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Abstract. We use 2021 TROPOMI and GOSAT satellite observations of atmospheric methane in an analytical inversion to 

quantify national methane emissions from South America at up to 25 km × 25 km resolution. From the inversion, we derive 

optimal posterior estimates of methane emissions, adjusting a combination of national anthropogenic emission inventories 25 

reported by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC), the 

UNFCCC-based Global Fuel Exploitation Inventory (GFEIv2), and the Emissions Database for Global Atmospheric 

Research (EDGARv7) as prior estimates. We also evaluate two alternative wetland emission inventories (WetCHARTs and 

LPJ-wsl) as prior estimates. Our best posterior estimates for wetland emissions are consistent with previous inventories for 

the Amazon but lower for the Pantanal and higher for the Paraná. Our best posterior estimate of South American 30 

anthropogenic emissions is 48 (41-56) Tg a-1, where numbers in parentheses are the range from our inversion ensemble. This 

is 55% higher than our prior estimate and is dominated by livestock (65% of anthropogenic total). We find that TROPOMI 

and GOSAT observations can effectively optimize and separate national emissions by sector for 10 of the 13 countries and 

territories in the region, 7 of which account for 93% of continental anthropogenic emissions: Brazil (19 (16-23) Tg a−1), 

Argentina (9.2 (7.9-11) Tg a−1), Venezuela (7.0 (5.5-9.9) Tg a−1), Colombia (5.0 (4.4-6.7) Tg a−1), Peru (2.4 (1.6-3.9) Tg a−1), 35 



2 
 

Bolivia (0.96 (0.66-1.2) Tg a−1), and Paraguay (0.93 (0.88 – 1.0) Tg a−1). Our estimates align with the prior estimates for 

Brazil, Bolivia, and Paraguay, but are significantly higher for other countries. Emissions in all countries are dominated by 

livestock (mainly enteric fermentation) except for oil/gas in Venezuela and landfills in Peru. Methane intensities from the 

oil/gas industry are high in Venezuela (33%), Colombia (6.5%) and Argentina (5.9%). The livestock sector shows the largest 

difference between our top-down estimate and the UNFCCC prior estimates, and even countries using complex bottom-up 40 

methods report UNFCCC emissions significantly lower than our posterior estimate. These discrepancies could stem from 

underestimations in IPCC-recommended bottom-up calculations or uncertainties in the inversion from aggregation error and 

the prior spatial distribution of emissions. 

1 Introduction 

Methane (CH4) is a potent greenhouse gas with a relatively short atmospheric lifetime of 9.1 ± 0.9 years (Szopa et al., 2021). 45 

Methane atmospheric concentrations have nearly tripled since pre-industrial times, resulting in an emission-based radiative 

forcing of 1.21 W m−2 compared to 2.16 W m−2 for CO2 (Naik et al., 2021). Here we use satellite observations to quantify 

and attribute methane emissions from South American countries, which have been estimated to contribute 14% of global 

anthropogenic methane emissions (Worden et al., 2022) and are thought to be a major contributor to the methane rise over 

the past decade (Y. Zhang et al., 2021).  50 

The 194 Parties to the Paris Agreement, including all 12 South American countries, must regularly submit Nationally 

Determined Contributions (NDCs) outlining their plans to reduce greenhouse gas emissions. These NDCs are based on 

national emission inventories constructed using bottom-up methods that combine activity data for individual sectors with 

emission factors, sometimes supplemented by direct measurements of individual sources. Bottom-up inventories tend to have 

large uncertainties because emission factors (and sometimes the activity data) can be poorly quantified (Saunois et al., 2020), 55 

and even direct emission measurements may not capture source variability. Atmospheric observations of methane 

concentrations can offer additional top-down information to reduce these uncertainties through inverse analyses with an 

atmospheric transport model, using the bottom-up inventories as prior estimates in the inversion (Jacob et al., 2022).  

Anthropogenic emissions of methane come from many sectors, including oil/gas, coal, livestock, rice cultivation, landfills, 

and wastewater treatment. Natural emissions are from wetlands, fires, termites, and geological seeps. In South America, 60 

wetlands are a major natural methane source but again with large uncertainty (B. Zhang et al., 2017). South American 

anthropogenic methane emissions are heavily dominated by livestock. Of particular importance is Brazil, which is estimated 

to be the third-highest anthropogenic methane-emitting country globally (Worden et al., 2022) and has been identified as a 

major contributor to the recent global rise in methane through livestock and wetland emissions (Y. Zhang et al., 2021, Qu et 

al., 2024). Venezuela, Colombia, and Argentina also have high emissions (Worden et al., 2022).  65 

Satellite observations in the shortwave infrared (SWIR) are particularly attractive for top-down emission estimates due to 

their global coverage and sensitivity down to the surface. Inversions of data from the Greenhouse Gases Observing Satellite 
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(GOSAT, 2009-present) (Parker et al., 2020a) have been used to infer the distribution of methane emissions globally 

(Maasakkers et al., 2019; Janardanan et al., 2020; Qu et al., 2021) and regionally for South America (Tunnicliffe et al., 2020, 

Wilson et al., 2021). These inversions have identified significant discrepancies between top-down estimates and bottom-up 70 

emissions inventories across South America. However, GOSAT observations are sparse, separated by about 250 km, which 

limits the spatial resolution that can be achieved, increasing uncertainties in attributing the top-down emissions to countries 

and sectors. The TROPOspheric Monitoring Instrument (TROPOMI) (2018-present) provides global continuous daily 

mapping of atmospheric methane at 7 km × 5.5 km nadir resolution (Lorente et al., 2023). This coverage in combination with 

high resolution provides TROPOMI with a unique capability for quantifying national emissions and attributing emissions to 75 

sectors. This has recently been demonstrated for the United States (Nesser et al., 2024), the Middle East and North Africa 

(Chen et al., 2023), China (Chen et al., 2022, Liang et al., 2023), and Venezuela (Nathan et al., 2023). 

Here we use TROPOMI observations in an inverse analysis of 2021 methane emissions over South America at up to 25 km 

resolution, using as prior estimates the national anthropogenic inventories reported to the United Nations Framework 

Convention on Climate Change (UNFCCC) under the Paris Agreement for the livestock, waste, and rice sectors. We use two 80 

alternative bottom-up wetland emission inventories as prior estimates. We use a new TROPOMI satellite product that 

corrects surface, aerosol, and cloud artifacts with a machine learning algorithm trained by GOSAT data (Balasus et al., 

2023). We also use GOSAT data, which though sparse provides unique information over wetlands. We quantify emissions 

by country and by sector and begin to identify causes for discrepancies between our estimates and those of the bottom-up 

inventories. 85 

2 Data and Methods 

We use methane observations from GOSAT and TROPOMI (Sect. 2.1) with the GEOS-Chem chemical transport model to 

optimize a state vector of mean methane emissions for 2021 over a rectilinear inversion domain covering South America (-

57.5o to 13.25o latitude, -82.8125 o to -33.75o longitude) at up to 0.25o×0.3125o resolution (~25 km × 25 km). We use a 

combination of countries’ UNFCCC reports and global inventories as prior estimates of anthropogenic emissions in our 90 

inversion (Sect. 2.2). We obtain posterior estimates of the state vector and the associated error covariance matrix though 

analytical solution for the minimum of the Bayesian cost function with lognormal prior errors (Sect. 2.3). We attribute 

inversion results to different methane emission sectors with the methodology described in Sect. 2.4. We conduct an ensemble 

of sensitivity inversions varying inversion parameters, including the choice of wetland prior estimate, to characterize related 

errors in the posterior estimate (Sect. 2.5). 95 

2.1 TROPOMI and GOSAT satellite observations 

GOSAT, launched in 2009, has a 13:00 local overpass time and 10-km diameter pixels separated by about 250 km along-

track and cross-track (Parker et al., 2020a). Dry column methane mixing ratios (XCH4) are retrieved in the 1.65 µm 
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absorption band with a CO2 proxy method (Parker et al., 2011). The observations include a glint mode over the oceans. The 

CO2 proxy method corrects for most surface and aerosol artifacts, yielding a global retrieval success rate of 23.5% (28.4% 100 

over South America) limited by cloud cover (Parker et al., 2020a). We use the GOSAT v9.0 proxy retrieval from Parker and 

Boesch (2020) which is available at https://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb. We remove GOSAT 

observations in mountainous areas defined by a standard deviation of surface altitude greater than 25 m within a pixel as 

reported in the GOSAT product. We also subtract 9.2 ppb from all GOSAT observations following Balasus et al. (2023) to 

remove the global mean bias versus ground-based methane column measurements from the Total Carbon Column Observing 105 

Network (TCCON). This subtraction is intended to enforce consistency with the blended TROPOMI product used as 

boundary conditions in the inversion. Although there are no TCCON observations in South America, the bias subtraction is 

of little importance because the boundary conditions are corrected anyway. This yields mGOSAT = 29,233 observations for 

2021 used in our inversion. 

