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Abstract. Snow height measurements are still the backbone of any snow cover monitoring whether based on modeling or

remote sensing. These ground-based measurements are often realized with the use of ultrasonic or laser technologies. In

challenging environments, such as high alpine regions, the quality of sensor measurements deteriorates quickly, especially in

the presence of extreme weather conditions or ephemeral snow conditions. Moreover, the sensors by their nature measure the

height of an underlying object and are therefore prone to return other information, such as the height of vegetation, in snow-5

free periods. Quality assessment and real-time classification of automated snow height measurements is therefore desirable in

order to provide high-quality data for research and operational applications. To this end, we propose CleanSnow, a machine

learning approach to automated classification of snow height measurements into a snow cover class and a class corresponding

to everything else, which takes into account both the temporal context and the dependencies between snow height and other

sensor measurements. We created a new dataset of manually annotated snow height measurements, which allowed us to train10

our models in a supervised manner as well as quantitatively evaluate our results. Through a series of experiments and ablation

studies to evaluate feature importance and compare several different models, we validated our design choices and demonstrate

the importance of using temporal information together with information from auxiliary sensors. CleanSnow achieved a high

accuracy and represents a new baseline for further research in the field. The presented approach to snow height classification

finds its use in various tasks, ranging from snow modeling to climate science.15

1 Introduction

Snow height measurements are key in many fields, such as water resources management, avalanche forecasting, climate science,

or even tourism. A variety of complex models simulating and calculating snowpack properties therefore exist. For example,

estimating snow water equivalent (SWE) (e.g. Jonas et al., 2009) to assess water resources. In addition, snow height is an

important parameter for snow hydrological (e.g. Mott et al., 2023) and snow cover modeling (Lehning et al., 1999) used in20

operational avalanche forecasting (Morin et al., 2020; Pérez-Guillén et al., 2022; Herla et al., 2023). In climate science, snow

cover is one of the key variables that strongly affect the global energy balance and the atmospheric circulation, due to its high

albedo, high emissivity and low thermal conductivity (e.g. Flanner et al., 2011). Snow height signals have also been used to
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determine vegetation growth and plant phenology (e.g. Jonas et al., 2008; Fontana et al., 2008; Vitasse et al., 2017; Zehnder

et al., in prep.) and to monitor climate change (e.g. Matiu et al., 2021). Finally, the snow cover situation directly influences25

tourism, transportation and recreational activities (e.g. Willibald et al., 2021).

Snow height data are nowadays available, sometimes in almost real-time, from airborne or satellite remote sensing and

ground-based automated weather stations (AWS). One of the sensors often mounted at meteorological stations in high alpine

regions is an ultrasonic snow height sensor (Ryan et al., 2008). Due to the measurement method, snow height data come with

a variety of errors that arise from the harsh mountain conditions the sensor is not originally designed to operate in. In addition,30

ultrasonic sensors only measure the distance to the underlying object, be it snow or anything else. It is therefore important to

validate whether the information coming from the snow height sensor really corresponds to snow or not.

Arguably the most precise way of assessing the quality (QA) of snow height measurements is via visual inspection of the

data by a human expert (Robinson, 1989). Even though it is believed the most reliable, manual quality assessment of data is

a tedious procedure heavily relying on expert knowledge, which is not easily transferable and does not scale well (Fiebrich35

et al., 2010). A common practice in snow height QA is to distinguish between snow and grass based on static climatological or

minimum snow height thresholds. Random errors, instead, are typically detected using a maximum snow height threshold or

snow height variance (Avanzi et al., 2014).

There are other sensors usually mounted at an AWS, which can provide information on whether the measured snow height

relates to snow or not, as well as give some indications on the precision of snow height measurement. The first attempt to40

leverage other sensor information was the MeteoIO library developed by Bavay and Egger (2014), which contains an algorithm

for grass detection based on snow surface temperature, ground surface temperature, and solar radiation. The algorithm is based

on a series of thresholding rules, an approach that is known to be rather cumbersome to modify and does not generally transfer

well to other station data. Observing the recent advances in machine learning, Blandini et al. (2023) have decided to deal

with the high dimensionality of the data by proposing a random forest approach to snow height QA, solving both snow height45

classification and anomaly detection at the same time. Random Forest (RF) models (Breiman, 2001) are possibly the most

popular choice of machine learning algorithms used among data scientists worldwide. Apart from an attempt by Goehry et al.

(2023), random forests, however, cannot easily and explicitly model the temporal structure of the data that we argue is crucial

to be able to reliably say whether the snow height measurement is erroneous and whether the signal coming from the sensor

shows snow or vegetation.50

Therefore, we aim to develop a machine learning model for the automated classification of snow height signals into a

snow and a no-snow class, which we call CleanSnow. To approach this binary classification problem, we employed a Temporal

Convolutional Network (TCN) (Lea et al., 2016) that explicitly accounts for the temporal relationships between different points

in snow height time series data. To train our TCN, we created a new manually annotated snow height dataset composed of 20

measurement stations with around 20 years of data per station. This dataset also allows us to validate our design choices and55

evaluate the model in several different scenarios including challenging cases such as snow cover melt or plant growth periods.
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2 Data

We used snow height data from the Swiss Intercantonal Measurement and Information System (IMIS) (Lehning et al., 1999), a

network of 131 AWS (as of May 2024) focused on snow measurements that are distributed throughout the Swiss Alps and Jura

region (see Figure 1), mostly located above 2000 m a.s.l. The stations acquire data regularly in 30-minute intervals and provide,60

in addition to snow height, also meteorological data. To analyze snow height (HS), we also leverage measurements such as

air temperature (TA), snow surface temperature (TSS), wind speed (WV), relative humidity (RH), and reflected shortwave

radiation (RSWR).

Figure 1. Map of IMIS stations in Switzerland. Stations marked as full gray circles were not part of the new annotated dataset. Yellow

squares are the stations that have been used for training (14 stations) and red triangles indicate stations used for testing (6 stations). Colours

indicate elevation in m a.s.l.

2.1 Quality assessment of snow height measurements

Raw snow height measurements coming from the IMIS network contain many errors and anomalies. Due to how the sensor65

works, it measures the height of an underlying object, independently of whether the object is snow or not. This yields spurious

measurements (e.g., vegetation growth) in summer or generally during snow-free periods.
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There have been efforts to mitigate this effect and eliminate the vegetation measurements by using signals from other sensors,

mainly snow surface temperature (TSS) and ground temperature (TG), which seem to be good indicators of whether there is

snow on the ground or not (Tilg et al., 2015). In particular, with the presence of snow, TSS is expected to be ≤ 0◦C. TG is70

expected to be constantly around 0◦C, as snow insulates the ground from atmospheric temperature variations (Domine, 2011).

When no snow is present instead, both TSS and TG typically show diurnal variations, in line with the air temperature (TA).

For completeness, we also analyze wind speed (WV) since it has a direct influence on snow distribution and was considered in

a recent classification approach (Blandini et al., 2023).

