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Abstract. 35 
 36 
This study evaluates two process-based (LPJ-GUESS and SMAP-L4C) and two data-driven (CarbonSpace and 37 
FLUXCOM) models to capture the temporal variability of CO2 flux exchanges (GPP, RECO and NEE) of 38 
evergreen needleleaf and deciduous broadleaf forests (ENFs and DBFs) in temperate western Europe and its 39 
relationship with climate. Three sites from the FLUXNET network are considered together with two non-40 
instrumented sites located in Burgundy (North-East France). The focus is put on the representation of the annual 41 
cycle, annual budget, interannual variability and “long-term” trend. The data-driven models are the best models 42 
for representing the mean annual cycle and mean annual budget in CO2 fluxes despite magnitude uncertainties. In 43 
particular, the models accounting for plant functional types in their outputs tend to simulate more marked annual 44 
cycle and lower annual CO2 sequestration for DBFs than ENFs in Burgundy. At the interannual timescale, the CO2 45 
flux – climate relationship is stronger for GPP and RECO than NEE, with increased CO2 fluxes when 2 m 46 
temperature, vapor pressure deficit and evapotranspiration increase and when precipitation and soil moisture 47 
decrease. The models forced by dynamic climate conditions clearly outperform those driven by static climate 48 
conditions. The “long-term” trend is not obvious for NEE neither in the observations nor in the simulations, partly 49 
because both GPP and RECO tend to increase in western Europe. Our results suggest that the spatial resolution of 50 
the climate drivers is likely very important for capturing spatial and temporal patterns in CO2 exchanges and point 51 
towards the need to choose the appropriate model and spatial resolution according to the scientific question to deal 52 
with. 53 
 54 
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1 Introduction 58 
 59 
Among all their environmental benefits, forest ecosystems are efficient carbon sinks and constitute a potential 60 
lever for climate change mitigation. At the global scale, forest ecosystems cover about 30% of landmasses. They 61 
represent the largest part of the land carbon sink (Lindeskog et al., 2021), with up to 20-50% of anthropogenic 62 
CO2 emissions (land-use changes excluded) sequestered for the 2000-2010 period (Pan et al., 2011; Le Quéré et 63 
al., 2018; Pugh et al., 2019). Despite the fertilization effect of increased atmospheric CO2 concentrations (Walker 64 
et al., 2020; IPCC, 2023) and the warming-induced lengthening of the growing season (Prislan et al., 2019; Menzel 65 
et al., 2020; IPCC, 2023), the evolution in the net ecosystem exchange (NEE) suggests a recent decrease of annual 66 
CO2 storage in forest ecosystems of temperate Europe, due to severe heat waves and droughts that affected 67 
Northern regions in 2018 and Central-Southeastern regions in 2020 (Smith et al., 2020; Thompson et al., 2020; 68 
van der Woude et al., 2023). This trend results from a combination of multiple factors. In France, for instance, the 69 
CO2 storage by forests dropped from ~53 Mt CO2 year-1 to ~32Mt CO2 year-1 between 2005-2013 and 2012-2020, 70 
mostly due to increased timber-extraction (+20%), climate-related mortality (+54%) and decreased biological 71 
production (-10%) (IGN, 2022; Chuine et al., 2023). Such a continental-to-country scale evolution of forest-related 72 
CO2 fluxes needs to be refined at a finer spatial grain to better account for the contributing influence of different 73 
forest stands and to clarify the role of forest ecosystems in the CO2 budget at a territorial level and their leverage 74 
in mitigating climate change impacts. 75 
A territorial-scale assessment remains, however, challenging. Measuring NEE and its two components, gross 76 
primary production (GPP) quantifying CO2 sequestration through photosynthesis and ecosystem respiration 77 
(RECO) releasing CO2 through autotrophic and heterotrophic processes, is expensive since it requires the 78 
installation and maintenance of flux towers measuring eddy covariance above the canopy (Burba, 2021). The 79 
FLUXNET initiative provides over 1500 site-years of quality-controlled flux tower data from 212 sites around the 80 
globe, using the same ONEFlux processing pipeline to foster inter-site comparisons (Pastorello, 2020). At the 81 
European scale, the Integrated Carbon Observation System (ICOS) network provides standardized and open data 82 
from 98 ecosystem stations across 16 countries. The flux towers remain limited in number and unevenly distributed 83 
spatially, which makes it impossible to study CO2 fluxes directly in unequipped sites. Process-based and data-84 
driven models allow us to tackle the above limitation. Process-based models, such as dynamical vegetation models, 85 
are routinely used to assess CO2 flux exchanges between the atmosphere and the biosphere (Friedlingstein et al., 86 
2023). These are mechanistic models (Friedlingstein et al., 2006; Sitch et al., 2008), which allow for testing the 87 
response of CO2 fluxes to individual and combined forcing. Data-driven models rely on the identification of 88 
statistical relationships between flux tower measures by eddy-covariance and corresponding land use, vegetation 89 
properties and climate characteristics. Based on these statistical relationships, empirical models are built and used 90 
for upscaling, i.e., for assessing CO2 fluxes in regions where they are not measured (Jung et al., 2009, 2019, 2020; 91 
Tramontana et al., 2016; Zhuravlev et al., 2022). Both approaches have limitations. For instance, estimations of 92 
CO2 flux exchanges are highly sensitive to physical parameterizations (Cai and Prentice, 2020) and atmospheric 93 
forcing (Wu et al., 2017; Hardouin et al., 2022) in process-based models. Regional CO2 flux upscaling methods 94 
are also limited by the sparse and uneven distribution of flux tower measurements, and limitations of the underlying 95 
statistical methods used in data-driven models (Jung et al., 2020). 96 
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This study aims at comparing the respective strengths and limitations of process-based and data-driven approaches 97 
to capture the recent temporal dynamics of CO2 flux exchanges observed in western European temperate forest 98 
ecosystems, with a focus on evergreen needleleaf forests (ENFs) and deciduous broadleaf forests (DBFs). The first 99 
objective is to discuss their capability to simulate the mean state, interannual variability and trend in NEE and, 100 
when available, GPP and RECO. Previous observation-based studies have shown that CO2 flux exchanges depend 101 
on multiple factors not necessarily related to climate such as soil properties (Kurbatova et al., 2008; Besnard et al., 102 
2018; Curtis and Gough, 2018; Martinez del Castillo et al., 2022), forest management practices (Carrara et al., 103 
2003; Scott et al., 2004; Saunders et al., 2012), tree age (Kurbatova et al., 2008; Besnard et al., 2018; Chuine et 104 
al., 2023) and tree species (Carrara et al., 2003, 2004; Welp et al., 2007; von Buttlar et al., 2018; Zheng et al., 105 
2021; Kong et al., 2022) among many others. On average, the annual cycle of CO2 flux exchanges significantly 106 
differs between ENFs and DBFs since photosynthesis can occur all year long in the former, while is bounded from 107 
spring (bud break) to fall (leaf senescence) in the latter. As a result, DBFs tend to be a net CO2 sink during the 108 
warm season, and CO2 source during the cold season (Granier et al., 2002; Welp et al., 2007); whereas, ENFs can 109 
persist as a CO2 sink year-around under favorable meteorological conditions (Mizoguchi et al., 2012). At the 110 
interannual timescale, Welp et al. (2007) found that the NEE variability is greater and mainly driven by GPP in 111 
Alaskan DBFs and by RECO in the ENFs. This is at odds with Yuan et al. (2009) who found the opposite pattern 112 
in 30 northern-hemisphere sites, suggesting latitudinal (hence climate) dependency in the results. 113 
The second study objective is to examine the influence of climate on the temporal variability of CO2 flux exchanges 114 
in temperate DBFs and ENFs in terms of annual cycle (monthly timescale), interannual variability (monthly and 115 
annual timescales) and trend (annual timescale). The recent record-breaking temperatures and long drought 116 
episodes observed e.g., in Central Europe in 2003, Central and Northern Europe in 2018 and Central and 117 
Southeastern Europe in 2022, have been accompanied by sharp reductions in forest CO2 uptake (Ciais et al., 2005; 118 
Thompson et al., 2020; van der Woude et al., 2023). Understanding the role of climate on forest NEE temporal 119 
dynamics requires accounting for both monthly and annual budgets since potential compensations of CO2 fluxes 120 
can occur across the annual cycle. This is the case in 2018 in Northern Europe when increased CO2 uptake in 121 
spring (due to anomalously warm conditions) was offset by an anomalous decrease in summer (due to heat and 122 
drought), resulting in week NEE anomalies at the annual timescale (Thompson et al., 2020). Understanding the 123 
role of climate on NEE also requires assessing how the much larger GPP and RECO component fluxes may 124 
respond differently to climate. The annual cycle and, to a lesser extent, the interannual variability of these CO2 125 
fluxes are driven by temperature and the water cycle, including soil moisture (Haszpra et al., 2005; Tang et al., 126 
2013; Kong et al., 2022; Sharma et al., 2022; Li et al., 2023). Welp et al. (2007) showed that DBFs are more 127 
sensitive to soil moisture changes in ENFs than in DBFs, and that decreased GPP under water stress was observed 128 
in DBFs only. The authors attributed this difference to a possible buffer effect in ENFs’ soils that is damping out 129 
temperature increases and to a lower stomatal sensitivity of conifers. In addition, the soil respiration increases 130 
exponentially with temperature (van’t Hoff, 1898; Meyer et al., 2018) until a maximum temperature threshold is 131 
reached, which rarely occurs in extratropical soils (von Buttlar et al., 2018). However, when extreme temperatures 132 
are combined with soil water stress, clearer GPP and RECO answers come out. For instance, Ciais et al. (2005) 133 
estimated a 30% decrease in GPP and moderate RECO tail-off during the 2003 severe heat and drought event in 134 
Central Europe, resulting in a lower net carbon uptake. The larger contribution of GPP on NEE interannual 135 
variability remains site and stand dependent (Welp et al., 2007; Yuan et al., 2009). Finally, despite strong effects 136 
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of recent heat waves and droughts, the NEE does not always show clear trends in response to recent and projected 137 
climate change (Ahlström et al., 2012; Abdalla et al., 2013; Tang et al., 2013; Kong et al., 2022; Martinez del 138 
Castillo et al., 2022; Li et al., 2023). One possible hypothesis, tested in our study, is a potential compensation of 139 
trends between GPP and RECO. 140 
The novelties of this study rely on (i) the comparison between two data-driven models providing CO2 flux 141 
estimations either globally but at coarse resolution (0.5° x 0.5°) or locally but at the hectometric resolution and (ii) 142 
the inclusion of a newly released process-based model constrained by soil moisture satellite data, which provides 143 
CO2 flux estimations for each plant functional type at relatively high space-time resolution (daily; 9 km mesh with 144 
1 km sub-grids). Another originality relies on the multi-scale (annual cycle, interannual variability and trend) 145 
assessment of the temporal variability in estimated NEE (and its two components) and its climate drivers. 146 
The paper is structured as follows. Section 2 presents the materials and methods. Section 3 presents our results at 147 
the monthly and annual timescales and Sections 4 and 5 discuss the results and give the main conclusions, 148 
respectively. 149 

