
Reply to the comments of reviewer 1 

We thank the reviewer for the thorough reading of the manuscript and the valuable remarks that 
helped us to improve the manuscript. In the following, the original reviewer comments are given 
in italic and all line numbers and figure numbers refer to the original submitted version that was 
reviewed if not mentioned otherwise.  

 

Reply to review of reviewer 1 

General comments 

The article is logically structured, writing quality is clear (although a bit heavy on acronyms), 
and figures appropriate. 

The article is submitted to Ocean Science, but the focus is on a hydrology model bias 
correction method. Freshwater runoff is an important forcing of coastal ocean simulations, 
and the article includes ocean simulations as a diagnostic. The journal-fit is not bad, but the 
readers of Ocean Science may be somewhat unfamiliar with hydrology models and water 
routing. More attention on summarizing the pertinent information for a oceanographer 
audience would be worthwhile, particularly sections 2.2 and 2.3. 

We added some text in response to your specific comments on line 107-119, 115-117 and 120-
143 given below. Please note that we originally planned to add more details in the sections 2.2 
and 2.3. However, the editor correctly pointed out that these details comprised a lot of doubling 
of text with the information provided in Hagemann et al. (2020) and Hagemann and Stacke 
(2022). Consequently, we removed these details and referred to the respective publications. In 
addition, we reduced the number of acronyms. 

The primary deficiency in this article is the absence of comparisons with other bias correction 
methods. Including such comparisons would put the proposed method into perspective in a 
landscape of methods. This would enable an exploration into it’s relative 
strengths/weaknesses, and reveal scenarios where it should and should not be applied. E.g. 
does it generally outperform others, or overcome a common deficiency in others, or have 
better transferability, or work in scenarios where others do not, etc. 

Please see our response to your specific comments to line 53-66, 71-73, 147-163, 174-180 and 
593-603 given below. 

For a specific river, our new method does not outperform other bias correction methods. 
However, the advantage of our method is its large-scale applicability for current and future 
climate conditions, and the transfer of bias-correction factors from station locations to river 
mouths and neighbouring catchments. To make this clearer, please see our response to 53-66, 
174-180. 

A lesser shortcoming is the limited use of the ocean simulations and observational datasets as 
a check on the bias correction method through nearshore ocean salinity. Improved agreement 
on an 8-year mean sea surface salinity comparison does not showcase the strengths of this 3-
band bias correction method – simple bias correction, or the climatology runoff datasets, 
should be able to achieve that result. While a reduced RMSE is shown with respect to salinity 



station data, it is unclear if that is RMSE or CRMSE; the former may be dominated by the 
bias improvement, while the latter would indicate improved salinity variability. The salinity 
observations and ocean model data should be examined more closely to look for 
improvements in the salinity at shorter time scales. 

Please see our response to your specific comments to the line 495-496 and 507-508 where we 
added analyses and figures. 

Summarizing, the article has potential but needs to showcase the 3-band method in the 
context of established bias correcting methods. The ocean simulations and salinity 
observations are underutilized for the purpose of showing improved nearshore salinity 
following the bias correction; a focus on improved salinity variability would put them to 
better use and strengthen the findings. 

Specific comments 

Lines 53-66: the authors note that quantile mapping is an established bias correction method, 
providing a couple references where it was used successfully and a couple where it did not 
perform well. (a) is quantile mapping expected to succeed or fail for the present case of 
European runoff? Meanwhile, there is no mention of other bias correction methods except for 
a hint that they may be found in Kim et al 2021. (b) are these methods all inadequate as well? 
The background section should put more effort into discussing the inventory of existing bias 
correction methods, and include some indication of why they are not up to the task of 
correcting hydrology output here. 

We modified the text in Line 7-8: 

“… Baltic Sea. To achieve low biases in riverine freshwater inflow in large-scale climate 
applications, a bias correction is required that can be applied in periods where runoff 
observations are not available and that allows spatial transferability of its correction 
factors. In order to meet these requirements, we have …” 

We modified the text in Line 54-55: 

“The bias correction of river runoff is an approach that has been used particularly for 
short term hydrological forecasts and ensemble predictions of up to six months. 
However, these approaches (see, e.g., those listed in Kim et al. 2021 and Madadgar et 
al. (2014)) are often specifically trimmed to flood forecasts. Therefore, they often 
require the existence of observed values from previous time steps so that that are not 
applicable in climate change studies, such as autoregression models (Kim et al., 2021) 
or components of a Bayesian forecasting system (Krzysztofowicz and Maranzano, 
2004). Others like non-parametric methods based on Bayesian approaches as proposed 
by Brown and Seo (2010; 2012) need a large number of ensemble members (Madadgar 
et al. 2014). 

