A process-based evaluation of biases in extratropical stratosphere-troposphere coupling in subseasonal forecast systems

1Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel
2Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
3NOAA Physical Sciences Laboratory (PSL), Boulder, CO, USA
4NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA
5NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway
6Finnish Meteorological Institute, Meteorological Research, Helsinki, Finland
7Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
8Department of Earth Physics and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain
9Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas – Universidad Complutense de Madrid (CSIC-UCM), Madrid, Spain.
10Department of Meteorology, University of Reading, Reading, UK
11Atmospheric and Environmental Research Inc., Lexington, MA, USA.
12University of Lausanne, Lausanne, Switzerland
13ETH Zurich, Zurich, Switzerland
14Group of Meteorology, Universitat de Barcelona (UB), Barcelona, Spain
15Centre for Climate Adaptation and Environment Research, University of Bath, Bath, UK
16Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
17School of Earth and Environmental Sciences, Seoul National University, South Korea
18Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
19CONICET – Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmosfera (CIMA), Buenos Aires, Argentina
20CNRS – IRD – CONICET – UBA. Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL 3351 IFAECI), Buenos Aires, Argentina
21European Centre for Medium-Range Weather Forecasts, Reading, UK
22Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters / Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
23Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO
24Department of Earth Science, Aichi University of Education, Kariya, Japan

Correspondence: Chaim I. Garfinkel (chaim.garfinkel@mail.huji.ac.il)

Abstract. Two-way coupling between the stratosphere and troposphere is recognized as an important source of subseasonal-to-seasonal (S2S) predictability and can open windows of opportunity for improved forecasts. Model biases can, however, lead
to a poor representation of such coupling processes; drifts in a model’s circulation related to model biases, resolution, and parameterizations have the potential to feed back on the circulation and affect stratosphere-troposphere coupling.

In the Northern Hemisphere, nearly all S2S forecast systems underestimate the strength of the observed upward coupling from the troposphere to the stratosphere, downward coupling within the stratosphere, and the persistence of lower stratospheric temperature anomalies. While downward coupling from the lower stratosphere to the near surface is well represented in the multi-model ensemble mean, there is substantial inter-model spread likely related to how well each model represents tropospheric stationary waves.

In the Southern Hemisphere, the stratospheric vortex is over-sensitive to upward propagating wave flux in the forecast systems. Forecast systems generally overestimate the strength of downward coupling from the lower stratosphere to the troposphere, even as they underestimate the radiative persistence in the lower stratosphere. In both hemispheres, models with higher lids and a better representation of tropospheric quasi-stationary waves generally perform better at simulating these coupling processes.

1 Introduction

The extratropical stratosphere and troposphere are coupled through dynamical interactions between planetary-scale atmospheric Rossby waves and the mean flow. This vertical coupling operates in both directions: upward coupling from tropospheric variability induces variability in the stratosphere, while downward coupling from stratospheric variability can impact weather in the troposphere (Butler et al., 2019; Scaife et al., 2022). Both weak and strong polar stratospheric vortex extremes have been shown to influence surface climate and weather extremes for weeks to months afterwards (Domeisen and Butler, 2020) due to the long radiative timescales in the lower stratosphere (Hitchcock et al., 2013), which means that stratospheric variability can potentially provide windows of opportunity for prediction on subseasonal-to-seasonal (S2S) timescales (Butler et al., 2019; Domeisen et al., 2020b). However, model biases in either the troposphere or stratosphere can impact these coupling processes, compromising opportunities to increase S2S predictability that could otherwise be achieved. The goal of this study is to identify systematic biases in extratropical stratosphere-troposphere coupling processes across S2S forecast systems.

Variability in the upward flux of planetary-scale (wavenumbers 1-3) Rossby waves drives variability in the stratospheric polar vortex. Upward wave propagation is strengthened when the wave (or eddy) constructively interferes with the climatological stationary wave pattern, while weakened wave flux occurs when the linear interference is destructive (Garfinkel et al., 2010; Smith and Kushner, 2012). In addition, Rossby waves can amplify or weaken due to nonlinear processes. Rossby waves can only propagate upward into the stratosphere when the zonal flow is westerly but below a critical wind speed (Charney and Drazin, 1961), conditions that occur primarily in Northern Hemisphere (NH) extended winter (November-March) and Southern Hemisphere (SH) spring (September-November). A weaker upward flux of wave activity can lead to a strengthening of the polar vortex (Limpasuvan et al., 2004). On the other hand, an anomalously strong or persistent pulse of wave activity can weaken, and even reverse, the westerly winds of the vortex (Andrews et al., 1987; Polvani and Waugh, 2004; Garfinkel et al., 2010). In particular, about once every two years the Arctic polar vortex completely breaks down and the zonal winds...
reverse direction in an extreme event called a “sudden stratospheric warming” (Baldwin et al., 2021). In SH spring, this upward coupling more typically manifests as a modulation of the timing of the seasonal polar vortex breakdown, with weaker upward flux of wave activity resulting in a delayed breakdown in spring, and vice versa for stronger upward wave flux (Byrne and Shepherd, 2018; Lim et al., 2018). A complete breakdown of the SH vortex has only been observed once, in September 2002.

Variability in the strength and location of the stratospheric polar vortex can also exert a downward influence on weather patterns (Haynes et al., 1991; Hitchcock and Simpson, 2014). Near the tropopause, interactions of the stratospheric signal with both transient and stationary eddies are important for communicating the signal to the surface (Song and Robinson, 2004; Domeisen et al., 2013; White et al., 2020, 2022). While both stratospheric and tropospheric factors influence the downward communication of the signal (Afargan-Gerstman et al., 2022), the exact mechanism of downward coupling remains unclear.

Accurately simulating both upward and downward vertical coupling requires reasonably accurate simulation of processes such as the location and strength of stationary planetary waves and the jet in the troposphere (Schwartz et al., 2022), the strength and seasonality of stratospheric wind speeds, and the radiative timescales of the lower stratosphere. Recently, Lawrence et al. (2022) identified systematic stratospheric biases across S2S forecast systems. In particular, they found that most forecast systems exhibit a warm bias in the global-mean stratosphere, and a cold bias in the extratropical lower stratosphere-upper troposphere. These biases were suggested to be due to biases in radiative heating rates associated with model biases in ozone and water vapor. Most forecast systems also showed strong and cold polar vortex biases, which suggests that there are underlying difficulties in accurately representing vertical coupling processes. In general, stratospheric biases were substantially worse for models with a low model lid height, an issue that has also been identified in seasonal prediction systems (Butler et al., 2016) and climate models (Charlton-Perez et al., 2013).

While systematic biases in the stratosphere were detailed in Lawrence et al. (2022), a deeper exploration of how S2S models simulate the processes that underlie stratosphere-troposphere vertical coupling is warranted, given that these processes ultimately drive the impacts on surface weather patterns and regional hazards. As part of the collaborative effort of the World Climate Research Programme (WCRP) Atmospheric Processes and their Role in Climate (APARC) Stratospheric Network for the Assessment of Predictability (SNAP) activity, we investigate how extratropical atmospheric biases are linked to the simulation of stratosphere-troposphere coupling in S2S forecast systems. After introducing the data and methods in section 2, we demonstrate that many S2S forecast systems struggle to represent the strength of observed upward coupling from the troposphere to the stratosphere (Section 3.1), the sensitivity of the stratospheric polar vortex to upward wave flux (Section 3.2), interannual variability in heat flux extremes (Section 3.3), and downward coupling within the stratosphere (Section 3.4). Downward coupling from the lower stratosphere to the surface (Section 3.5) is strongly biased in most models: it is consistently overestimated across models in the SH, while in the NH there is a wide divergence with most models overestimating the strength of this coupling and some underestimating it.
2 Data & Methods

2.1 Subseasonal-to-Seasonal (S2S) Hindcast and Reanalysis Datasets

We use ensemble hindcast data from the S2S Prediction Project Database (Vitart et al., 2017), and depending on data availability, select forecast systems not included in the S2S database: (i) the National Oceanic and Atmospheric Administration’s Global Ensemble Forecast System version 12 (NOAA GEFSv12; Hamill et al., 2021; Guan et al., 2021), (ii) the National Center for Atmospheric Research Community Earth System Model version 2 (CESM2) with version 6 of the Community Atmosphere Model as its atmospheric component (NCAR CESM2-CAM6, hereafter CESM2-CAM), and (iii) CESM2 with the version 6 of the Whole Atmosphere Community Climate Model as its atmospheric component (CESM2-WACCM6, hereafter CESM2-WACCM; Richter et al., 2022). Daily gridded latitude-longitude data was only retained for the seven forecast systems that provide at least 35-day forecasts to the S2S database due to the large data volume, and so metrics which rely on this data are only computed for these seven systems.