2 Materials & Methods 150 
 151 
2.1 Site description 152 
 153 
This study focuses on five forest sites: two non-instrumented sites in northeastern France where NEE, GPP and 154 
RECO are simulated by process-based and data-driven models, and three sites from the FLUXNET network where 155 
NEE is measured and GPP and RECO are calculated (Fig. 1). 156 
 157 
The first non-instrumented site is located in the National Park of Forests, a 240,000 ha park mostly covered by 158 
DBFs (50%). One DBF plot of 25 ha is selected because soil respiration measures are conducted there by the 159 
Biogéosciences laboratory since 2020. This DBF plot, named “Châtillonnais (DBF)” hereafter, is located on a 160 
~380 m plateau and characterized by uneven-aged and mixed DBFs dominated by beech (Fagus sylvatica) and 161 
oaks (Quercus robur, Quercus petraea) with no sylvicultural interventions for ~30 years and by oolitic limestone 162 
soils. The second site is located in the Regional Natural Park of Morvan, on the Mont Beuvray, a semi-mountainous 163 
domain of 950 ha peaking at 821 m and sitting on volcanic-sedimentary rocks. The Mont Beuvray location is 164 
particularly impacted by climate change (Castel et al., 2019), with a mean warming trend reaching 2°C more than 165 
the neighboring lowlands over the 1958-2015 period. Two plots are considered for Mont Beuvray: one even-aged 166 
large-sized Douglas fir (Pseudotsuga menziesii) plots of 15 ha classified as ENF and one even-aged beech plot 167 
with continuous cover of 8 ha classified as DBF. These plots are named “Mont Beuvray (DBF)” and “Mont 168 
Beuvray (ENF)” hereafter. 169 
 170 
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 171 
 172 
Figure 1: Location of the study sites. The rectangles correspond to FLUXNET sites where CO2 fluxes are 173 
measured by eddy covariance flux towers and estimated by process-based and data-driven models. The triangles 174 
correspond to non-instrumented sites where CO2 fluxes are estimated by process-based and data-driven models 175 
only. Symbols in green and red correspond to DBF and ENF sites, respectively. © OpenStreetMap contributors 176 
2021. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 177 
 178 
 179 
To compare the CO2 flux dynamics of these sites and to evaluate the accuracy of data-driven and process-based 180 
models, we selected three forest tower sites from the FLUXNET network for their resemblance to the 181 
aforementioned ones in terms of location, climate or stand characteristics: 182 

- Two lowland DBFs. The “Fontainebleau” site (FR-Fon) is located in the domanial forest of Barbeau 183 
(southeast of Paris), dominated by oak (Qu. petraea) and characterized by a loamy soil on top of burstones 184 
and deeper marls. The “Hesse” site (FR-Hes) is located in the plain east of the Vosges mountains, 185 
dominated by beech (Fagus sylvatica) and characterized by a deep silty clay soil on sandstone; 186 

- One midland ENF, “Davos” (CH-Dav), located in the middle range of the subalpine belt in the eastern 187 
part of the Swiss Alps at 1639 m, dominated by Norway spruce (Picea abies) and characterized by a thin 188 
soil on schists and gneiss. 189 

 190 
 191 
 192 
 193 
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2.2 Carbon flux data 194 
 195 
Measured CO2 fluxes are used as a reference to evaluate outputs from two data-driven and two process-based 196 
models (Table 1). They come from the Warm Winter 2020 release (Warm Winter 2020 Team and ICOS Ecosystem 197 
Thematic Centre, 2022), an update of the FLUXNET2015 dataset (Pastorello et al., 2020) available on the ICOS 198 
platform (https://www.icos-cp.eu/data-products). For each site, we selected daily time series of NEE 199 
(NEE_VUT_REF) accounting for multiple friction velocity thresholds and associated with a favorable quality 200 
control flag above 80%, GPP (GPP_DT_VUT_REF) and RECO (RECO_DT_VUT_REF). GPP and, to a lesser 201 
extent, RECO are less sensitive to the partitioning method (Fig. A1) and the climate – CO2 flux relationship is 202 
similar regardless of the partitioning method used. Here, we retained those CO2 flux data derived from the daytime 203 
flux partitioning method (Lasslop et al., 2010). The temporal coverage of the data is site dependent: 7 years for 204 
Hesse, 18 for Fontainebleau and 24 for Davos (Table 1). 205 
 206 

 
Observations Process-based models Data-driven models 

FLUXNET SMAP-L4C LPJ-GUESS CarbonSpace FluxCom 

Parameters NEE, GPP, 
RECO, weather 

NEE, GPP, 
RECO 

NEE, GPP, 
RECO NEE NEE, GPP, 

RECO 

Timescale Daily Daily Hourly Monthly Monthly 

Spatial resolution Local 9 km 50 km Hectometric 50 km 

Temporal 
coverage 

Davos: 
01/02/1997 – 
12/31/2020 

 
Hesse:  