Recently, bias correction …” 

We added new text in line 60: 



“… (USA). A criticism of using quantile-mapping in flood forecasting is that it does not 
maintain the pairing of corresponding simulated and observed flows (Madadgar et al. 
2014). Madadgar et al. (2014) also noted …” 

We added new text after line 78: 

“Therefore, we decided to not apply methods that employ detailed modifications of the 
discharge curves for specific rivers such as those methods that use complex matrix 
arithmetic of observed and simulated discharge time series (e.g. Zhao et al., 2011), or 
the common quantile-mapping approaches, The latter are conducted using a lot of bins, 
so that the bias in the discharge curve of a specific river can be strongly reduced. 
However, these detailed correction factors for every bin may likely not be transferred to 
other locations. It may work for the same river if station and river mouth are relatively 
close to each other, but certainly may not be valid for the transfer to neighbouring 
catchments.” 

Line 71-73: (a) What is “a high degree of consistency”? Is it related to correlation?  Is there 
a definition for this? (b) The proposed method applies correction factors to the simulated 
runoff data based on the percentile band the data lands in (discharges that get correction 
factor 1 notwithstanding); this is a fairly intrusive change that modifies the data significantly, 
as per Table 3, and requires discontinuity patching. What is the key aspect about the 3-band 
method that enables it to maintain a ‘high degree of consistency’, where other methods are 
deficient and would presumably degrade this consistency? 

Yes, we mean correlation. According to your remark we noticed that our wording was not 
very clear. Hence, we modified the text in: 

Line 71:  

“…high degree of temporal consistency …” 

Line 73:  

“…, a bias correction with as little fitting or modification of the daily sequence of 
runoff as possible is desired.” 

In addition, we added the supplementary figure S1 and the following text after line 320. 

“In order to analyse how much the bias correction affects the daily sequence of river 
runoff at the station locations, we calculated the correlation between the simulated 
discharges and the observations. Supplementary Figure S1 shows that the correlation 
patterns of HDW and HDW-BC with observed discharges are quite similar. For rivers 
where differences can be identified, the correlation mostly increases for HDW-BC. The 
correlation between HDW and HDW-BC is generally higher than 0.95, and only a very 
few rivers show correlations lower than 0.9. These rivers are usually rivers that are 
heavily influenced by human activities, such as the Volga and the Luleaelven.” 

We also modified the text in line 281-282: 

“… mean bias, the Pearson correlation coefficient and the Kling-Gupta efficiency 
(KGE; Gupta et al., 2009; Kling et al., 2012). All metrics …” 



 
 

 

Figure S1: Correlation of a) HDW and b) HDW-BC with observations as well as c) 
HDW with HDW-BC from 1979-2014. 

Line 107-119, sec 2.1: on the atmospheric products description, this is exceedingly brief! 
There should be more explanation about how the datasets differ, temporal resolution and 
relative strengths/weaknesses of each, and why they were ultimately chosen. 

We modified the text in line 107-108: 

“We used two atmospheric datasets comprising daily data of various near-surface 
atmospheric variables. They have been used as meteorological forcing datasets in 
several climate impact assessments and are recommended by ISIMIP (2023). Both 
datasets were specifically generated to force global hydrological models for hindcast 
simulations. They are based on re-analysis products from different weather forecast 
centres and bias-correction procedures were applied by the respective creators to 
improve their data.” 

We added the following text after line 119: 

“Mengel et al. (2021) stated that WFDE5 is considered as the more realistic dataset, 
especially with respect to day-to-day variability for variables for which the monthly 
mean values were bias corrected, such as precipitation and temperature. For more 
information on application and evaluation of both datasets, see, e.g., Mengel et al. 
(2021) and references therein, Hassler and Lauer (2021), Arora et al. (2023).” 