TROPOMI is on board the polar sun-synchronous Sentinel 5 Precursor satellite launched in 2017 with a 13:30 local overpass 110 

time, providing full global daily coverage with a spatial resolution of 7 km × 5.5 km in the nadir (Veefkind et al., 2012). It 

retrieves XCH4 with a full-physics algorithm in the 2.3 μm absorption band in combination with the NIR (757 – 774 nm) 

band. Again, the observations include a glint mode over the oceans. The global success rate is 3% over land limited by dark 

or heterogeneous surfaces and cloud cover (Hasekamp et al., 2023). Mountainous scenes in South America have been 

previously found to be a challenge for TROPOMI ozone retrievals (Cazorla and Herrera, 2022) but the methane retrieval 115 

would be unsuccessful for such scenes in any case. It is well known that the TROPOMI XCH4 data can be affected by 

retrieval artifacts correlated with SWIR surface albedo (Lorente et al., 2023). Here we use the TROPOMI product from 

Balasus et al. (2023), which uses a machine learning model to correct the TROPOMI v02.04.00 operational product of 

Lorente et al. (2023) by reference to the GOSAT v9.0 proxy retrieval. The blended product is available at 

https://registry.opendata.aws/blended-tropomi-gosat-methane. There are 7,264,168 successful TROPOMI retrievals over the 120 

inversion domain during 2021. We average them over GEOS-Chem 0.25o×0.3125o grid cells to produce 885,957 super-

observations (Chen et al., 2023). We filter out TROPOMI observations in grid cells that have fewer than 30 individual 

TROPOMI retrievals in 2021. This yields mTROPOMI = 853,599 super-observations for 2021 used in the inversion. 

Figure 1 shows the resulting data for TROPOMI and GOSAT in 2021 as the mean XCH4 enhancements after subtracting the 

time- and latitude-dependent background over the oceans used as boundary conditions in the inversion (Section 2.3). 125 

Subtracting the background is needed for visualization because of its 100 ppb latitudinal difference between the northern and 

southern tips of South America, but this subtraction is not applied in the inversion. We see significant XCH4 enhancements 

over wetlands, livestock regions, and urban areas. There are few observations over the mountainous Andes, affecting much 

of Chile and Peru, so that the inversion for those countries relies significantly on glint observations offshore and on 

observations of transported methane. We also see that because of its use of the CO2 proxy method, GOSAT is of particular 130 

value over the Amazon, where TROPOMI data are almost absent because of clouds and dark surfaces. GOSAT does not 

provide much additional coverage over the Andes because we filter out GOSAT observations over mountainous regions. 

https://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
https://registry.opendata.aws/blended-tropomi-gosat-methane
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Satellite observations are distributed throughout the year but are densest during the southern hemisphere dry season (June-

September) (Figure 1) due to a reduction of coverage over the Amazon in the wet season (Figure S1). We account for errors 

in the satellite retrievals ingested into the inversion as described in Section 2.3. 135 

 
Figure 1: Atmospheric methane enhancements observed by TROPOMI and GOSAT over South America relative to the latitudinal 
background. The Figure shows the mean 2021 dry-column methane mixing ratios (XCH4) after subtraction of time- and latitude-
dependent background values over the oceans used as boundary conditions in the inversion. TROPOMI observations are on the 
native grid of the inversion (0.25o×0.3125o) and GOSAT points are shown on a 0.5o×0.625o grid for visibility. GOSAT samples 140 
repeatedly at the same locations, partly accounting for the apparent sparsity. Also shown in the lower panel is the distribution of 
GOSAT observations and TROPOMI super-observations over the course of the year. 
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2.2 Prior emissions 

Fig. 2 shows the spatial distribution of prior emissions by sector on the 0.25o×0.3125o grid. Table 1 lists continental totals. 

Oil, gas, and coal emissions are from the Global Fuel Exploitation Inventory (GFEIv2) of Scarpelli et al. (2022), which uses 145 

detailed infrastructure data to spatially allocate emissions from countries’ UNFCCC reports. Because GFEIv2 may not use 

emissions from countries’ most recent reports, we list it separately from the other UNFCCC emissions which were obtained 

directly from countries’ reports. National livestock, waste, and rice emissions are taken from each country’s latest UNFCCC 

report (Table 2) and spatially distributed following the Emissions Database for Global Atmospheric Research (EDGARv7) 

inventory for 2021 (Crippa et al., 2022). Other minor anthropogenic emissions including industry, stationary combustion, 150 

mobile combustion, aircraft, composting, and field burning of agricultural residues are taken from EDGARv7. 

Anthropogenic emissions are assumed aseasonal except for rice, for which we use month-to-month variability from 

EDGARv6 (Crippa et al., 2021) (EDGARv7 does not provide monthly sectoral emission maps).  

UNFCCC national totals for livestock, waste, and rice for Brazil, Guyana, Paraguay, and Uruguay are from the UNFCCC 

GHG Data Interface (https://di.unfccc.int/detailed_data_by_party, last accessed Jan 20, 2023). All other countries have 155 

produced more recent reports that are unavailable in the UNFCCC GHG Data Interface, so we inspect reports submitted by 

each country including National Communications (https://unfccc.int/non-annex-I-NCs, last accessed Jan 20, 2023) and 

Biennial Update Reports (https://unfccc.int/BURs, last accessed Jan 20, 2023), to obtain the most recent emissions estimates 

as detailed in Table S1. French Guiana is not independently reported and we use GFEIv2 for fuel and EDGARv7 for all 

other sectors. 160 

Two alternative monthly wetland emission inventories for 2021 with 0.5o×0.5o spatial resolution are used as prior estimates: 

WetCHARTs and LPJ-wsl. WetCHARTs is an ensemble of parameterized inventories applying different inundation data, 

temperature dependence, and other factors (Bloom et al., 2017). We use the mean emissions from the nine high-performance 

members of the WetCHARTs v1.3.1 ensemble found by Ma et al. (2021) to best fit the results from a global GOSAT 

inversion and refer to it as WetCHARTs in what follows. LPJ-wsl is based on the Dynamic Global Vegetation model (Z. 165 

Zhang et al., 2016) driven here with NASA MERRA-2 meteorological data (Z. Zhang et al., 2018) and is henceforth referred 

to as LPJ-MERRA2. East et al. (2024) found that LPJ-MERRA2 could reproduce seasonal variations of atmospheric 

methane concentrations better than other wetland inventories, including WetCHARTS. 

Other natural sources in our prior estimates include daily open-fire emissions for 2021 from the Global Fire Emissions 

Database version 4s (GFED4s) (van der Werf et al., 2017), termite emissions from Fung et al. (1991), and geological 170 

seepage emissions from Etiope et al. (2019) with global scaling to 2 Tg a-1 (Hmiel et al., 2020).  