01/01/2014 – 
12/31/2020 

 
Fontainebleau: 
03/11/2005 – 
12/31/2022 

31/03/2015 – 
21/09/2023 

01/01/2010 
00:00 – 

31/12/2022 
23:00 

01/2000 – 
08/2023 

01/1979 – 
12/2018 

Characteristics 

Standardized and 
filtered 

measurements 
from flux towers 

Carbon model 
with 1km sub-
grids and soil 

moisture 
assimilation 

Dynamic global 
vegetation 

model forced by 
climate data 

(ERA5) 

Machine learning based 
estimations, integrating satellite 
vegetation proxies, climate and 

flux tower measurements 

References 

Pastorello et al. 
(2020); Warm 

Winter 2020 Team 
& ICOS 

Ecosystem 
Thematic Centre, 

2022) 

Jones et al. ( 
2017); Kimball 

et al. (2022) 

Smith et al., 
(2001, 2014); 

Wu (2023) 

Zhuravlev et 
al. (2022) 

Jung et al. (2019, 
2020) 

 207 
Table 1: Summary of the datasets used in this study. 208 
 209 
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The two data-driven models use machine learning algorithms for upscaling and make use of observed CO2 fluxes 210 
from the FLUXNET network. The first data-driven model has been developed by the CarbonSpace company. It 211 
makes use of (i) a Lagrangian particle dispersion model to account for the footprint of each tower flux site and (ii) 212 
a gradient-boosted decision tree based non-linear regression (Chen, 2016) to derive one statistical model per land-213 
cover class. This approach follows that described in Zhuravlev et al. (2022), but with a revised regression 214 
methodology and without use of meteorological variables. The Hesse flux tower site is not part of the 84 stations 215 
in the FLUXNET2015 dataset used in the model input. A cross-validation is thus possible with Hesse and with 216 
measures made after 2015 for the other sites (i.e. 7 years in Davos, 9 years in Fontainebleau). The current model 217 
takes the aggregated Köppen–Geiger climate map at 1-km resolution (Beck et al., 2018) as a static predictive 218 
variable, but does not yet include temporal climate variability. It provides monthly NEE only but at a very high 219 
spatial resolution (few hectares) from 01-2000 to 08-2023. This allows to get as close as possible to the 3 flux 220 
tower sites (around 1.8 ha centered on each tower) and their associated CO2 flux measurement footprints, while 221 
also distinguishing each non-instrumented plot (see section 2.1 for details on the area considered). 222 
 223 
The second data-driven model comes from the FLUXCOM products (Tramontana et al., 2016; Jung et al., 2019, 224 
2020) retrieved from the data portal of the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). 225 
The FLUXCOM products use eddy-covariance data from 224 flux-tower sites from the FLUXNET La Thuile 226 
dataset (http://fluxnet.fluxdata. org/data/la-thuile-dataset/) and the CarboAfrica network (Valentini et al., 2014), 227 
including Hesse data between 1997 and 2006 and Fontainebleau between 2005 and 2006. Cross-validations are 228 
thus possible with most of our data from the Warm Winter 2020 release. The FLUXCOM products have been 229 
shown to accurately estimate the mean annual and seasonal cycles of CO2 fluxes (Tramontana et al., 2016; Jung 230 
et al., 2020; He et al., 2022). Among the various forcing datasets available, we retained three of them, all forced 231 
by hourly meteorological data from the ERA5 reanalysis (Hersbach et al., 2020) and providing global maps of 232 
monthly NEE, GPP and RECO derived with a daytime partitioning on a 0.5° x 0.5° horizontal grid for the 1979-233 
2018 period. As for FLUXNET, the partitioning method does not significantly affect the CO2 fluxes (Fig. A2). 234 
The three datasets differ according to the algorithm used to build the statistical model: Random Forest (RF; 235 
Breiman, 2001), Multivariate Adaptive Regression Splines (MARS; Friedman, 1991) and Artificial Neural 236 
Networks (ANNs; Papale and Valentini, 2003). Unlike the CarbonSpace model, their coarse horizontal resolution 237 
precludes the ability to account for individual forest stands. Despite these limitations, the three FLUXCOM 238 
datasets allow to assess uncertainties induced by the statistical model used for upscaling CO2 fluxes and to get 239 
access to NEE and its two components. 240 
 241 
The two process-based models are the Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS; Smith et 242 
al., 2001, 2014) and the version 7 of the NASA Soil Moisture Active Passive Mission Level 4 Carbon (SMAP-243 
L4C; Jones et al., 2017; Kimball et al., 2022) models. The LPJ-GUESS is a dynamic global vegetation model 244 
simulating the effects of environmental change in vegetation represented by plant functional types (PFTs), soil 245 
hydrology and biogeochemistry (Smith et al., 2001). The model is widely used to study ecosystems, including CO2 246 
fluxes (Smith et al., 2001, 2014; Bayer et al., 2015; Lindeskog et al., 2021; Sathyanadh et al., 2021; Bergkvist et 247 
al., 2023). The simulations used here were derived from Wu (2023) using version 4 of LPJ-GUESS in cohort mode 248 
forced with hourly ERA5-land reanalysis (Muñoz-Sabater et al., 2021) and observed atmospheric CO2 249 
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concentrations. The cohort mode means that woody plants of the same size and age are represented by a single 250 
average individual. Each PFT is represented by multiple average individuals, and one PFT cohort is defined as the 251 
average of several individuals. We retrieved hourly NEE, GPP and RECO on a 0.5° x 0.5° horizontal grid for the 252 
2010-2022 period from the ICOS website (https://meta.icos-253 
cp.eu/collections/NZNSUglRn0VeXmGDovuVY0ec). Like the FLUXCOM products, the horizontal resolution of 254 
LPJ-GUESS outputs is too coarse to distinguish plots over the Mont Beuvray and Châtillonnais. 255 
 256 
The SMAP (Soil Moisture Active Passive) Level 4 Carbon model product (SMAP-L4C) is produced operationally 257 
by the NASA SMAP mission and can be considered as a reanalysis product since it uses the Goddard Earth 258 
Observing System version 5 (GEOS-5) land model to assimilate SMAP L-band microwave observations and is 259 
forced with observed land cover and vegetation from the Moderate Resolution Imaging Spectroradiometer 260 
(MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The global processing is conducted on 1 km 261 
sub-grids using spatially aggregated MODIS PFTs and VIIRS fPAR inputs, allowing to distinguish up to eight 262 
individual PFTs within each 9 km x 9 km product grid cell. However, the model processing uses coarser spatial 263 
resolution (9 km and 0.25 degree) daily inputs from the SMAP L4 soil moisture (L4_SM) and GMAO Forward 264 
Processor (FP) surface meteorology. Among other variables, the SMAP-L4C outputs provide daily NEE and GPP 265 
(RECO deduced from the difference between NEE and GPP), in a consistent global grid from March 2015 to 266 
September 2023 for each PFT, including DBFs and ENFs (Jones et al., 2017; Kimball et al., 2022). The 1-km PFT 267 
subclass distinction allows to differentiate ENF and DBF behavior over the Mont Beuvray plots. The L4C product 268 
is derived using coupled photosynthetic light-use efficiency and soil organic matter decomposition models to 269 
estimate daily NEE and it’s component carbon fluxes; where, GPP is reduced from PFT-specific optimal rates for 270 
unfavorable daily climate conditions including cold temperatures, low light levels, excessive atmospheric vapor 271 
pressure deficits and low root zone (0-1m depth) soil moisture levels defined from SMAP L4_SM and GMAO FP 272 
meteorology. Details of the model algorithms and the calibration, validation, and performance of the L4C version 273 
7 product used in this study are given in the associated product quality assessment report (Endsley et al., 2023). 274 
 275 
2.3 Climate data 276 
 277 
Climate parameters are extracted from the version 2 of the operational chain Safran-ISBA-Modcou (SAFRAN-278 
SIM2; Soubeyroux et al., 2008). SAFRAN-SIM2 is an hydrometeorological reanalysis produced by Météo-France 279 
at a 8 km spatial resolution from 1958 onwards. For each of the five sites, we extracted the nearest grid point for 280 
2 m temperature (T in °C), soil water index of the first two meters (SWI in %), liquid, solid and total precipitation 281 
(PRELIQ, PRENEI and PRE_SUM in mm), real and potential evapotranspiration (EVAP and ETP in mm) and 2 282 
m relative humidity (HU in %). In addition, we calculated the air Vapor Pressure Deficit (in Pa), an integrative 283 
metric accounting for both heat and water stress effects (Carrara et al., 2004; von Buttlar et al., 2018; Kong et al., 284 
2022; van der Woude et al., 2023). The VPD is defined as the difference between the amount of moisture that is 285 
actually in the air and the amount of moisture that air could hold at saturation. The VPD is computed using the 286 
Tetens formula (Monteith and Unsworth, 2007) following Eq. (1):  287 

𝑉𝑃𝐷 = %1 − !"
#$$
( ∗ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑣𝑎𝑝𝑜𝑟	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = %1 − !"