Line 115-117: this reads as if the present authors employed the WFD method to derive this 
WFDE5 dataset. Suggest to restructure this section to be clear that these were not generated 
as part of this present work, and include the rationale for selecting them. 

We rephrased the text: 

Line 110-111:  

“To generate the GSWP3 dataset, Kim (2017) dynamically downscaled the 20th Century 
Reanalysis (20CR; Compo et al., 2011) onto …” 

Line 115-116:  

“To generate the WFDE5 dataset, Cucchi et al. (2020) applied the WATCH Forcing 
Data (WFD) methodology (Weedon et al., 2011) to surface meteorological variables 
…” 

Line 120-143, sec 2.2 & 2.3: on the hydrology model setup, scant details are included here. It 
is well established that hydrology models require calibration and/or data assimilation to 
produce good results. Is the HydroPy+HD setup calibrated or uncalibrated – either in the 
present work, or prior work? I gather there is no data assimilation, but it would help to be 
explicit about this. 

We added in line 121: 

“HydroPy (Stacke and Hagemann, 2021) is a state-of-the-art global hydrology model 
for which no model calibration was performed for its setup. Within global hydrological 
modelling, the usage of uncalibrated models is rather common (see, e.g., Haddeland et 
al., 2011), even though some models exist that are calibrated for global studies. In the 
present study, HydroPy was driven …” 

We added in line 134: 

“The HD model (Hagemann et al., 2020) is a well-established river routing model that 
is implemented in a range of global and regional model systems. As noted in Hagemann 
et al. (2020), no river specific parameter adjustments were conducted in the HD model 
to enable its applicability for climate change studies and over catchments, where no 
daily discharges are available at a downstream station. To simulate discharge with the 
HD model, we used …” 

Lines 147-163: The article would benefit greatly from an explanation/justification about how 
this method differs from existing quantile mapping (QM) methods (e.g. empirical QM, delta 
QM, …). If I’ve understood correctly, the proposed method is similar to QM: considering 
quintiles, the low and high bands correspond to the first and last quintile, while the middle 
corresponds to a merged 2nd, 3rd and 4th quintile. Thus, the method is not that far from a 
quintile-based QM method without interpolation, where the middle three quintiles are merged 
and a workaround added to mitigate the two discontinuities. Pondering the connection: (a) if 
the middle three quintiles were un-merged, would it degrade the performance? (b) if linear 
interpolation were added, that would replace the discontinuity workaround; any reason not to 
do it? (c) if a and b are ok, then we’ve basically arrived at (a coarse) empirical quantile 
mapping. (d) reversing this thought process: can the present method be better described as a 



special case of quantile mapping? E.g. tail-focused quantile mapping, or nonuniform quantile 
mapping, or 1:3:1 quantile mapping? 

According to your remark regarding lines 53-66, we added new text to clarify our objective in 
choosing a bias correction method, and also why we did not choose a common quantile mapping 
approach (please see our response above).  

a) Using five percentile ranges may slightly improve the performance at the station 
locations but may have a degrading effect on the transfer to river mouth locations and 
neighbouring catchments. On purpose, we did not generate five percentile ranges as we 
think that a sequence of the respective five correction factor has less spatial 
transferability characteristics than the three we are using. As the spatial transfer of bias 
correction factors for river runoff is a rather new approach (see our response to your 
comment on line 174-180 below), we cannot undermine this statement by other 
literature. However, our evaluation of inflow into sea basins is supporting the validity 
of our approach. 

b) The discontinuity work around is actually a linear interpolation of the correction factors 
between the two neighbouring percentile ranges (low & middle, middle & high). 

c) and d) In a wider sense, the three-part bias correction corresponds to a very coarse 
quantile-mapping. However, designating it as quantile mapping approach may suggest 
that a detailed mapping is done as in the commonly used quantile-mapping 
applications. One the one hand, we want to avoid a potential mislead of the reader. On 
the other hand, we see your point on the relationship with quantile mapping 
approaches. Consequently, we renamed our method and modified the title to pay 
regard to your remark: 

New title: A three-quantile bias correction with spatial transfer for the correction of 
simulated European river runoff to force ocean models 

Within the text, we will mainly replace ‘three-part’ by ‘three-quantile’ bias correction. 

