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Abstract. Snow height measurements are still the backbone of any snow cover monitoring, whether based on modeling or
remote sensing. These ground-based measurements are often realized using ultrasonic or laser technologies. In challenging en-
vironments, such as high alpine regions, the quality of sensor measurements deteriorates quickly, especially in extreme weather
conditions or ephemeral snow conditions. Moreover, the sensors by their nature measure the height of an underlying object
and are therefore prone to return other information, such as the height of vegetation, in snow-free periods. Quality assessment
and real-time classification of automated snow height measurements are therefore desirable to provide high-quality data for
research and operational applications. To this end, we propose CleanSnow, a machine learning approach to the automated
classification of snow height measurements into a snow cover class and a class corresponding to everything else, which takes
into account both the temporal context and the dependencies between snow height and other sensor measurements. We cre-
ated a new dataset of manually annotated snow height measurements, which allowed us to train our models in a supervised
manner as well as quantitatively evaluate our results. Through a series of experiments and ablation studies to evaluate feature
importance and compare several different models, we validated our design choices and demonstrated the importance of using
temporal information together with information from auxiliary sensors. CleanSnow achieves a high accuracy of almost 98%
and represents a new baseline for further research in the field. The presented approach to snow height classification finds its

use in various tasks, ranging from snow modeling to climate science.

1 Introduction

Snow height measurements are key in many fields, such as water resources management, avalanche forecasting, climate science,
and even tourism. A variety of complex models simulating and calculating snowpack properties therefore exist. For example,
estimating snow water equivalent (SWE) (e.g. Jonas et al., 2009) in order to assess water resources. In addition, snow height
is an important parameter for snow hydrological (e.g. Mott et al., 2023) and snow cover modeling (Lehning et al., 1999) used
in operational avalanche forecasting (Morin et al., 2020; Pérez-Guillén et al., 2022; Herla et al., 2023). In climate science,
snow cover is one of the key variables that strongly affect the global energy balance and the atmospheric circulation, due to

its high albedo, high emissivity, and low thermal conductivity (e.g. Flanner et al., 2011). Snow height signals have also been
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used to determine vegetation growth and plant phenology (e.g. Jonas et al., 2008; Fontana et al., 2008; Vitasse et al., 2017)
and to monitor climate change (e.g. Matiu et al., 2021). Finally, the snow cover directly influences tourism, transportation, and
recreational activities (e.g. Willibald et al., 2021).

Snow height data are nowadays available, sometimes in almost real-time, from airborne or satellite remote sensing and
ground-based automated weather stations (AWS). One of the sensors often mounted at meteorological stations in high alpine
regions is an ultrasonic snow height sensor (Ryan et al., 2008). Due to the measurement method, snow height data come with
a variety of errors that arise from the harsh mountain conditions the sensor is not originally designed to operate in. In addition,
ultrasonic sensors only measure the distance to the underlying object, be it snow or anything else. It is therefore important to
validate whether the information coming from the snow height sensor really corresponds to snow or not.

Arguably the most precise way of assessing the quality of snow height measurements is via visual inspection of the data
by a human expert (Robinson, 1989), which is however not easily transferable and does not scale well (Fiebrich et al., 2010).
A common practice in both manual and automated snow height quality assessment is to distinguish between snow and grass
based on static climatological or minimum snow height thresholds. Random errors are typically detected using a maximum
snow height threshold or snow height variance (Avanzi et al., 2014).

There are other sensors usually mounted at an AWS, whose temporal structure can provide information on whether the
measured snow height relates to snow or not, as well as give some indications on the precision of snow height measurement.
Fusion of temporal information from multiple sensors results in high-dimensional multivariate time-series signals, which in-
creases the complexity of the problem. The first attempts to leverage other sensor information include the MeteolO library
developed by Bavay and Egger (2014) and the thresholding method of Tilg et al. (2015). Both algorithms are based on a series
of thresholding rules that follow the physical properties of snow. In particular, with the presence of snow, snow surface temper-
ature (TSS) is expected to be < 0°C. Ground temperature (TG) is expected to be constantly around 0°C, as snow insulates the
ground from atmospheric temperature variations (Domine, 2011). Reflected short-wave radiation (RSWR) is expected to be
high since snow has a much higher albedo than soil or vegetation. When no snow is present, both TSS and TG typically show
diurnal variations, in line with the air temperature (TA). However, it is rather difficult to capture correlations between different
features in high dimensional space by defining thresholding rules. Moreover, thresholding approaches are known to be rather
cumbersome to modify and do not generally transfer well to other station data.

Machine learning, instead, is an appropriate choice in such cases, and has already shown its power in other tasks concerning
weather and climate data (e.g. Vaughan et al., 2022; Lukovi¢ et al., 2022; Lam et al., 2023). Blandini et al. (2023) addressed
the high dimensionality of the data with a random forest (RF) approach to snow height quality assessment, solving both snow
height classification and anomaly detection at the same time. RF models (Breiman, 2001) are amongst the most popular choices
of machine learning algorithms for tabular data (Grinsztajn et al., 2022). Multivariate time-series signals contain both temporal
dependencies between different data points from the same sensor, as well as inter-sensor correlations between measurements
from multiple different sensors. Apart from an attempt by Goehry et al. (2023), simple models such as random forests or mul-
tilayer perceptron (MLP) neural networks (Rosenblatt, 1958; Hornik et al., 1989; Cybenko, 1989) cannot explicitly account

for the temporal nature of the data without engineering complex and artificial features, and are therefore a rather poor design
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choice. To correctly capture temporal patterns in the data, we instead choose to work with neural network models specifi-
cally designed to operate on time-series data, e.g., recurrent neural networks (RNNs) (McCulloch and Pitts, 1943; Kleene,
1951), long short-term memory (LSTM network) (Hochreiter and Schmidhuber, 1997), Temporal Convolutional Networks
(TCNs) (Lea et al., 2016), TimesNet (Wu et al., 2023) or Transformers (Vaswani et al., 2017).