#$$
( (610.78 ∗ exp	( %

%&'().(
∗ 17.2694)  (1) 288 

 289 
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Preliminary analyses show that the SAFRAN-SIM2 reanalysis accurately captures the temporal variability and 290 
magnitude of 2 m temperature and precipitation compared to observations provided by the three FLUXNET sites 291 
(Fig. A3), despite biased solid precipitation in Davos. For this reason and for conciseness, we consider only 292 
SAFRAN-SIM2 regardless of the site and CO2 flux product. 293 
 294 
 295 
2.4 Methodology 296 
 297 
For the gridded datasets (SAFRAN-SIM2, FLUXCOM, LPJ-GUESS and SMAP-L4C), we extracted the nearest 298 
grid point to the flux tower sites and to the center of Mont Beuvray and Châtillonnais plots. Since all datasets have 299 
different temporal resolution and units (Table 1), they all have been converted to tCO2 ha-1 month-1 and aggregated 300 
at the monthly timescale. From these monthly values, we computed the mean annual cycle by averaging all years 301 
available in each dataset, as well as its interannual variability defined as the standard deviation of monthly values. 302 
The annual budget was calculated as the sum of the monthly values, only for complete years (i.e. when no monthly 303 
value is missing). Fontainebleau is the only site presenting gaps in the observed time series (in 2005, 2014 and 304 
2017) due to too low-quality control values. The mean annual budget is then computed together with its interannual 305 
variability following the same procedure described above. 306 
 307 
The model skill in capturing observed CO2 flux temporal variability at the monthly and annual timescales is 308 
assessed over overlapping periods between each model end each observation. Magnitude and co-variability errors 309 
are assessed in terms of bias and Bravais-Pearson correlation coefficient (R) or coefficient of determination (R²), 310 
respectively. The evaluation is done considering raw monthly values to focus on the annual cycle, as well as 311 
monthly anomalies (i.e., removal of the mean annual cycle) and raw annual values to focus on interannual 312 
variability at the monthly and annual timescales, respectively. 313 
 314 
The R and R2 metrics are also used to assess the relationship between climate variables and CO2 fluxes at the 315 
monthly (raw and anomalous values) and annual (raw values) timescales. In addition, a composite approach is 316 
performed to examine monthly climate anomalies associated with large negative and positive monthly anomalies 317 
in CO2 fluxes (NEE, GPP and RECO). Large negative/positive CO2 flux anomalies are defined as standardized 318 
anomalies (mean=0, standard deviation=1) below/above -0.5/+0.5. Tests with stricter threshold values (e.g., -1/+1) 319 
lead to similar results but limit the size of the samples. The difference between the two groups is tested for 320 
significance based on the non-parametric Mann-Whitney U test (McKnight and Najab, 2010). 321 
 322 

3 Results 323 
 324 
3.1 Monthly timescale 325 
 326 
3.1.1 Mean annual cycle and interannual variability in climate and CO2 fluxes 327 
 328 
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Figure 2 shows the mean annual cycle and interannual variability of T and main surface water cycle parameters 329 
associated with each site. All sites follow similar patterns of T, ETP, EVAP and VPD with the greatest values in 330 
summer and the lowest in winter. The annual cycle in SWI is reversed, with drier soils in late summer and wetter 331 
soils in winter. The total precipitation is evenly distributed throughout the year for sites in plain (Fontainebleau 332 
and Hesse and Châtillonnais), in contrast with mountainous sites (Davos and Mont Beuvray) where precipitation 333 
amounts are larger during winter than summer. The interannual variability (shadings on Fig. 2) is particularly 334 
pronounced all year long for PRE_SUM and from spring to fall for VPD, highlighting strong year-to-year 335 
fluctuations of the water cycle. 336 
 337 

 338 
 339 
Figure 2: Mean annual cycle and interannual variability in monthly (a) 2 m air temperature (T), (b) soil moisture 340 
of the first two meters (SWI), (c) potential evapotranspiration (ETP), (d) real evapotranspiration (ETR), (e) total 341 
precipitation (liquid + solid: PRE_SUM) and (f) vapor pressure deficit (VPD) for each study site (colors, see insert) 342 
for the 1990–2023 period. Climate conditions in each site are extracted from the nearest grid point of the 8 km x 343 
8 km SAFRAN-SIM2 reanalysis. Bold lines show the mean annual cycle. Shadings show interannual variability 344 
computed as the standard deviation of each month of the period. 345 
 346 
 347 
Due to its much higher elevation, Davos depicts different climate conditions than the other sites with (i) lower T 348 
by up to ~10 °C all year long, (ii) wetter soils, especially in spring due to mild temperature, low evaporation and 349 
snow melting (not shown), (iii) larger precipitation amounts all year long with snowfall from October to April (not 350 
shown) and (iv) delayed EVAP peak in late summer. While this site is not an analogue of the Mont Beuvray ENF 351 
site, it remains the most representative one available in the FLUXNET network. 352 
 353 
The mean annual cycle of monthly NEE is marked in all study sites (Fig. 3). Temperate forest ecosystems release 354 
CO2 during winter and sequester CO2 during summer, with higher values in summer than in winter. While this 355 
overall cycle prevails all years, the sign of the NEE can be reversed from one year to another in spring and fall in 356 
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almost all products and sites, indicating that during these seasons the forest ecosystems can be either a CO2 source 357 
or a CO2 sink. Seasonal contrasts are stronger in DBF than ENF sites, consistent with the DBF leafing seasonality 358 
and with previous studies hypothesizing a buffer effect in ENF soils (e.g., Welp et al., 2007; Zheng et al., 2021). 359 
The magnitude of interannual variability seems also to be influenced by forest stand characteristics (e.g., in Mont 360 
Beuvray in the SMAP-L4C and CarbonSpace models), with e.g. a variability 40% higher for DBFs than ENFs 361 
simulated by the CarbonSpace model in Mont Beuvray in July. Despite high coupling between GPP and RECO, 362 
the NEE mean annual cycle is mostly driven by GPP in summer and by RECO in winter regardless of the sites, as 363 
illustrated for one DBF site in Fig. 4. 364 
 365 