Lawrence et al. (2022) analyzed biases over the period common to all models (1999-2010), but here we include upgraded versions of several models, for which the hindcasts begin several years after 1999. Furthermore, the specific days on which forecasts are initialized differ across systems even for a given year. We therefore have elected not to focus on a common period in this paper. The specific model versions and the period used for each system are included in Table 1. For “pixel figures” quantifying biases in individual systems (e.g. Figure 1, 3), we subsample reanalysis data to match each system, thus allowing us to pinpoint biases. For figures showing lagged correlations and lagged regression, we show the mean across the forecasting systems of the subsampled coupling strength with a solid black line, and the spread across the systems with a vertical thin line; because there is no exact overlap in the analysis period, model biases should not be inferred from face value from these lagged correlation/regression figures.

The subseasonal hindcasts analysed here are initialized with different atmospheric datasets. To ensure this has no significant effects on our results, we compare the hindcast fields to those from the ERA5 reanalysis (Hersbach et al., 2020) so that comparisons and biases are all determined with respect to a consistent dataset. Note that for the time periods and levels considered here (post-1990 and up to 10-hPa) most modern reanalysis products are in good agreement (Long et al., 2017; Gerber and Martineau, 2018; Ayarzagüena et al., 2019; Fujiwara, M. et al., 2021), and thus our results should be robust across reanalyses.

2.2 Methods

We use the following eight key metrics to diagnose coupling strength throughout this paper: $\overline{v_{k=1}T_{k=1}}$ at 500 hPa and 100 hPa; $\overline{v_{k=2}T_{k=2}}$ at 500 hPa and 100 hPa; polar cap height (60°-pole) at 10 hPa, 100 hPa, and 850 hPa; and polar cap temperature (60°-pole) at 100 hPa. v denotes the meridional wind, T the temperature, and $\bar{\cdot}$ the zonal mean. We decompose v and T by wavenumber before computing their product, e.g., $\overline{v_{k=1}T_{k=1}}$ for zonal wavenumber-1 (wave-1) heat flux. The upward flux of planetary waves is diagnosed using the meridional eddy heat flux, (e.g., $\overline{v_{k=1}T_{k=1}}$ rather than the vertical component of the Eliassen-Palm flux due to the limited vertical resolution available in the S2S archive.
Table 1. Details of the subseasonal-to-seasonal forecast systems used herein.

<table>
<thead>
<tr>
<th>Model</th>
<th>S2S Database Version(s)</th>
<th>Hindcast Period</th>
<th>Inits per season</th>
<th>Ensembles</th>
<th>Forecast Span</th>
<th>Model Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoM*</td>
<td>POAMA P24</td>
<td>1999-2010</td>
<td>15</td>
<td>33</td>
<td>62 days</td>
<td>10 hPa</td>
</tr>
<tr>
<td>CESM2-CAM*</td>
<td>–</td>
<td>1999-2019</td>
<td>12-13</td>
<td>11</td>
<td>45 days</td>
<td>2 hPa</td>
</tr>
<tr>
<td>CESM2-W ACCM</td>
<td>–</td>
<td>1999-2019</td>
<td>12-13</td>
<td>5</td>
<td>45 days</td>
<td>4.5×10^{-6} hPa</td>
</tr>
<tr>
<td>CMA*</td>
<td>BCC-CPS-S2Sv1</td>
<td>1994-2014</td>
<td>90-91</td>
<td>4</td>
<td>60 days</td>
<td>0.5 hPa</td>
</tr>
<tr>
<td>CMA</td>
<td>BCC-CPS-S2Sv2</td>
<td>2005-2019</td>
<td>25</td>
<td>4</td>
<td>60 days</td>
<td>0.1 hPa</td>
</tr>
<tr>
<td>CNRM</td>
<td>CNRM-CM 6.0</td>
<td>1993-2014</td>
<td>12</td>
<td>15</td>
<td>50 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>CNRM</td>
<td>CNRM-CM 6.1</td>
<td>1992-2017</td>
<td>13</td>
<td>10</td>
<td>47 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>ECCC-lo*</td>
<td>GEPS 4</td>
<td>1995-2014</td>
<td>25-26</td>
<td>4</td>
<td>32 days</td>
<td>2 hPa</td>
</tr>
<tr>
<td>ECCC-hi</td>
<td>GEPS 6</td>
<td>1998-2017</td>
<td>23-25</td>
<td>4</td>
<td>32 days</td>
<td>0.1 hPa</td>
</tr>
<tr>
<td>ECCC-hi</td>
<td>GEPS 7</td>
<td>2001-2020</td>
<td>13-21</td>
<td>4</td>
<td>32 days</td>
<td>0.1 hPa</td>
</tr>
<tr>
<td>ECMWF</td>
<td>CY45R1</td>
<td>1998-2018</td>
<td>26</td>
<td>11</td>
<td>46 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>ECMWF</td>
<td>CY47R3</td>
<td>2002-2020</td>
<td>26</td>
<td>11</td>
<td>46 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>GEFSv12</td>
<td>–</td>
<td>2000-2019</td>
<td>12-13</td>
<td>11</td>
<td>35 days</td>
<td>0.1 hPa</td>
</tr>
<tr>
<td>HMCR</td>
<td>RUMS</td>
<td>1991-2014</td>
<td>12-13</td>
<td>11</td>
<td>46 days</td>
<td>0.04 hPa</td>
</tr>
<tr>
<td>JMA</td>
<td>GEPS1701</td>
<td>1990-2012</td>
<td>9</td>
<td>5</td>
<td>34 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>JMA</td>
<td>CPS3</td>
<td>1991-2020</td>
<td>6</td>
<td>5</td>
<td>34 days</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>KMA</td>
<td>GloSea5-GC2</td>
<td>1991-2016</td>
<td>12</td>
<td>3</td>
<td>60 days</td>
<td>85 km</td>
</tr>
<tr>
<td>KMA</td>
<td>GloSea6-GC32</td>
<td>1993-2016</td>
<td>12</td>
<td>3</td>
<td>60 days</td>
<td>85 km</td>
</tr>
<tr>
<td>NCEP</td>
<td>CFSv2</td>
<td>1999-2010</td>
<td>90-91</td>
<td>4</td>
<td>44 days</td>
<td>0.02 hPa</td>
</tr>
<tr>
<td>UKMO</td>
<td>GloSea5</td>
<td>1993-2016</td>
<td>12</td>
<td>7</td>
<td>60 days</td>
<td>85 km</td>
</tr>
<tr>
<td>UKMO</td>
<td>GloSea6</td>
<td>1993-2016</td>
<td>12</td>
<td>7</td>
<td>60 days</td>
<td>85 km</td>
</tr>
</tbody>
</table>

* Systems with low-top models. Note that we use the high-top HMCR RUMS model version.

S2S models typically archive data at coarse resolution due to the huge data volume. For models on the S2S database, we consider instantaneous daily values at 00 UTC on a 1.5° × 1.5° latitude/longitude grid, with 10 pressure levels between 1000 and 10 hPa. GEFSv12 data are provided 6-hourly on a 0.5° × 0.5° grid, with 25 pressure levels respectively between 1000 and 1 hPa. CESM2-CAM and CESM2-W ACCM provide zonally averaged daily fields at 192 latitudes (∼0.9424° resolution) on the pressure levels closest to the model levels, which we interpolate to a set of 32 standard pressure levels between 1000 and 10 hPa. Heat flux data is not available for CESM2-CAM, and hence we show this model for limited diagnostics only. The eight diagnostics are computed on the available model grid.