Techniques employing thresholding rules based on the above assumptions (Tilg et al., 2015; Bavay and Egger, 2014) gen-75

erally work well and allow for, in some applications, satisfactory detection of the snow disappearance date at the end of the

season and the timing of the first snow in the fall. Their main drawback lies in the definition of fixed threshold values which

are used together with multiple conditional statements in order to determine the presence or absence of snow. These thresholds

are often sensitive to anomalies and outliers in the data and do not transfer always well from one station to another. Moreover,

manual adjustment of these thresholds is rather tedious and impractical with a large number of stations.80

Careful manual exploration showed that the following sensor measurements are key factors in disentangling snow from soil

and vegetation measurements: snow height (HS), air temperature (TA), snow surface temperature (TSS), ground temperature

(TG) and reflected short-wave solar radiation (RSWR). The latter is useful since snow has a much higher albedo than soil or

vegetation.

2.2 Data preparation85

For model development and validation, we prepared a dataset with reliable ground truth information. Manually annotating

snow height data is a tedious process, and doing so for the whole IMIS network is intractable. Therefore, we identified a subset

of IMIS stations that we then manually annotated.

It should be mentioned that annotating historical data is problematic, as there is no way of checking whether there really

was snow at the station or not. This means that assessing the presence of snow with the help of information from other sensors90

should be considered a best effort approach.

2.2.1 Snow/no-snow dataset

A subset of 20 stations (see Appendix A) which span different locations and elevations and vary in underlying surface (e.g.,

vegetation, bare ground, glacier, etc.) were selected and manually annotated with binary two-class ground truth information

regarding snow height data:95

– Class 0 - Snow - the surface is covered by snow

– Class 1 - No Snow - the surface is snow-free (e.g., vegetation, soil, rocks, etc.)

The stations annotated with ground-truth information are depicted in yellow and red in Figure 1. An example of data annota-

tion is shown in Figure 2, with two detailed views that emphasize the differences in behavior of TSS and RSWR in the presence
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(a)

(b)

(c)

Figure 2. Examples of manually annotated data for the calendar year 2010 at the station SLF2. (a) shows the snow cover flag and snow

height; green rectangles mark periods with snow cover. (b) focuses on the end of winter season 2009/2010 illustrating the behavior of TSS

and RSWR dependent on whether there is snow or not. (c) is the same as in (b) for the beginning of the winter season 2010/2011.

and absence of a snow cover. The selected stations mostly contain data between 2000 and 2023, at a 30-minute frequency, with100

a few exceptions for stations that have been built later (BOR2, FLU2, LAG3, RNZ2 and SHE2; see Appendix A).

2.2.2 Evaluation subset

We leave part of the annotated data out during model development, which we later use as an independent test set to evaluate

the generalization ability of our final approach on stations not seen at training time. We select 6 stations (SLF2, WFJ2, KLO2,

TRU2, STN2, SHE2) that contain challenging scenarios and are therefore suitable test cases. In particular, these stations are105

located at elevations where summer snowfalls occur, the snow season duration is very different, or where grass grows during

the summer periods.
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3 Machine learning based snow cover classification

To distinguish whether snow or other ground cover is under the sensor, other sensor measurements can be used. Based on the

domain expert analysis discussed in Section 2.1 and empirical experimentation (see Section 4.2.3), we selected four sensor110

measurements as input features to our models, namely HS, TA, TSS and RSWR. We omitted TG, which was used during

manual annotation, as it is not available at all IMIS stations and the sensor is also prone to defects.

Having temporal information further helps in determining whether there is snow or not at a particular time step. It is often

important to look at a data point in the context of its temporal neighborhood. In an operational setting, one would, however, like

to be able to make a prediction for each incoming data point in real-time. This means we cannot access data points in the future115

and the context for each data point has to be composed of itself and preceding data points (history). To reduce computational

demands while still allowing for large enough context, we chose to work with a history window of 48 time steps (corresponding

to 1 day), which has shown to provide the best results, as described later in Section 4.2.4.

However, this approach leads to a multivariate temporal input signal with high dimensionality. Therefore, it would be diffi-

cult to capture correlations between different feature points manually by defining, e.g., thresholding rules. Machine learning,120

instead, is an appropriate choice in such cases, and has already shown its power in other tasks concerning weather and climate

data (e.g. Vaughan et al., 2022; Luković et al., 2022; Lam et al., 2023). The multivariate time-series signal contains both tempo-

ral dependencies between different data points from the same sensor, as well as inter-sensor correlations between measurements

from multiple different sensors. Simple models such as random forests (Breiman, 2001) or multilayer perceptron (MLP) neural

networks (Rosenblatt, 1958; Hornik et al., 1989; Cybenko, 1989) cannot explicitly account for the temporal nature of the data125

without engineering complex and artificial features, and are therefore a rather poor design choice. To correctly capture tempo-

ral patterns in the data, we instead chose to work with neural network models specifically designed to operate on time-series

data, e.g., recurrent neural networks (McCulloch and Pitts, 1943; Kleene, 1951), Temporal Convolutional Networks (Lea et al.,

2016), TimesNet (Wu et al., 2023) or Transformers (Vaswani et al., 2017).

We opted to use Temporal Convolutional Networks (TCN), which have proven useful in many applications concerning time-130

series data (Wan et al., 2019; Pelletier et al., 2019; He and Zhao, 2019; Hewage et al., 2020). Later, Section 4.3 provides a

comparison of our choice to other popular models, such as Random Forests, MLPs, LSTMs (Hochreiter and Schmidhuber,

1997), Transformers and a recently released model for time-series processing called TimesNet, which yields state-of-the-art

results on standard benchmarks in several different applications, including long- and short-term forecasting, anomaly detection,

and other time-series based tasks.135

3.1 Temporal Convolutional Network (TCN)

Based on well-known convolutional neural networks (CNNs) (Fukushima, 1988; Waibel et al., 1989; Weng et al., 1993; Lecun

et al., 1998), TCNs are variations that consist of dilated, causal 1D convolutional layers that have the same input and output

lengths. Dilation ensures that a specific entry in the output depends on all previous entries in the input, while causal convolution
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Figure 3. Structure of the input data and architecture of the modified TCN employed. A time window for 4 input signals of length 48 is fed

to the TCN, which causally aggregates information from all time steps into a 128-dimensional latent vector. This information is subsequently

fed into the classification network, which applies a sequence of MLPs to classify the input signal into two classes - Snow or No Snow. Each

dilated 1D conv block has filters described in the format (in_feats× out_feats @ kernel_size). The composition of each MLP is described as

(in_feats, hid_feats_1, . . . , out_feats).

means that the i-th element of the output sequence may only depend on input elements that come before it (elements with140

indices {0, . . . , i}).

As shown by Lea et al. (2016), with dilations and causal convolutions, TCNs can recover the behavior of RNNs (e.g. LSTMs

or GRUs (Cho et al., 2014)) and achieve state-of-the-art results compared to RNNs on many tasks. Moreover, TCNs do not

suffer from typical drawbacks of RNNs, such as the vanishing gradient problem (Pascanu et al., 2013), and are therefore easier

to train. The use of convolutions instead of a recurrent mechanism also potentially leads to further performance improvements145

due to the possibility of parallelization of the convolution operation.