 366 
 367 
Figure 3 : Same as Fig. 2 but for monthly NEE in the (a-c) three FLUXNET sites and (d-f) three non-instrumented 368 
sites located in Burgundy as measured by eddy-covariance (FLUXNET) and simulated by data-driven 369 
(CarbonSpace and FLUXCOM) and process-based (LPJ-GUESS and SMAP-L4C) models. The longest available 370 
period for each site and dataset is retained. See Table 1 for details. For LPJ-GUESS, SMAP-L4C and FLUXCOM 371 
models, the nearest grid point from each site is shown. Results from LPJ-GUESS and FLUXCOM are similar in 372 
panels (d-e) due to coarse horizontal resolution (0.5° x 0.5°) and no distinction between forest stands (DBF or 373 
ENF). 374 
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 375 
 376 
Figure 4: Same as Fig. 3 but for monthly (a) NEE, (b) GPP and (c) RECO in the Fontainebleau DBF site according 377 
to FLUXNET observations, FLUXCOM data-driven and LPJ-GUESS and SMAP-L4C process-based models. The 378 
CarbonSpace model is not shown since GPP and RECO are not available for this model. 379 
 380 
 381 
The model skill in capturing monthly NEE depends on the metrics, sites and products (Fig. 5). Overall, the annual 382 
cycle in NEE is better represented in the two DBF sites, located in the plain, than the ENF site, Davos, located in 383 
the Alps Mountain area (Fig. 5a-c). The reverse holds in terms of magnitude (Fig. 5d-f). In Davos, all models 384 
reasonably capture the magnitude of monthly NEE, with inter-quartile in the -2 and +2 tCO2 ha-1 range, while the 385 
FLUXCOMs are the only models to reasonably capture the NEE annual cycle (R2 inter-quartile in the 0.6-0.7 386 
range). In the two DBF sites, the CarbonSpace data-driven model clearly provides the best scores for both metrics 387 
(R2 in the 0.8-0.9 range and bias in the 0 – -2 tCO2 ha-1 range), suggesting an added value of very high spatial 388 
resolution upscaling for representing CO2 flux annual cycle and magnitude. The remaining models strongly 389 
underestimate the CO2 uptake during summer and CO2 release during winter, with 25% of the NEE values 390 
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associated with biases exceeding 3-4 tCO2 ha-1 in both DBF sites. Interestingly, the model deficiencies in capturing 391 
(i) the annual cycle in NEE is mainly linked to poorly resolved temporal variability of RECO (Fig. A4) and (ii) 392 
the biased NEE magnitude is mainly linked to underestimated CO2 uptake by photosynthesis (Fig. A5). 393 
 394 

 395 
 396 
Figure 5 : Skill of data-driven and process-based models in capturing the (a-c) annual cycle and (d-f) magnitude 397 
in monthly NEE for each FLUXNET site. (a-c) The quality of the annual cycle is assessed through the coefficient 398 
of determination (R2) between simulated and observed monthly NEE (12 values) computed for each overlapping 399 
year (labeled on panels a-c). (d-f) The magnitude errors are computed as the difference (i.e., bias) between 400 
simulated and observed NEE for each month of the overlapping period (labeled on panels d-f). The boxes have 401 
lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of 402 
the boxes to show the extent of the range of the data within 1.5 by inter-quartile range from the upper and lower 403 
quartiles. Circles are outliers and red crosses in panels (a-c) are R2 computed considering the full monthly 404 
timeseries at once (e.g., 252 months for the first from left boxplot in panel a). 405 
 406 
 407 
The annual cycle and magnitude of NEE simulated in the ENF and the two DBF non-instrumented plots (Fig. 3d-408 
f) closely resemble those simulated in the instrumented sites (Fig. 3a-c). The two main exceptions concern all-409 
year-long CO2 sequestration simulated by the CarbonSpace model in the Mont Beuvray ENF site, and much 410 
weaker CO2 sequestration peak simulated by the FLUXCOM models in the Châtillonnais DBF site. Based on these 411 
results, the CarbonSpace data-driven model appears to be the best compromise to capture the annual cycle and 412 
magnitude of NEE associated with both ENFs and DBFs. The results also demonstrate that process-based and 413 
data-driven models have their own strengths and weaknesses and are thus complementary. 414 
 415 
3.1.2 Climate – CO2 flux relationship 416 
 417 
The CO2 flux – climate relationship is assessed considering both raw monthly values to account for the annual 418 
cycle and monthly anomalies (i.e., mean annual cycle removed) to focus on interannual variability. 419 
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The synchronous relationship between the annual cycle of CO2 fluxes and that of various climate parameters is 420 
assessed through a correlation analysis of raw monthly time series (Fig. 6). Regardless of the sites and models, T, 421 
VPD, ETP and EVAP correlate the most with NEE. For these parameters, the correlation coefficients are negative 422 
meaning that CO2 uptake increases with higher T, VPD and evapotranspiration. The weakest correlations are found 423 
for PRE_SUM and, to a lesser extent, SWI. Although we can hypothesize that climate variables are interdependent, 424 
a variance inflation factor (VIF) calculation highlighted the existence of multicollinearity only between ETP and 425 
VPD (VIF>5 in almost all sites and models). 426 
 427 

 428 

 429 
Figure 6: Bravais Pearson correlation coefficient values (shadings) between the three CO2 flux variables from 430 
each model and site, and the associated SAFRAN-SIM2 climate parameters associated with each site location. 431 
Climate parameters include 2 m air temperature (T in °C), soil water index (SWI in %), vapor pressure deficit 432 
(VPD in Pa), total precipitation (PRE_SUM in mm), potential and real evapotranspiration (ETP and EVAP in 433 
mm). (a-e) Davos, (f-j) Fontainebleau and (k-o) Hesse FLUXNET sites. Correlations are computed considering all 434 
months and all years for overlapping periods between climate and CO2 flux datasets. See Table 1 for details. The 435 
FLUXCOM multi-model mean is shown in panels d,i,n for conciseness since the three FLUXCOM models provide 436 
similar results. GPP and RECO are not shown in panels e,j,o because they are not provided by the CarbonSpace 437 
data-driven model. Only correlation values significant at the 90% confidence level are written. 438 
 439 
 440 
Three main results emerge when comparing the influence of climate on the annual cycle in NEE, GPP and RECO. 441 
First, the climate influence is most of the time greater on GPP than RECO, particularly in the FLUXNET 442 
observations, meaning that photosynthesis is more affected by climate conditions than are respiration processes. 443 
Second, the climate influence can be strong on both GPP and RECO but weak on NEE (Fig. 6). This is for instance 444 
the case in Davos where the correlation coefficient between T and LPJ-GUESS-simulated CO2 fluxes exceeds 0.9 445 
for both GPP and RECO while remains weak and barely significant for NEE. Last, the climate influence on the 446 
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annual cycle in simulated CO2 fluxes highly depends on the model capability to capture the CO2 flux annual cycle. 447 
From this point of view, the CarbonSpace data-driven and SMAP-L4C process-based models often depict stronger 448 
CO2 fluxes – climate relationships than the remaining models, consistent with more accurate simulation of the CO2 449 
flux annual cycle (Fig. 3). 450 
 451 

 452 
 453 
Figure 7 : Simple linear and 2nd order polynomial regressions between monthly 2 m temperature from SAFRAN-454 
SIM2 (x-axis) and NEE (y-axis) from all datasets and sites. (a,d,g,j,m,p) LPJ-GUESS and SMAP-L4C process-455 
based models. (b,e,h,k,n,q) FLUXNET observations and CarbonSpace data-driven model. (c,f,i,l,o,r) FLUXCOM 456 
data-driven models. The coefficient of determination (R²) in the insert is derived from the linear regression. 457 
 458 
 459 
A particular attention is given on the relationship between T and NEE (Fig. 7) to further discuss uncertainties 460 
induced by the products and dependencies to forest stand conditions. The relationship is systematically weaker (i) 461 
in Davos than in other sites regardless of the product and (ii) in the two coarse resolution models (LPJ-GUESS 462 
and FLUXCOM) regardless of the site. The relationship is linear-like in ENF sites regardless of the dataset and 463 
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the CO2 flux. This contrasts with DBF sites where the observed T – NEE relationship is polynomial with an evident 464 
threshold effect. Below 10°C, the NEE turns positive, indicating a net ecosystem carbon loss, and stabilizes in the 465 
0–2 tCO2 ha-1 range. This threshold effect corresponds to the low biological activity of DBFs under cold conditions, 466 
hence weak to no CO2 uptake by photosynthesis. This threshold effect results thus from GPP only, as reflected by 467 
the flattening of the GPP curve at low T (Fig. A6) unlike the linear RECO – T relationship (Fig. A7). Among the 468 
models, the SMAP-L4C and CarbonSpace are the only models to capture the observed threshold, highlighting the 469 
usefulness of distinguishing the PFT in the model outputs. 470 
 471 
The above analyses (Figs. 6-7) depict significant relationships between climate and CO2 fluxes when accounting 472 
for the annual cycle. Once the latter is removed (see section 1.4 for details), most of the correlation values are 473 
higher for process-based than data-driven models, remain of the same sign but are of weaker magnitude for GPP 474 
and RECO and are almost negligible for NEE (Fig. 8). Positive anomalies in GPP and RECO are associated with 475 
positive anomalies in T, VPD and ETP and negative anomalies in soil moisture (SWI) and, to a lesser extent, 476 
precipitation in most sites and products. The reverse holds true for negative GPP and RECO anomalies. The similar 477 
response of GPP and RECO to the climate anomalies induces a compensation effect on the residual NEE carbon 478 
flux, resulting in weak NEE anomalies. The sign of NEE anomalies is uncertain among the sites and the products 479 
and depends on which of the two components is associated with the largest anomalies. While the models tend to 480 
exaggerate the observed relationship between CO2 flux and climate anomalies, especially the process-based 481 
models, the overall picture is satisfactorily captured. 482 
 483 