We developed CleanSnow, a machine learning model for the automated classification of snow height signals into a snow
and a no-snow class. To approach this binary classification problem, we employed a Temporal Convolutional Network that
explicitly accounts for the temporal relationships between different points in snow height time series data. To train our TCN,
we created a new manually annotated snow height dataset composed of 20 measurement stations with around 20 years of data
per station. This dataset also allows us to validate our design choices and evaluate the model in several different scenarios

including challenging cases such as snow cover melt or plant growth periods.
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Figure 1. Map of IMIS stations in Switzerland. Stations marked as full gray circles were not part of the new annotated dataset. Yellow
squares are the stations that were used for training (14 stations) and red triangles indicate stations used for testing (6 stations). Background

colours indicate elevation in m a.s.l.
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2 Data

We used snow height data from the Swiss Intercantonal Measurement and Information System (IMIS) (Lehning et al., 1999;
Liechti and Schweizer, 2024), a network of 131 AWS (as of May 2024) focused on snow measurements that are distributed
throughout the Swiss Alps and Jura (see Figure 1), mostly located above 2000 m a.s.l. The stations acquire data regularly in
30-minute intervals and provide meteorological data in addition to snow height. To analyze snow height (HS), we also leverage
measurements such as air temperature (TA), snow surface temperature (TSS), wind speed (WV), relative humidity (RH), and

reflected shortwave radiation (RSWR).
2.1 Data preparation

For model development and validation, we prepared a dataset with reliable ground truth information. Manually annotating
snow height data is a tedious process, and doing so for the whole IMIS network is intractable. Therefore, we identified a subset
of IMIS stations that we then manually annotated.

Annotating historical data is rather difficult, as there is no way of checking whether there really was snow at the station or
not. This means that assessing the presence of snow with the help of information from other sensors, such as air temperature
(TA), snow surface temperature (TSS), ground temperature (TG) and reflected short-wave solar radiation (RSWR), should be

considered a best-effort approach.
2.1.1 Snow/no-snow dataset

A subset of 20 stations (see Appendix A) which span different locations and elevations and vary in underlying surface (e.g.,
vegetation, bare ground, glacier, etc.) were selected and manually annotated with binary ground truth information regarding

snow height data:
— Class 0 - No Snow - the surface is snow-free (e.g., vegetation, soil, rocks, etc.)
— Class 1 - Snow - the surface is covered by snow

The stations annotated with ground-truth information are depicted in yellow and red in Figure 1. An example of data annota-
tion is shown in Figure 2, with two detailed views that emphasize the differences in behavior of TSS and RSWR in the presence
and absence of snow cover. The selected stations mostly contain data between 2000 and 2023, at a 30-minute frequency, with

a few exceptions for stations that were built later (BOR2, FLU2, LAG3, RNZ2 and SHE2; see Appendix A).
2.1.2 Evaluation subset

We left part of the annotated data out during model development, which we later used as an independent test set to evaluate the
generalization ability (e.g. Section 5.2 of Goodfellow et al. (2016)) of our final approach on stations not seen at training time.

We selected 6 stations (SLF2, WFJ2, KLO2, TRU2, STN2, SHE2) that contain challenging scenarios and are therefore suitable
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Figure 2. Examples of manually annotated data for the calendar year 2010 at the station SLF2. (a) shows the snow cover flag in green (1
for snow cover, 0 otherwise) and snow height (in blue) for the whole year. (b) focuses on the end of winter season 2009/2010 illustrating

the diurnal behavior of TSS and RSWR dependent on whether there is snow or not. (c) is the same as in (b) for the beginning of the winter
season 2010/2011.

test cases. In particular, these stations are located at elevations where summer snowfalls occur, the snow season duration is very

different, or where grass grows during the summer periods.

100 3 Methodology

To distinguish whether snow or other ground cover is under the sensor, other sensor measurements can be used. To this end,
a combination of seven input variables can be selected, namely HS, TA, TSS, RSWR, VW, RH and solar altitude. We omitted
TG, which was used during manual annotation, as it is not available at all IMIS stations and the sensor is also prone to defects.

A detailed analysis regarding input variable selection is provided in Section 4.1.3.
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Looking at a data point in the context of its temporal neighborhood helps in determining whether there is snow or not at
a particular time step. In an operational setting, one would, however, like to be able to make a prediction for each incoming
data point in real-time. This means we cannot access data points in the future, and the context for each data point has to be
composed of itself and preceding data points (history). To reduce computational demands while still allowing for large enough
context, we suggest working with window sizes of between 8 and 192 time steps, where 1 time step corresponds to 30 minutes.
The effect of varying time window size on the results is summarized in Section 4.1.4.

To account for the multivariate temporal characteristics of our data, we opted to use Temporal Convolutional Networks,
which have proven useful in many applications concerning time-series (Wan et al., 2019; Pelletier et al., 2019; He and Zhao,
2019; Hewage et al., 2020). Later, Section 4.2 provides a comparison of CleanSnow to other popular models, such as Random
Forests, MLPs, a variation of an RNN called an LSTM, Transformers, and a recently released model for time-series processing

called TimesNet, which yields state-of-the-art results on various standard benchmarks.

Temporal Convolutional Network
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Figure 3. Flowchart of the proposed TCN-based architecture with a drawing of an IMIS station on the left. A time window of 4 input
signals of length 48 (1 day) coming from an IMIS station is fed to the TCN, which causally aggregates information from all time steps into
a 128-dimensional latent vector. This information is subsequently fed into the classification network, which applies a sequence of MLPs to
classify the input signal into two classes - Snow or No Snow. Each dilated 1D conv block has filters described in the format (input_features

X output_features @ kernel_size). The composition of each MLP is described as (input_features, hidden_features_1,. .., output_features).

3.1 Temporal Convolutional Network (TCN)

Based on well-known convolutional neural networks (CNNs) (Fukushima, 1988; Waibel et al., 1989; Weng et al., 1993; Lecun
et al., 1998), TCNs are variations that consist of dilated, causal 1D convolutional layers that have the same input and output
lengths. Dilation ensures that a specific entry in the output depends on all previous entries in the input, while causal convolution
means that the i-th element of the output sequence may only depend on input elements that come before it (elements with
indices {0,...,i}).