We chose a 4-layer TCN architecture as shown in Figure 3, which has 4-dimensional time series with 48 time steps as the

input. The number of layers and filter sizes were selected so that the output representation of the last point in the input time

series is an aggregation of all previous time steps. In other words, the TCN produces an output representation of the last point

in the input time series by aggregating information from the whole history available at the input. This representation is fed150

to an MLP classifier, which first produces a series representation and then uses this representation to produce output class

probabilities.

3.2 Training

Snow height classification is a binary problem. Binary classification problems are typically optimized using the cross-entropy

objective function (Good, 1952). The simple cross-entropy loss will unfortunately not yield good results in our case. At places155

of interest that are available in the dataset, the snow cover usually prevails, hence creating significant imbalance. Moreover, as

mentioned in Section 2.2.2, in many cases the classification task is simple, and we would like our model to perform well on the

challenging edge cases. We therefore chose to drive the optimization by the so-called focal loss (Lin et al., 2017), which allows
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the model to focus and train preferentially on hard examples, while down-weighting the simple cases throughout the training

process.160

The focal cross-entropy loss is defined as

FL =−
N−1∑

i=0

αi(i− pi)γ logb(pi), (1)

where αi is the so-called balancing factor for class i, further contributing to class balancing, γ is the focus parameter which

controls the down-weighting of the easy examples, pi is the probability of the sample belonging to the i-th class, N = 2 is the

number of classes in the classification problem, and b is the logarithm base; typically b = 10.165

We run training for a maximum of 300 epochs, feeding the model with a batch of 64 samples in each iteration. We allow

for the possibility of early stopping, if the validation loss has not improved for more than 50 epochs. The optimization process

was governed by the AdamW (Loshchilov and Hutter, 2019) optimizer with an initial learning rate of 10−3. The learning rate

was subject to step decay with factor 0.1, three times, after 50, 100 and 150 epochs.

4 Experiments170

In this section, we summarize experiments performed to evaluate CleanSnow. We start by describing the dataset used through-

out the experiments. With a series of ablation studies, we clarify various design choices and then compare our TCN, the model

of choice, to other available options. We continue with a thorough evaluation of the TCN in different periods of the year, point-

ing out its strengths and weaknesses. Experiments are concluded with a case study that demonstrates the use of CleanSnow in

vegetation science.175

4.1 Dataset

In all experiments, we used the snow/no-snow dataset described in Section 2.2.1. This dataset was split into train and evaluation

subsets (see Section 2.2.2). For model training, we further split the training subset into the part on which we trained CleanSnow

and a validation part that was used to validate CleanSnow during training and allowed for early stopping to avoid over-fitting of

the model on the training data (Ying, 2019). The available validation dataset was also used for model hyperparameter tuning.180

The whole training dataset contained a huge amount of data which would be rather impractical for experimentation as it

would yield extremely long training times and high compute demands, which might not always be available. To make our

experiments more tractable, we selected roughly 30% of the data from every station in the training set using filtering by year.

Table B1 shows which years were used from each station.

We split our training dataset randomly using a 90/10 split, meaning we used 90% of the training subset for model training185

and the remaining 10% for validation. We fix the random seed in all our experiments to ensure the training/validation split

remains the same across different runs and also to support reproducibility of the results. Random splitting inherently takes care

of having samples from different stations and different time periods throughout the whole training subset.
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4.2 Ablation studies

In the following sections, different ablation studies and model comparisons are shown to explain our design choices and their190

contribution to obtaining the best results. Results presented in this section may serve as guidelines for designing machine

learning solutions for snow height classification. All ablation studies were performed with a version of the TCN developed

before feature elimination, which took seven input features, namely HS, TSS, TA, RSWR, RH (relative humidity), WV (wind

speed) and solar altitude (which encodes information about the date and time of the day).

Models were compared using the Receiver Operating Characteristic (ROC) curve (Egan, 1975), which is a plot showing the195

performance in terms of the true positive rate (TPR) and the false positive rate (FPR).

4.2.1 Synthetic ground-truth experiments

To demonstrate the need for annotated data, we trained a model using synthetic ground truth based on empirical rules developed

according to human expert knowledge. In order for a sample to correspond to snow cover, the following condition had to be

met:200
((

1
N

N−1∑

n=0

TSSn

)
≤ 0.0

)
∧
((

1
N

N−1∑

n=0

RSWRn

)
≥ 300.0

)
, (2)

where N is the length of the time window.

We compared the model trained with the synthetic ground truth information to the model trained with the manually annotated

data. The results in Figure 4(a) demonstrate the inability of thresholding rules to generate reliable ground-truth information

that could be leveraged for training. This resulted in the TCN Synth model not learning the correct relationships between205

different input variables and therefore having a much worse performance than TCN Annot, which was trained with our manually

annotated dataset.

4.2.2 Class balancing

Our training dataset included roughly twice as many snow-covered samples as snow-free samples. We applied class balancing

by adjusting the class weights of the focal cross entropy loss and observed how that affected the performance of CleanSnow.210

Figure 4(b) shows that class balancing improved the performance and was therefore a valid design choice in our pipeline.

4.2.3 Feature importance

We performed an ablation study training the model with a leave-one-out strategy for the input features to validate their impor-

tance for the model decision-making. We picked the TCN architecture as it is our choice for the final solution. A comparison

of TCN models with different input features missing is shown in Figure 4(c).215

The HS, TSS, TA and RSWR signals proved to be important, in line with what was discussed above for manual data

annotation. On the other hand, WV and RH had no beneficial effect and even slightly deteriorated the overall performance.
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(a) (b)

(c) (d)

Figure 4. ROC curves for various ablation studies. Every plot additionally shows the macro-F1 score for the threshold where TPR = FPR

(the point on each curve). (a) Importance of manually annotated ground truth data. (b) Effect of class balancing. (c) Importance of input

features. (d) Influence of sequence length on model performance.
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Hence neither feature provided any additional information useful for classification. Interestingly, solar altitude, which encodes

information about date and time in continuous way, deteriorated the performance of the model considerably.

Accordingly, we chose our final model to have four input features, namely HS, TSS, TA and RSWR.220

4.2.4 Sequence length selection

One of the key model architectural hyperparameters is the length of the history the models can use top predict the current

time step. Figure 4(d) shows the relationship between history length and model performance in Figure 4(d). The best results

were obtained with a history length of 48 time steps (24 hours); very similar results were obtained with a history of length

32 (18 hours). A history length shorter than 24 time steps deteriorated the performance. Likewise, the performance decreased225

for history lengths larger than 96 time steps. Accordingly, we selected the history length to be 48 time steps as a compromise

between sufficient but not too much context for the model.

4.3 Model selection

To choose the right architecture for the task at hand, we experimented with several state-of-the-art machine learning models

for single time-step and time-series processing, compared their performance and finally selected the one that performed the230

best overall. Our model of choice was TCN, which was explained in Section 3.1. A short description of the other models we

evaluated is provided in Appendix C.