Figure 2 shows that South American emissions in the prior estimate are dominated by wetlands (62% of continental 

emissions averaged across LPJ-MERRA2 and WetCHARTs), mainly over the Amazon region but also extending into 

Paraguay (Pantanal) and Argentina (Paraná River basin). Livestock (22%), mainly enteric fermentation from cattle, is the 

largest anthropogenic source for almost all countries and is spatially distinct from wetlands. Landfills and wastewater 175 
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treatment, collectively referred to as waste (5.9%), follow population density and are large in all countries. Fossil fuel 

emissions are mostly from oil/gas (2.5%) and are concentrated in Venezuela and Argentina. Coal emissions are small (0.4%) 

and concentrated in Colombia. Rice emissions are also small (0.7%) and concentrated in southernmost Brazil. Open fires are 

a large seasonal source (2.5%) concentrated along the southern edge of the Amazon in Brazil and northern Bolivia.  

 180 
Figure 2: Bottom-up methane emission inventories used as prior estimates for the inversion. Panels show annual mean methane 
emissions for major sectors with continental totals inset. Wetland emissions for 2021 (inversion year) are shown for both 
WetCHARTs (mean of the nine members of the high-performing ensemble) and LPJ-MERRA2. Coal, oil, and gas emissions are 
from the GFEIv2 gridded version of the national inventories from individual countries reported to the UNFCCC. Other 
anthropogenic emissions are from countries’ most recent UNFCCC reports with spatial allocation from EDGAR v7. 185 
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Table 1: Methane emissions in South America (Tg a-1) 

  Priora   Posteriorb  

Total 96 121 (109-137) 
Anthropogenic 
(UNFCCC) 

31 48 (41-56) 

Livestock 21 31 (27-37) 

Wastec 5.7 7.8 (6.5-9.5) 

Rice 0.68 0.86 (0.74-1.4) 

Oil/Gas 2.4 6.2 (5.2-7.9) 

Coal 0.40 0.59 (0.42-1.4) 

Otherd 1.0 1.3 (1.1-1.5) 

Natural 56-74 74 (68-83) 

Open Fires 2.4 2.6 (2.4-3.0) 

Wetlands 52-68e 67 (62-75) 

Seeps 0.09 0.22 (0.17-0.30) 

Termites 2.6 3.8 (3.2-5.1) 
a Prior emission estimates used in the inversion. Livestock, waste, and rice emissions are from national reports to the UNFCCC for years 

ranging from 2004 to 2020 (see Table S1 for individual countries). Oil/gas and coal are from GFEIv2 (Scarpelli et al., 2022). Wetland and 

open fire emissions are for 2021 (inversion year).  
b Median best estimates from the inversion of TROPOMI and GOSAT data for 2021, and ranges from the inversion ensemble. 200 
c Including landfills and wastewater treatment 
d Including industry, stationary combustion, mobile combustion, aircraft, composting, and field burning of agricultural residues. Taken 

from EDGARv7. 
e Prior estimates for the inversion are taken either from the mean of the high-performing subset of the WetCHARTs ensemble (52 Tg a-1) 

or from LPJ-MERRA2 (68 Tg a-1). 205 

2.3 Analytical Inversion 

We use the Integrated Methane Inversion workflow (IMI 1.1) (Varon et al., 2022) with modifications as described below. 

The forward model for the inversion is the nested version of the GEOS-Chem 14.1.1 chemical transport model 

(https://doi.org/10.5281/zenodo.4618180), which relates methane emissions to atmospheric concentrations through 

atmospheric transport (Maasakkers et al., 2019). GEOS-Chem is driven by meteorological fields from NASA GEOS-FP 210 

analyses at 0.25° × 0.3125° resolution. We use this native resolution in GEOS-Chem over South America and adjacent 

oceans (domain in Fig. 1) with dynamic boundary conditions outside the inversion domain updated every three hours from a 

https://doi.org/10.5281/zenodo.4618180
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global archive of smoothed TROPOMI observations (Varon et al., 2022). That same archive is used as initial conditions, so 

that the simulation is initially unbiased relative to TROPOMI observations. The GEOS-Chem methane simulation includes 

chemical loss from oxidation by tropospheric OH with a corresponding methane lifetime of 10.8 years, consistent with the 215 

lifetime of 11.2 ± 1.3 years inferred from the methyl chloroform proxy (Prather et al., 2012). It also includes minor losses 

from oxidation by tropospheric Cl, oxidation in the stratosphere, and uptake by soils (Murguia-Flores et al., 2018). The 

lifetime of methane against all sinks is 9.1 ± 0.9 years (Szopa et al., 2021). We do not optimize these sinks here. 

We select the state vector 𝒙 for the inversion with the Gaussian mixture model (GMM) of Turner and Jacob (2015) modified 

to include satellite observation density as a similarity criterion. The GMM selects emission patterns that the TROPOMI 220 

observations can effectively constrain, aiming to preserve native (0.25o× 0.3125o) resolution for strong sources with high 

observation density while smoothing the solution in regions with low observation density or weak prior emissions. Similarity 

vectors defining proximity and commonality in sectoral emissions (as defined by the prior estimate) as well as the density of 

TROPOMI observations are used to construct Gaussian state vector elements. We use 600 Gaussian functions as state vector 

elements to balance aggregation and smoothing errors (Wecht et al., 2014), following the precedent of past regional 225 

inversions of similar domain size (Maasakkers et al., 2021, Chen et al., 2022, Chen et al., 2023). We also optimize boundary 

conditions for each quadrant (north, south, west, east) and for each season, for a total of n = 616 state vector elements.  

We perform the inversion with lognormal error probability density functions (pdfs) for prior emissions. This prevents 

unphysical negative emissions and better captures the heavy tail of the emission distribution than a normal error assumption. 

Specifically, we optimize ln(𝒙) instead of 𝒙, such that the prior errors on ln(𝒙) (henceforth denoted as 𝒙!) follow a normal 230 

distribution. We optimize the boundary condition elements of the state vector assuming normal error distributions. 

The inversion finds the optimal estimate	𝒙'!of 𝒙!  assuming normal error distributions (lognormal in emission space) by 

minimizing the Bayesian cost function 𝐽(𝒙!) (Brasseur and Jacob, 2017):  

𝐽(𝒙!) = (𝒙! − 𝒙"! )#𝐒"!
$%(𝒙! − 𝒙"! ) + 𝛾(𝒚 − 𝐊!𝒙!)#𝐒𝐨$%(𝒚 − 𝐊!𝒙!) ,        (2) 

where 𝒙! = ln(𝒙) and 𝒙"! = ln(𝒙"), 𝒙" (n × 1) is the prior emission estimate (n = 616), and 𝒚 (m × 1) is the ensemble of 235 

TROPOMI super-observations and GOSAT observations. 𝐒𝐚!  (n × n) is the prior error covariance matrix and 𝐒𝐨 (m × m) is 

the observational error covariance matrix. We assume 𝐒𝐚!  and 𝐒𝐨 to be diagonal in absence of better objective information. 

𝐊!𝒙! = 𝐊𝒙 is the GEOS-Chem forward model simulation of XCH4 which is constructed from the GEOS-Chem vertical 

profiles of methane dry mixing ratios by applying TROPOMI or GOSAT averaging kernel vectors and prior vertical profiles. 

𝐊 = ()
(*

 (m × n) is the Jacobian matrix that describes the linear sensitivity of 𝒚 to 𝒙, and is constructed column by column by 240 

perturbing individual elements of 𝒙 in GEOS-Chem. 𝐊! = ()
(*!

 (m × n) describes the sensitivity of 𝒚 to 𝒙!, which is nonlinear 

but derived immediately from 𝐊  with matrix elements 𝑘+,-! = ()"
(./	(*#)

= 𝑥-
()"
(*#

= 𝑥-𝑘+,-  where 𝑖  and 𝑗  are indices of the 

observations and the state vector elements respectively. The regularization factor γ  is used to prevent overfitting to 

observations caused by missing covariant structure (off-diagonal terms) in 𝐒𝐨 (Chevallier, 2007). Following the method of 
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Lu et al. (2021), we determine an optimal 𝛾 value such that (𝒙'! − 𝒙"! )#𝐒"!
$%(𝒙'!−𝒙"! ) ≈ 𝑛	 ± √2𝑛, the expected value (±1 245 

standard deviation) of the Chi-square distribution with n degrees of freedom. This yields γ = 0.05 here. 

