameters are derived in two steps. First, different correction factors for low, 676 
medium and high flows are derived for each river considered (cf. Sect. 2.5) at the location of 677 
the most downstream station for which daily discharge measurements were available. These 678 
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factors were then transferred to the respective river mouth on the HD model grid and to adjacent 679 
coastal inflow points in its vicinity.  680 

The evaluation of the bias corrected discharge at the station location showed that the bias 681 
correction greatly improved the simulated discharges. For the evaluation of the bias corrected 682 
discharge at the downstream station locations, we considered the mean bias and the KGE, which 683 
is a quality metric combining bias, correlation and coefficient of variation. Considering the 684 
same period as used to derive the bias correction factors, the mean bias is trivially close to zero. 685 
However, the bias is also substantially reduced for most rivers if a different period is considered. 686 
Irrespective of the period, the KGE pattern generally improves for the bias corrected discharges 687 
and shows high values for many rivers. Exceptions are those rivers with a very strong 688 
anthropogenic distortion of the natural flow, e.g. by many dams or large water withdrawals. 689 
Here, despite of some improvements, the KGE values are still rather low, such as for the rivers 690 
Dnjepr, Volga, Luleälven and a few Turkish rivers flowing into the Black Sea. The KGE also 691 
shows the beneficial effect of the three-part-quantile bias correction, as correcting only the long-692 
term mean annual discharge bias is not sufficient in many areas, especially in northern Europe. 693 
We found that the three-part-quantile bias correction often improves the KGE in regulated 694 
rivers, so that it appears to mimic the effect of regulation, where regulation leads to the 695 
elimination of peak flows while maintaining certain flow levels during low flow periods. 696 

The evaluation of riverine inflows to the sea at river mouths with observed daily discharge 697 
is rarely possible as there are usually no river gauges available. Even if there is a gauge at the 698 
mouth of a river, the measurements are often affected by tidal influences from the coast, so that 699 
the measured amounts may not represent the actual river discharge. For obvious reasons, it is 700 
also difficult to compare simulated inflows with observed discharges for unmonitored rivers. 701 
Therefore, we compared the simulated and bias corrected discharges with long-term mean 702 
inflow estimates into different sea basins from HELCOM, OSPAR and IGC-EMO. For most of 703 
the basins considered, the bias correction improves the simulated inflows. This indicates a 704 
reasonable performance of the approach to transfer the bias correction factors obtained at the 705 
downstream stations to the respective river mouths and adjacent coastal areas. Exceptions are 706 
the Gulf of Finland, the Gulf of Riga, the Celtic Sea and the Irish Sea. For the Gulf of Finland 707 
and the Celtic Sea, the deviations of the uncorrected and bias corrected inflows from the inflow 708 
estimates are rather small. For the Gulf of Riga, the deviations of the uncorrected and bias 709 
corrected inflows from the HELCOM estimates are also small, but they significantly 710 
underestimate the IGC-EMO estimates. However, this could be due to a large overestimation 711 
of the Daugava discharge during the period 1995-2019 in the IGC-EMO data and thus also of 712 
the corresponding Gulf of Riga inflow. For the Irish Sea, IGC-EMO seems to be closer to reality 713 
as the OSPAR inflow does not cover the unmonitored rivers in the British part of the catchment.  714 

A caveat applies for rivers where the human influence on river flow has changed 715 
significantly over time. Applying bias correction factors derived for 1979-2014 to earlier 716 
periods may lead to errors for regulated rivers in years before these regulatory measures were 717 
implemented. This is the case for the Ebro, where irrigation activities have largely intensified 718 
during the period 1979-2014 compared to earlier periods (see Sect. 3.3). A detailed analysis of 719 
the rivers and periods concerned is beyond the scope of this study. However, at least for the 720 
period 1950-1978, the KGE distribution does not seem to be significantly affected, as there is 721 
no noticeable deterioration.  722 

We have shown that our bias correction method works well for Europe at the station 723 
locations as well as for the riverine inflow into northern and western European sea basins. Using 724 
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two NEMO simulations in the German Bight, we have also shown that the use of the bias 725 
corrected discharges as forcing leads to an improved simulation of sea surface salinity in coastal 726 
areas especially regarding the mean salinity and its variability. However, for the potential 727 
transfer of the bias correction methodology to other regions, it has to be pointed out that the 728 
application of the three-part-quantile bias correction over a region only makes sense if a large 729 
part of the catchment area is covered by available daily discharge measurements. As the three-730 
part-quantile bias correction is based on biases in three percentile ranges of daily flows, it is 731 
also suitable for the use in climate change applications. Here the bias correction factors can be 732 
derived from a historical discharge simulation and then applied to future projections or past 733 
reconstructions. In addition, the bias correction can also be applied in rRegional Ccoupled 734 
Ssystem mModel (RCSM) simulations, where the bias correction factors can be derived from 735 
an initial simulation and then applied during the run-time of the actual RCSM coupled 736 
simulation. This capability has been implemented in the HD model v5.2.2 (Hagemann et al., 737 
2023) and is currently being applied in the coupled system model GCOAST GCOAST-AHOI 738 
system (Ho-Hagemann et al., 2020).  Finally, we note that the bias corrected discharges are 739 
available from the World Data Centre for Climate and are already used within the 740 
CoastalFutures project (https://www.coastalfutures.de).  741 

Data Availability Statement 742 

Many of the observed daily discharge data used can be obtained from the Global Runoff Data 743 
Centre (https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html). Other 744 
data have been retrieved from public websites associated with the sources referred to in Sect. 745 
2.5. GSWP3 data were retrieved from the ISIMIP data portal (https://data.isimip.org ) and 746 
WFDE5 data were retrieved from the Copernicus Climate Data Store 747 
(https://cds.climate.copernicus.eu). OSPAR data were taken from an OSPAR report (Farkas 748 
and Skarbøvik, 2021) or its associated data available on the OSPAR webpage 749 
(https://odims.ospar.org/en/search/?dataset=rid-data-reports). This study has been conducted 750 
using E.U. Copernicus Marine Service Information data on SSS (https://doi.org/10.48670/moi-751 
00051) and some French discharge measurements. The daily data of surface runoff and 752 
subsurface runoff as well as the simulated and bias corrected discharge data (Hagemann and 753 
Stacke, 2023) can be accessed via the World Data Centre for Climate (WDCC) at the German 754 
Climate Computing CenterDKRZ.   755 
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Supplementary Material 978 

Table S1: Various metrics (see Sect. 2.7) of the simulated salinity time series in 6 m 979 
depth compared with the SSS data of Droghei et al. (2018) at the locations of the 980 
stations Deutsche Bucht and EMS for 2011-2018 and at Deutsche Bucht for 2013.  981 

  2011-2018 2013 

 Deutsche Bucht EMS Deutsche Bucht 
Metric HDW HDW-BC HDW HDW-BC HDW HDW-BC 
Bias [%] -3 -2.2 -1.1 -0.7 -3.9 -2.6 
Variability ratio [%] 135.5 117.1 130.4 116.7 132.7 116.2 
Normalized RMSE [%] 23.2 18.7 25.6 22.9 50.8 36.9 
Centered RMSE 1.01 0.89 0.91 0.84 0.78 0.70 
Correlation 0.14 0.21 0.25 0.26 0.16 0.22 
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Figure S1: Correlation of a) HDW and b) HDW-BC with observations as well as c) 988 
HDW with HDW-BC from 1979-2014. 989 
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Figure S2. Same as Figure 13, but with SSS averages calculated over the period June 2013. 994 
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