To have a balanced model which does not favor one of the classes, we selected the decision threshold as the point where

TPR = FPR. We evaluated the model for two scenarios: one with all seven input features and one with only the four relevant

features.235

Figure 5 shows the overall best performance of the TCN. Removing RH, WV and solar altitude, which were identified as

irrelevant features resulted in a significant improvement of the LSTM model performance. Nevertheless, we opted for the TCN

as it was on par with the LSTM, and the results in Figure 5(a) suggest that the TCN is more resilient to unimportant features

in the input. In addition, the TCN showed advantages for training over RNNs. Interestingly, for RF the performance improved

when using all features, which suggests it may learn undesired and spurious (see Section 4.2.3) relationships between inputs240

to distinguish snow from snow-free ground based on WV, RH and solar altitude.

4.4 Performance analysis per station

To better understand the generalization capabilities of the model, we evaluated its performance for each test station separately.

The results in terms of confusion matrices are presented in Figure 6 and suggest good generalization capability of the model for

most stations, with the exception of SLF2 and STN2. These two stations lie in very particular locations and are therefore out245

of distribution samples, which are described in detail below in Section 4.5. In addition, from Figures 6 and 7 one can further

conclude that the model generally performs slightly better in correctly classifying presence of snow, compared to classification

of snow-free ground.
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(a) (b)

Figure 5. Model comparison shown as ROC curves for two different versions of the six models: Model performance with (a) all seven input

features - HS, TSS, TA, RSWR, RH, WV and solar altitude, and (b) with the four relevant input features - HS, TSS, TA and RSWR. Every

plot additionally shows the macro-F1 score for the threshold where TPR = FPR (the point on the curve).

The seemingly good performance of the model should however be taken with a grain of salt. There are periods for which it is

rather easy to correctly classify snow as snow and snow-free ground as no snow and other times of the year, when the problem250

becomes much harder. This is discussed in detail later in Section 4.6.

4.5 Influence of station location

It is important to understand whether CleanSnow generalizes to stations at different locations with different elevations. Results

presented in Figure 7 suggest that the model performance was very stable for stations at elevations between roughly 2100 and

2700 m a.s.l., while it dropped for stations located either below or above this range. This corresponds to the fact that 80% of255

stations in our training set were in this range and only two stations were below 2000 m and one station was at 2800 m.

The two stations where model performance was lowest, SLF2 (1563 m) and STN2 (2914 m) were considerably outside the

elevation range that was available during training. Moreover, these two stations are rather special cases compared to most of the

other stations. SLF2 is located on a meadow in the village of Davos which seems to have a positive effect on the classification

into the class no snow, as it was the only station with a F1 score for class no snow higher than for class snow. STN2, instead,260

stands on a glacier, which results in very different ground properties compared to any other station in the dataset. This is

reflected by a rather low F1 score for the class no snow.
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(a) SLF2 (1563 m) (b) SHE2 (1852 m) (c) KLO2 (2147 m)

(d) TRU2 (2459 m) (e) WFJ2 (2536 m) (f) STN2 (2914 m)

Figure 6. Confusion matrices for each test station separately ordered by elevation.

Figure 7. Model performance for the six stations of the test subset as a function of elevation. The F1 score is shown separately for the

classification of snow (red line) and no snow (green line). The blue columns indicate the elevation distribution in the training subset (14

stations).
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4.6 Performance for different times of the year

Classification of snow height measurements into snow and snow-free ground can be both a simple and rather challenging task

depending on the location and time of the year. We provide a per-month performance analysis in Figure 8, which shows that265

the model mostly had trouble predicting snow-free ground in winter months. This is because very little training data for that

class were available during December, January, February and March, and it was not well represented in the training set. The

lack of data for snow-free ground in these months is further emphasized by the fact that we had no samples from this class in

the test set for February and March. In summer instead, the results suggest CleanSnow was able to detect most of the summer

snowfalls while retaining very good performance on predicting snow-free ground. At the end of winter, in May and June, the270

model performance was also very good, suggesting that CleanSnow can accurately predict the snow disappearance date.

Figure 8. Performance of the model for each month of the year separately. The F1 score is shown separately for the classification of snow

(red line) and no snow (green line). The blue columns indicate the distribution of snow samples, while the yellow columns indicate the

distribution of the no-snow samples.

In addition, we analyzed the model performance for each season. To this end, we split the test dataset into four different

seasonal clusters:

– Winter season was defined as the period with mostly continuous snow cover (December, January, February, March and

April)275

– Summer season was the part of the year typically without snow (July, August and September)

– End of winter season defined the snowmelt period resulting in snow-free ground (May, June and July)

– Start of winter season included the months when it starts snowing more often and at some point a continuous snow

cover forms on the ground (September, October and November)

In the following sections we describe the model performance for each of the four seasonal clusters in detail and point out some280

season-specific challenges.
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(a) Winter season (December - April) (b) Summer season (July - September)

(c) End of winter season (May - July) (d) Start of winter season (October - December)

Figure 9. Confusion matrices for each of the four seasonal clusters.

4.6.1 Winter season

For snow classification, the middle of winter is presumably the easiest time of the year to deal with. Besides some low-elevation

stations and some exceptional seasons with a very late onset of winter or very early snowmelt, the task should be rather trivial,

as the snow cover is continuous in time. Figure 9(a) demonstrates that the model confidently classified snow (TPR = 99.4%) in285

contrast to the classification of snow-free ground with TPR = 88.4%.
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4.6.2 Summer season

In contrast to full winter, classification of snow in the summer was more challenging. Besides snow-free ground, there were

many stations where vegetation grew. This results in non-zero snow height sensor measurements, which do not correspond to

snow. Exceptions were stations at high elevations (e.g., on a glacier) and winters when the snow did not melt until the beginning290

of summer.

The snow height signal for snow-free ground typically oscillates with high frequency and either stays around zero or grows

in the presence of vegetation under the sensor. The surface temperature and air temperature will most of the time oscillate high

above 0◦C showing a diurnal cycle. During overcast periods or in the presence of precipitation, TA and TSS will show the

same value. Due to the lower albedo of snow-free ground, smaller amounts of reflected solar radiation (RSWR) are measured.295

Based on the above assumptions, summer snowfalls can be detected when TA equals TSS which is followed by larger values of

RSWR with a simultaneous decrease in TSS. If there is vegetation growing under the station, the HS signal counter-intuitively

decreases as the plants get pressed down by the snow. In the case of snow-free ground under the sensor, the HS signal will

increase as expected during a snowfall.

Despite the challenging setting, Figure 9(b) demonstrates that the model accurately detected snow-free ground with 99.2%300

accuracy. The effect of summer vegetation is shown in Figure 10(a). On the other hand, detecting a snowfall in the summer

proved to be difficult, and even more so when vegetation was present. In this very difficult setting CleanSnow achieved a

performance of 81.1%. A partial detection of a summer snowfall is shown in Figure 10(c). CleanSnow succeeded in detecting

the main event but failed to correctly classify a few hours both at the start and the end of the summer snowfall.