We solve the nonlinear optimization problem iteratively using the Levenberg-Marquardt method (Rodgers, 2000):  

𝒙34%! = 𝒙3! + :γ𝐊3!
#𝐒5$%𝐊3! + (1 + κ)𝐒"!

$%=
$%
(γ𝐊3!

#𝐒5$%(𝒚 − 𝐊𝒙3) − 𝐒"!
$%(𝒙3! − 𝒙"! )) ,     (2) 

where the coefficient κ is fixed at 10 following Chen et al. (2022), who found that using κ = 10 converges faster with no 

difference in results compared to other methods. 𝑁 is the iteration number with 𝒙6! = 𝒙"! , and 𝐊3! 	is evaluated for 𝒙! = 𝒙3! . 250 

We iterate on Eq. (2) until the differences of all state vector elements between two consecutive iterations (𝒙3!  and 𝒙34%! ) are 

smaller than 0.5% and then take 𝐱@! = 𝐱34%!  as the optimal posterior estimate. The posterior error covariance matrix 𝐒A! on the 

optimal posterior estimate is given by (Rodgers, 2000):  

𝐒A! = (	γ𝐊!#𝐒5$%𝐊! + 𝐒"!
$%)$% ,          (3) 

where 𝐊! = 𝐊34%!  is evaluated for the posterior estimate. The averaging kernel matrix A defining the sensitivity of the 255 

solution to the true value is given by: 

𝐀 =	 (𝒙8
!

(𝒙!
= 𝐈9 − 𝐒A!𝐒"!

$%	,          (4) 

where	𝐈9 is the n × n identity matrix. The trace of 𝐀, which is called the degrees of freedom for signal (DOFS), indicates the 

number of independent pieces of information on 𝒙! obtained from the observations. We will refer to the averaging kernel 

sensitivity for individual state vector elements as the corresponding diagonal element of the averaging kernel matrix. 260 

An implication of using lognormal error statistics for emissions is that the prior estimate xa is the median (not the mean) of a 

lognormal error pdf, and the inversion correspondingly optimizes the median of the lognormal emission pdf. But the 

UNFCCC national reports should be viewed as best prior estimates of the means of the emission pdfs since they are to be 

added across countries for the Global Stocktake. The median and the mean of a lognormal pdf are related by: 

𝑥median = 𝑥mean exp[ −
@!

A
],          (5) 265 

where 𝑠! = (ln σg)2 is the error variance in normal space and σg is the geometric error standard deviation. Here we assume 

that the prior emissions are lognormally distributed with a geometric standard deviation of 2 (σg = 2), therefore xmedian = 

0.79xmean. We apply these corrections to the prior emission estimates from Section 2.2 for use in the inversion as xa, with the 

prior error covariance matrix 𝐒𝐚! 	taken as a diagonal matrix of the error variances sa = (ln2)2. 

The same operation in reverse is needed for interpreting the posterior emission estimates, which the inversion returns as the 270 

medians of the posterior lognormal error pdf with posterior error covariance matrix 𝐒A!. From the posterior error variances 𝑠̂-! 

given by the diagonal elements of 𝐒A! for the individual state vector elements j, we apply for each element the conversion 

𝑥@j,	mean, = 𝑥@j,	median exp[ 𝑠̂-!/2]. The mean posterior estimates are therefore related to the mean prior estimates by: 

𝑥@j,mean = L *Cj
*#,&
M
inversion

exp[
@̂#
!$@#,&

!

A
]𝑥-,I,mean ,          (6) 
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where (𝑥@j/𝑥@j,	a)inversion is the ratio of medians returned by the inversion. All results presented here are for the mean posterior 275 

estimates, which allows for the summing of inversion results geographically to obtain regional or national totals for 

comparison to the mean prior estimates. We set the prior error standard deviation on the boundary conditions to be 10 ppb, 

which is typical of the root mean square error (RMSE) of GEOS-Chem simulations using posterior emission estimates (Chen 

et al., 2022).  

We use the residual error method (Heald et al., 2004) to estimate observational error variances including contributions from 280 

the TROPOMI and GOSAT instruments, the retrieval, and the forward model. This method takes the residual error between 

the observations and the forward model simulation with prior estimates (after removing the mean bias, to be corrected in the 

inversion) as measure of the observational error on the forward model grid. We do this separately for GOSAT and 

TROPOMI. The resulting mean observational error standard deviation for GOSAT is 11.2 ppb. To account for the error 

reduction resulting from averaging P individual TROPOMI retrievals into the super-observations y on the GEOS-Chem 285 

0.25o×0.3125o grid, we employ the residual error method for super-observations developed by Chen et al. (2023). This 

method derives the observational error variance of the super-observations (σJKLMNA ) by separating the contributions in the 

individual observations from the transport error variance 	σON"/JL5NOA  (perfectly correlated for the individual observations 

within a GEOS-Chem grid cell) and the satellite single-retrieval error variance (σNMONPMQ".A ):  

σJKLMNA = σNMONPMQ".A O%$R'()'*(+,-
S

+ 𝑟NMONPMQ".Q + σON"/JL5NOA  ,         (7) 290 

 where rretrieval is the error correlation coefficient for the individual observations in a 0.25o×0.3125o grid cell averaged into a 

super-observation. Chen et al. (2023) obtained σtransport = 4.5 ppb, σretrieval = 16.5 ppb, and rretrieval = 0.55 for TROPOMI 

observations over the Middle East and North Africa. Our own fit of residual errors to Eq. (7) for South America yields 

σtransport = 4.3 ppb, σretrieval = 14.8 ppb, and rretrieval = 0.21. The average observational error standard deviation for the 

TROPOMI super-observations in the inversion domain is 7.9 ppb. 295 

2.4 Attributing posterior emissions to individual countries and sectors 

The posterior GMM state vector (𝑛 × 1) can be mapped onto the 𝑝 native 0.25o×0.3125o grid cells of the inversion domain 

using the GMM-generated weighting of each Gaussian on that grid as represented by a matrix 𝐖𝐆𝐌𝐌	(𝑝	 × 	𝑛) . The 

contributions from each of q emission sectors to the emissions in individual grid cells are taken from the prior inventories to 

produce a matrix 𝐖𝐬𝐞𝐜𝐭𝐨𝐫𝐬	(𝑝𝑞	 × 	𝑛) . We then apply a summation matrix 𝐖𝐚𝐠𝐠	(𝑟	 × 	𝑝𝑞)  to aggregate emissions over 300 

𝑟	countries or sectors of interest. The resulting matrix 𝐖 =𝐖𝐚𝐠𝐠𝐖𝐬𝐞𝐜𝐭𝐨𝐫𝐬 (𝑟	 × 	𝑛) represents the linear transformation from 

the posterior GMM state vector (𝑛 × 1) to a reduced state vector (r ×1) of sectoral or country-level emissions. The reduced 

state vector (𝒙'NM\), posterior error covariance (𝐒ANM\), and averaging kernel matrix (𝐀NM\) are computed as:  

𝒙'NM\ = 𝐖𝒙',            (8) 

𝐒ANM\ = 𝐖𝐒A𝐖𝐓,            (9) 305 
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𝐀NM\ = 𝐖𝐀𝐖∗,            (10) 

where 𝐖∗ = 𝐖𝐓(𝐖𝐖𝐓)$𝟏 is the Moore-Penrose pseudo-inverse of W (Calisesi et al., 2005). We either aggregate together 

or make note of sectors that have an error correlation greater than 0.75 as given by 𝐒ANM\. The averaging kernel sensitivities 

for the aggregated emissions are the diagonal elements of Ared and represent the ability of the inversion to quantify the 

emissions independently from the prior estimate (1 = fully, 0 = not at all). 310 

This method assumes that the relative contributions of each sector to the total emissions in a given grid cell are correct, 

which. introduces an additional source of uncertainty in the sectoral attribution of inversion results. Although the high 

resolution of our inversion reduces the impact of this assumption compared to coarser-resolution approaches, our ability to 

attribute posterior emissions to individual sectors is dependent on the spatial allocation of emissions in the prior inventories.  