As in Lawrence et al. (2022), we define forecast systems with model tops at or above 0.1 hPa with several levels above 1 hPa as “high-top” models, and all others as “low-top” models. Using this definition results in 17 forecast systems with high-top
models and 5 forecast systems with low-top models (see Table 1); however, not all models are included for each analysis. Low-top models are identified with asterisks and/or dotted lines in the figures. We stress that the computation of high-top and low-top means is obtained from an unbalanced distribution of high-top and low-top models.

For each variable and forecast system, we derive lead-time-dependent climatologies, which we subtract from the raw forecast quantities to determine forecast anomalies. These climatologies are calculated by averaging all ensemble-mean hindcasts for a given day of year and for each lead time. For those systems providing a fixed set of hindcast initializations that do not uniformly cover the same days of year in the hindcasts (e.g., GEFSv12 and CESM2), we permit differences of up to three days when creating the lead-time-dependent climatologies.

We quantify the tightness of coupling by using both regression and correlation analyses. Regression coefficients directly diagnose the strength of coupling, and are the closest we can get to answering questions such as “what is the heat flux anomaly at 100-hPa for a given heat flux anomaly at 500-hPa?” The downside of regression is that it is not possible to meaningfully compare the different coupling metrics in the paper to see their relative importance because the units are different. On the other hand, correlations normalize the units and allow for comparison between different metrics. Correlations also quantify how much of the linear variability between two quantities is shared. For most models and metrics, regression and correlation coefficients are similar. However, there are notable exceptions if a given model fails to simulate a reasonable amount of variance for a given metric. In these cases, we elect to use regression to diagnose coupling strength, as the correlation conflates two possible sources of error: error in the coupling strength with error in the underlying variance. For completeness, we present in the supplemental material figures diagnosing coupling strength using correlation. In all cases we calculate the regression and correlation coefficients for individual ensemble members and then average.

Some models suffer from large (>40%) biases in variance, and so this concern about variance biases complicating the interpretation of correlations is difficult to sidestep. We demonstrate this in Figure 1, which shows the percentage error in the daily variance in each forecast system for our eight key metrics and days 22-28 of the forecast. We compare each forecast system to the corresponding period in ERA5, and if all available ensemble members show a bias of the same sign, we indicate that pixel with a “×” symbol. Applying an f-test leads to a larger proportion of the pixels indicating significant biases (not shown). The models systematically overestimate variance in lower tropospheric polar cap height and tropospheric planetary wave heat flux in both hemispheres. In contrast, they underestimate variance in the lower stratosphere in the SH, and in the NH there is a notable decrease in the magnitude of the bias in variance from the troposphere up to the stratosphere. The models also suffer from too little variance in lower stratospheric polar cap height and temperature in the SH. These biases in variance are qualitatively similar though weaker earlier in the integration (e.g. days 8-14, not shown).

3 Results

We now consider the relative abilities of the forecast systems to capture the physical processes underlying stratosphere-troposphere coupling. To do this, we subdivide stratosphere-troposphere coupling into several components as follows and consider each individually below:
Figure 1. Variance of daily values of the various diagnostics in days 22-28 in the (a) Northern Hemisphere and (b) Southern Hemisphere. For each forecast system we compare the variance to that for the corresponding period in ERA5, and then show the percent error. A gray ‘×’ indicates models and metrics for which all ensemble members simulate a variance that is either too-weak or too-strong, or alternatively if the ERA5 variance doesn’t fall within the envelope of the available members. The bias is defined as the difference in variance between the model and ERA5 divided by the variance in ERA5. The last four columns show the mean bias for low-top models, the older versions of high-top models, the latest versions of high-top models, and all models; A gray ‘×’ indicates all models agree on the sign of the bias.
1. Vertical propagation of planetary waves from the troposphere into the stratosphere
2. The sensitivity of the stratospheric polar vortex to upward wave driving from the lowermost stratosphere
3. Sufficient interannual spread in daily heat flux extremes
4. Downward propagation of stratospheric polar vortex anomalies from the upper- and mid- stratosphere to the lower stratosphere related to wave-mean flow interactions
5. The persistence of the polar vortex signal in the lower stratosphere that arises due to the long radiative timescales
6. Downward propagation from the lower stratosphere to the near-surface.

3.1 Vertical propagation of planetary waves from the troposphere into the stratosphere

We begin by considering the upward coupling of wave activity from the troposphere to the stratosphere. This coupling is quantified by computing the lagged correlation and regression coefficients between 500-hPa and 100-hPa heat fluxes averaged over 45-75° in each hemisphere (Figure 2ab). The dominant direction of coupling is for tropospheric (500-hPa) heat fluxes to precede lower stratospheric (100-hPa) heat fluxes.

In the NH, this coupling peaks when tropospheric heat flux precedes lower stratospheric heat flux by 3 days for wave-1 and by 2 days for wave-2 in ERA5 (thick black lines in Figure 2). At this lag, a 1 Km/s anomaly at 500hPa is associated with a 1.91 Km/s anomaly at 100hPa, with a correlation of 0.46. While the forecast systems capture this behavior qualitatively, they systematically underestimate the magnitude of the correlation and regression for wave-1. For the high-top models, biases identified in the regression coefficients are mirrored by the biases in correlations. However, for the low-top models this is not the case. For example, BoM has one of the highest correlations for wave-1 of any model, while its regression coefficient is the lowest. This is due to the fact that BoM underestimates the variance of wave-1 100-hPa heat fluxes by more than 50% (Figure 1a), and this underestimation is likely a reflection of the model’s poor simulation of stratospheric variability more generally as documented in Domeisen et al. (2020a). While most high-top models do not show strong biases in the wave-1 100-hPa heat flux variance (Figure 1a), this may be a case of two biases canceling each other, i.e. too much tropospheric wave-1 variability being compensated for by too little upward wave propagation.

The bias in the regression coefficient for each model when compared to the corresponding period in ERA5 is shown in the top row of Figure 3. Most models suffer from too-weak upward coupling, with only two models (NCEP and JMA-CPS3) simulating a stronger regression coefficient than ERA5. The multi-model mean regression coefficient is low-biased by 11% for high-top models, and by 25% for low-top models. Figure 4a further considers the relationship between model biases in coupling strength and vertical lid height by contrasting the bias in coupling with the base-10 logarithm of the vertical lid pressure. While the model lid level is anticorrelated with wave-1 upward coupling strength ($r = -0.34$), an even more pronounced effect is evident when comparing coupling strength with the magnitude of the climatological wave-1 heat flux in the troposphere (an indication of how well each model represents quasi-stationary waves, $r = 0.5$; Figure 5a). Models with a better representation...
of the climatological quasi-stationary wave-1 better represent its upward coupling. This effect is even more pronounced if we compare climatological heat flux at 100-hPa with the coupling strength \(r = 0.70 \); not shown).

175 The upgrade of the CMA system from low-top to high-top led to a 29% reduction in its bias in wave-1 upward coupling strength, while the transition from ECCC-GEPS4 to ECCC-GEPS7 led to a 67% reduction in its bias (Figure 3a). Of the high-top models, CNRM struggles the most with the upward coupling strength, and the upgrade from CNRM-CM6.0 to CNRM-CM6.1 improved the fidelity of the simulation by 21%. GloSea6 (both KMA and UKMO) improved by 47% over GloSea5. ECMWF-cy47r3 is also improved over its earlier versions, though the earlier versions were already among the most realistic across all forecast systems and hence there was less room for improvement.

180 This overall underestimate of wave-1 upward coupling is confirmed in Figure 6, which shows the regression coefficient between 500-hPa height anomalies and the wave-1 heat flux at 100-hPa 3 days afterwards for December and January initializations. This analysis is performed for only seven of the models due to data availability and storage constraints. Consistent with previous work (e.g. Garfinkel et al., 2010), low heights in the Northwest Pacific and high heights in the Atlantic sector are associated with pulses of wave-1 heat flux in the lower stratosphere. These anomalies are in phase with the climatological wave-1, and thus constructively interfere with it. The models systematically underestimate the regression coefficient in both sectors. The low-top CMA and BoM are particularly biased, again revealing the importance of the model top.