As shown by Lea et al. (2016), with dilations and causal convolutions, TCNs can recover the behavior of RNNs while

not suffering from typical drawbacks of RNNSs, such as the vanishing gradient problem (Pascanu et al., 2013), and are there-
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fore easier to train. The use of convolutions instead of a recurrent mechanism also potentially leads to further performance
improvements due to the possibility of parallelization of the convolution operation.

We chose a 4-layer TCN architecture as shown in Figure 3, which has 4-dimensional time series with 48 time steps as the
input. The number of layers and filter sizes were selected so that the output representation of the last point in the input time
series is an aggregation of all previous time steps. In other words, the TCN produces an output representation of the last point
in the input time series by aggregating information from the whole history available at the input. This representation is fed
to an MLP classifier, which first produces a series representation and then uses this representation to produce output class

probabilities.
3.2 Training

Snow height classification is a binary problem. Binary classification problems are typically optimized using the cross-entropy
loss function (Good, 1952), which did not yield good results in our case. Many of the stations included in the dataset are
located in places where snow is present for much of the year, resulting in considerable class imbalance in our data. Moreover,
we would like our model to perform well on the challenging edge cases. Therefore, we chose to drive the optimization by the
so-called focal loss (Lin et al., 2017), which allows the model to preferentially focus and train on examples that it has difficulty
classifying correctly while down-weighting the simple cases throughout the training process.

The focal cross-entropy loss is defined as

N-1
FL=— " a;(i —p:)"log,(pi), ()
=0

where «; is the so-called balancing factor for class ¢, further contributing to class balancing, +y is the focus parameter which
controls the down-weighting of the easy examples, p; is the probability of the sample belonging to the i-th class, N = 2 is the
number of classes in the classification problem, and b is the logarithm base; typically b = 10.

We run training for a maximum of 300 epochs, feeding the model with a batch of 128 samples in each iteration. We allow
for the possibility of early stopping if the validation loss has not improved for more than 50 epochs. The optimization process
was governed by the AdamW (Loshchilov and Hutter, 2019) optimizer with an initial learning rate of 10~3. The learning rate

was subject to step decay with factor 0.1, three times, after 50, 100 and 150 epochs.
3.3 Dataset

In all experiments, we used the snow/no-snow dataset described in Section 2.1.1. This dataset was split into train and evalu-
ation subsets (see Section 2.1.2). For model training, we further (randomly) divided the training subset into two parts using a
90/10 split: 90% used for training CleanSnow and 10% for validation. The validation set was used to monitor CleanSnow’s
performance during training and hyperparameter tuning, and enabled early stopping to prevent overfitting on the training data
(Ying, 2019).
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The whole training dataset contained approximately 7 million data samples, which would be rather impractical for experi-
mentation, as it would yield extremely long training times and high compute demands, which might not always be available. To
make our experiments more tractable, we selected roughly 30% of the data from every station in the training set using filtering

by year (Table B1 shows which years were used from each station).
3.4 Hyperparameter tuning

We performed 5-fold cross validation with random training/validation splits in order to perform hyperparameter tuning us-
ing grid search for the following model architecture variables: dropout and output_activation for the TCN, batch_norm and
activation_function for the MLP, gamma and alpha parameters of the focal loss as well as optimizer learning rate.

For all remaining experiments, we have fixed a random seed for the training/validation split in order to ensure easy and full
reproducibility of our results. Random splitting inherently takes care of having samples from different stations and different
time periods throughout the whole training subset.

We opt for a batch size of 128 samples as it is sufficiently large while still fitting into the GPU memory we had available.
Due to limited computing resources, we do not optimize the remaining hyperparameters and we instead select them based on

similar architectures available in other works and our experience with designing machine learning models.

4 Results

In this section, we summarize experiments performed to evaluate CleanSnow. With a series of ablation studies, we clarify
various design choices and then compare our TCN, the model of choice, to other available options. We continue with a thorough
evaluation of the TCN in different periods of the year, pointing out its strengths and weaknesses. Experiments are concluded

with a case study that demonstrates the use of CleanSnow in vegetation science.
4.1 Experiments with CleanSnow setup

In the following sections, different experiments with the CleanSnow configuration and model comparisons are shown to explain
our design choices and their contribution to obtaining the best results. All experiments were performed using a TCN with seven
input features, namely HS, TSS, TA, RSWR, RH, WV and solar altitude (which encodes information about the date and time
of the day).

Models were compared using the Receiver Operating Characteristic (ROC) curve (Egan, 1975), which is a plot showing the

performance in terms of the true positive rate (TPR) and the false positive rate (FPR), and the F1-score.
4.1.1 Synthetic ground-truth experiments

To demonstrate the need for annotated data, we trained a model using synthetic ground truth based on empirical rules developed
according to human expert knowledge (see Appendix C). We compared the model trained with the synthetic ground truth

information to the model trained with the manually annotated data. The results in Figure 4(a) demonstrate the inability of
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Figure 4. ROC curves for various ablation studies. Every plot additionally shows the macro-F1 score for the threshold where TPR = FPR
(the point on each curve). (a) Importance of manually annotated ground truth data. (b) Effect of class balancing. (c) Importance of input

features. (d) Influence of sequence length on model performance.
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thresholding rules to generate reliable ground-truth information that could be leveraged for training. This resulted in the TCN
Synthetic Ground Truth model not learning the correct relationships between different input variables, yielding an F1-score
of 93% and therefore having a lower performance than TCN Manual Ground Truth, which was trained with our manually

annotated dataset and achieved a F1-score of 97%.
4.1.2 Class balancing

Our training dataset included roughly twice as many snow-covered samples as snow-free samples. We applied class balancing
by adjusting the class weights of the focal cross entropy loss and observed how that affected the performance of CleanSnow.
We have assigned a weight of 1.0 to the class representing snow and a weight of 0.5 to the class representing bare ground,
as there are approximately twice as many data samples from the snow-covered period. Figure 4(b) shows that class balancing

improved the performance from an Fl-score of 95.2% to 96.7% and was therefore a valid design choice in our pipeline.
4.1.3 Feature importance

We performed an ablation study training CleanSnow with a leave-one-out strategy for the input features to validate their
importance for the model decision-making (Figure 4(c)).