 484 
 485 
Figure 8: Same as Fig. 6 but after removing the mean annual cycle. 486 
 487 
 488 
In addition to the correlation analysis, for which few disagreements can lead to poor correlation values, we now 489 
investigate climate anomalies associated with the largest anomalies in monthly CO2 fluxes (see Section 2.4 for 490 
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details). Results are shown for the Fontainebleau DBF site only for conciseness in Figs. 9-11. The main results can 491 
be summarized as follows. Two main climate parameters, PRE_SUM and T, appear to significantly influence the 492 
largest CO2 flux monthly anomalies in almost all datasets. Wet anomalies significantly favor anomalies that are 493 
positive for RECO and negative for GPP, hence less CO2 uptake (Figs. 9c, 10c and 11c), and vice versa for dry 494 
anomalies. Warm anomalies are associated with large positive NEE anomalies (i.e., strong CO2 emissions or weak 495 
CO2 uptake) and vice versa for cold anomalies (Fig. 9a). In turn, the DBF ecosystem sequesters less (more) CO2 496 
during anomalously warm (cold) conditions. This result is more clearly driven by RECO (Fig. 10a) than GPP (Fig. 497 
11a), consistent with an exponential response of respiration to T (van’t Hoff, 1898). Some relationships are 498 
opposite in sign between the process-based models and the data-driven models, highlighting strong uncertainties 499 
induced by the approach. For instance, anomalously dry soil is associated with RECO and GPP anomalies that are 500 
positive in the process-based models, especially LPJ-GUESS, while negative in the FLUXCOM data-driven 501 
models (Figs. 10b and 11b). 502 
 503 
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 504 
 505 
Figure 9: Monthly climate anomalies associated with large negative and positive anomalies in monthly NEE 506 
(NEE- and NEE+, respectively) for each dataset in the Fontainebleau DBF site. (a) 2m temperature (°C). (b) Soil 507 
water index (%). (c) Total precipitation (mm/month). (d) Vapor pressure deficit (Pa). (e) Potential 508 
evapotranspiration (mm/month). (f) Real evapotranspiration (mm/month). NEE- (NEE+) anomalies are defined as 509 
standardized anomalies (mean=0; standard deviation=1) below -0.5 (above 0.5). The boxes have lines at the lower 510 
quartile, median, and upper quartile values. The whiskers are lines extending from each end of the boxes to show 511 
the extent of the range of the data within 1.5 by inter-quartile range from the upper and lower quartiles. Circles are 512 
outliers. The symbol ns indicates no statistically significant difference in climate anomalies between NEE- and 513 
NEE+ according to a Mann-Whitney U test. The symbols *, ** and *** correspond to significant differences at 514 
the 90, 95 and 99% confidence level according to the same test. 515 
 516 
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 517 
 518 
Figure 10: Same as Fig. 9 but for RECO. 519 
 520 
 521 
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 522 
 523 
Figure 11: Same as Fig. 9 but for GPP. 524 
 525 
 526 
This section demonstrates that the annual cycle of monthly CO2 fluxes is sharply driven by climate, while its 527 
interannual variability is not a simple response to climate anomalies. Most of the models accurately capture the 528 
observed annual cycle and its relationship with climate. However, the interannual variability of monthly CO2 flux 529 
anomalies are not necessarily phased between observations and models (i.e., weak co-variability), especially for 530 
NEE, and the models tend to exaggerate the impact of climate on CO2 flux interannual variability. 531 
 532 
 533 
 534 
 535 
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3.2 Annual timescale 536 
 537 
3.2.1 Mean annual budget and interannual variability 538 
 539 
In the observations, the mean annual CO2 sequestration of the ecosystems is, on average, far weaker in the ENF 540 
site (-2.24 tCO2 ha-1 year-1) than the DBF sites (-24.63 tCO2 ha-1 year-1 in Fontainebleau and -15.14 tCO2 ha-1 year-541 
1 in Hesse), while the reverse holds in terms of interannual variability (±6.92 against 3.92 and 3.60 tCO2 ha-1 year-542 
1, respectively) (Fig. 12a). The large contrast between DBF and ENF sites may not be transposable since climate 543 
in Davos is atypical, with much colder and wetter mean conditions and larger year-to-year variability compared to 544 
the remaining sites (Fig. 2). Only the two process-based models (LPJ-GUESS and SMAP-L4C) provide mean 545 
annual CO2 uptake values comparable to observations in Davos. However, this might be a coincidence since these 546 
models strongly underestimate the NEE annual budget in the other sites due to underestimated GPP (Fig. 12b) and 547 
overestimated RECO (Fig. 12c). In particular, the NEE annual budget is positive in all DBF sites in the SMAP-548 
L4C owing to a too short duration of the uptake season simulated by this model (Fig. 3), resulting in annual GPP 549 
bias of e.g. -21.77 tCO2 ha-1 year-1 in Fontainebleau (Fig. 12b). 550 
 551 

 552 
 553 

Figure 12: Mean annual budget (bars) and interannual variability (whiskers) in (a) NEE, (b) GPP and (c) RECO 554 
for each site and dataset. Note that the results are similar in the Mont Beuvray ENF and DBF sites for the LPJ-555 
GUESS and FLUXCOM models due to their coarse resolution and no distinction of the forest stand in the outputs. 556 
 557 
Except in Davos, the two data-driven models perform reasonably well to capture the observed magnitude of NEE 558 
annual budget, despite CO2 uptake in DBF sites is underestimated by 15 to 20 tCO2 ha-1 year-1 in Fontainebleau 559 
by the FLUXCOM models and overestimated by 19.99 tCO2 ha-1 year-1 in Hesse by the CarbonSpace model. Over 560 
Mont Beuvray, the annual CO2 uptake is greater in the ENF than the DBF site for the models distinguishing the 561 
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PFTs in their outputs (i.e., CarbonSpace and SMAP-L4C). This might be explained by a basal area reaching 49 m2 562 
ha-1 in average in the ENF plot against 32 m2 ha-1 in the DBF one (for a volume of 656 m3 ha-1 and 404 m3 ha-1; 563 
data based on forest inventory), inducing a weaker photosynthetic activity in the DBF (Fig. 12b). This hierarchy 564 
cannot be captured by the FLUXCOM and LPJ-GUESS models by construction since the two Mont Beuvray plots 565 
are part of the same grid point and ENF and DBF are not distinguished. 566 
 567 
At the interannual timescale, the forest ecosystem systematically acts as a CO2 sink (Fig. 12), except (i) in Davos 568 
for the observations and the SMAP-L4C model and (ii) in all DBF sites for the SMAP-L4C model where NEE is 569 
always positive (i.e., CO2 release), as already discussed. The magnitude of interannual variability in annual NEE 570 
is the largest and the closest to the observed one for the CarbonSpace model (±3.92 and 5.16 tCO2 ha-1 year-1 in 571 
Fontainebleau), and the lowest and farthest from the observed one for the FLUXCOM models (±0.55 tCO2 ha-1 572 
year-1 in Fontainebleau with FLUXCOM_MARS), a statement also prevailing for GPP and RECO. 573 
 574 