The above results suggest that the S2S forecast systems need a higher model lid and more realistic stationary waves in the troposphere to simulate realistic upward wave-1 coupling between 500 and 100-hPa in the boreal winter. Biases are smaller for wave-2 upward coupling in the NH winter. Coupling is too strong in 13 of 21 models (Figure 3a), and the multi-model mean bias is 2.5% too strong. JMA-GEPS1701 simulates a coupling strength 49% stronger than in ERA5, however in its updated version (JMA-CP3) the bias drops to 7.9%. The mean bias of the regression coefficient is larger for low-top versus high-top models: specifically, coupling is 9% too-weak in low-top vs. 1.6% too-strong in the most recent version of high-top models.

BoM suffers from an unrealistically strong correlation (Figure 2). However, its upward coupling regression coefficient is the weakest among all models with a too-weak bias of 24%. This apparent paradox is, as before, due to its too-weak wave-2 variability at 100-hPa. The wave-2 coupling strength is significantly correlated to the model lid \(r = -0.49 \), Figure 4b), and to the climatological stationary wave-2 in the lower stratosphere \(r = 0.45 \) for climatological \(\overline{T}' \) at 100-hPa), but not in the troposphere. Finally, the forecast systems better capture the tropospheric precursors of 100-hPa wave-2 heat flux as compared to wave-1 heat flux, with CNRM and UKMO in particular simulating regression coefficients of reasonable magnitude (Supplemental Figure S1).

In the Southern Hemisphere spring, models have systematically too-strong variance in tropospheric (500-hPa) planetary wave heat flux, with the exception of ISAC-CNR which underestimates the variance (Figure 1b). In contrast, lower stratospheric (100-hPa) planetary wave heat flux is generally too weak in most models. The multi-model mean regression between the 500-hPa and 100h-Pa wave-1 heat flux is 6% too strong (Figure 2c,d), however there is a large spread among the models (Figure 3b). High-top models overall perform better: the model lid and regression coefficients are significantly correlated \(r = -0.56 \) for both wave-1 and wave-2; Figure 4g,h). Biases are also smaller in models with better climatological stationary waves (Figure 5g,h), though this relationship is sensitive to the inclusion of BoM.
Figure 2. Coupling of $v' T'$ 45-75° at 500hPa with that at 100hPa measured in terms of correlation coefficient (left panels) and regression coefficient (right panels). $v' T'$ at 500hPa is taken from days 11 to 22, and we range $v' T'$ at 100hPa from 10 days prior (i.e. days 1 to 12) to 10 days after (i.e. days 21 to 32). Low top models are dotted. Older versions of high-top models are dashed. Black vertical lines shows the range in coupling strength in ERA5 upon subsampling to match each of the 21 S2S forecast systems, and the solid black line indicates the mean of these 21 coupling strengths from ERA5. Top four panels for the NH and December-January-February, bottom four panels for the SH and September-October-November. Top two panels correspond to wave-1 (wv1) and the bottom two panels correspond to wave-2 (wv2).
Figure 3. Summary of the biases in coupling strength. For each forecast system we compare to the coupling strength for the corresponding identical period in ERA5, and then show the percentage error. The bias is defined as the difference in coupling strength between the model and ERA5 divided by the coupling strength in ERA5 for the corresponding dates of each model. A gray ‘×’ indicates models and metrics for which all ensemble members simulate a bias in the coupling strength of the same sign, or alternatively if ERA5 doesn’t fall within the envelope of the available members. Low-top models are denoted with an asterisk after their name. Coupling strength is defined using regression, and the analogous figure for correlation is shown in Supplemental Figure S2. (top row) Upward coupling between v_T^\prime wave-1 at 500hPa and at 100hPa lagged 3 days (cf. Figure 2); (second row) as in first row but for wave-2; (third row) Sensitivity of Z10hPa polar cap to 100hPa heat flux lagged by 7 days (cf. Figure 7); (fourth row) Coupling strength of Z10hPa polar cap with Z100hPa polar cap lagged 2 days (cf. Figure 11); (fifth row) Persistence of T100hPa polar cap on day 20 (cf. Figure 13); (sixth, seventh rows) Coupling strength of Z100hPa polar cap with Z850hPa polar cap lagged 1 day and 20 days (cf. Figure 12).
Figure 4. Relationship between the bias in coupling strength as compared to ERA5 for corresponding dates and vertical lid. Coupling strength is defined using regression; the corresponding figure for correlations is in Supplemental Figure S3. The correlation for each panel is indicated, and also the correlation without BoM in blue if this correlation differs from the overall correlation by more than 0.2. The left column is for the NH in DJF, and the right column is for the SH in SON. Low top models are indicated by an ‘*’, older versions of high-top models with a ‘+’, and the latest version of high-top models with an ‘×’. (a,g) upward wave-1 coupling on day 3 from Figure 2; (b,h) upward wave-2 coupling on day 3 from Figure 2; (c,i) sensitivity of Z10hPa polar cap to 100hPa heat flux on day 5 from Figure 7; (d,f) coupling strength of Z10hPa polar cap to Z100hPa polar cap on day 3 from Figure 11; (e,k) persistence of T100hPa polar cap on day 20 from Figure 13; (f,j) coupling strength of Z100hPa polar cap to Z850hPa polar cap on day 20 from Figure 12. The lid of GloSea is at 85km; we represent this with a value of 0.02hPa. The lid of W ACCM is at 140km; since the levels in the ionosphere are not expected to improve the representation of stratosphere-troposphere coupling, we represent this model with a lid at 0.001hPa (still the highest lid of any model). A null hypothesis of no relationship can be rejected at the 95% confidence level using a two-sided Student-t test for correlations exceeding 0.42.
Figure 5. As in Figure 4, but for climatological wave-1 $\nabla^2 \mathbf{v}$ bias in days 22-28 at 500-hPa from 45-75° on the x-axis. The corresponding figure for correlations is in Supplemental Figure S4.
Figure 6. Maps of the regression coefficient between Z500 anomalies and $v' T_{100hPa, k=1}'$ anomalies two days later. Uses week 3 and 4 of December/January initializations. For each model we show the ERA5 subsampled to match each forecast system. The climatological wave-1 of Z500 between 45 and 75°N is shown with black contours.
3.2 The sensitivity of the stratospheric polar vortex to upward wave driving from the lowermost stratosphere

In order for models to fully capture the effect of tropospheric variability on the polar vortex, they must not only capture the upward flux of wave activity from the troposphere to the lower stratosphere, but also simulate a reasonable sensitivity of the polar vortex to lower stratospheric wave activity. We diagnose this sensitivity of the polar vortex by computing the lagged correlation and regression between 10-hPa polar cap height anomalies and the sum of wave-1 and wave-2 100-hPa heat flux (Figure 7).

In the Northern Hemisphere, the reanalysis correlation peaks when polar cap mid-stratospheric heights lag lower-stratospheric heat flux by 7 days, and most models simulate a similar lag (Figure 7a). The models underestimate the magnitude of the coupling, however: the regression coefficient at lag 7-days is too weak in all models except ECCC-GEPS6, with the BoM, CMA and CESM2-WACCM models producing particularly large biases (Figure 3a). This underestimation is pronounced for the low-top models (too-weak bias of 23% in low-top vs. 9% in high-top). Models with a stronger bias in climatological 500-hPa heat flux suffer from a particularly pronounced too-weak sensitivity ($r = 0.82$; Figure 5c). Similarly, models with a cold-vortex bias also suffer from a too-weak sensitivity ($r = 0.53$, Supplemental Figure S5c). These effects are more important in explaining intermodel spread than the model lid (Figure 4c). The models are similarly biased if we contrast 100-hPa heat flux to the tendency of 10-hPa polar cap height (e.g., figure 7 of Dunn-Sigouin and Shaw (2015), not shown).