4.6.3 Start and end of winter season305

The transition periods between winter and summer and vice versa are key periods for the detection of the first snow and its

disappearance, which are both dates of interest in climate science. These two seasonal clusters contain both data with rather

continuous snow cover and with bare ground or vegetation growth. Such data are therefore a perfect test case for the approach

we developed.

In our experiments, the end-of-winter season was the easier case to classify, achieving a very competitive performance of310

98% for snow and 99% for snow-free ground (Figure 9(c)). We attribute this high accuracy to the fact that the transition from

snow-covered to snow-free ground was often rather smooth, and once the snowpack had melted, there were not many periods

with snow persisting on the ground. The beginning of summer was typically represented by high air temperatures, which caused

TSS to oscillate with the daily cycle indicating snow-free ground; simultaneously RSWR noticeably decreased once the snow

had completely melted. Examples for end-of-winter season detection are shown in Figure 10.315

On the other hand, classification during the start-of-winter season was more challenging: the model achieved an accuracy

of 95.1% for snow and 93.2% for snow-free ground (Figure 9(d)). There were multiple snowfalls at the beginning of the

season after which the snow melted again completely. In addition, in late autumn and the beginning of winter, temperatures

occasionally dropped and the ground froze overnight. This resulted in TSS being constantly less than or equal to 0◦C even
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(a) SLF2 (1563 m), Year 2020

(b) SHE2 (1852 m), Year 2022

(c) TRU2 (2459 m), Year 2005

(d) STN2 (2914 m), Year 2013

Figure 10. Examples of classification results. The snow height signal is depicted in blue. The model predictions in terms of probability

(0 - 1) are shown in green. The dashed horizontal line denotes the decision threshold for binary classification. The red-shaded areas show

classification errors. (a) shows a correct classification of summer vegetation growth. (b) is an example of early October snowfall that has

been classified partially correctly. (c) demonstrates the model’s capability to detect summer snowfalls as well as scattered snowfalls at the

beginning of winter. (d) is evidence that the model does not always perform well, here making mistakes at the beginning of the next winter

season.
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without snow which might force the model to focus more on RSWR and HS during decision-making, potentially decreasing320

its decision power. The tricky nature of snow height classification at the-start-of-winter season is shown in Figure 10.

(a) WFJ2 Annotations (b) WFJ2 Observations

(c) SLF2 Annotations (d) SLF2 Observations

Figure 11. Confusion matrices for daily aggregated values on our annotations (left) vs. human observations (right). Results for station WFJ2

are in (a) and (b), followed by results for SLF2 in (c) and (d).

4.7 Comparison to manual observations

A perfect test case are stations with concurrent manual observations, i.e., measurements manually performed by human ob-

servers. Such measurements were available for the two stations WFJ2 and SLF2 located in the region of Davos.
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Since the manual measurements were done only once per day, we resampled our predictions from 30-minute intervals325

into 24-hour intervals. We averaged probability scores over the 24 hours (48 automatic measurements) to obtain the per-day

probability score.

The performance comparison on annotated automatic measurements versus manual observations in Figure 11 confirms that

we had produced high-quality annotations for the historical data. Some days with snow were erroneously annotated as snow-

free ground. This can be related both to short snowfalls which disappear in daily aggregation and also to the fact that manual330

observations were performed around 08:00 CET in the morning, while our data were daily averaged values. Such misalignment

might produce additional disagreements between manual observations and our annotations.

The results also show that CleanSnow achieved very good performance when evaluated against daily manual observations.

The differences in performance between the two ground-truth sources were attributed to the inconsistencies between the manual

annotations of automatic measurements and manual observations.335

4.8 Comparison to other approaches

To further demonstrate the added value of our machine learning approach, we compared it to other state-of-the-art methods

such as filtering used in the physics-based snow cover model SNOWPACK (Lehning et al., 1999). In particular, we considered

the snow water equivalent (SWE) provided by SNOWPACK since the HS signal is filtered to calculate SWE. Therefore, SWE

should be a good indicator of whether the HS signal relates to snow or not. If the HS signal does not represent snow, one would340

expect SWE to be 0. In addition, we also compared CleanSnow to thresholding-based filters implemented in the MeteoIO

library, which were mainly designed to filter vegetation growth measurements in summer.

Figure 12. Performance (F1 score) per station for the TCN (blue), the filter based on the SWE from SNOWPACK (red) and the thresholding

filter from MeteoIO (green).

Figure 12 shows the comparison of the snow height classification by our TCN model to classification based on SWE cal-

culated by SNOWPACK and the MeteoIO filter. The results clearly show the machine learning approach to be superior. This

might be attributed to the fact that both SNOWPACK and MeteoIO use thresholding-based rules based on TSS and TG to filter345

HS similarly to the approach described by Tilg et al. (2015). The optimal threshold values vary across different stations, which
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requires per-station calibration of the thresholds. Moreover, TG-based filtering is problematic since, as already mentioned, the

TG sensor is prone to failures and the signal is therefore often missing at some stations.

4.9 Case study: Vegetation science

Besides obvious applications in snow science, a reliable separation of snowfall from plant growth also has benefits for biological350

research. Removing HS measurements classified as snow allows the extraction of a clean vegetation signal and pinning down

reoccurring events in the life cycle of alpine vegetation – referred to as vegetation phenology. Given the long running time of

continuous snow/plant height data collection, it is possible to relate the timing of green-up (i.e. the start of vegetation growth)

or other phenological phases to snow climate parameters, and study phenological shifts over time – an excellent indicator of

climate change (e.g. Inouye, 2022). We extracted 25 years of vegetation growth data from HS measurement data at TUJ2355

(Culmatsch, 2262 m a.s.l.), an IMIS station characterized by tall plant growth. Within the 20 years of data, the algorithm

flagged all snow days during the vegetation period which were then removed. Snow disappearance and snowmelt dates were

defined as the first, respectively the last, day of the continuous winter snow cover. We fitted a logistic growth curve (Kong

et al., 2022) to the clean plant growth measurements and defined the start of growth by a 10% threshold of maximum plant

height (Figure 13). Vegetation green-up was directly linked to the timing of snowmelt, consistent with other studies (Jerome360

et al., 2021; Jonas et al., 2008), while late snowfall events shifted the start of growth towards later calendar days. Linear

regression analysis revealed an earlier occurrence of green-up over the study period coinciding with an increase in spring

temperatures measured at the station (Zehnder et al., in prep.). Despite insignificant changes in snowmelt timing, the shorter lag

between snowmelt and initiation of plant growth indicated a warming-driven advancement in phenology at the study site. This

case study highlights the importance of long-term monitoring and automated machine learning approaches in understanding365

climate-induced phenological shifts, with implications for ecosystem dynamics in remote alpine regions.