 575 
 576 
Figure 13: Coefficient of determination (numbers and shadings) between modelled and measured fluxes in the 577 
FLUXNET sites at the annual timescale. 578 
 579 
 580 
Beyond the magnitude of interannual variability, a critical question concerns the model capability to capture the 581 
observed year-to-year fluctuations of annual CO2 fluxes (Fig. 13). No model succeeds at capturing the observed 582 
NEE, GPP and RECO interannual variability in Davos, suggesting deficiencies of state-of-the-art models in 583 
simulating CO2 flux interannual variability in mountainous regions. At least for SMAP-L4C, this may be due to 584 
the inability of the coarse (0.25 degree resolution) GEOS FP daily meteorology and (9-km grid) SMAP L4 soil 585 
moisture to capture the larger spatial heterogeneity in local climate conditions imposed from the complex mountain 586 
terrain at this site. For the remaining sites, the models tend to better perform with GPP and RECO than NEE. The 587 
CarbonSpace model fails at capturing the observed interannual variability in annual NEE (R²≤0.08). Despite biased 588 
annual mean conditions (Fig. 12), the SMAP-L4C performs reasonably well, with R2 of 0.36 and 0.55 for NEE 589 
and RECO in Fontainebleau and 0.88 for RECO in Hesse (Fig. 13). This model is the only one to be forced by 590 
satellite observation informed soil moisture, suggesting this parameter is valuable for simulating realistic year-to-591 
year fluctuations of annual CO2 fluxes. The FLUXCOM models also capture correctly the interannual variability 592 
in Hesse for all CO2 fluxes and perform better (with still low R²) in Davos for GPP and RECO than the other 593 
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models. Importantly, this skill is not “forced” by construction since the Davos site is not used to train the 594 
FLUXCOM models, and there is no or few (2) overlapping years between the period used to train the models and 595 
that analyzed in our study for Hesse and Fontainebleau. The LPJ-GUESS provides intermediate scores, with R2 in 596 
the 0.3 – 0.4 range. These results indicate that (i) models accounting for climate variability better capture 597 
interannual variability in CO2 fluxes and (ii) the simulated interannual variability is closer to observations at the 598 
annual than monthly timescale. 599 
 600 
3.2.2 Relationship with climate 601 
 602 
Overall, the interannual co-variability between CO2 flux and climate is qualitatively similar at the annual (Fig. 14) 603 
than the monthly (Fig. 8) timescale, with correlation values of the same sign. The main difference concerns less 604 
significant correlation values at the annual than monthly timescale for most variables, probably due to a sample 605 
size effect since the number of years under study is limited. The only exception concerns a stronger precipitation 606 
– CO2 flux relationship at the annual than monthly timescale for the two process-based models, especially for GPP 607 
and RECO with decreased CO2 fluxes during wet years. 608 
 609 

 610 
 611 
Figure 14: Same as Fig. 6 but for raw annual values. 612 
 613 
 614 
The “long-term” evolution in the NEE annual budget does not depict any trend but is characterized by strong year-615 
to-year fluctuations, except for the FLUXCOM models depicting surprisingly flat variability (Fig. 15). A modest 616 
increase is looming in the very last years of FLUXNET data, especially in DBF plots (Fig. 15b-c) but, as for all 617 
other models, the temporal coverage seems too short and the interannual variability too strong to settle any 618 
conclusion. Our result contrasts with recent literature pointing towards reduced CO2 uptake in Europe (Smith et 619 
al., 2020; Thompson et al., 2020; Chuine et al., 2023; van der Woude et al., 2023). Possible reasons involve the 620 
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limited number of sites under study, the fact that eddy-covariance flux tower measurements may be located in 621 
healthy forest ecosystems and potential compensation effects between GPP trends and RECO trends. The latter 622 
point is critical, at least in the FLUXNET observations and LPJ-GUESS simulations (Figs. A8-A9). To further test 623 
this hypothesis, Figure 16 shows the temporal evolution of annual anomalies in observed CO2 fluxes and climate 624 
parameters in the Fontainebleau DBF site. While annual NEE anomalies do not depict any trend (Fig. 16a), GPP 625 
and RECO anomalies are most frequently negative before 2014 and positive afterwards (Fig. 16b). The time series 626 
is too short to conclude whether such an evolution is reminiscent of a trend or a decadal-like variability. However, 627 
this pattern is consistent with the evolution of annual climate anomalies depicting drier conditions, larger potential 628 
evapotranspiration and colder temperature before 2014 than afterwards (Fig. 16c-e). 629 
 630 

 631 

 632 
Figure 15: Annual NEE for the longest available period for each site and dataset. Gaps are due to not complete 633 
years (e.g. FLUXNET data in Fontainebleau in panel b). 634 
 635 
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 636 

 637 
Figure 16: Evolution of annual anomalies in observed CO2 budget and SAFRAN-SIM2 climate in Fontainebleau 638 
between 2005 and 2022. (a) NEE. (b) GPP and RECO. (c) Soil moisture and total precipitation. (d) Real and 639 
potential evapotranspiration. (e) 2 m temperature. Anomalies are computed as the difference between each year 640 
and the 2005-2022 averaged conditions. The years 2005, 2014 and 2017 have not been accounted for because of 641 
missing CO2 flux data. 642 
 643 
 644 