The net effect of the models’ (i) underestimation of upward heat flux from 500-hPa to 100-hPa and (ii) under-sensitive polar vortex to 100-hPa heat flux is that NH stratospheric polar variability is not coupled strongly enough to tropospheric variability. This is summarized in Figure 8, which shows maps of the regression coefficient between 500-hPa height anomalies and the tendency in 10-hPa polar cap heights over a ten-day period, analogous to figure 1 of Garfinkel et al. (2010). Low tropospheric heights in the North Pacific and high tropospheric heights over Scandinavia and the Ural mountains precede weakening of the vortex, but the regression coefficients are underestimated by all models. Note that NCEP is the least-biased model, and this model is the only one which overestimates upward coupling of 500-hPa heat flux with 100-hPa heat flux, although it still has an under-sensitive vortex to 100-hPa heat flux. The low-top BoM and CMA are the most biased in terms of upward coupling. UKMO and CNRM capture the effect of the Ural high on the vortex, but they underestimate that of the North Pacific low; recall that these models also succeed in simulating the tropospheric precursors of 100-hPa wave-2 heat flux (Supplemental Figure S1).

Finally, Figure 7a shows that there are negative correlation and regression coefficients between polar cap height and 100-hPa heat flux when polar cap height leads heat flux. In other words, a stronger polar vortex tends to precede weakened heat flux, while a weaker polar vortex tends to precede strengthened heat flux. This is associated with the polar vortex’s ability to regulate its own wave-driving (Matsuno, 1970). The models estimate this effect accurately in the multi-model mean (bias less than 3%). The model which most strongly underestimates this effect is GloSea5 (both KMA and UKMO), however there is a marked improvement in GloSea6, with biases dropping from 22% to 8%. BoM and JMA-CP3, on the other hand, overestimate this effect. There is no relationship across models between this effect and either the model lid, the climatological wave-1 strength, or the cold pole bias.
Figure 7. Sensitivity of 10-hPa polar cap Z to $v' T'_{k=1+2}$ at 100-hPa 45-75°. $v' T'_{k=1+2}$ at 100-hPa is taken from days 11 to 22, and we range 10hPa polar cap Z from 10 days prior to 10 days after. Low top models are dotted. Older versions of high-top models are dashed. The SH $v' T'$ is multiplied by -1 before the analysis is performed to allow for a simpler comparison to the panels for the NH. Black vertical lines shows the range in coupling strength upon subsampling ERA5 reanalysis to match each of the forecast systems, and the solid black line indicates the mean of these coupling strengths.
Figure 8. Regression coefficient of the change in polar cap geopotential height at 10-hPa over 10 days (Zpole,day10-Zpole,day0; a vortex weakening index) with Z500 anomalies on day 0. Uses week 3 and 4 of December/January initializations for Z500 anomalies on day 0. The regression coefficients are computed for each ensemble member, and then averaged.
The sensitivity of the SH polar vortex to 100-hPa extratropical heat flux is overestimated in most models, however the absolute error is higher for low-top models (Figures 3b and 7b). The ability of the vortex to modulate its own wave-driving is less pronounced in the SH than in the NH, however the models underestimate this effect by 28% (Figure 7).

3.3 Biases in interannual variance of daily heat flux extremes

Sections 3.1 and 3.2 demonstrated that there are systematic biases in heat flux variance and the associated upward coupling at subseasonal timescales. This bias also extends to a poor simulation of interannual variability of daily heat flux extremes. We quantify this behavior by computing the 95th percentile of daily eddy heat fluxes (wavenumbers 1-3) for each winter of the 1999-2010 period (Figures 9 - 10). The median (marker) and two standard deviation range (whiskers) of those values for each lead time are shown at 50 and 300 hPa. This analysis thus shows year-to-year spread in the highest heat flux extremes. An equivalent analysis was done for the 5th percentile (lowest) extremes with qualitatively similar results (not shown).

For the NH (Figure 9), the interannual spread in positive heat flux extremes at 50 hPa becomes dramatically reduced for most systems after week 1 compared to reanalysis. In other words, the year-to-year variations in stratospheric heat flux extremes are not well captured in the S2S forecast systems beyond a week. This contrasts with the behaviour at 300 hPa, where most forecast systems capture the reanalysis interannual spread in extremes through week 4 (days 22-28), though there is some reduction in spread by week 5. BoM has persistently too low positive heat flux extremes at both 50 and 300 hPa.

For the SH (Figure 10), systems underestimate the interannual spread of daily heat flux extremes beyond week 1 at 50 hPa and beyond week 2 at 300 hPa. This reduction in the spread of the positive heat flux extremes is particularly evident at 50 hPa, despite most systems capturing the median values of the 95% percentile extremes well (except for BoM which underestimates the median extreme value after week 1, and WACCM which underestimates the median after week 4). At 300 hPa, most systems show a reduction in interannual spread of positive heat flux extremes at week 3-5 compared to the reanalysis spread (and systematically underestimate the median extreme value). This attenuation in the spread of extreme values is thus more evident in the SH troposphere compared to the NH troposphere.

These analyses suggest that at long lead times, the models’ daily heat flux extremes are either less sensitive to or lack external sources of interannual variability that arise due to, e.g. teleconnections, or are missing certain internal processes that lead to variability on longer timescales. While this reduction in spread is also apparent for median values of heat fluxes in some models (not shown), it is much weaker, suggesting that the extremes of the eddy heat flux distribution are more sensitive to this bias than the median.

3.4 Downward propagation of stratospheric polar vortex anomalies within the stratosphere

The downward propagation of mid-stratospheric polar vortex anomalies to the lower stratosphere is considered in Figure 11, which shows the lagged correlation of 10-hPa polar cap height with 100-hPa polar cap height. In the NH, downward propagation peaks after 2 days in ERA5 and in most models. While several models simulate this downward propagation realistically, there is a systematic underestimation of the magnitude of downward coupling within the stratosphere (Figure 3a, fourth row), with only 2 of 21 systems (low-top BoM and CMA-S2Sv1) simulating a too-strong coupling strength. Biases are even more pronounced
Figure 9. The median (marker) ±2 standard deviations (whiskers) 95% percentile daily eddy heat flux extremes across winter seasons (DJF) from 1999-2010. The equivalent values from reanalysis are given by the horizontal black lines (bold: median; thin: ±2 standard deviations).

for lags of 5 to 10 days, though smaller for 20 day lags aside from low-top models (Figure 11). BoM again shows the largest bias (specifically, an overestimation of coupling strength), even if its correlation indicates an underestimation of coupling strength; this is again a reflection of a poor simulation of stratospheric variance (Figure 1a). There is a notable improvement from CNRM-CM60 to CNRM-CM61, from UKMO-GloSea5 to UKMO-GloSea6, and in successive versions of ECCC-GEPS, though not from ECMWF-cy45r1 to ECMWF-cy47r3 or JMA-GEPS1701 to JMA-CP3 (Figure 3a). Low-top models (Figure 4d) and models with relatively poor climatological stationary waves tend to simulate a stronger downward coupling strength; however, this relationship is dominated by a single outlier model (BoM). If the correlation is computed without this model, there is instead no detectable relationship between downward coupling strength and either model lid height or stationary wave amplitude.

Similar to the NH, downward coupling of polar cap height from the mid- to lower-stratosphere is too weak in the SH in nearly all models (Figure 11b, 3b), especially at longer lags. Notably, in the SH the reanalysis relationship actually strengthens...
between days 4-20, which may be related to chemistry-circulation coupling in austral spring, as discussed by Simpson et al. (2011). High-top models overall perform better and have a lower absolute error.

3.5 Persistence of the polar vortex signal in the lower stratosphere and downward propagation from the lower stratosphere to the near-surface

After the stratospheric signal reaches the lower stratosphere, it can subsequently impact the tropospheric circulation. We evaluate whether the models successfully capture this effect using both a regression/correlation approach and a compositing approach.