Figure 13. An example of a logistic growth curve (in dark green) fitted to height measurements data from TUJ2, in the vegetation season

of year 2019. Snow height data corresponding to snow are shown with blue stars, while plant signal is shown with green diamonds. The red

cross marks the snowmelt date, while the orange diamond marks the start of plant growth.
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5 Discussion

We proposed a deep learning-based approach to snow height signal classification to automate the quality-checking process. In

addition to selecting an appropriate model, we provided some good practices to develop machine learning models for automated

snow height classification. In the following paragraphs, we critically review our main findings.370

5.1 Disentangling snow height from vegetation

To add labels to historical snow height measurements, we needed to understand which sensor measurements were informative

to separate snow height from snow-free ground measurements. We initially selected seven signals: HS, TA, TSS, RH, RSWR,

WV, and solar altitude.

In Section 4.2.3 we showed that only HS, TA, TSS and RSWR were important for the classification of the snow height375

signal into snow and snow-free ground, which is in line with domain expert knowledge. The behavior of these four variables

was explained earlier in Section 2.1. In contrast to domain expertise, we did not employ TG, as it was not available at all stations

and, moreover, sensors measuring TG are prone to failures. Nevertheless, TG is expected to potentially further improve the

results if used.

The remaining sensor measurements, namely RH, WV and solar altitude, were identified as uninformative for the disentan-380

glement of snow and snow-free ground measurements. However, for other tasks such as, e.g., snow height anomaly detection,

WV might very well be an important signal carrying information about snow transport by wind and related phenomena. Inter-

estingly, solar altitude, which carries information about date and time, led to a deterioration of model performance. We attribute

this to the fact that solar altitude information potentially makes the model take decisions based on the date and time of the year,

which is rather undesirable. As much as date and time information are generally valid indicators of the season and therefore385

have a strong influence on the presence of snow, they might hamper decision-making, especially at the beginning and end of

the snow season and in the case of summer snowfalls, whose occurrences vary from year to year.

5.2 Deep learning models for snow height classification

Second, the suitability of state-of-the-art deep learning models for the snow height classification task has been studied. Several

cutting-edge deep learning architectures have been evaluated against each other, resulting in the superiority of a Temporal390

Convolutional Network over the other compared methods. The TCN reached an accuracy of 97.7% when we used a decision

threshold that balanced the model performance on predictions for both classes - snow and no-snow. No data from the test

stations were used during training. Hence, the results indicate that the approach generalizes well to unseen stations. A detailed

performance evaluation for each station in the test set showed that the model performed very well except on SLF2 and STN2,

which are two particular cases. The station SLF2 is located low in a valley and STN2 on a glacier. Such special environments,395

compared to those of most other stations in the dataset, might cause slightly different behavior of the auxiliary variables used

during HS analysis and result in a performance decrease.
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5.3 Best practices for snow height classification using machine learning

In our analysis, we aimed to establish good practices for further development of machine learning methods for snow height

classification and quality assessment. We showed that learning from synthetic ground-truth data generated using thresholding400

rules proposed in the past did not work well, as the predefined thresholds did not generalize to all stations without modifications.

This emphasizes the need for well-annotated data for training. Next, we pointed out the importance of addressing the class

imbalance problem to achieve the best possible performance. Furthermore, we demonstrated the superiority of sequence-based

models (TCN, LSTM, TimesNet and Transformer) over single time-step-based models (RF and MLP), which confirms the

need for temporal context to achieve a high classification performance. We acknowledge the existence of techniques that allow405

one to feed RF and MLP models with sequences of data, e.g., lagged features (i.e., adding data from previous time steps as

extra input features). Nevertheless, we argue that such techniques do not treat sequential data as a causal sequence, which is

conceptually non-ideal and might potentially lead to the resulting model becoming less explainable in how it treats temporal

information. Another important aspect to consider is the sequence length. We performed an analysis of the performance for

the length of the time window (i.e., the size of the temporal context), which revealed that the ideal length was around 48 time410

steps, as shorter and longer time windows resulted in a deterioration of the model performance. Subsequently, we showed that

it was important to evaluate the model performance during the critical times of the year (the start and the end of the winter

season) to reveal their true performance.

5.4 Processing of raw sensor data

One of the known limitations of CleanSnow is the fact that it operates on raw data meaning the inputs may contain both415

anomalies (e.g. spikes) and missing values. Even though CleanSnow seem to be resilient to anomalies, it would be good

practice to perform anomaly detection and filtering before running the proposed snow height classification models. We argue

that filtering obvious spikes in snow height signal is a rather trivial procedure and can be solved by employing statistical

methods such as Hampel filtering (Pearson, 1999) or an exponential moving average filter (Kendall and Stuart, 1966). However.

other more subtle variations are very challenging to detect by both the human eye and automated methods.420

Dealing with missing data is more complicated. At the moment, in the case of missing samples in the 48-time step context,

the samples were discarded without being run through the model. Therefore, CleanSnow can only be applied in cases where

the full history needed to make a prediction is available. A simple solution for periods of up to several time steps would be

linear interpolation. However, as the size of the interpolated interval increases, this fails to produce an accurate reconstruction

of the missing data. To impute larger periods of missing data, methods that take into consideration both spatial and temporal425

context should be employed. This is, however, out of the scope of this work, and we therefore leave it as a possible future

research direction.
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6 Conclusions

Automated snow height measurements are key input data for many modeling approaches in climate sciences, snow hydrology,

and avalanche forecasting. Erroneous snow height measurement deteriorate the performance of these models. We demonstrated430

how to mitigate the aforementioned issues by the use of deep-learning methods for automated snow height classification.

Our contributions can be summarized as three-fold. First, we adapted a novel machine learning approach to snow height

signal classification that operates directly on time-series data. Second, we provided an in-depth comparison of several machine

learning models applied to snow height classification. Third, we introduced a new benchmark dataset with annotated snow

height data, which sets a baseline and can be used for further research in the field. The proposed approach achieved a high435

accuracy of 97.7% and generalized well to previously unseen stations. CleanSnow can be implemented as a component of an

arbitrary snow height quality assessment pipeline without the need for any special hardware.

Code availability. The exact version of the software used to produce the results in this manuscript are available at

https://doi.org/10.5281/zenodo.12698071, while current and future version of can be found at

https://gitlabext.wsl.ch/jan.svoboda/snow-height-classification.440

Data availability. The manually annotated dataset that we used to both train and evaluate CleanSnow is publicly available for research under

CC BY-NC1 license at https://www.doi.org/10.16904/envidat.512

Appendix A: List of stations in the snow/no-snow dataset

This section provides the list of IMIS stations used in our snow/no-snow dataset (see Section 2.2.1) together with their metadata.

Table A1 shows the stations ordered by increasing elevation. The column Subset indicates whether a station was used for445

training or testing.