2.5 Inversion Ensemble 315 

Our inversion described above makes assumptions on the values of inversion parameters including a geometric error 

standard deviation of the lognormal prior error distribution σ`= 2, an error standard deviation σa = 10 ppb for boundary 

conditions, and a regularization factor γ = 0.05 where σ`  and σa  are selected following Chen et al. (2023) and γ is 

determined as described in Section 2.3. The posterior error matrix of Eq. (3) represents the uncertainty in the analytical 

solution given this choice of inversion parameters, but it does not account for uncertainties in the parameters themselves, 320 

including the prior emission estimate. The choice of wetland emission inventory used as prior estimate for the inversion 

could particularly affect results. To address this, we generate a 54-member ensemble of sensitivity inversions varying the 

parameters following Chen et al. (2023). The inversion ensemble includes (1) σ` = 1.5, 2, or 2.5, (2) σa = 5, 10, or 20 ppb, 

(3) WetCHARTS or LPJ-MERRA2 wetland prior estimate, and (4) γ = 0.025, 0.05, or 0.1. Because the uncertainty defined 

by the range of optimal estimates of this ensemble is larger than the posterior error from any single inversion, we report an 325 

uncertainty in posterior estimates as the range of solutions given by the inversion ensemble. We consider this to be a 

conservative uncertainty estimate given that the ensemble covers a range of σ`, σa, and γ values comparable to past work 

(Chen et al., 2023, Nesser et al., 2024), we use the residual error method to account for errors in the observing system, and 

we additionally test two prior wetland inventories. However, this range does not account for uncertainty that can arise from 

parameters that are impossible to vary in the inversion without significant computational expense, such as the prior 330 

distribution of emissions and the spatial aggregation in the state vector. Unless stated otherwise, we report the best posterior 

estimate of emissions as the median of this inversion ensemble (for each state vector element, prior emissions are scaled by 

the median posterior/prior emissions ratio across the ensemble). 
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3 Results and Discussion 

3.1 Continental-scale Results 335 

Figure 3 shows the prior and posterior emission estimates over the continental scale for the median of the inversion 

ensemble, along with the median averaging kernel sensitivities. The median DOFS (sum of the averaging kernel 

sensitivities) are 144, out of a maximum of 616 defined by the state vector dimension. Low averaging kernel sensitivities 

over the Amazon and the Andes reflect the sparsity of observations. 

The inversion effectively fits the emissions to the satellite data, as shown in Figure 4 where posterior emissions 340 

decrease the mean GEOS-Chem model bias relative to the observations over the inversion domain from 3.04 to -0.03 ppb. 

The root-mean-square error (RMSE) decreases from 9.65 to 8.53 ppb, with improvement limited by the observational error 

(7.9 ppb for TROPOMI and 11.2 ppb for GOSAT). Figure S1 shows that this bias decreases in all seasons, but the extent of 

this decrease varies by both season and region; the remaining bias in the posterior is highest (2.34 ppb) in December through 

February when the observation count is lowest.  345 

We also compare our results with in-situ data from the Amazon Tall Tower Observatory (ATTO) (Sierra et al., 

2024), located in the center of the Amazon in northern Brazil. Figure 5 shows that the posterior emissions decrease the mean 

GEOS-Chem model bias relative to the ATTO measurements from -12.6 to 2.7 ppb, with a modest increase in correlation 

coefficient (0.75 to 0.79). While this bias reduction shows improvement in our posterior emissions, future work would 

greatly benefit from a higher density of in-situ measurements over South America. The Global Atmospheric Watch (GAW) 350 

Programme provides in-situ data in Chile and Southern Argentina, but these sites are in low-emission areas where the 

sensitivity to satellite observations in the inversion is very small. The lack of validation with surface observations, not only 

of our inversion results but of the TROPOMI and GOSAT data itself over South America, should be considered when 

interpreting the results that follow. 
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 355 
Figure 3: Optimization of methane emissions in South America on the 0.25o×0.3125o grid. Posterior emissions are our best 
estimates from the inversion of TROPOMI+GOSAT observations. Prior estimates are from UNFCCC reports (country totals for 
livestock, waste, rice), GFEIv2 (fuel), and EDGARv7 (other minor sources; spatial distribution for livestock, waste, and rice) for 
anthropogenic emissions and either LPJ-MERRA2 or WetCHARTs for wetland emissions (Figure 2: the average is shown here). 
The averaging kernel sensitivities indicate the ability of the observations to quantify emissions independently from the prior 360 
estimates on the 0.25o×0.3125o grid (1 = fully; 0 = not at all) as given by the diagonal elements of the averaging kernel matrix. 
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Figure 4: Differences between methane dry column mixing ratios (XCH4) observed by TROPOMI+GOSAT and simulated by 
GEOS-Chem with prior emissions (including wetland emissions averaged across WetCHARTs and LPJ-MERRA2) and posterior 
emissions (median of the inversion ensemble). Legends give the mean bias and root-mean-square errors (RMSEs) for the prior and 365 
posterior. 

 
Figure 5: Evaluation of inversion results with independent in situ observations from the Amazon Tall Tower Observatory (ATTO; 
Sierra et al., 2024). The figure compares weekly average methane mixing ratios from GEOS-Chem simulations using prior or 
posterior emissions to weekly averages of ATTO measurements. Observations from January through May and September through 370 
December are taken from 79 m and 321 m altitude, respectively, and compared to the corresponding GEOS-Chem altitudes and 
times of day. Reduced-major-axis (RMA) linear regressions and the 1:1 line are also shown. The mean biases and correlation 
coefficients (r) are given inset. 4 outliers in the observations are not shown. 
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Table 1 compares total prior and posterior emission estimates for South America. Posterior emissions are 121 (109-137) Tg 

a-1, where the parentheses indicate the range from the inversion ensemble. This represents a significant increase from the 375 

prior estimate of 96 Tg a-1. Most of that increase is from anthropogenic emissions, which increase from 31 Tg a-1 in the prior 

estimate to 48 (41-56) Tg a-1. All sectors show emissions increases, with the largest for oil/gas (158%). On a regional scale, 

our estimate is comparable with those of Saunois et al. (2024) and Worden et al. (2022) for Brazil and Southwest South 

America, but larger in Northern South America (Figure S2). Further discussion of emissions by sector and country is 

presented below. 380 

3.2 Wetland emissions 

Figure 6 shows the difference between posterior and prior wetland emissions over South America from the WetCHARTs and 

LPJ-MERRA2 inversions with γ=0.05, σ`=2, and σa=10 ppb. Inversion results are sensitive to the choice of prior estimate, 

even though the averaging kernel sensitivity is high, because of large differences in the prior spatial distributions (Figure 2). 

While the continental-scale adjustment to wetland emissions from the inversion is smaller for LPJ-MERRA2 (+0.5 Tg a-1) 385 

than WetCHARTs (+15.9 Tg a-1), the sum of the absolute value of spatial differences is larger for LPJ-MERRA2 (46 Tg a-1) 

than WetCHARTs (36 Tg a-1) (Figure 6). East et al. (2024) found that LPJ-MERRA2 better matched zonal mean 

atmospheric observations than WetCHARTs, but we find here that the WetCHARTs spatial distribution over South America 

better matches our posterior emissions estimate.  

 390 



17 
 

 
Figure 6: Adjustment to wetland emissions from inversion of TROPOMI and GOSAT data. The top panels show the differences 
between posterior and prior wetland emissions when either WetCHARTs or LPJ-MERRA2 wetland emissions are used as prior 
estimates. with γ=0.05, σg=2, and σb=10. The bottom panels show the prior and posterior wetland emissions for different regions. 
Ranges from the inversion ensembles are in parentheses. Boundaries of each region are defined using a combination of 395 
hydrological basin data from FAO’s AQUASTAT (AQUASTAT database, available at 
https://data.apps.fao.org/aquastat/?lang=en, last accessed February 2024), and terrestrial ecoregions from the World Wildlife 
Fund (Olson et al., 2001). 