We are also pointing to the correspondence with a coarse quantile mapping approach in the 
beginning of Sect. 2.4. Here, we modified the text in lines 147-148: 

“We have developed a bias correction method for river runoff that uses correction 
factors for three quantiles and includes a spatial transfer of these factors. We note that 
our three-quantile bias correction is similar to a very coarse quantile mapping. The latter 
has been introduced in climate change impact research to correct for significant biases 
in data produced by global and regional climate models. Quantile mapping is a 
distribution mapping in which the distribution function of climate values is corrected to 
match the observed distribution function. Details of such mapping applied to 
precipitation and surface air temperature can be found, for example, Piani et al. (2010) 
and Teutschbein et al. (2011). Our bias correction method involves several steps. First, 
different correction factors for low, medium and high percentiles are calculated at the 
station locations and then applied at the respective river mouths.” 

Line 174-180: The method of interpolating bias correction factors from gauged river mouths 
to not-gauged river mouths, up to a maximum distance, seems reasonable. Is this an 
established approach, or is it part of the present method? Are there any references to what 
other hydrologists have done for transferring bias corrections to ungauged rivers? 



We added the following text after the text inserted in line 78 in response to your comment on 
line 53-66: 

“We note that the spatial transfer of bias correction factors for river runoff on a large 
scale is a rather new approach. Within a specific river, Lakew and Moges (2021) applied 
spatial interpolation of bias correction factors within the Upper Blue Nile system based 
on 12 gauging stations. Nijssen et al. (2020) trained a machine learning (ML) model to 
perform site-specific bias corrections in the Columbia River and then applied the ML 
model to river reaches without flow observations.” 

Line 267-269: What was used for the initial conditions -- presumably ORAS5? 

ORAS5 is used as the lateral boundary conditions. The initial conditions were taken from a 
20-years spin-up simulation driven by ERA5 data. We added the following text to line 269: 

“… 2018. Initial conditions were taken from a 20-years spin-up simulation driven by 
ERA5 data, so that the deeper ocean layers could adapt to the present-day climate (S. 
Grayek, pers. comm., 2023). Note that for the evaluation of results, we neglected the 
year 2010 to have an additional spin-up where NEMO could adapt to the specific 
transient conditions within each of the two experiments. For the German Bight, this 
spin-up of one year is sufficient as the residence time of water may comprise only up to 
four months (Becker et al., 1999). In the two experiments, the …” 

Line 325-327: on ‘selected rivers’, there is no rationale given for the river selection. There 
must be a reason those ones were chosen 

We modified the text: 

“… discharge during 1979-2014 for selected rivers, where the three-quantile bias 
correction led to a noticeable KGE improvement in comparison to the mean bias 
correction.”   

Line 487-488: The simulation starts in 2010, and the evaluation also starts in 2010. There 
should be a “spin up” time scale here where you allow the model to adjust to the new forcing 
and evaluate after a number of those time scales have elapsed (eg, 2-3).  What is the 
residence time for surface waters in the German Bight area? This time scale may be fast 
(days? weeks? months?) but should be included for context. Meanwhile, same question for the 
deeper waters – is the residence time here large or small? This is for putting “not much 
happened below 30m” into context. 

We provided information on the ocean model initial conditions in response to your comment 
on 267-269. Here, we also state that we now used the year 2010 as an additional spin-up so that 
our evaluation comprises the period 2011-2018. We updated our figures and the text 
accordingly. Surface waters in the German Bight are exchanged within a few days. For deeper 
layers, the residence time of water may comprise up to four months (Becker et al. 1999). The 
latter is now also referred in the new text mentioned above.  

In addition, we added text in line 510: 

“… (not shown). This is consistent with the fact that the Deutsche Bucht and EMS 
stations are located in an area where the salinity is temporarily stratified, depending on 



the meteorological conditions and the intensity of river runoff (Klein and Frohse, 
2008).”  