Appendix B: Subsampling of the training data

To run experiments in a reasonable time and make sure they were computationally tractable, we sub-sampled the training

dataset to reduce the amount of training samples. In Table B1 we list which years were selected for each station for the training

set.450
1https://creativecommons.org/licenses/by-nc/4.0/
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Station ID Latitude [°N] Longitude [°E] Elevation [m] Available since Subset

SLF2 46.8127 9.8482 1563 November 1997 test

AMD2 47.1708 9.1468 1610 October 1997 train

GLA2 46.9966 9.0375 1632 November 2000 train

SHE2 46.7488 7.8124 1852 October 2001 test

ILI2 46.1913 6.8277 2022 March 2000 train

GUT2 46.6793 8.2896 2115 November 1999 train

KLO2 46.9091 9.8738 2147 November 1996 test

TUM2 46.7810 9.0214 2191 October 2002 train

FNH2 46.1007 6.9641 2252 September 1997 train

KLO3 46.8412 9.9316 2299 November 1996 train

LAG3 46.4245 9.6977 2300 November 2009 train

FLU2 46.7527 9.9464 2394 October 2003 train

RNZ2 46.6855 8.6267 2400 December 2008 train

TRU2 46.3709 7.5855 2459 November 1996 test

BOR2 46.2905 8.1093 2517 September 2001 train

WFJ2 46.8296 9.8092 2536 January 1996 test

ARO3 46.0874 7.5620 2602 September 1996 train

SPN2 46.2294 8.1176 2620 November 1996 train

FOU2 45.9717 7.0672 2800 October 1999 train

STN2 46.1678 7.7505 2914 October 1998 test

Table A1. List of stations that are part of the snow/no-snow dataset, together with their auxiliary information, ordered by elevation.

Appendix C: Machine learning models

For completeness, we provide a short description of every machine learning model that was used in our performance compari-

son.

C1 Random Forest (RF)

Implemented in many data science libraries and easy to use, Random Forests (RFs) are a popular choice of machine learning455

algorithm that can provide satisfactory predictions in both classification and regression tasks. In practice, RF is an ensemble

approach, which produces a final prediction as a combination of outputs of many decision trees. It often works well on tabular

data, but there are no mechanisms that would allow for a more principled representation of temporal, spatial or graph structures.
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Station ID Selected years

AMD2 1998, 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

GLA2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

ILI2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

GUT2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

TUM2 2004, 2007, 2010, 2013, 2016, 2019, 2022

FNH2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

KLO3 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

LAG3 2011, 2014, 2017, 2020, 2023

FLU2 2005, 2008, 2011, 2014, 2017, 2020, 2023

RNZ2 2010, 2013, 2016, 2019, 2022

BOR2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

ARO3 1998, 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

SPN2 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

FOU2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

Table B1. List of years for each station that were selected as part of the sub-sampled training dataset.

In our experiments we used the RF classifier implementation from the Scikit-Learn library (Pedregosa et al., 2011), setting

the number of decision trees to 1000 and maximum depth of each tree to 50. We left the other parameters at their default460

settings and trained the RFs using the Gini criterion (Gini, 1936).

C2 Multilayer Perceptron (MLP)

Being one of the first neural network models that can learn non-linear functions, MLPs have shown their power in natural

language processing (NLP) and serve as a foundational component for many other neural network models nowadays. Finding

their applications in both regression and classification tasks, MLPs can serve as an alternative to the RFs presented above.465

Putting them in comparison with RFs, MLPs can be generally more difficult to train for a given task and often exhibit lower

performance, especially with tabular data. This is due to their nature of learning smooth (sometimes overly smooth) solutions,

thereby causing them to not perform well on problems with non-smooth decision boundary. Grinsztajn et al. (2022) argue

this is due to the gradient descent approach to MLP optimization. They also show that MLPs are more affected by, e.g.,

uninformative features compared to RFs.470

We designed an MLP composed of an input layer with 7 input dimensions and 32 output features, followed by 3 hidden

layers with 64, 128 and 256 output features, respectively. Each hidden layer had batch normalization (Ioffe and Szegedy, 2015)

and Rectified Linear Unit (ReLU) activation functions (Fukushima, 1969; Nair and Hinton, 2010) appended to it. The MLP

was concluded with an output layer which takes a 256-feature representation and produces the final class probability score.
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C3 Long short-term memory (LSTM)475

Belonging to the family of recurrent neural networks (RNNs), the original models developed for time series processing,

GRU (Cho et al., 2014) and long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) are variations that al-

low the model to better capture long-term dependencies compared to RNNs, which tend to forget inputs that came much earlier

in history. We chose to use an LSTM in our experiments, as it is one of the gold standards in deep learning for time-series

processing.480

The LSTM model we used in our experiments took an input with 7 dimensions and was composed of 3 recurrent layers with

hidden dimensions of 64, 128 and 256, followed by an output MLP classifier that produced the final probability scores.

C4 TimesNet

Recently released and setting the new state-of-the-art performance on many standard benchmarks, TimesNet (Wu et al., 2023)

has become one of the models of choice for time series processing in general. Its main characteristic is the transformation of a485

1-dimensional time series signal into a 2-dimensional one, which allows it to capture complex temporal variations in the signal.

The conversion of a time series into a 2-dimensional signal is based on detecting signal periods using amplitude information

from a Fast Fourier Transform (FFT) and ordering the signal chunks into a 2-dimensional array. Applying 2-dimensional

convolutions to this array allows it to capture both inter- and intra-period variations in the signal.

In our experiments we used a modification where the definition of signal periods is fixed and not determined by the FFT.490

We used 5 periods to split the signal, namely 48, 32, 24, 16 and 8. The model was then composed of 3 layers with each layer

having 2 blocks and 128 hidden features.

C5 Transformer

Since it has been brought to the public’s attention in 2017, transformers have revolutionized many areas of deep learning,

achieving new state-of-the-art results mostly in natural language processing and computer vision. Transformers are model495

based on an attention mechanism (Vaswani et al., 2017) that were originally proposed for sequence-to-sequence tasks.

Here we employed a modification of the traditional transformer. In particular, we took the classical transformer encoder

in order to produce a latent representation for the input sequence, where each point is conditioned on the past context. The

encoder was composed of 2 layers with hidden dimensions of 128 and 4 attention heads. Both the input positional encoding

and encoder have a dropout of 0.1 applied. The latent representation produced by the transformer encoder was average pooled500

and passed to an MLP readout network, which produced the classification probability scores.

Author contributions. JSc, MR and DL initiated the study and together with MV prepared the research idea and main goals. DL, MR and JSv

prepared the data and carried out the manual data annotation. JSv and CJ analyzed the data, developed the models, prepared the experiments,

26

https://doi.org/10.5194/egusphere-2024-1752
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



analyzed the results and drafted the original manuscript. MZ contributed the vegetation experiment. All co-authors provided critical reviews

and contributed to the final paper. JSc acquired the funding to support the study.505

Competing interests. The contact author has declared that neither they nor their co-authors have any competing interests.

Acknowledgements. The authors gratefully acknowledge funding from Swiss Data Science Center grant C21-15L.

27

https://doi.org/10.5194/egusphere-2024-1752
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A processing-modeling routine to use SNOTEL hourly data in snowpack

dynamic models, Adv. Water Resour., 73, 16–29, https://doi.org/10.1016/j.advwatres.2014.06.011, 2014.510

Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geoscientific Model Development, 7, 3135–3151,

https://doi.org/10.5194/gmd-7-3135-2014, 2014.