 

Further examination of wetland emissions is shown in Figure 6 for four major regions: the Amazon Basin, the Bolivian 400 

Amazon, the Pantanal, and the Paraná. These regions constitute 68% and 83% of South American wetland emissions 

according to WetCHARTs and LPJ-MERRA2, respectively. We find emissions from the Amazon Basin of 32 (29-44) Tg a-1, 

aligning with the WetCHARTs estimate and within the range of uncertainty of other estimates (31-56.5 Tg a-1) (Wilson et 



18 
 

al., 2021; Wilson et al., 2016; Ringeval et al., 2014; Pangala et al., 2017; Basso et al., 2021). The Bolivian Amazon is a 

region of interest because of recent aircraft measurements showing methane emissions of 3.6 Tg a-1 (France et al., 2022). Our 405 

best posterior estimate is 2.8 (1.6-4.4) Tg a-1, again more consistent with WetCHARTs (1.9 Tg a-1) than LPJ-MERRA2 (7 Tg 

a-1). 

The Pantanal, located below the Amazon basin in Brazil, Bolivia, and Paraguay, is the largest seasonally flooded tropical 

grassland in the world. We estimate emissions from the Pantanal to be 1.5 (1.2-1.8) Tg a-1 with downward adjustment from 

both LPJ-MERRA2 and WetCHARTs (1.8 and 2.0 Tg a-1) and a lower estimate than the range of uncertainty of previous 410 

estimates (1.9 – 3.3 Tg a-1) (Bastviken et al., 2010; Marani and Alvalá, 2007; Gloor et al., 2021).  

The Paraná River wetland region extends from northern Argentina to the la Plata River Delta, which feeds into the Atlantic 

Ocean. We estimate emissions from this region to be 2.0 (1.8-2.2) Tg a-1, a narrow range reflecting the high averaging kernel 

sensitivity. This is larger than WetCHARTs (0.87 Tg a-1) and LPJ-MERRA2 (1.4 Tg a-1). Parker et al. (2020b) found that 

WetCHARTs underestimated Paraná emissions in comparison to GOSAT due to wetland extent underestimation. 415 

3.3 Anthropogenic emissions from individual countries and sectors 

Figure 7 shows emissions by sector from the top seven anthropogenic emitting countries that make up 90% of posterior 

anthropogenic emissions over South America. Table 2 shows emissions for all countries. Posterior error correlations between 

countries are all less than 0.25, indicating the inversion’s ability to effectively separate emissions between countries, but 

averaging kernel sensitivities are low (< 0.3) for Ecuador, French Guiana, and Suriname, because of a low density of 420 

observations and low prior emissions. Chile and Peru, despite lacking observations over the Andes, have moderately high 

averaging kernel sensitivities (0.61 and 0.46, respectively), indicating that the inversion is able to constrain emissions using 

glint observations offshore. We aggregate emissions from oil and gas as well as wastewater and landfills since posterior 

errors for these sectors are highly correlated. Posterior error correlations between other major sectors are generally low (< 

0.25). Livestock has higher error correlations with rice (0.42) and biomass burning (0.44), but these are small sources. 425 

We find that prior anthropogenic emissions for Brazil, Bolivia, and Paraguay are within the range of our inversion 

ensemble while Argentina, Venezuela, Colombia, and Peru have significantly higher top-down emissions. Livestock 

emissions in particular are much higher in all four of these countries. Argentina and Venezuela also have higher top-down 

oil/gas emissions than in the UNFCCC-based GFEIv2 prior estimate. Peru has a large contribution from waste emission that 

is underestimated in its UNFCCC report. Nathan et al. (2023) conducted a regional TROPOMI inversion over Venezuela and 430 

found total anthropogenic emissions in 2019 to be 3.6 (2.0-5.3) Tg a-1. This is much lower than our estimate of 7.0 (5.5 – 

9.9) mainly from differences in emissions from livestock (1.2 (0.9-1.6) Tg a-1 vs our posterior 2.8 (2.0-4.5) Tg a-1) and 

oil/gas (1.8 (0.9-2.7) Tg a-1 vs 3.4 (3.1-5.5) Tg a-1). Their lower estimate may be due to differences in the inversion setup, 

particularly their higher-resolution state vector over Northern Venezuela which could reduce the impact of aggregation error. 
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 435 
Figure 7: National anthropogenic methane emissions from the top seven emitting countries in South America. Posterior estimates 
from inversion of 2021 TROPOMI and GOSAT observations are compared to countries’ UNFCCC reports (livestock, waste, rice), 
GFEIv2 (coal, oil/gas), and EDGARv7 (other anthropogenic) which are taken as prior estimates for the inversion (Table 2). Waste 
includes emissions from landfills and wastewater treatment, which cannot be separated by the inversion. Vertical lines show the 
range of posterior estimates from our inversion ensemble.  440 
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a Prior estimates are from the latest country reports to the UNFCCC (see Table S1 for details) and the UNFCCC-based GFEIv2 inventory 
for fuel. Posterior results are from the inversion of TROPOMI and GOSAT data for 2021 and are shown as the median of the inversion 
ensemble, with ranges from the inversion ensemble in parentheses. 
b Minor sources including industry, stationary combustion, mobile combustion, aircraft, composting, and field burning of agricultural 445 
residues. These minor sources are taken from EDGAR v7. 
c Ability of observations to quantify national anthropogenic emissions independently from the prior estimate (1 = fully, 0 = not at all) as 
measured by the diagonal terms of the averaging kernel matrix. Values are the median sensitivities across the inversion ensemble. 
d There is no UNFCCC report for French Guiana, and our prior estimate is taken from a combination of GFEI v2 and EDGAR v7 (see 
text). 450 
 

Table 2: National anthropogenic emissions (Tg a-1) by country and sectora 

Country Total 
anthropogenic Livestock Waste Rice Oil/Gas Coal Otherb Averaging kernel 

sensitivityc 
Argentina                 

Prior 4.3 2.7 0.73 0.02 0.36 <0.01 0.12   
Posterior 9.2 (7.9-11) 6.1 (5.1-7.1) 1.3 (1.1-1.6) 0.02 (0.02-0.03) 1.5 (1.4-1.6) <0.01 0.21 (0.18-0.25) 0.94 

Bolivia                 
Prior 0.75 0.56 0.09 0.02 0.05 <0.01 0.01   

Posterior 0.96 (0.66-1.2) 0.61 (0.47-0.77) 0.18 (0.11-0.20) 0.02 (0.01-0.02) 0.13 (0.07-0.19) 0.18 (0.11-0.19) 0.02 (0.01-0.02) 0.6 
Brazil                 

Prior 16 12.5 2.8 0.46 0.18 0.04 0.68   
Posterior 19 (16-23) 14 (12-18) 2.8 (2.4-3.3) 0.49 (0.42-0.61) 0.16 (0.13-0.17) 0.04 (0.03-0.05) 0.68 (0.58-0.84) 0.75 

Chile                 

Prior 0.67 0.23 0.29 <0.01 0.04 <0.01 0.04   
Posterior 0.88 (0.69-0.96) 0.36 (0.26-0.41) 0.41 (0.34-0.44) 0.01 (<0.01-0.01) 0.05 (0.04-0.15) <0.01 0.05 (0.04-0.05) 0.61 

Colombia                 
Prior 3.0 1.6 0.69 0.03 0.28 0.35 0.05   

Posterior 5.0 (4.4-6.7) 3.0 (2.5-4.2) 0.91 (0.78-1.1) 0.04 (0.03-0.05) 0.48 (0.38-0.8) 0.53 (0.35-1.4) 0.08 (0.07-0.11) 0.39 
Ecuador                 

Prior 0.55 0.39 0.09 0.02 0.04 <0.01 0.01   
Posterior 0.57 (0.55-0.70) 0.4 (0.39-0.48) 0.1 (0.1-0.12) 0.02 (0.02-0.02) 0.04 (0.03-0.07) 0.04 (0.03-0.07) 0.01 (0.01-0.02) 0.16 

French Guiana                 
Priord <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01   

Posterior <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.052 
Guyana                 

Prior 0.05 0.02 <0.01 0.02 <0.01 <0.01 <0.01   
Posterior 0.07 (0.05-0.46) 0.03 (0.02-0.13) <0.01 0.03 (0.03-0.28) <0.01 <0.01 <0.01 0.52 