The HS, TSS, TA and RSWR signals were found to be important (i.e. their removal resulted in a reduction in model per-
formance with a decrease in the Fl-score of up to 4%), in line with what was discussed above for manual data annotation.
On the other hand, removing WV and RH from the input features only marginally improved model performance, suggesting
that they have no positive effect. Hence neither feature provided any additional information useful for classification. However,
for other tasks such as, e.g., snow height anomaly detection, WV might very well be an important signal carrying information
about snow transport by wind and related phenomena. Interestingly, removing solar altitude, which encodes information about
date and time, improved the performance of the model (increasing the Fl-score by 1.5%). We attribute this to the fact that
solar altitude information potentially makes the model decide based on the date and time of the year, which is undesirable. As
much as date and time information are generally valid indicators of the season and therefore have a strong influence on the
presence of snow, they might hamper decision-making, especially at the beginning and end of the snow season and in the case
of summer snowfalls, whose occurrence varies from year to year.

Therefore, we chose our final model to have four input features, namely HS, TSS, TA and RSWR.
4.1.4 Sequence length selection

One of the key parameters to choose is the length of the history the model can use to predict the current time step. Figure 4(d)
shows the relationship between history length and model performance. The best results were obtained with a history length
of 48 time steps (24 hours) achieving an Fl-score of 97%; very similar results were obtained with a history of length 32 (18

hours) with an F1-score of 96%. A history length shorter than 24 time steps deteriorated the performance. Likewise for history

10
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lengths larger than 96 time steps. Accordingly, we selected the history length to be 48 time steps as a compromise between

sufficient but not too much context for the model.
4.2 Model selection

To choose the right architecture for the task at hand, we experimented with several state-of-the-art machine learning models for
single time-step and time-series processing, compared their performance, and finally selected the one that performed the best

overall. Our model of choice was the TCN. A short description of the other models we evaluated is provided in Appendix D.
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Figure 5. Model comparison shown as ROC curves for two different versions of the six models (LSTM, TCN, TimesNet, Transformer, MLP
and RF): Model performance with (a) all seven input features - HS, TSS, TA, RSWR, RH, WV and solar altitude, and (b) with the four
relevant input features - HS, TSS, TA and RSWR. Every plot additionally shows the macro F1-score for the threshold where TPR = FPR (the

point on the curve).

To have a balanced model that does not favor one of the classes, we selected the decision threshold as the point where
TPR = FPR. We evaluated each model for two scenarios: one with all seven input features and one with only the four
relevant features.

Figure 5 shows the overall best performance of the TCN with an Fl-score of 97.8%. Removing RH, WV and solar altitude,
which were identified as irrelevant features resulted in a significant improvement of the LSTM model, equaling the performance
of the TCN having an Fl-score of 97.7%. Nevertheless, we opted for the TCN as it was on par with the LSTM, and the results

in Figure 5(a) suggest that the TCN is more resilient to unimportant features in the input. In addition, the TCN is known to be
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easier to train compared to LSTMs. Interestingly, for RF the performance is less dependent on the selection of input features,

suggesting its ability to deal with uninformative inputs.
4.3 Performance analysis per station

To better understand the generalization capabilities of the model, we evaluated its performance for each test station separately.
The results in terms of confusion matrices are presented in Figure 6 and suggest good generalization capability of the model
for most stations, except SLF2 and STN2. The stations SLF2 (1563 m) and STN2 (2914 m) were considerably outside the
elevation range that was available during training. Moreover, these two stations are rather special cases compared to most of
the other stations and can be considered out-of-distribution samples. The station SLF2 is located on a meadow in the village
of Davos, which seems to have a positive effect on the classification into the class no snow, as it was the only station with an
F1-score for class no snow higher than for class snow. The station STN2, instead, stands on a glacier, which results in very
different ground properties compared to any other station in the dataset. This is reflected by a lower Fl-score for the class
no snow, especially as STN2 reached an F1-score of only 94.5% (which is 2% less than any other station in the test set). In
addition, from Figures 6 and 7 one can further conclude that the model generally classifies the presence of snow slightly better
than the absence of snow.

It is also important to understand whether CleanSnow generalizes to stations at different locations with different elevations.
The Results presented in Figure 7 suggest that the model performance was very stable for stations at elevations between abouty
2100 and 2700 m a.s.l., while it decreased for stations located either below or above this range. This corresponds to the fact
that 80% of stations in our training set were in this range and only two stations were below 2000 m and one station was at 2800
m.

The seemingly good performance of the model should however be analyzed in detail. There are periods for which it is rather
easy to correctly classify snow as snow and snow-free ground as no snow, and other times of the year when the problem

becomes much harder. This is discussed in detail later in Section 4.4.
4.4 Performance for different times of the year

Classification of snow height measurements into snow and snow-free ground can be both a simple and rather challenging task
depending on the location and time of the year. We provide a per-month performance analysis in Figure 8, which shows that the
model mostly had trouble predicting snow-free ground in winter months. This is because very little training data for that class
were available during December, January, February and March. Furthermore, we had no snow-free samples in the test set for
February and March. In summer instead, the results suggest CleanSnow was able to detect most of the summer snowfalls (with
approximately 20% performance drop compared to full winter) while retaining very good performance on predicting snow-free
ground. At the end of winter, in May and June, the model performance was also very good, suggesting that CleanSnow can be
used to accurately predict the snow disappearance date (as a longer snow-free period after a long period with constant snow

cover).
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Prediction

(e) WFJ2 (2536 m)

Prediction

(f) STN2 (2914 m)

KLO2, TRU2, WFJ2, STN2. Each confusion matrix has targets as rows and predictions as columns.

Stations for Training

0.98 Test F1 Score (Snow) 4 g’
: Test F1 Score (No Snow) 4 €
2
2 0.96 3
o 3 o
@ 8
(%]
—0.94 2 &
- 2 2 2
©
P
0.92 T 1 ¥
HH

0.9

1600 1800 2000 2200 2400 2600 2800 3000
Elevation

Figure 7. Model performance for the six stations in the test subset as a function of elevation. The F1-score is shown separately for the
classification of snow (red line) and no snow (green line). The blue columns indicate the elevation distribution in the training subset (14

stations).