3.5.1 Regression/correlation perspective on downward coupling biases

We begin with a regression/correlation approach in Figure 12a, which shows the lagged regression of 100-hPa polar cap height with 850-hPa polar cap height in the NH. For lags of less than a week, too-strong biases exceeding 5% are evident in 12 models, while too-weak biases exceeding 5% are evident in only three models (ISAC-CNR, JMA-GEPS1701, and NCEP). The
Figure 11. Coupling of polar cap height at 10-hPa with that at 100-hPa. Polar cap Z at 10-hPa is taken from days 9 to 12, and we range 100-hPa polar cap Z from simultaneous with Z10 to 20 days after. Low top models are dotted. Older versions of high-top models are dashed. Black vertical lines show the range in coupling strength upon subsampling ERA5 reanalysis to match each of the forecast systems, and the solid black line indicates the mean of these coupling strengths.

too-strong downward coupling for near-simultaneous lags is consistent with Kolstad et al. (2020) for ECMWF. For later lags, additional models develop too-weak biases, and individual models suffer from large biases. For example, CESM2-WACCM, CESM2-CAM, and CNRM (both generations) overestimate the coupling, while JMA (both generations) and NCEP underestimate it. There is a substantial improvement from ECMWF-cy45r1 to ECMWF-cy47r3 and from ECCC-GEPS6 to ECCC-GEPS7, but we see no evidence for an improvement from the other modeling centers.

Compared to other stratosphere-troposphere coupling metrics (Figure 3a), this part of the coupling process is the most consistently biased (in an absolute sense) across models. The bias is less evident upon examining the correlation (Figure 12, Supplemental Figure S2), likely because some of these models also suffer from too-strong biases in the variance for 850-hPa geopotential height (Figure 1a): a too-strong regression coefficient combined with too-strong variance can lead to a reasonable correlation in the net. These smaller biases for a correlation approach are consistent with Lee and Charlton-Perez (2024) for
Figure 12. Lagged correlation/regression coefficient of 100hPa polar cap geopotential height with that at 850hPa. Polar cap geopotential height at 100hPa is selected from days 9 to 12 after initialization, and we range 850hPa polar cap Z from simultaneous with Z100 to 20 days after. Low top models are dotted. Older versions of high-top models are dashed. Black vertical lines show the range in coupling strength upon subsampling ERA5 reanalysis to match each of the forecast systems, and the solid black line indicates the mean of these coupling strengths.

models which overlap with those considered here (ECMWF-cy45r1, CNRM-CM60, UKMO-Glosea5, and NCEP). Downward coupling is too strong in models with overly weak climatological tropospheric wave-1 (Figure 5f); this relationship is consistent with the documented effect of planetary waves to dampen synoptic eddy feedback (i.e. Feldstein and Lee (1998); Lorenz and Hartmann (2003), though the full range of interactions of planetary waves with vortex perturbations is still not fully understood (Song and Robinson, 2004; Simpson et al., 2013; Domeisen et al., 2013; Hitchcock and Simpson, 2014; White et al., 2020; Garfinkel et al., 2023).

The downward coupling signal in later weeks is potentially related to the persistence of lower stratospheric vortex anomalies, as the slow radiative decay of these anomalies allows for lower stratospheric variability to affect surface climate on subseasonal timescales (Hitchcock and Simpson, 2014). Specifically, if polar vortex anomalies were to decay too fast, then this could lead to a too-weak downward coupling at later lags. This possibility is examined in Figure 13, which shows the lagged auto-
Figure 13. Persistence of 100hPa polar cap T. Polar cap T at 100hPa is taken from days 9 to 12, and we then compute its lagged correlation up to 20 days later. Low top models are dotted. Older versions of high-top models are dashed. Black vertical lines shows the range in coupling strength upon subsampling ERA5 reanalysis to match each of the forecast systems, and the solid black line indicates the mean of these coupling strengths.

correlation of polar cap temperature at 100-hPa; we focus here on temperature rather than geopotential height due to its close connection with radiative timescales and tracer concentrations. Three models simulate biases of the autocorrelation of polar cap temperature at 100-hPa on day-20 exceeding 5% (low-top CESM2-CAM and BoM, and high-top NCEP). Seventeen other models simulate overly-fast decay if we subsample ERA5 to match the dates actually used for each model (Figure 3). The overly-fast decay exceeds 10% only for ECCG-GEPS6, ECCG-GEPS7, CNRM-CM6.1, and JMA-GEPS1701, and is more pronounced (though not statistically significantly so) in models with higher tops and better stationary waves (Figure 4e and 5e). The correlation between the auto-correlation of polar cap temperature at 100-hPa on day-20 with the regression of 100-hPa polar cap height with 850-hPa polar cap height on day-20 is 0.34, such that a stronger autocorrelation of polar cap temperature is associated with a strong surface signal. This relationship is somewhat weaker than the corresponding relationship with tropospheric stationary waves (r = -0.45).
In the SH, downward coupling of polar cap height from the lower stratosphere to the surface is too strong in most models for both near-instantaneous and at 20-day lags (Figures 12b, 3b). Two models (NCEP and GEFSv12) show too weak coupling for simultaneous lags exceeding 10%, and at later lags ISAC-CNR and JMA-CPS3 also simulate too-weak coupling. For nearly all other models, however, overly strong downward coupling occurs even as polar cap temperature anomalies decay too fast in these models (Figures 3b, 13b). Hence the too-strong downward coupling likely reflects overly strong eddy feedback, as has been recently shown explicitly for a subset of these models (Garfinkel et al., in review). Consistent with this, the too strong coupling bias is more pronounced at later lags than near-simultaneous lags (Figure 3b).

3.5.2 Extreme stratospheric events perspective on downward coupling biases

So far our consideration of downward coupling has been based on a correlation/regression analysis. This analysis does not explicitly consider the role of extreme events of the stratospheric polar vortex for surface predictability. Specifically, a highly disturbed or extremely strong polar vortex has stronger impacts than more typical vortex variability; for example, White et al. (2020), White et al. (2022), and Garfinkel et al. (2023) find the near-surface response to scale linearly with the lower stratospheric perturbation. We now consider whether the S2S systems capture downward coupling for these extreme events.

We quantify the biases in downward impact by forming composites of initializations in which polar cap height anomalies at 10hPa exceed 500m (strong vortex) or are more negative than -500m (weak vortex) on day 10, and compute the Zcap at 100hPa on days 10 through 31 (Supplemental Figure S5). These thresholds are chosen to consider extreme conditions only (approximately 9% of all available members are included in each composite), though results are similar for a threshold of, say, ±400m (not shown). The biases averaged from days 20 to 30 are summarized in Figure 14a. For both the SH and NH, many more models simulate too-weak downward propagation within the stratosphere than too-strong. This effect is consistent with the regression coefficients (Figure 3 and 11). The bias is particularly pervasive for weak vortex events.

