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Abstract. Snow height measurements are still the backbone of any snow cover monitoring, whether based on modeling or
remote sensing. These ground-based measurements are often realized with-the-tise-of-using ultrasonic or laser technologies. In
challenging environments, such as high alpine regions, the quality of sensor measurements deteriorates quickly, especially in
the-presenee-of-extreme weather conditions or ephemeral snow conditions. Moreover, the sensors by their nature measure the
height of an underlying object and are therefore prone to return other information, such as the height of vegetation, in snow-
free periods. Quality assessment and real-time classification of automated snow height measurements is-therefere-desirable-in
order-are therefore desirable to provide high-quality data for research and operational applications. To this end, we propose
CleanSnow, a machine learning approach to the automated classification of snow height measurements into a snow cover class
and a class corresponding to everything else, which takes into account both the temporal context and the dependencies between
snow height and other sensor measurements. We created a new dataset of manually annotated snow height measurements,
which allowed us to train our models in a supervised manner as well as quantitatively evaluate our results. Through a series of
experiments and ablation studies to evaluate feature importance and compare several different models, we validated our design
choices and demenstrate-demonstrated the importance of using temporal information together with information from auxiliary
sensors. CleanSnow achieved-achieves a high accuracy of almost 98% and represents a new baseline for further research in
the field. The presented approach to snow height classification finds its use in various tasks, ranging from snow modeling to

climate science.

1 Introduction

Snow height measurements are key in many fields, such as water resources management, avalanche forecasting, climate science,
or-and even tourism. A variety of complex models simulating and calculating snowpack properties therefore exist. For example,
estimating snow water equivalent (SWE) (e.g. Jonas et al., 2009) in order to assess water resources. In addition, snow height is
an important parameter for snow hydrological (e.g. Mott et al., 2023) and snow cover modeling (Lehning et al., 1999) used in
operational avalanche forecasting (Morin et al., 2020; Pérez-Guillén et al., 2022; Herla et al., 2023). In climate science, snow

cover is one of the key variables that strongly affect the global energy balance and the atmospheric circulation, due to its high
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albedo, high emissivity, and low thermal conductivity (e.g. Flanner et al., 2011). Snow height signals have also been used to de-

termine vegetation growth and plant phenology {e-g-

. Jonas et al., 2008; Fontana et al., 2008; Vitasse et al., 2017) and to monitor climate change (e.g. Matiu et al., 2021). Fi-

nally, the snow cover sitaation-directly influences tourism, transportation, and recreational activities (e.g. Willibald et al.,
2021).

Snow height data are nowadays available, sometimes in almost real-time, from airborne or satellite remote sensing and
ground-based automated weather stations (AWS). One of the sensors often mounted at meteorological stations in high alpine
regions is an ultrasonic snow height sensor (Ryan et al., 2008). Due to the measurement method, snow height data come with
a variety of errors that arise from the harsh mountain conditions the sensor is not originally designed to operate in. In addition,
ultrasonic sensors only measure the distance to the underlying object, be it snow or anything else. It is therefore important to
validate whether the information coming from the snow height sensor really corresponds to snow or not.

Arguably the most precise way of assessing the quality {QA)-of snow height measurements is via visual inspection of the

data by a human expert (Robinson, 1989)—FEven

ich-is-, which is however not easily transferable and does not scale

well (Fiebrich et al., 2010). A common practice in Sﬂew—hetgh{—QAboth manual and automated snow height quality assessment

is to distinguish between snow and grass based on static climatological or minimum snow height thresholds. Random errors 5
instead;-are typically detected using a maximum snow height threshold or snow height variance (Avanzi et al., 2014).
There are other sensors usually mounted at an AWS, whieh-whose temporal structure can provide information on whether the

measured snow height relates to snow or not, as well as give some indications on the precision of snow height measurement.

The-first-attempt-Fusion of temporal information from multiple sensors results in high-dimensional multivariate time-series

signals, which increases the complexity of the problem. The first attempts to leverage other sensor information was-include
the MeteolO library developed by Bavay and Egger (2014) i o o

WWMWWMWMM
expected to be < 0°C. Ground temperature (TG) is expected to be constantly around 0°C, as snow insulates the ground from
atmospheric temperature variations (Domine, 2011). Reflected short-wave radiation (RSWR) is expected to be high since snow.
has a much higher albedo than soil or vegetation. When no snow is present, both TSS and TG typically show diurnal variations,
in line with the air temperature (TA). However, it is rather difficult to capture correlations between different features in high
dimensional space by defining thresholding rules. Moreover, thresholding approaches are known to be rather cumbersome
to modify and dees-do not generally transfer well to other station data. Observing-the-recent-advaneces-in-machine-learning;

Machine learning, instead, is an appropriate choice in such cases, and has already shown its power in other tasks concerning

weather and climate data (e.g. Vaughan et al., 2022; Lukovi¢ et al., 2022; Lam et al., 2023). Blandini et al. (2023) addressed