In addition, we analyzed the model performance for each season. To this end, we split the test dataset into four different

260 seasonal clusters:
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Figure 8. Performance of the model for each month of the year. The F1 score is shown separately for the classification of snow (red line) and
no snow (yellow line). The blue columns indicate the distribution of snow samples, while the yellow columns indicate the distribution of the

no-snow samples.
— Winter season was defined as the period with mostly continuous snow cover (December, January, February, March, and
April)
— Summer season was the part of the year typically without snow (July, August and September)
— End of winter season defined the snowmelt period resulting in snow-free ground (May, June and July)

— Start of winter season included the months when it starts snowing more often and at some point a continuous snow

cover forms on the ground (September, October and November)

In the following sections we describe the model performance for each of the four seasonal clusters in detail and point out some

season-specific challenges.
4.4.1 Winter season

For snow classification, the middle of winter is presumably the easiest time of the year. Besides some low-elevation stations
and some exceptional seasons with a very late onset of winter or very early snowmelt, the task should be rather trivial, as
the snow cover is continuous in time. Figure 9(a) demonstrates that the model confidently classified snow (TPR = 99.36%) in

contrast to snow-free ground (TPR = 88.35%).
4.4.2 Summer season

In contrast to full winter, the classification of snow in the summer is more challenging. Besides snow-free ground, there were
many stations where vegetation grew (approximately 20% of the data in the test set). This resulted in non-zero snow height
sensor measurements, which do not correspond to snow. Exceptions were stations at high elevations (e.g., on a glacier) and

winters when the snow did not melt until the beginning of summer.
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Figure 9. Confusion matrices for each of the four seasonal clusters. Each confusion matrix has targets as rows and predictions as columns.

The snow height signal for snow-free ground typically oscillates with high frequency and either stays around zero or grows
in the presence of vegetation under the sensor. The surface temperature and air temperature will most of the time oscillate
high above 0°C, showing a diurnal cycle. During overcast periods or in the presence of precipitation, TA and TSS will show
the same value. Due to the lower albedo of snow-free ground, smaller amounts of RSWR are measured. Based on the above
assumptions, summer snowfalls can be detected when TA equals TSS, which is followed by larger values of RSWR with a

simultaneous decrease in TSS. If there is vegetation growing under the station, the HS signal counter-intuitively decreases as

15



285

290

295

300

305

310

315

the plants get pressed down by the snow. In the case of snow-free ground under the sensor, the HS signal will increase as
expected during a snowfall.

Figure 9(b) demonstrates that the model accurately detected snow-free ground with 99% accuracy. The effect of summer
vegetation is shown in Figure 10(a). On the other hand, detecting a snowfall in the summer proved to be difficult, and even more
so when vegetation was present. In this very difficult setting CleanSnow achieved a performance of 81%. A partial detection of
a summer snowfall is shown in Figure 10(c). CleanSnow succeeded in detecting the main event but failed to correctly classify

a few hours both at the start and the end of the summer snowfall.
4.4.3 Start and end of winter season

The transition periods between winter and summer and vice versa are key periods for the detection of the first snow and its
disappearance, which are both dates of interest in climate science. These two seasonal clusters contain both data with rather
continuous snow cover and with bare ground or vegetation growth. Such data are therefore a perfect test case for CleanSnow.

In our experiments, the end-of-winter season was the easier case to classify, achieving a very competitive performance of
98% for snow and 99% for snow-free ground (Figure 9(c) and Figure 10). We attribute this high accuracy to the fact that the
transition from snow-covered to snow-free ground was often rather smooth, and once the snowpack had melted, there were not
many periods with snow persisting on the ground. The beginning of summer was typically represented by high air temperatures,
which caused TSS to oscillate with the daily cycle indicating snow-free ground; simultaneously RSWR noticeably decreased
once the snow had completely melted.

On the other hand, classification during the start-of-winter season was more challenging: the model achieved an accuracy of
95% for snow and 93% for snow-free ground (Figure 9(d) and Figure 10). There were multiple snowfalls at the beginning of
the season after which the snow melted again completely. In addition, in late autumn and the beginning of winter, temperatures
occasionally dropped and the ground froze overnight. This resulted in TSS being constantly less than or equal to 0°C even
without snow, which might force the model to focus more on RSWR and HS during decision-making, potentially decreasing

its decision power.
4.5 Comparison to manual observations

A perfect test case are stations with concurrent manual observations, i.e., measurements manually performed by human ob-
servers. Such measurements were available for the two stations WFJ2 and SLF2 located in the region of Davos.

Since the manual measurements were done only once per day, we resampled our predictions from 30-minute intervals
into 24-hour intervals. We averaged probability scores over the 24 hours (48 automatic measurements) to obtain the per-day
probability score.

The performance comparison on annotated automatic measurements versus manual observations in Figure 11 confirms that
we had produced high-quality annotations for the historical data. Some days with snow were erroneously annotated as snow-

free ground. This can be related both to short snowfalls which disappear in daily aggregation and also to the fact that manual

16



| == prediction 50
= Error
0.8 -
c — Snow Height 40 -g‘
s} | o 2
§ 0.6 Decision Threshold 30 :QEJ
°©

204 20 g
o c
1]

0.2 { 10

Al i gy I Lic i ok kb 0
Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020 Oct 2020 Nov 2020 Dec 2020

(a) SLF2 (1563 m), Year 2020

L Prediction

0.8 — Error 60

c — Snow Height S
o . 2
=] Decision Threshold 5]
gose 40 T
5 2
g 0.4 F s <)
20 G

AN v ANV —

0 " Y
May 2022 Jun 2022

Jul 2022 Aug 2022 Sep 2022 Oct 2022 Nov 2022 Dec 2022

(b) SHE2 (1852 m), Year 2022

we= Prediction

m— Error
0.8 +
c — Snow Height -g‘
;,(—3 0.6 Decision Threshold ‘O
= T
°
g 0.4 g
o c
wn
0.2
Jun 2005 Jul 2005 Aug 2005 Sep 2005 Oct 2005 Nov 2005
(¢) TRU2 (2459 m), Year 2005
=== Prediction
m— Error
o
c — Snow Height -g‘
8 Decision Threshold ‘o
pret [}
2 B
b=l
Soafl B
o c
n