Paraguay                 

Prior 0.86 0.74 0.05 0.02 <0.01 <0.01 0.03   
Posterior 0.93 (0.88-1) 0.80 (0.76-0.86) 0.06 (0.05-0.07) 0.03 (0.03-0.03) <0.01 <0.01 0.04 (0.03-0.04) 0.83 

Peru                 
Prior 1.1 0.46 0.44 0.05 0.09 0.01 0.04   

Posterior 2.4 (1.6-3.9) 0.89 (0.64-1.5) 1.1 (0.69-1.7) 0.1 (0.07-0.19) 0.22 (0.1-0.4) 0.02 (0.01-0.03) 0.07 (0.05-0.13) 0.46 
Suriname                 

Prior 0.03 <0.01 <0.01 0.01 0.01 <0.01 <0.01   
Posterior 0.03 (0.03-0.04) <0.01 <0.01 0.01 (0.01-0.01) 0.01 (<0.01-0.01) 0.01 (<0.01-0.01) <0.01 0.28 

Uruguay                 
Prior 0.77 0.69 0.05 0.01 <0.01 <0.01 0.01   

Posterior 1.1 (1.0-1.2) 0.93 (0.8-1.0) 0.14 (0.07-0.21) 0.03 (0.03-0.03) <0.01 <0.01 0.02 (0.02-0.03) 0.91 
Venezuela                 

Prior 2.5 0.89 0.25 0.02 1.3 <0.01 0.02   
Posterior 7.0 (5.5-9.9) 2.8 (2.0-4.5) 0.67 (0.45-1.2) 0.06 (0.04-0.10) 3.4 (3.1-5.5) <0.01 0.06 (0.04-0.12) 0.68 
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Waste (landfills and wastewater) is a large emissions sector across South America that has a 50% higher top-down emissions 

estimate than the UNFCCC prior estimate. Countries estimate waste emissions using country-specific data on populations, 

waste generation rates, and landfill monitoring along with IPCC parameters for methane yield (IPCC, 2019). Our waste 

estimate for Brazil is consistent with its UNFCCC report but all other countries have higher estimates. Argentina (+59% in 455 

the top-down estimate relative to the prior estimate) and Peru (+150%) see the largest discrepancies. Despite significant 

efforts in Peru to improve their landfilling infrastructure, disposal of about 50% of the country’s solid waste is still done 

improperly (Nueva ley y reglamento de residuos sólidos, 2024), much of which ends up in open dumpsites and could be 

unaccounted for in bottom-up estimates (Ziegler-Rodriguez et al., 2019). In Argentina, TROPOMI has been used previously 

to identify a strongly-emitting landfill in Buenos Aires (Maasakkers et al., 2022), where we also find high posterior 460 

emissions.  

Figure 8 compares the prior and posterior oil/gas methane intensity for each country defined as the total emissions from the 

oil/gas sector per unit of natural gas produced as methane (OGCI, 2022). We use national production data from EIA (EIA, 

2023) and assume 90% of natural gas to be produced as methane as in Shen et al. (2023). We compare our posterior 

intensities to those inferred from Shen et al. (2023) for individual countries worldwide and from Nathan et al. (2023) for 465 

Venezuela in their inversions of TROPOMI data. Nathan et al. (2023) define methane intensity as the amount of methane 

emitted per unit of combined oil and gas production, rather than just gas production. We find that Venezuela, Peru, and 

Colombia have comparable posterior methane intensities to these previous studies, but Argentina’s intensity is higher (5.9 

(5.3-6.2) %) than the intensity inferred from Shen et al. (2023) (1.5%). The large difference between our posterior and prior 

estimates for Argentina may be due to our prior estimate from GFEIv2 not accounting for recent developments, particularly 470 

the substantial expansion of oil and gas extraction in the Neuquén basin in central-western Argentina over the past five years 

(Forni et al., 2021). All countries except Venezuela have methane intensities of magnitudes comparable to the global average 

of 2.4% inferred by Shen et al. (2023) from inversion of TROPOMI data and much higher than the industry target of 0.2% 

(OGCI, 2022), indicating a large potential to decrease emissions. Venezuela has the highest posterior methane intensity (33 

(29-54) %) in South America, which can be explained by leakage from abandoned infrastructure as its oil production has 475 

declined (Nathan et al., 2023). Shen et al. (2023) found Venezuela to have the highest methane intensity of any country 

globally.  
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Figure 8: Oil and gas methane intensities for major producing countries in South America. The methane intensity is defined as the 
amount of methane emitted per unit of methane gas produced for our posterior result and that of Shen et al (2023). Nathan et al. 480 
(2023) define methane intensity as the amount of methane emitted per unit of combined oil and gas production, rather than just 
gas production. Methane intensities computed from the prior and posterior emissions are compared to values inferred from Shen 
et al. (2023) in a previous inversion of TROPOMI data for May 2018-February 2020 (they only report an upper emission estimate 
of 1 Tg a-1 for Bolivia) and from Nathan et al. (2023) in a TROPOMI inversion over Venezuela for 2019. Horizontal lines indicate 
the ranges from our inversion ensemble. The vertical line shows the global mean methane intensity of 2.4% reported by Shen et al. 485 
(2023). 

3.4 Livestock emissions 

Livestock accounts for over 65% of anthropogenic methane emissions in South America (Table 1), and over 90% of this 

source is from enteric fermentation by cattle (FAOSTAT database, available at https://www.fao.org/faostat/en/#data, last 

accessed February 2024). Bottom-up inventories estimate emissions from enteric fermentation by multiplying cattle 490 

populations by an emission factor per head. The emission factor depends on age, size, feed, cattle type, and environment. 

The IPCC (2019) gives different tiers of guidelines to incorporate this information into countries’ bottom-up estimates. Tier 

1 guidelines are to multiply cattle populations by emission factors that represent averages across all of Latin America. Tier 2 

requires countries to calculate their own emission factors based on country-specific data on feed, size, productivity, and 

amount of movement for different types of cattle. Tier 3 guidelines are not specific but could include the development of 495 

sophisticated models considering diet composition or the fermentation process in more detail (Bannink et al., 2011). 

Tier 1 emission factors for Latin America are calculated by the IPCC (2019) using data from 52 publications of which 32 are 

for Brazil. These emission factors are 58 and 55 kg CH4 head-1 a-1 for non-dairy cattle and 78 and 103 kg CH4 head-1 a-1 for 

dairy cattle in low and high productivity systems, respectively. Because these values are presented as averages across Latin 

America, countries for which livestock is a dominant emission source are encouraged by IPCC (2019) to use Tier 2 or Tier 3 500 

methods instead.  

Many South American countries describe using a combination of Tier 2 and Tier 1 methods in their UNFCCC reports with 

varying degrees of complexity. Argentina and Colombia, for example, both use complicated Tier 2 methods considering 
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livestock breed and temperature. Despite their complex bottom-up reporting, Argentina and Colombia see some of the 

largest discrepancies between their UNFCCC reports and our top-down estimate, indicating that the difference is not due to a 505 

lack of thoroughness in bottom-up calculations. The mismatch could be because IPCC Tier 2 methods can underestimate 

emission factors; Salas-Riega et al. (2022) showed that measured enteric emissions for both lactating and non-lactating cattle 

in the Peruvian high Andes were higher than those derived from IPCC Tier 2 methods (119 and 97 kg CH4 head-1 a-1 for 

lactating and non-lactating cattle, respectively). It could also be because bottom-up methods are unable to capture the spatial 

and temporal variability of emission factors; Benaouda et al. (2020) reviewed daily measurements of cattle enteric 510 

fermentation in Latin America and found a wide range of emission factors, from 18 to 239 kg CH4 head-1 a-1 with an average 

of 68 kg CH4 head-1 a-1. 