4 Discussion 645 
 646 
This study aims at evaluating process-based and data-driven models in capturing CO2 flux temporal dynamics of 647 
temperate forest ecosystems and their relationships with climate. Such an evaluation is required to question the 648 
extent to which these models may provide relevant information for monitoring CO2 temporal dynamics and 649 
understanding their drivers in temperate forests where no CO2 measure is available. 650 
 651 
First, we show that the model skill depends on the target. On the one hand, the magnitude and pattern of the annual 652 
cycle, annual budget and the range of interannual variability (i.e., standard deviation of monthly or annual values) 653 
are better captured by the CarbonSpace data-driven model than the remaining models. This added value was 654 
expected in e.g. Fontainebleau, since this site is included in the pool of flux tower measurements used for the 655 
model calibration, but not in Hesse since this site is not included. Furthermore, the CarbonSpace clearly 656 
outperforms the other data-driven models tested (FLUXCOM models set with different AI algorithms), which are 657 
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also calibrated with flux tower measurements. This suggests that the accurate skill of the CarbonSpace model relies 658 
also on the inclusion of high resolution multi-spectral satellite data allowing to assess CO2 dynamics at the 659 
hectometric scale and to distinguish different PFTs. On the other hand, the co-variability between observations 660 
and models, and between CO2 fluxes and climate depends on whether the focus is on the annual cycle or on the 661 
interannual variability. When focusing on the annual cycle (Figs. 4-7), the co-variability is the largest for models 662 
capturing the observed annual cycle in CO2 fluxes, with CarbonSpace providing the best scores. When focusing 663 
on the interannual variability of monthly anomalies and annual budgets (Figs. 8 and 14), models forced by dynamic 664 
climate data (LPJ-GUESS, SMAP-L4C and FLUXCOM) clearly outperform the CarbonSpace model, which is 665 
forced by static climate data. In particular, the SMAP-L4C provides satisfactory results, suggesting that soil 666 
moisture is a key parameter for monitoring the interannual variability of CO2 fluxes. 667 
 668 
Second, we show that the CO2 flux – climate relationship is stronger for GPP and RECO than NEE and that the 669 
sign of the relationship between GPP/RECO and climate is relatively similar among the sites and products both 670 
along the annual cycle and from year-to-year (monthly anomalies and raw annual budgets). Both RECO and GPP 671 
increase when 2 m temperature, vapor pressure deficit and evapotranspiration increase and when precipitation and 672 
soil moisture decrease, in line with the literature (Haszpra et al., 2005; Tang et al., 2013; Kong et al., 2022; Li et 673 
al., 2023; Sharma et al., 2022). The NEE – climate relationship is more complex. Along the annual cycle, NEE is 674 
mainly driven by RECO during winter and GPP during summer in all datasets. From year-to-year, the magnitude 675 
of NEE anomalies is weak in most cases and their sign depends on the magnitude of the response of GPP and 676 
RECO. The latter point induces site dependencies and disagreements between observations and models and 677 
between models. From this point of view, models providing the three CO2 fluxes (i.e., NEE, GPP and RECO) 678 
allow for a better understanding on CO2 exchanges between the atmosphere and forest ecosystems. In addition, 679 
our study focuses on the synchronous relationship between CO2 fluxes and individual climate parameters. 680 
Considering lead-lag relationships as well as the influence of combined climate parameters would be the next step 681 
to account for the long term effect of droughts and heatwaves on forest ecosystems (Ciais et al., 2005; von Buttlar 682 
et al., 2018). Similarly, the number of study sites was too limited to account for the influence of variable soil 683 
properties (Kurbatova et al., 2008; Besnard et al., 2018; Curtis and Gough, 2018; Martinez del Castillo et al., 684 
2022), forest management practices (Carrara et al., 2003; Scott et al., 2004; Saunders et al., 2012) and stand age 685 
(Kurbatova et al., 2008; Besnard et al., 2018; Chuine et al., 2023). 686 
 687 
Third, distinguishing forest stands is critical for a fine scale assessment of CO2 temporal variability (Carrara et al., 688 
2003, 2004; Welp et al., 2007; von Buttlar et al., 2018; Zheng et al., 2021; Kong et al., 2022). Among the models 689 
tested, the two high spatial resolution models (SMAP-L4C and CarbonSpace) distinguish forest stands, which is 690 
not the case in the 50-km resolution models (LPJ-GUESS and FLUXCOM). Our results suggest an added value 691 
of models accounting for forest stands since they are the only models to capture a clear decrease of CO2 uptake 692 
during winter in DBF plots (Fig. 3), which is consistent with the literature (Granier et al., 2002; Welp et al., 2007). 693 
They are also the only models to capture the observed polynomial relationship between monthly 2 m temperature 694 
and NEE over the DBF plots (Fig. 7). We have, however, to acknowledge that the temporal variability of CO2 695 
fluxes is poorly captured in the Davos ENF site, even in the SMAP-L4C and CarbonSpace models. The main 696 
reason involves the atypical behavior of CO2 fluxes in mountainous regions. Additional sites would be needed to 697 
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further understand the different responses of CO2 fluxes to climate under DBF and ENF plots, which is out of the 698 
scope of this study. 699 
 700 
Last, there is a hiatus in the literature regarding the emergence of trends in NEE. Some studies suggest a recent 701 
decline of CO2 uptake by forest ecosystems in Europe (Smith et al., 2020; Thompson et al., 2020; Chuine et al., 702 
2023; van der Woude et al., 2023), while some others suggest no trend in either the recent decade or in climate 703 
projections (Ahlström et al., 2012; Abdalla et al., 2013; Tang et al., 2013; Kong et al., 2022; Martinez del Castillo 704 
et al., 2022; Li et al., 2023). The hiatus may be explained by the location of the sites or regions under study, (ii) 705 
the limited temporal depth of observations (and models), (iii) whether or not these sites/regions have been affected 706 
by wildfires and diseases (e.g., bark beetles) and (iv) whether or not wildfires and diseases are accounted for by 707 
the models. Our results are more nuanced. We found that the evolution of the NEE annual budget does not depict 708 
any trend but that GPP and RECO may have increased recently in the observations and some models. 709 
 710 

5 Conclusion 711 
 712 
This study questions the strengths and limitations of state-of-the-art data-driven and process-based models to 713 
monitor and understand the temporal variability CO2 exchanges between the atmosphere and western European 714 
temperate forest ecosystems where no flux tower measurements are available. Output from two data-driven models 715 
(CarbonSpace and FLUXCOM using different AI algorithms) and two process-based models (LPJ-GUESS and 716 
SMAP-L4C) are inter-compared over two non-instrumented sites (Châtillonnais and Mont Beuvray, France) and 717 
compared to CO2 flux measurements from three flux tower sites (Davos, Fontainebleau and Hesse) from the 718 
FLUXNET network retained due to their proximity with the non-instrumented sites in terms of location, climate 719 
and forest stand. The focus is put on the representation of the annual cycle, annual budget, interannual variability 720 
and long-term trend in CO2 fluxes (NEE, GPP and RECO), as well as their relationship with various climate 721 
parameters. Our results indicate that no model systematically outperforms the others. The best model in terms of 722 
representing the mean annual cycle and annual budget is not necessarily the best in capturing interannual 723 
variability. Overall, the data-driven models perform best in representing the CO2 flux mean annual cycle and 724 
annual budget, despite considerable uncertainties from one approach to another (CarbonSpace versus 725 
FLUXCOM). As far as interannual co-variability with climate is concerned, the best performing models are those 726 
forced by dynamic instead of static climate conditions. Our results suggest that the spatial resolution of the climate 727 
drivers is likely very important in capturing spatial and temporal patterns in CO2 exchange (e.g., in complex 728 
mountain areas). The ability to distinguish PFT spatial heterogeneity is only partially effective in representing this. 729 
Our results finally point towards the need to choose the appropriate model and spatial resolution according to the 730 
scientific question to deal with and to develop high spatial resolution models forced by dynamic climate conditions 731 
to allow for a fine scale representation of CO2 flux temporal dynamics at the territorial level. 732 
  733 
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Appendices 734 
 735 
 736 

 737 
 738 

Figure A1: Comparison between (a-c) GPP and (d-f) RECO using the daytime partitioning (x-axis) and the 739 
nighttime partitioning (y-axis) for the three FLUXNET sites at the monthly timescale. The four colors correspond 740 
to the four seasons. The red line shows the linear regression between the two approaches, together with the 741 
coefficient of determination (R2) and root mean squared error (RMSE) labeled in the insert. The black line shows 742 
the 1-by-1 correspondence. 743 
  744 
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 745 

 746 
 747 
Figure A2: Comparison between FLUXCOM-simulated (a-e) GPP and (f-j) RECO using the daytime partitioning 748 
(x-axis) and the nighttime partitioning (y-axis) for the three FLUXNET sites at the monthly timescale. The three 749 
colors correspond to the three artificial intelligence algorithms. The colored lines show the linear regression 750 
between the two approaches, together with the R2 and RMSE metrics labeled in the insert. 751 
  752 
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 753 
 754 

 755 
 756 

Figure A3: Comparison between the SAFRAN-SIM2 reanalysis (x-axis) and the FLUXNET observations (y-axis) 757 
for (a-c) 2 m temperature and (d-f) total precipitation for the three FLUXNET sites at the monthly timescale. The 758 
SAFRAN-SIM2 data correspond to the nearest grid point to each FLUXNET site. The SAFRAN-SIM2 – 759 
FLUXNET comparison is done using the raw and ERA-INTERIM-corrected observations, labeled T_F/P_T and 760 
T_ERA/P_ERA, respectively. The colored lines show the linear regression between the two datasets, together with 761 
the coefficient of determination (R2) and the root mean square error (RMSE) labeled in the insert. 762 

763 
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 764 
 765 
Figure A4: Same as Fig. 5 but for RECO.  766 
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 767 
 768 
Figure A5: Same as Fig. 5 but for GPP.  769 
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 770 
 771 
Figure A6: Same as Fig. 5 but for GPP. 772 
  773 
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 774 
 775 
Figure A7: Same as Fig. 5 but for RECO. 776 
 777 
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 778 

 779 
Figure A8: Same as Fig. 15 but for GPP.  780 
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 781 

 782 
Figure A9: Same as Fig. 15 but for RECO. 783 
  784 
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