[ LU

Jun 2013 Jul 2013 Aug 2013 Sep 2013 Oct 2013 Nov 2013

(d) STN2 (2914 m), Year 2013

Figure 10. Examples of classification results by CleanSnow. The snow height signal is depicted in blue. The model predictions in terms of
probability (0 - 1) are shown in green. The dashed horizontal line denotes the decision threshold selected to balance the model performance
on predictions for both classes. The red-shaded areas mark regions with classification errors (i.e. samples being assigned to the wrong class).
(a) shows a correct classification of summer vegetation growth (the non-zero blue curve is classified with probability lower than the decision
threshold, therefore being assigned to class no-snow). (b) is an example of early October snowfall that has been classified partially correctly.
(c) demonstrates the model’s capability to detect summer snowfalls as well as scattered snowfalls at the beginning of winter. (d) is evidence

that the model does not always perform well, here making mistakes at the beginning of the next winter season.
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Figure 11. Confusion matrices for comparison of model performance evaluated against our annotations (left) and against human observer

measurements (right). Results for station WFJ2 are in (a) and (b), followed by results for SLF2 in (c) and (d).

observations were performed around 08:00 CET in the morning, while our data were daily averaged values. Such misalignment
might produce additional disagreements between manual observations and our annotations.

The results also show that CleanSnow achieved a very good performance when evaluated against daily manual observations.

320 The differences in performance between the two ground-truth sources (approximately 2% in TPR and 1.5% in TNR) were

attributed to the inconsistencies between the manual annotations of automatic measurements and manual observations.
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4.6 Comparison to other approaches

To further demonstrate the added value of our machine learning approach, we compared it to other state-of-the-art methods
such as filtering used in the physics-based snow cover model SNOWPACK (Lehning et al., 1999). In particular, we considered
the snow water equivalent (SWE) provided by SNOWPACK since the HS signal is filtered to calculate SWE. Therefore, SWE
should be a good indicator of whether the HS signal relates to snow or not. If the HS signal does not represent snow, one would
expect SWE to be 0. In addition, we also compared CleanSnow to thresholding-based filters implemented in the MeteolO

library, which were mainly designed to filter vegetation growth measurements in summer.
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Figure 12. Comparison to other approaches shown as performance (F1-score) per station for CleanSnow (blue), the filter based on the SWE

from SNOWPACK (red) and the thresholding filter from MeteolO (yellow).

Figure 12 shows the comparison of the snow height classification by our TCN model to classification based on SWE cal-
culated by SNOWPACK and the MeteolO filter. The results suggest that the machine learning approach is superior in most
cases. This might be attributed to the fact that both SNOWPACK and MeteolO use thresholding-based rules based on TSS and
TG to filter HS similarly to the approach described by Tilg et al. (2015). The optimal threshold values vary across different
stations, which requires per-station calibration of the thresholds. Moreover, TG-based filtering is problematic since, as already

mentioned, the TG sensor is prone to failures and the signal is therefore often missing at some stations.
4.7 Case study: Vegetation growth

Besides obvious applications in snow science, a reliable separation of snowfall from plant growth also has benefits for biological
research. Removing HS measurements classified as snow allows for the extraction of a clean vegetation signal and the pinning
down of reoccurring events in the life cycle of alpine vegetation — referred to as vegetation phenology. Since snow and plant
heights have been recorded for a very long time, it is possible to relate the timing of green-up (i.e. the start of vegetation growth)
or other phenological phases to snow climate parameters, and study phenological shifts over time — an excellent indicator of
climate change (e.g. Inouye, 2022). We extracted 25 years of vegetation growth data from HS measurement data at TUJ2
(Culmatsch, 2262 m a.s.l.), an IMIS station characterized by tall plant growth. Within the 20 years of data, the algorithm

flagged all snow days during the vegetation period which were then removed. Snow disappearance and snowmelt dates were
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defined as the first, respectively the last, day of the continuous winter snow cover. We fitted a logistic growth curve (Kong et al.,
2022) to the clean plant growth measurements and defined the start of growth by a 10% threshold of maximum plant height
(Figure 13). Vegetation green-up was directly linked to the timing of snowmelt, consistent with other studies (Jerome et al.,
2021; Jonas et al., 2008), while late snowfall events shifted the start of growth towards later calendar days. Linear regression
analysis revealed an earlier occurrence of green-up over the study period coinciding with an increase in spring temperatures
measured at the station. Despite insignificant changes in snowmelt timing, the shorter lag between snowmelt and initiation of
plant growth suggests a warming-driven advancement in phenology at the study site. This case study highlights the importance
of long-term monitoring and automated machine learning approaches in understanding climate-induced phenological shifts,

with implications for ecosystem dynamics in remote alpine regions.
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Figure 13. An example of a logistic growth curve (in dark green) fitted to height measurements data from TUJ2, in the vegetation season of
the year 2019. Snow height data corresponding to snow are shown with blue stars, while plant signal is shown with green diamonds. The red

cross marks the snowmelt date, while the orange diamond marks the start of plant growth.

5 Discussion

We proposed a deep learning-based approach to snow height signal classification, which is a crucial step in automating the
snow height signal quality-checking process. In addition to selecting an appropriate model, we provided some good practices

to develop machine learning models for automated snow height classification.
5.1 Best practices for snow height classification using machine learning

In our analysis, we aimed to establish good practices for further development of machine learning methods for snow height
classification and quality assessment. We showed that learning from synthetic ground-truth data generated using thresholding
rules proposed in the past did not work well, as the predefined thresholds did not generalize to all stations without modifications.