Blandini, G., Avanzi, F., Gabellani, S., Ponziani, D., Stevenin, H., Ratto, S., Ferraris, L., and Viglione, A.: A random forest approach to

quality-checking automatic snow-depth sensor measurements, The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023,

2023.515

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010950718922, 2001.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.: On the Properties of Neural Machine Translation: Encoder-Decoder Approaches,

in: Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST@EMNLP), pp. 103–111,

Association for Computational Linguistics, https://doi.org/10.48550/arXiv.1409.1259, 2014.

Cybenko, G. V.: Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, 2, 303–314,520

https://doi.org/10.1007/BF02551274, 1989.

Domine, F.: Physical Properties of Snow, in: Encyclopedia of Snow, Ice and Glaciers, edited by Singh, V. P., Singh, P., and Haritashya, U. K.,

pp. 859–863, U. K., Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-90-481-2642-2_422, 2011.

Egan, J. P.: Signal detection theory and ROC analysis, Series in Cognition and Perception, Academic Press, New York, NY, ISBN

9780122328503, 1975.525

Fiebrich, C., Morgan, C., McCombs, A., Hall, P., and Mcpherson, R.: Quality Assurance Procedures for Mesoscale Meteorological Data,

Journal of Atmospheric and Oceanic Technology, 27, 1565–1582, https://doi.org/10.1175/2010JTECHA1433.1, 2010.

Flanner, M., Shell, K., Barlage, M., Perovich, D., and Tschudi, M.: Radiative forcing and albedo feedback from the Northern Hemisphere

cryosphere between 1979 and 2008, Nature Geoscience, 4, 151–155, https://doi.org/10.1038/NGEO1062, 2011.

Fontana, F., Rixen, C., Jonas, T., Aberegg, G., and Wunderle, S.: Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and530

MODIS NDVI Time Series - a Comparison with In Situ Measurements, Sensors, 8, 2833–2853, https://doi.org/10.3390/s8042833, 2008.

Fukushima, K.: Visual Feature Extraction by a Multilayered Network of Analog Threshold Elements, IEEE Transactions on Systems Science

and Cybernetics, 5, 322–333, https://doi.org/10.1109/TSSC.1969.300225, 1969.

Fukushima, K.: Neocognitron: A hierarchical neural network capable of visual pattern recognition, Neural Networks, 1, 119–130,

https://doi.org/10.1016/0893-6080(88)90014-7, 1988.535

Gini, C.: On the Measure of Concentration with Special Reference to Income and Statistics, Colorade College Publication, 208, 73–79, 1936.

Goehry, B., Yan, H., Goude, Y., Massart, P., and Poggi, J.-M.: Random Forests for Time Series, REVSTAT-Statistical Journal, 21, 283–302,

https://doi.org/10.57805/revstat.v21i2.400, 2023.

Good, I. J.: Rational Decisions, Journal of the Royal Statistical Society. Series B (Methodological), 14, 107–114,

https://doi.org/10.1111/j.2517-6161.1952.tb00104.x, 1952.540

Grinsztajn, L., Oyallon, E., and Varoquaux, G.: Why do tree-based models still outperform deep learning on typical tabular data?, in:

Advances in Neural Information Processing Systems, https://doi.org/10.48550/arXiv.2207.08815, 2022.

He, Y. and Zhao, J.: Temporal convolutional networks for anomaly detection in time series, in: Journal of Physics: Conference Series, vol.

1213, p. 042050, IOP Publishing, https://doi.org/10.1088/1742-6596/1213/4/042050, 2019.

28

https://doi.org/10.5194/egusphere-2024-1752
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Herla, F., Haegeli, P., Horton, S., and Mair, P.: A Large-scale Validation of Snowpack Simulations in Support of Avalanche Forecasting545

Focusing on Critical Layers, EGUsphere, 2023, 1–38, https://doi.org/10.5194/egusphere-2023-420, 2023.

Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahremani, M., Palmieri, F., and Liu, Y.: Temporal convolutional neural (TCN) net-

work for an effective weather forecasting using time-series data from the local weather station, Soft Computing, 24, 16 453–16 482,

https://doi.org/10.1007/s00500-020-04954-0, 2020.

Hochreiter, S. and Schmidhuber, J.: Long Short-term Memory, Neural Computation, 9, 1735–80, https://doi.org/10.1162/neco.1997.9.8.1735,550

1997.

Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359–366,

https://doi.org/10.1016/0893-6080(89)90020-8, 1989.

Inouye, D. W.: Climate change and phenology, WIREs Climate Change, 13, e764, https://doi.org/10.1002/wcc.764, 2022.

Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in: Proceedings555

of the 32nd International Conference on Machine Learning, vol. 37, pp. 448–456, https://doi.org/10.48550/arXiv.1502.03167, 2015.

Jerome, D., Petry, W., Mooney, K., and Iler, A.: Snowmelt timing acts independently and in conjunction with temperature accumulation to

drive subalpine plant phenology, Global Change Biology, 27, 5054–5069, https://doi.org/10.1111/gcb.15803, 2021.

Jonas, T., Rixen, C., Sturm, M., and Stoeckli, V.: How alpine plant growth is linked to snow cover and climate variability, J. Geophys.

Res.-Biogeosci., 113, G03 013, https://doi.org/10.1029/2007JG000680, 2008.560

Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, Journal of

Hydrology, 378, 161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.

Kendall, M. G. and Stuart, A.: The Advanced Theory of Statistics. Volume 3: Design and Analysis, and Time-Series, vol. 3 of Griffin’s

statistical monographs and courses, Charles Griffin & Company, London, ISBN 9780852642689, 1966.

Kleene, S. C.: Representation of Events in Nerve Nets and Finite Automata, RAND Corporation, Santa Monica, CA,565

https://doi.org/10.1515/9781400882618-002, 1951.

Kong, D., McVicar, T., Mingzhong, X., Zhang, Y., Peña-Arancibia, J., Filippa, G., Xie, Y., and Xihui, G.: phenofit: An R package for extract-

ing vegetation phenology from time series remote sensing, Methods in Ecology and Evolution, https://doi.org/10.1111/2041-210X.13870,

2022.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W.,570

Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful medium-range

global weather forecasting, Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336, 2023.

Lea, C., Vidal, R., Reiter, A., and Hager, G. D.: Temporal Convolutional Networks: A Unified Approach to Action Segmentation, CoRR,

https://doi.org/10.48550/arXiv.1608.08242, 2016.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86,575

2278–2324, https://doi.org/10.1109/5.726791, 1998.

Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M.: SNOWPACK model calculations for avalanche warning

based upon a network of weather and snow stations, Cold Regions Science and Technology, 30, 145–157, https://doi.org/10.1016/S0165-

232X(99)00022-1, 1999.

Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P.: Focal Loss for Dense Object Detection, in: Proceedings of the IEEE International580

Conference on Computer Vision, pp. 2999–3007, IEEE Computer Society, https://doi.org/10.48550/arXiv.1708.02002, 2017.

29

https://doi.org/10.5194/egusphere-2024-1752
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Loshchilov, I. and Hutter, F.: Decoupled Weight Decay Regularization, in: Proceedings of the International Conference on Learning Repre-

sentations, https://doi.org/10.48550/arXiv.1711.05101, 2019.
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