Line 495-496: Evaluating mean sea-surface salinity (SSS) over eight years will wipe out the 
variability. I would expect the 8-year mean SSS bias to be impacted by biases in the mean 
freshwater input, and less so by the variability in the freshwater input. As in the general 
comments section, this particular evaluation does not showcase well the 3-band bias 
correction method’s strengths. If you run the ocean simulation with simple bias correction 
(e.g. Table 3 middle part), or with the climatology freshwater datasets, you should get the 8-
year mean SSS comparable to that from the 3-band method. If I’ve got this wrong, then 
showing the climatology or simple bias correction cases alongside would strengthen the case 
for the 3-band method. Meanwhile, as I understand it the strength of the 3-band method is the 
better capturing of the variability -- and indeed Figures 7,8,10 support this -- so one should 
look for better salinity /variability/ in the ocean model simulations: (a) are there runoff events 
or interannual variability in discharge (e.g. Fig7 top panel) that appear, perhaps with some 
lag, as salinity drops in the DB and EMS station data, and are these signals better 
represented with the bias-corrected ocean model run? (b) similar question but for the 
satellite-based surface salinity product; are runoff events / interannual variability better 
represented when looking at shorter time scales than 8 yr mean – daily, weekly, seasonally, 
interannually? 

We added the new Figure 15 and the supplementary Figure S2, and we added text in line 501: 

“Similar improvements can also be seen in June 2013 when the Elbe flood is strongly 
influences the SSS of the German Bight (Figure S2). Here, the increase in salinity due 
to the bias corrected runoff (Figure S2b) is more pronounced than in the long-term mean 
(Figure 13b). In addition, we found that use of the bias corrected river runoff also 
improves the SSS variability expressed by its coefficient of variation, shown in the new 
Figure 15.” 



 

Figure S2. Same as Figure 13, but with SSS averages calculated over the period June 2013. 

 

new Figure 15: Coefficients of variation of SSS in the German Bight for the period from 
2011-2018: a) OBS, b) HDW and c) HD-BC 

Line 507-508: If this is actually RMSE then it is unclear if the reduction in RMSE is due to 
reduced error in variability or due to reduced bias: RMSE^2 = CRMSE^2 + bias^2. 
Additionally reporting CRMSE here (and/or another mean-removing metric such as 
correlation, or gamma^2), would better capture improvement in variability. 



We added the new table 6 and the new table S1 in the supplement, and we modified the text in 
line 507-508: 

“In general, the bias corrected discharges lead to improved characteristics of the daily 
salinity at 6 m depth at the Deutsche Bucht and EMS stations (Table 6). Here the bias, 
normalized and centred RSME are decreased, and the coefficient of variation is closer to 
the salinity observations for HDW-BC. This means that the bias correction improves the 
mean and the variability of the simulated salinity at these stations. However, the correlation 
with the observed salinity measurements is somewhat reduced. Note that temporal SSS 
variations are strongly influenced by local currents, vertical mixing and wind-wave-surface 
interactions. Therefore, signals from an improved river runoff can easily be obscured by the 
noise from these processes, which can also differ at the point scale of the station 
measurements and at the grid scale of the respective NEMO grid box. This is reflected in 
the relatively low correlation values. Furthermore, this can be seen when the gridded SSS 
data of Droghei et al. (2018) are used as a reference for the metrics at the station locations 
(Supplementary Table S1). Here, all metrics improve with HDW-BC, even the correlation. 
However, the correlation is lower than with the station observations, which is also the case 
for the correlation of the gridded SSS data itself with the station observations (Deutsche 
Bucht: 0.15; EMS: 0.18). Considering only the year 2013, when the influence of the Elbe 
flood on the salinity at the Deutsche Bucht station is more pronounced (Nguyen et al., 2024), 
the correlation also improves when using HDW-BC for both references (Tables 6 and S1).” 

Table 6. Various metrics (see Sect. 2.7) of the simulated salinity time series in 6 m 
depth compared with the observations at the MARNET stations Deutsche Bucht and 
EMS for 2011-2018 and at Deutsche Bucht for 2013.  

  2011-2018 2013 

    Deutsche Bucht EMS Deutsche Bucht 
Metric HDW HDW-BC HDW HDW-BC HDW HDW-BC 
Bias [%] -4.5 -3.7 -4 -3.6 -3.2 -1.8 
Variability ratio [%] 142.7 125 151.5 136.1 82.9 74.2 
Normalized RMSE [%] 40.1 34.3 51.3 47.6 36.2 27.1 
Centered RMSE 0.94 0.89 0.73 0.72 0.97 0.89 
Correlation 0.24 0.21 0.48 0.39 0.20 0.28 

 

Table S1: Various metrics (see Sect. 2.7) of the simulated salinity time series in 6 m 
depth compared with the SSS data of Droghei et al. (2018) at the locations of the 
MARNET stations Deutsche Bucht and EMS for 2011-2018 and at Deutsche Bucht for 
2013.  