This emphasizes the need for well-annotated data for training. Next, we pointed out the importance of addressing the class
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imbalance problem to achieve the best possible performance. Furthermore, we demonstrated the superiority of sequence-based
models (TCN, LSTM, TimesNet and Transformer) over single time-step-based models (RF and MLP), which confirms the
need for temporal context to achieve a high classification performance. We acknowledge the existence of techniques that allow
one to feed RF and MLP models with sequences of data, e.g., lagged features (i.e., adding data from previous time steps as
extra input features). Nevertheless, we argue that such techniques do not treat sequential data as a causal sequence, which is
conceptually non-ideal and might potentially lead to the resulting model becoming less explainable in how it treats temporal
information. Another important aspect to consider is the sequence length. We performed an analysis of the performance for
the length of the time window (i.e., the size of the temporal context), which revealed that the ideal length was around 48 time
steps, as shorter and longer time windows resulted in a deterioration of the model performance. Subsequently, we showed that
it was important to evaluate the model performance during the critical times of the year (the start and the end of the winter

season) to reveal their true performance.
5.2 Deep learning models for snow height classification

We studied the suitability of state-of-the-art deep learning models for the snow height classification task. Several cutting-
edge deep learning architectures have been evaluated against each other, resulting in the superiority of a TCN over the other
compared methods. CleanSnow reached an accuracy of 97.7% on the independent test set when we used a decision threshold
that balanced the model performance on predictions for both classes - snow and no-snow. Hence, the results indicate that
the approach generalizes well to unseen stations that are within the distribution of the training set. A detailed performance
evaluation for each station in the test set showed that the model performed very well except for the data of the stations SLF2
and STN2, which are two particular cases that were not well represented in the training data. The station SLF2 is located low
in a valley and STN2 is on a glacier. In addition to being out-of-distribution, such special environments, compared to those of
most other stations in the dataset, might cause slightly different behavior of the auxiliary variables used during HS analysis

and result in a performance decrease.
5.3 Generalization

The generalization ability of CleanSnow to elevations that are within the range included in the training set is good. These
elevations represent the Alps, which is the region of interest for us. Generalization to out-of-distribution samples (stations lo-
cated at elevations that are not well represented in the training data) is rather poor. Out-of-distribution generalization, however,
remains an open problem in the machine learning community. One possibility for improving out-of-distribution generalization
is to explicitly express some known behavior (e.g. physical constraints, etc.) in a neural network. Such models are known as
Physics Informed Neural Networks (PINN) (Raissi et al., 2019) and can be implemented either by adding a regularization term
to the loss function or by incorporating the constraints directly into the model architecture. In both cases, such constraints help

the model to correctly extrapolate to situations that were not represented in the training data.
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5.4 Limitations

One of the known limitations of CleanSnow is the fact that it operates on raw data, meaning the inputs may contain both
anomalies (e.g. spikes) and missing values. Even though CleanSnow seems to be resilient to anomalies, it would be good
practice to perform anomaly detection and filtering before running the proposed snow height classification models. We argue
that filtering obvious spikes in the snow height signal is a rather trivial procedure and can be solved by employing statistical
methods such as Hampel filtering (Pearson, 1999) or an exponential moving average filter (Kendall and Stuart, 1966). However.
other more subtle variations are very challenging to detect by both the human eye and automated methods.

CleanSnow can only be applied in cases where the full history needed to make a prediction is available. At the moment,
in the case of missing samples in the 48-time step context, the samples were discarded without being run through the model.
Dealing with missing data is far more complicated than filtering anomalies. A simple solution for periods of up to several
time steps would be linear interpolation. However, as the size of the interpolated interval increases, this fails to produce an
accurate reconstruction of the missing data. To impute larger periods of missing data, methods that take into consideration both
spatial and temporal context should be employed. This is, however, out of the scope of this work, and we therefore leave it as

a possible future research direction.

6 Conclusions

Automated snow height measurements are key input data for many modeling approaches in climate sciences, snow hydrology,
and avalanche forecasting. Erroneous snow height measurement deteriorate the performance of these models. We demonstrated
how to mitigate the aforementioned issues by the use of deep-learning methods for automated snow height classification. Our
contributions can be summarized as three-fold. First, we created a novel machine learning approach to snow height signal clas-
sification that operates directly on time-series data. Second, we provided an in-depth comparison of several machine learning
models applied to snow height classification. Third, we introduced a new benchmark dataset with annotated snow height data,
which sets a baseline and can be used for further research in the field. The proposed approach achieved a high accuracy of
97.7% and generalized well to previously unseen stations. CleanSnow can be implemented as a component of an arbitrary

snow height quality assessment pipeline without the need for any special hardware.

Code availability. The exact version of the software used to produce the results in this manuscript is available at
https://doi.org/10.5281/zenodo.14587841, while current and future versions of it can be found at

https://gitlabext.wsl.ch/jan.svoboda/snow-height-classification.
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420 Data availability. The manually annotated dataset that we used to both train and evaluate CleanSnow is publicly available for research under

CC BY-NC! license at https://doi.org/10.5281/zenodo.13324736

Appendix A: List of stations in the snow/no-snow dataset

This section provides the list of IMIS stations used in our snow/no-snow dataset (see Section 2.1.1) together with their metadata.
Table A1l shows the stations ordered by increasing elevation. The column Subset indicates whether a station was used for

425 training or testing.

Station ID H Latitude [°N] | Longitude [°E] | Elevation [m] | Available since ‘ Subset ‘

SLF2 46.8127 9.8482 1563 November 1997 test
AMD2 47.1708 9.1468 1610 October 1997 train
GLA2 46.9966 9.0375 1632 November 2000 | train
SHE2 46.7488 7.8124 1852 October 2001 test

ILI2 46.1913 6.8277 2022 March 2000 train
GUT2 46.6793 8.2896 2115 November 1999 train
KLO2 46.9091 9.8738 2147 November 1996 test
TUM2 46.7810 9.0214 2191 October 2002 train
FNH2 46.1007 6.9641 2252 September 1997 | train
KLO3 46.8412 9.9316 2299 November 1996 | train
LAG3 46.4245 9.6977 2300 November 2009 | train
FLU2 46.7527 9.9464 2394 October 2003 train
RNZ2 46.6855 8.6267 2400 December 2008 train
TRU2 46.3709 7.5855 2459 November 1996 test
BOR2 46.2905 8.1093 2517 September 2001 train
WEFJ2 46.8296 9.8092 2536 January 1996 test
ARO3 46.0874 7.5620 2602 September 1996 train
SPN2 46.2294 8.1176 2620 November 1996 | train
FOU2 45.9717 7.0672 2800 October 1999 train
STN2 46.1678 7.7505 2914 October 1998 test

Table Al. List of stations that are part of the snow/no-snow dataset, together with their auxiliary information, ordered by elevation. The

column Subset denotes whether station belongs to the train or test set.