Next, we consider biases in the downward coupling of extreme vortex events between 100hPa and the near-surface. Specifically, we form composites of initializations in which polar cap height anomalies at 100hPa exceed 175m (strong vortex) or are more negative than -175m (weak vortex) on day 10, and plot the Zcap at 850hPa on days 10 through 31 (Supplemental Figure S6). These thresholds are chosen such that ~7.6% of all available members are included in each composite, though results are similar for a threshold of, say, ±100m (not shown). The biases averaged from days 20 to 30 are summarized in Figure 14b. In contrast to the too-weak downward propagation within the stratosphere, many more models simulate too-strong downward coupling from the lower stratosphere to the near-surface. There are notable exceptions, however, in both hemispheres. In the NH, ISAC-CNR, both JMA, and all four GloSea configurations are relatively less biased, consistent with the too-weak regression coefficients evident in Figure 3. Similarly, in the SH, ISAC-CNR, NCEP, GEFSv12, and both JMA simulate too weak coupling, also consistent with Figure 3. Overall, downward coupling is too-weak within the stratosphere, but too-strong from the lower stratosphere to the near-surface. These two biases tend to compensate each other when considering downward coupling from the mid-stratosphere to the near-surface. Indeed, a similar figure but for the Zcap 850hPa response to extreme events of Zcap at 10hPa shows lower biases (less than 3% and 9% in the SH and NH, respectively) than for Zcap at 100hPa.
Figure 14. Summary of the biases in downward coupling strength for extreme stratospheric events. For each forecast system we compare to the corresponding identical period in ERA5, and then show the percentage error. The bias is defined as the difference between the model and ERA5 divided by the response in ERA5 for the corresponding dates of each model. A gray ‘×’ indicates models and metrics for which all ensemble members simulate a bias in the coupling strength of the same sign, or alternatively if ERA5 doesn’t fall within the envelope of the available members. Low-top models are denoted with an asterisk after their name. (a) downward coupling within the stratosphere: (first, third row) composite mean of Zcap at 100hPa for days 20-30 for initializations in which Zcap at 10hPa on day 10 exceeds 500m; (second, fourth row) as in first and third rows but Zcap at 10hPa on day 10 is more negative than -500m. (b) downward coupling from the lower stratosphere to the troposphere: (first, third row) composite mean of Zcap at 850hPa for days 20-30 and initializations in which Zcap at 100hPa on day 10 exceeds 175m; (second, fourth row) as in first row but Zcap at 100hPa on day 10 is more negative than -175m. The thresholds lead to ∼ 8.7% of all available members being chosen averaged across all models, hemispheres, and composites; the mean composite size is 248.
4 Discussion and Conclusions

Variability in the extratropical stratosphere and troposphere are coupled. Polar stratospheric vortex extremes influence surface climate and extremes for weeks to months afterwards (Domeisen and Butler, 2020), while a large pulse of planetary wave in the troposphere can disturb the vortex. This coupling can potentially provide windows of opportunity for prediction on subseasonal-to-seasonal (S2S) timescales (Butler et al., 2019; Domeisen et al., 2020b), however model biases in either the troposphere or stratosphere can degrade the representation of these coupling processes.

We have performed a comprehensive intercomparison of biases in extratropical stratosphere-troposphere coupling processes in subseasonal forecast systems, with a core focus on systems that contribute to the S2S database (Vitart et al., 2017). We broke up this coupling into six key processes that can be diagnosed with a few key metrics, in the hopes that they can be easily adopted by modellers to assist ongoing development. Our main results can be summarized as follows:

1. **Upward flux of wave activity to the lower stratosphere**

 NH: The forecast systems systematically underestimate the upward coupling of wave-1 from the mid-troposphere to the lower stratosphere. In contrast, upward coupling of wave-2 is better simulated (Figure 2; top two rows of Figure 3a). Upward coupling is better captured in high-top models, and even more robustly, in models with a better representation of climatological quasi-stationary waves (Figure 4a, 5a). Models underestimate the sensitivity of lower stratospheric wave-1 heat flux to tropospheric variability in the Northwest Pacific and Euro-Atlantic (Figure 6). This relatively better performance for wave-2 as compared to wave-1 is remarkable given the overall poorer performance of these models with respect to the prediction of SSW events dominantly driven by wave-2 (Taguchi, 2018; Domeisen et al., 2020b). This difference between wave-1 and wave-2 biases in the upward wave flux is likely a reflection of the fact that climatological wave-2 heat flux is better represented (and indeed, too strong) in many of these models while climatological wave-1 is too-weak (Supplemental Figure S9). However, it is possible that there are additional biases in wave-2 ahead of extreme vortex events.

 SH: The high-top forecast systems systematically overestimate the upward coupling of wave-1 from the mid-troposphere to the lower stratosphere (Figure 2; top row of Figure 3b), in contrast to the underestimation in the NH. Note that the models also better capture the climatological wave-1 in the SH than in the NH (Supplemental Figure S9), and the intermodel spread in upward coupling in the SH is also linked to each model’s representation of climatological wave-1 (Figure 5g). The tropospheric heat flux variances are systematically too high while the stratospheric variances are too low, so the relatively successful coupling strength may be due to some kind of cancellation effect (too high variability in the troposphere is overcompensating for what would be a too-weak upward coupling).

2. **Sensitivity of the vortex to upward flux of wave activity in the lower stratosphere**

 NH: The polar vortex is not sensitive enough to upward propagating wave flux (Figure 7a). This effect is especially pronounced in models with large biases in climatological 500-hPa heat flux (Figure 5c).
SH: Multi-model mean biases are small (Figure 7b). The intermodel spread is mostly accounted for by the climatological 500-hPa heat flux (Figure 5i). Note that the forecast systems simulate climatological 500-hPa heat flux better in the SH than in the NH in the multi-model mean.

3. Interannual variance of daily heat flux extremes

In both the NH and SH stratosphere, the interannual spread in positive eddy heat flux extremes is strongly reduced for most systems after week 1. This is also evident in the SH troposphere for weeks 3-5. More work needs to be done to understand what drives this lack of interannual variability in heat flux extremes, as well as the asymmetry in behavior between the NH and SH troposphere, and the extent to which this bias affects stratospheric circulation extremes, their predictability, and subsequent downward coupling. Potential implications for subseasonal forecasting include, for example, a failure of the S2S systems to forecast stratospheric heat flux extremes beyond week 1 that are associated with potentially predictable sources of interannual variability.

4. Downward propagation within the stratosphere

NH: There is a systematic underestimation of the magnitude of downward coupling within the stratosphere both when using a regression/correlation approach (Figure 3a, 11a) or a compositing approach focused on the extreme events (Figure 14). We were unable to identify any factor that is robustly linked to the intermodel spread in this underestimation (Figure 4d, 5d).

SH: Similar to the NH, downward coupling of polar cap height from the mid- to lower-stratosphere is too weak in the SH in nearly all models (Figure 11b, 3b), especially at longer lags, however the biases are generally small (<10%). This finding is confirmed using a composite approach based on extreme events (Figure 14). As for the NH, we were unable to identify any factor that is robustly linked to the intermodel spread in this underestimation (Figure 4j, 5j).

5. Persistence of the polar vortex signal in the lower stratosphere

NH: The multi-model mean bias for high top models is less than 5%, however there is a wide spread across models with too-strong persistence for some models and too-fast decay (albeit relatively weak) for most models. We have examined whether intermodel spread in this bias is related to mean state biases in polar cap temperatures, however the relationship was weak (Supplemental Figure S7, S8). We were unable to identify additional factors that are robustly linked to the intermodel spread in this underestimation (Figure 4e, 5e).

SH: Temperature anomalies decay too fast. The intermodel spread in this bias is related to mean state biases in polar cap temperatures: models with larger mean-state cold biases simulate a better auto-regression (Supplemental Figure S7, S8). Possible speculative causes for this include (i) a stronger time-mean vortex can better duct away incoming waves, and hence is less variable; (ii) a cold bias will lead to less efficient longwave cooling in response to a temperature anomaly (regardless of sign); (iii) a third, as yet unknown, bias may also be important. An additional possibility is that ozone coupling may be crucial for temperature persistence in the SH, however ozone is prescribed to climatological values in many subseasonal forecasting models. It is notable that NCEP is the only model overpredicting persistence in the SH
and that is one of the few models used in this study that uses prognostic ozone. Additional work is needed to better understand this possibility.

6. **Downward propagation from the lower stratosphere to the near-surface**

 NH: Downward coupling is too strong at both short and longer lags (Figure 3a, 12, 14), for both a regression approach and a composite approach based on extreme events. In contrast, a correlation approach indicates that biases are relatively small in the multi-model mean (Figure 12, Supplemental Figure S2, consistent with Lee and Charlton-Perez (2024)). This difference in the overall conclusion as to whether downward coupling is biased among the different methodologies is likely due to too-strong variance in Zcap850 in most models (Figure 1). Regardless of methodology, downward coupling from the mid-stratosphere to the near-surface is of reasonable strength in the multi-model mean. The multi-model mean coupling strength is the net effect of qualitatively different behaviors across models, however, and this metric is the most biased (in an absolute sense) of any across models. Downward coupling is stronger in models with poor climatological stationary waves or with too long a persistence timescale of lower stratospheric temperature anomalies. This result is consistent with the known damping on annular mode variations provided by planetary waves (Feldstein and Lee, 1998; Lorenz and Hartmann, 2003), though planetary waves may couple with vortex perturbations directly and act to bring vortex perturbations down to the surface (Song and Robinson, 2004; Simpson et al., 2013; Domeisen et al., 2013; White et al., 2020; Garfinkel et al., 2023).