One possible weakness in our inversion is the reliance on EDGAR v7 for the prior spatial distribution of livestock emissions 

on the 0.25o×0.3125o grid. EDGAR spatially allocates emissions by using an array of proxy datasets including animal 

density and global land cover data (Crippa et al., 2024). Errors in this spatial distribution would propagate to inversion 515 

results by affecting both the optimal solution to the inverse problem (Yu et al., 2022) and the attribution of 0.25o×0.3125o 

posterior emissions to specific sectors (Shen et al., 2021). Figure 9 shows 2021 emissions from 779 individual feedlots and 

dairies in Northern Argentina and Southern Brazil estimated by Climate TRACE by using artificial intelligence to identify 

facility locations in PlanetScope (Planet Team, 2021) satellite imagery, assuming livestock numbers to be proportional to 

facility area, and applying 2006 IPCC emission factors (Davitt et al., 2023). The high emissions in northern Argentina do not 520 

match the spatial distribution from EDGAR (Figure 2). The right panel of Figure 9 compares our prior and posterior 

emission estimates to the Climate TRACE values for inversion grid cells dominated by livestock. Our values are higher 

because Climate TRACE estimates are limited to larger feedlots visible in PlanetScope imagery. However, we find better 

spatial correlations between Climate TRACE and our posterior emissions (r = 0.44, p = 0.0004) than our prior emissions (r = 

-0.11, p = .42). The Climate TRACE database could be useful as prior estimate for future inversions but would need to be 525 

more comprehensive. Another possible source of error is the overlap between livestock activities and agricultural burning, 

particularly in Argentina (Puliafito et al., 2020). Small fires, often set to clear waste and prepare fields for planting, may be 

too small to be captured accurately in the prior inventories (Randerson et al., 2012). 

Future inversions could be improved by using country-specific, spatially-distributed emissions inventories as prior estimates 

when available. Argentina, for example, offers a spatially-gridded agriculture-specific emissions inventory in which 530 

livestock emissions are much more concentrated than in EDGAR (Puliafito et al., 2020), which may not have as precise, 

country-specific data to spatially allocate emissions. Using national, gridded inventories as prior estimates when available 

would not only reduce a major source of uncertainty in the inversion but would also make top-down results more policy-

relevant. 

 535 
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Figure 9: Satellite-informed spatial distribution of enteric fermentation emissions from feedlots and dairies in southern Brazil and 
northern Argentina from Climate TRACE (Davitt et al., 2023). The left panel shows the distribution of emissions from individual 
feedlots averaged onto the native 0.25o×0.3125o grid cells of our inversion. The right panel compares our prior and posterior 
emissions to the Climate TRACE data for grid cells where the inversion has averaging kernel sensitivities greater than 0.5, fewer 540 
than 50 grid cells aggregated within the state vector element, and more than 50% of prior emissions are from livestock. Reduced-
major-axis linear regressions are also shown. 

4 Conclusions 

We used 2021 TROPOMI and GOSAT satellite observations of atmospheric methane (XCH4) in a high-resolution analytical 

inversion to infer methane emissions from South America at up to 25 km × 25 km resolution. The goal of this work was to 545 

use the national inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC) under 

the Paris Agreement in tandem with satellite methane observations to begin to identify reasons for the mismatch between 

top-down and bottom-up estimates over South America.  

We used national emissions inventories reported by individual countries to the UNFCCC, gridded using EDGARv7, as the 

prior estimate for livestock, waste, and rice in the inversion; for fossil fuel sources, we used GFEIv2 as the prior estimate. 550 

For wetlands we used two alternative prior estimates, from WetCHARTs and LPJ-MERRA2, with different spatial 

distributions. We obtained best posterior estimates of emissions analytically through Bayesian synthesis of these prior 

estimates with the information from the TROPOMI and GOSAT observations. We used a blended TROPOMI+GOSAT 

product that corrects spatially variable biases and artifacts in the TROPOMI data using information from GOSAT. Although 

TROPOMI data is in general much denser than GOSAT, GOSAT provides unique coverage over the Amazon where 555 

TROPOMI data is sparse. The inversion used variable resolution with a Gaussian mixture model (GMM) state vector that 

enforces native 25-km resolution in source regions with high observation density. Analytical solution to the inversion 

enabled the creation of an inversion ensemble with 54 members for conservative uncertainty estimates on posterior 

emissions.  
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Total posterior emissions for South America are 121 (109-137) Tg a-1, where the best estimate is the median of our inversion 560 

ensemble, and the range is in parentheses. This is significantly higher than the prior estimate of 96 Tg a-1. Most of the 

increase is from anthropogenic emissions, which increase from 31 Tg a-1 in the prior estimate to 48 (41-56) Tg a-1. 

Anthropogenic emissions are dominated by livestock (65%), followed by waste (16%), and oil/gas (13%). Total 

anthropogenic emissions in South America are 55% higher than in the prior estimate, reflecting increases in emissions from 

oil/gas (+158%), livestock (+48%), and waste (+37%). 565 

We obtain best posterior estimates of wetland emissions from the Amazon (32 (29-44) Tg a−1), the Bolivian Amazon (2.8 

(1.6-4.4) Tg a−1), the Pantanal (1.5 (1.2-1.8) Tg a−1), and the Paraná (2.0 (1.8-2.2) Tg a−1). Our estimate for the Amazon is 

consistent with past estimates, but our estimate for the Pantanal is lower. Emissions from the Paraná are much higher than in 

either WetCHARTS or LPJ-MERRA2. Posterior wetland continental total emissions agree better with LPJ-MERRA2 than 

WetCHARTs, but the posterior spatial distribution better matches WetCHARTs.  570 

We compare the bottom-up estimates of anthropogenic emissions from individual countries to our best sector-resolved 

posterior estimates. We find that TROPOMI and GOSAT observations can effectively resolve emissions from individual 

countries except Ecuador and Suriname. The top seven emitting countries including Brazil, Argentina, Venezuela, Colombia, 

Peru, Bolivia, and Paraguay make up 93% of the total anthropogenic emissions in the region, with Brazil contributing the 

highest amount (40%). All countries except Bolivia, Brazil, and Suriname show larger top-down anthropogenic emissions 575 

estimates than the prior estimate. Waste emissions are higher in the posterior estimate than the prior estimate, particularly in 

Peru. Oil/gas emissions are also higher in the posterior in all producing countries except Brazil. We find high methane 

intensities from the oil/gas sector in Venezuela (33 (29-54) %), Colombia (6.5 (5.1-10.8) %), and Argentina (5.9 (5.3-6.2) 

%).  

We examine livestock emissions and their reporting to UNFCCC in more detail. These emissions are over 90% from enteric 580 

fermentation by cattle. We find that even countries with complex Tier 2 reporting methods report livestock emissions much 

lower than our posterior estimate. These differences may stem from underestimations in IPCC Tier 2 methods or the inability 

of bottom-up approaches to capture spatial and temporal variability in emission factors. They may also be the result of 

uncertainty in the inversion arising from aggregation error or the prior spatial distribution of livestock emissions. 

South America is a heterogenous continent with a complex range of drivers of emissions and methodologies used to 585 

calculate them. Future work would benefit from partnership with local experts to make stronger connections between top-

down estimates and bottom-up data in specific countries. Top-down estimates can provide additional information to improve 

our understanding of methane emissions, but attribution to sectors is dependent on the choice of prior distribution of 

emissions; country-specific information can improve this prior estimate and thus the inversion results. Further, satellite 

observations of methane are validated by in-situ data primarily from the Northern Hemisphere. The credibility of future 590 

inversion results over South America would be greatly enhanced by comprehensive and systematic in-situ methane 

observations across the region. 
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5 Data Availability 

The blended TROPOMI+GOSAT satellite observations version 2 are available at https://registry.opendata.aws/blended-

tropomi-gosat-methane (Balasus et al., 2023). The GOSAT methane retrievals version 9.0 are available at 595 

https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch, 2020). Oil, gas, and coal emissions from 

the GFEIv2 inventory are available at https://doi.org/10.7910/DVN/HH4EUM (Scarpelli and Jacob, 2021). Methane 

emissions by sector from EDGARv7 are available at https://edgar.jrc.ec.europa.eu/dataset_ghg70 (Crippa et al., 2022). 

Wetland emissions from WetCHARTs v1.3.1 are available at https://doi.org/10.3334/ORNLDAAC/1915 (Ma et al., 2021). 
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