  2011-2018 2013 

 Deutsche Bucht EMS Deutsche Bucht 
Metric HDW HDW-BC HDW HDW-BC HDW HDW-BC 
Bias [%] -3 -2.2 -1.1 -0.7 -3.9 -2.6 
Variability ratio [%] 135.5 117.1 130.4 116.7 132.7 116.2 
Normalized RMSE [%] 23.2 18.7 25.6 22.9 50.8 36.9 
Centered RMSE 1.01 0.89 0.91 0.84 0.78 0.70 
Correlation 0.14 0.21 0.25 0.26 0.16 0.22 

 



For the description of the metrics, we added the following text to Sect. 2.7 after lines 287: 

“For the evaluation of simulated salinity in the NEMO experiments, we used daily values 
and considered  

 the mean bias  
 the correlation of simulated and observed time series expressed by the Pearson 

correlation coefficient 
 the variability ratio defined by the ratio of the simulated and observed coefficients 

of variation  
 the normalized root-mean-square-error (RSME) 
 the centered RSME. 

The first four metrics are described, e.g., in Hagemann et al. (2020), while the centered 
RSME is described, e.g., in Taylor (2001).” 

Note that we slightly updated Figure 14: 

 

Figure 14. Observed and simulated daily time series of salinity in 6m depth for the MARNET 
stations: a) Deutsche Bucht (DB) and b) EMS. Unit: PSU. The blue and red solid lines 
correspond to the HDW and HD-BC experiments, respectively. The green line separates the 
spin-up period in 2010 from the evaluation period 2011-2018. 

Lines 518-530: This reads like the 3.6 km model is too coarse to get good nearshore salinity 
and is not up to the task. Are there any higher-resolution NEMO models available for the 
German Bight that could be used as a higher-resolution downscale? That is, to capture some 
of the estuaries and better resolve the coastline 

We choose this setup as this is a standard setup of NEMO used over this region (see, e.g., 
Bonaduce et al., 2020; Grayek et al., 2023; Ho-Hagemann et al., 2020; Nguyen et al., 2024) at 
our institute. In principle, it is possible to conduct simulations with NEMO on a higher 
resolution e.g. 1 km covering only the German Bight or at 2.5 km covering the North Sea. 
However, currently we do not have any experience with such a setup. For the latter, there is an 
on-going cooperation with the Federal Maritime and Hydrographic Agency where such a 
simulation is planned for the year 2018 (M. Ricker, pers. communication, 2024). Therefore, 
conducting such a simulation is beyond the scope of the present study and may be done in the 
future. In addition, a major motivation of developing the bias correction was its application 
within our regional coupled system model GCOAST-AHOI (Ho-Hagemann et al., 2020), such 
as mentioned in line 600-601. 

Lines 587-590: This should be reworded to be more precise about what aspects of the sea-
surface salinity were improved (e.g., the 8 yr mean, and pending resolution of comments for 
line 507-508, variability at stations) 



We added the following text in line 590: 

“…coastal areas, especially regarding the mean salinity and its variability.” 

Lines 593-603: the 3-band method is similar to quantile mapping (as per comments above for 
lines 147-163), and quantile mapping has been flagged as potentially not suitable for climate 
simulations as it has been shown to degrade trends (i.e. references in Cannon 2015), where 
Cannon 2015 proposed a delta QM that preserves trends (by extracting them, applying the 
quantile mapping, and reinserting them). The 3-band method proposed here does not take any 
special care about preserving trends. Adding some rationale for why this method is 
applicable to climate simulations, particularly when contrasted with other bias correction 
methods that are not applicable, would strengthen this conclusion. 