 SH: Downward coupling of polar cap height from the lower stratosphere to the surface is too strong in most models (Figures 3b, 12b, 14) even as polar cap temperature anomalies decay too fast in these models (Figures 3b, 13b). Hence the too-strong downward coupling likely reflects overly strong eddy feedback in the SH (while the NH eddy feedback has an opposite signed bias, namely it is too-weak), as has been recently shown for a subset of these models (Garfinkel et al., in review).

The results above are based on relatively short hindcast periods, so that the ERA5 correlations/regressions shown throughout may be subject to sampling variability. Indeed, Lawrence et al. (2023) showed that similar coupling metrics in GEFSv12 largely fell within the range of ERA5 sampling variability. Here we assume that since the S2S systems are initialized with the same internal variability as observed in the real world, and are intended to be useful for predicting on subseasonal timescales, that they should be able to reproduce the ERA5 values (subsampled for each hindcast), and documenting the deviations from these values particularly in a multi-model comparison still enhances understanding of where and how the models are biased. Nonetheless, it is possible that some of the model biases shown here fall within the range of ERA5 sampling variability.

The NH polar vortex in these forecasting models is insufficiently coupled to tropospheric variability, consistent with the too-weak impact of predictable tropospheric modes of variability such as the Madden Julian Oscillation and snow cover anomalies on the vortex documented in previous work using a subset of these models (Domeisen et al., 2020b; Garfinkel et al., 2020; Schwartz and Garfinkel, 2020; Stan et al., 2022). This conclusion is consistent with Lee et al. (2020), who also found that models systematically underestimate the stratospheric heat flux and vortex response to a Ural blocking-like pattern. In contrast, the SH stratospheric vortex is coupled realistically with tropospheric variability. Interestingly, older generation of chemistry-
climate models analyzed by Eyring et al. (2006) displayed the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. However, their conclusions are based on 20 years of seasonal mean data in free-running atmospheric simulations without an attempt to rigorously quantify uncertainties. Here, we are focusing on shorter timescales, initialized forecasts, and have orders of magnitude more data per model, which allow for a more stringent criteria of fidelity.

Downward coupling from 100hPa to 850hPa is too strong in both hemispheres in the multi-model mean, though a few models have an opposite signed bias (e.g., NCEP, JMA-CP3, and ISAC-CNR). While we link this in our study to biases in synoptic eddy feedback, persistence of lower stratospheric temperature anomalies, and quasi-stationary waves, there are other possible causes that might be relevant. Specifically, stratospheric ozone-circulation coupling is crucial in the SH spring and summer, and also has an important role in the NH spring. Some studies have shown that using prescribed ozone that includes year-to-year variations instead of climatological ozone improves SH forecast skill of surface climate (Hendon et al., 2020; Oh et al., 2022).

Experiments with fully interactive ozone show further improvements in the representation of the tropospheric response (Friedel et al., 2022a, b), although the downward coupling in models with interactive ozone is also strongly affected by model biases (Bergner et al., 2022). Future work should explore the role of prognostic or interactive ozone in S2S operational systems for downward coupling and improvements in predictive skill.

Throughout the text we discussed the role of model lid height and of biases in the stationary waves for biases in coupling processes. These models are known to suffer from a cold pole bias in the lowermost stratosphere, and we have explored whether intermodel spread in the magnitude of this cold pole bias might be related to spread in the strength of coupling. Supplemental figure S7 and S8 consider this possibility, however its role is weaker than those of lid height or stationary waves for all coupling processes.

We find that the models better capture wave-2 vertical coupling from 500hPa to 100hPa, likely because the biases in their climatological wave-2 heat flux are smaller than for wave-1. This appears to be contrary to climate models, which struggle more with wave-2 in the NH (it is typically too weak) and also tend to overestimate the number of wave-1 SSWs with respect to wave-2 events. Nevertheless, there is a notable bias in coupling of wave-2 between 100hPa and 500hPa at negative lags in the NH (second row of Figure 2, lags -6 to 0). Specifically, strong values of 100hPa heat flux have a weak tendency to precede pulses at 500hPa, however only one model captures this effect. This may reflect problems more generally with downward wave coupling and/or wave reflection; exploring this possibility in greater detail is left for future work.

We have formulated a reduced set of key metrics and diagnostics that can be saved and analyzed relatively easily as part of the model development cycle. We hope this set of diagnostics will be adopted and will aid the development of improved models. We also want to emphasize that this analysis is only possible with the output of stratospheric data. The relative paucity of levels makes it difficult to more fully diagnose why the upward coupling strength and downward coupling strength within the stratosphere is too weak in most models. For example, this bias could be related to biases in the representation of the tropopause and lowermost stratosphere (Weinberger et al., 2022), however such an effect is impossible to diagnose with data only at 200hPa, 100hPa, and 50hPa. Finally, the implications of poor coupling for surface climate and predictability in specific regions where the stratosphere is known to have a large impact need to be explored.
Data availability. The hindcasts from the S2S database used here are available from https://apps.ecmwf.int/datasets/data/s2s/ under the "Reforecasts" S2S set. The NOAA GEFSv12 hindcasts can be obtained from https://registry.opendata.aws/noaa-gefs-reforecast/. Hindcasts for CESM2-CAM are available at https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.s2s_hindcasts.html, while those for CESM2-WACCM are from https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2-waccm.s2s_hindcasts.html.

Author contributions. CIG and AHB drafted the paper. CIG produced the final version of all figures except Figure 9 and 10. ZDL organized and led the SNAP effort leading to this paper, and also downloaded all of the data. AHB produced the final version of Figure 9 and 10. EDS produced an earlier version of Figures 9 and 10. IS and AYK produced an earlier version of Figure 12. GK produced earlier versions of Figures 4 and 5. All the listed coauthors were active participants in this SNAP community effort and provided comments on the draft manuscript.

Competing interests. D. Domeisen is a member of the editorial board of Weather and Climate Dynamics.

Acknowledgements. This work uses S2S Project data. S2S is a joint initiative of the World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP). This work was initiated by the Stratospheric Network for the Assessment of Predictability (SNAP), a joint activity of APARC (WCRP) and the S2S Project (WWRP/WCRP).

C.I.G and J.R. are supported by the ISF-NSFC joint research program (ISF grant No. 3065/23 and National Natural Science Foundation of China grant no. 42361144843). C.I.G. and J.C. are supported by the NSF-BSF joint research program (United States-Israel Binational Science Foundation grant no. 2021714 and National Science Foundation grant no. AGS-2140909). I.S. and A.Y.K are supported by the Research Council of Finland (grant No. 355792.) The work of M.O. is supported by UBACyT 20020220100075BA, PIP 11220200102038CO and PICT-2021-GRF-TI-00498 projects. The work of A.d/wC. is funded by the Spanish Ministry of Science through project PID2019-109107GB-I00. M.A., B.A and N.C. acknowledge the support of the Spanish Ministry of Science and Innovation through the RecO3very (PID2021-124772OB-I00) project. FMP and JG-S have been partially supported by the Spanish ATLANTE project (PID2019-110234RB-C21) and “Ramón y Cajal” programme (RYC-2016-21181), respectively. N.P.H. and C.J.W. are supported by UK Natural Environment Research Council (NERC) grant number NE/S00985X/1. C.J.W. is also supported by a Royal Society University Research Fellowship URF/R/221023.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research (BER), Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program under Award Number DE-SC0022070 and National Science Foundation (NSF) IA 1947282. This work was also supported by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. P.L. is supported by award NA18OAR4320123 from the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce. ZDL was partially supported under NOAA Award NA20NWS4680051; ZDL and JP also acknowledge support from US
Federally Appropriated Funds. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA, or the U.S. Department of Commerce.
References