Thttps://creativecommons.org/licenses/by-nc/4.0/
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Appendix B: Subsampling of the training data

To run experiments in a reasonable time and make sure they were computationally tractable, we sub-sampled the training
dataset to reduce the amount of training samples. In Table B1 we list which years were selected for each station for the training

set.

Station ID H Selected years
AMD2 1998, 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
GLA2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
ILI2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
GUT2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
TUM2 2004, 2007, 2010, 2013, 2016, 2019, 2022
FNH2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
KLO3 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
LAG3 2011, 2014, 2017, 2020, 2023
FLU2 2005, 2008, 2011, 2014, 2017, 2020, 2023
RNZ2 2010, 2013, 2016, 2019, 2022
BOR2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
ARO3 1998, 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
SPN2 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
FOU2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

Table B1. List of years for each station that were selected as part of the sub-sampled training dataset.

430 Appendix C: Synthetic ground-truth generation

We generated synthetic ground-truth data by applying thresholding rules inspired by works of Bavay and Egger (2014); Tilg
et al. (2015) to the HS measurements. In order for a sample to correspond to snow cover, the following condition had to be

met:

1 N—1 1 N—1
((N > TSSn> < 0.0) A ((N > RSWRn> > 300.0) , (C1)
n=0 n=0

435 where N is the length of the time window.
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Appendix D: Machine learning models

For completeness, we provide a short description of every machine learning model that was used in our performance compari-

son.
D1 Random Forest (RF)

Implemented in many data science libraries and easy to use, Random Forests (RFs) are a popular choice of machine learning
algorithm that can provide satisfactory predictions in both classification and regression tasks. In practice, RF is an ensemble
approach, which produces a final prediction as a combination of outputs of many decision trees. It often works well on tabular
data, but there are no mechanisms that would allow for a more principled representation of temporal, spatial or graph structures.

In our experiments we used the RF classifier implementation from the Scikit-Learn library (Pedregosa et al., 2011), setting
the number of decision trees to 1000 and maximum depth of each tree to 50. We left the other parameters at their default

settings and trained the RFs using the Gini criterion (Gini, 1936).
D2 Multilayer Perceptron (MLP)

Being one of the first neural network models that can learn non-linear functions, MLPs have shown their power in natural
language processing (NLP) and serve as a foundational component for many other neural network models nowadays. Finding
their applications in both regression and classification tasks, MLPs can serve as an alternative to the RFs presented above.
Putting them in comparison with RFs, MLPs can be generally more difficult to train for a given task and often exhibit lower
performance, especially with tabular data. This is due to their nature of learning smooth (sometimes overly smooth) solutions,
thereby causing them to not perform well on problems with a non-smooth decision boundary. Grinsztajn et al. (2022) argue
this is due to the gradient descent approach to MLP optimization. They also show that MLPs are more affected by, e.g.,
uninformative features compared to RFs.

We designed an MLP composed of an input layer with 7 input dimensions and 32 output features, followed by 3 hidden
layers with 64, 128 and 256 output features, respectively. Each hidden layer had batch normalization (Ioffe and Szegedy, 2015)
and Rectified Linear Unit (ReLU) activation functions (Fukushima, 1969; Nair and Hinton, 2010) appended to it. The MLP

was concluded with an output layer which takes a 256-feature representation and produces the final class probability score.
D3 Long short-term memory (LSTM)

Belonging to the family of recurrent neural networks (RNNs), the original models developed for time series processing,
GRU (Cho et al., 2014) and long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) are variations that al-
low the model to better capture long-term dependencies compared to RNNs, which tend to forget inputs that came much earlier
in the history. We chose to use an LSTM in our experiments, as it is one of the gold standards in deep learning for time-series

processing.
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The LSTM model we used in our experiments took an input with 7 dimensions and was composed of 3 recurrent layers with

hidden dimensions of 64, 128 and 256, followed by an output MLP classifier that produced the final probability scores.
D4 TimesNet

Recently released and setting the new state-of-the-art performance on many standard benchmarks, TimesNet (Wu et al., 2023)
has become one of the models of choice for time series processing in general. Its main characteristic is the transformation of a
1-dimensional time series signal into a 2-dimensional one, which allows it to capture complex temporal variations in the signal.
The conversion of a time series into a 2-dimensional signal is based on detecting signal periods using amplitude information
from a Fast Fourier Transform (FFT) and ordering the signal chunks into a 2-dimensional array. Applying 2-dimensional
convolutions to this array allows it to capture both inter- and intra-period variations in the signal.

In our experiments we used a modification where the definition of signal periods is fixed and not determined by the FFT.
We used 5 periods to split the signal, namely 48, 32, 24, 16 and 8. The model was then composed of 3 layers with each layer
having 2 blocks and 128 hidden features.

D5 Transformer

Since they were published in 2017, transformers have revolutionized many areas of deep learning, achieving new state-of-
the-art results mostly in natural language processing and computer vision. Transformers are models based on an attention
mechanism (Vaswani et al., 2017) that were originally proposed for sequence-to-sequence tasks.

Here we employed a modification of the traditional transformer. In particular, we took the classical transformer encoder
in order to produce a latent representation for the input sequence, where each point is conditioned on the past context. The
encoder was composed of 2 layers with hidden dimensions of 128 and 4 attention heads. Both the input positional encoding
and encoder have a dropout of 0.1 applied. The latent representation produced by the transformer encoder was average pooled

and passed to an MLP readout network, which produced the classification probability scores.
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