Maraun et al. (2017) pointed out that a debate has arisen about whether trend modification by 
variance-adjusting bias correction methods actually improves or degrades the raw climate 
change signal. They further argued that purely statistical arguments cannot resolve this issue, 
which requires process understanding. With respect to runoff, the latter needs to take into 
account the spatial and temporal characteristics of rivers and events, which is beyond the scope 
of the present large-scale study. However, we have added a new section 3.4 to address this 
debate: 

“3.4 Effect of the bias correction on contemporary trends 

As mentioned in Sect. 2.4, our three-quantile bias correction is similar to a very coarse 
quantile mapping, and quantile mapping has been flagged as potentially not suitable for 
climate simulations as it has been shown to modify trends (e.g. references in (e.g. 
references in Cannon et al., 2015). However, Maraun et al. (2017) pointed out that a 
debate has arisen about whether trend modification by variance-adjusting bias 
correction methods actually improves or degrades the raw climate change signal. They 
further argued that purely statistical arguments cannot resolve this issue, which requires 
process understanding. With respect to runoff, the latter needs to take into account 
spatial and temporal characteristics of rivers and events, which is beyond the scope of 
the present large-scale study.  

To investigate the effect of the bias correction on contemporary trends, we calculated 
trends in the annual maximum, mean and minimum discharge for the period 1979-2014 
and compared the results for HDW and HDW-BC (new Fig. 10). The trend patterns are 
generally within the range spanned by the two datasets considered in Hagemann and 
Stacke (2022). For the annual maximum and mean discharge, the trend patterns are only 
slightly changed by the bias correction. For the annual minimum discharge, the trend 
pattern is quite similar in HDW and HDW-BC. However, there are a few more rivers 
where the magnitude of the trend is affected by the bias correction. This is particularly 
the case over Scandinavia where many rivers are regulated, so that that the correction 
of the low percentile range is often strong to account for the effect of regulation on low 
flows (cf. Sect. 3.2).”  

  



 
 

 
 

 

New Figure 10: Trends in annual maximum (1st row), mean (2nd row) and minimum (3rd 
row) discharge [%/a] for HDW (left column) and HDW-BC (right column) from 1979-
2014. 

 

Technical corrections 

Line 26: include ocean keywords such as nearshore or sea-surface salinity, or ocean model? 

We added sea-surface salinity. 

Line 134, the reference is to a Zenodo link to the HD model code. This seems more 
appropriate for the data/code availability section, and the early part of sec 2.3 should explain 
the HD model 

In Line 134, we cite Hagemann et al. (2020), which is the first scientific publication of the high-
resolution HD model published in Front. Earth Sci. The HD code publication in Zenodo is 



Hagemann et al. (2023). We assume that the reviewer accidentally looked at the wrong 
reference.  

Line 119: “0.5 spatial resolution” requires units 

We added the missing unit:  

“… 0.5° spatial resolution …” 

Line 281: KGE defined here, no need to de-acronym it later (lines 308, 331, 381, 405) 

We replaced the full name by its abbreviation in the mentioned places. 

Line 417: “Observed and simulated daily discharge of HD5-GSWP3” – surely this should be 
discharge of water 

Yes. We modified the caption to avoid confusion: 

“Observed and simulated daily discharge based on HD5-GSWP3 …” 

Line 510-512: if the NSB station is not used/usable in the eval, remove it entirely 

We removed the NSB station from the updated Figure 13 (see below) and the respective text 
in lines 505 and 510-512.  



 

Figure 13 Mean analyzed SSS: a) Observations (OBS) and various SSS differences of the 
NEMO experiments in the German Bight for the period from 2011 to 2018. The SSS 
differences comprise b) HD-BC minus HDW, c) HDW minus OBS, and d) HD-BC minus 
OBS. The land boundaries are displayed by the dashed grey lines. 

Sec 2.3: Can the HD5-WFDE5 and HD5-GSWP3 acronyms be shortened? H5 and H3 
perhaps? 

We replaced HD5-WFDE5 by HDW, HD5-GSWP3 by HDG, and HD5-Bias C. by HD-BC. 
In this respect, HDW-BC and HDG-BC refer to the bias corrected data of HDW and HDG, 
respectively. 

Figure 7,8,10: use (a), (b), etc for the panels instead of first panel, second panel 

Corrected as suggested. 

Figures, general: in the copy of the manuscript received for review, the figures appear to be 
JPEGs. Suggest to switch to a vector format or PNG 

For the submission of the revised version, we will take care that the figure quality/resolution 
is appropriate.
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