2

the high dimensionality of the data by-prepesing-with a random forest (RF) approach to snow height QAquality assessment,
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solving both snow height classification and anomaly detection at the same time. RandemFerest(RF-)-RF models (Breiman,
2001) are pessibly—amongst the most popular eheiee—choices of machine learning algorithms used-among-datascientists

worldwide—for tabular data (Grinsztajn et al., 2022). Multivariate time-series signals contain both temporal dependencies

between different data points from the same sensor, as well as inter-sensor correlations between measurements from multiple
different sensors. Apart from an attempt by Goehry et al. (2023), randomforests;-howevercannoteastly-and-expheitly-model

the-temperal-strueture-simple models such as random forests or multilayer perceptron (MLP) neural networks (Rosenblatt, 1958; Hornik et :

cannot explicitly account for the temporal nature of the data fhafwveﬂfgueﬂ%eﬂiﬁakfe%eﬂb}e%ﬁehabhk%ay%efhe%ﬂie
tonwithout
engineering complex and artificial features, and are therefore a rather poor design choice. To correctly capture temporal

atterns in the data, we instead choose to work with neural network models specifically designed to operate on time-series
data, e.g., recurrent neural networks (RNNs) (McCulloch and Pitts, 1943; Kleene, 1951), long short-term memory (LSTM

network) (Hochreiter and Schmidhuber, 1997), Temporal Convolutional Networks (TCNs) (Lea et al., 2016), TimesNet (Wu et al., 2023

or Transformers (Vaswani et al., 2017).

Therefore;we-aim-to-develop-We developed CleanSnow, a machine learning model for the automated classification of snow
height signals into a snow and a no-snow class;-which-we-eall-CleanSnow-. To approach this binary classification problem, we

employed a Temporal Convolutional Network (FEN){Eea-et-al52016)-that explicitly accounts for the temporal relationships
between different points in snow height time series data. To train our TCN, we created a new manually annotated snow height
dataset composed of 20 measurement stations with around 20 years of data per station. This dataset also allows us to validate
our design choices and evaluate the model in several different scenarios including challenging cases such as snow cover melt

or plant growth periods.

2 Data

We used snow height data from the Swiss Intercantonal Measurement and Information System (IMIS) (Eehning-et-al51+999)

Lehning et al., 1999; Liechti and Schweizer, 2024), a network of 131 AWS (as of May 2024) focused on snow measurements
that are distributed throughout the Swiss Alps and Jura region-(see Figure 1), mostly located above 2000 m a.s.l. The stations

acquire data regularly in 30-minute intervals and provide --meteorological data in addition to snow height--alse-meteorological

data. To analyze snow height (HS), we also leverage measurements such as air temperature (TA), snow surface temperature

(TSS), wind speed (WV), relative humidity (RH), and reflected shortwave radiation (RSWR).
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Figure 1. Map of IMIS stations in Switzerland. Stations marked as full gray circles were not part of the new annotated dataset. Yellow

squares are the stations that were used for training (14 stations) and red triangles indicate stations used for testing (6 stations). Background

colours indicate elevation in m a.s.l.
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2.1 Data preparation

For model development and validation, we prepared a dataset with reliable ground truth information. Manually annotating
snow height data is a tedious process, and doing so for the whole IMIS network is intractable. Therefore, we identified a subset

of IMIS stations that we then manually annotated.

T-sheuld-be-mentioned-that-annetating-Annotating historical data is prebiematierather difficult, as there is no way of checking

whether there really was snow at the station or not. This means that assessing the presence of snow with the help of information

from other sensors, such as air temperature (TA), snow surface temperature (TSS), ground temperature (TG) and reflected

short-wave solar radiation (RSWR), should be considered a besteffort-best-effort approach.
2.1.1 Snow/no-snow dataset

A subset of 20 stations (see Appendix A) which span different locations and elevations and vary in underlying surface (e.g.,
vegetation, bare ground, glacier, etc.) were selected and manually annotated with binary twe-elass-ground truth information

regarding snow height data:

— Class 0 - Snew—thesurface-iscovered-by-snow-

— €lass+—No Snow - the surface is snow-free (e.g., vegetation, soil, rocks, etc.)

— Class 1 - Snow - the surface is covered by snow

The stations annotated with ground-truth information are depicted in yellow and red in Figure 1. An example of data annota-
tion is shown in Figure 2, with two detailed views that emphasize the differences in behavior of TSS and RSWR in the presence
and absence of a-snow cover. The selected stations mostly contain data between 2000 and 2023, at a 30-minute frequency, with

a few exceptions for stations that have-been-were built later (BOR2, FLU2, LAG3, RNZ2 and SHE2; see Appendix A).
2.1.2 Evaluation subset

We leave-left part of the annotated data out during model development, which we later #se-used as an independent test set to

evaluate the generalization abilityef- (e.g. Section 5.2 of Goodfellow et al. (2016)) of our final approach on stations not seen
at training time. We seleet-selected 6 stations (SLF2, WFJ2, KLO2, TRU2, STN2, SHE?2) that contain challenging scenarios
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Figure 2. Examples of manually annotated data for the calendar year 2010 at the station SLF2. (a) shows the snow cover flag and-snew

height;-in green rectangles-mark-periods-with-(1 for snow cover, 0 otherwise) and snow height (in blue) for the whole year. (b) focuses on

the end of winter season 2009/2010 illustrating the diurnal behavior of TSS and RSWR dependent on whether there is snow or not. () is the

same as in (b) for the beginning of the winter season 2010/2011.

and are therefore suitable test cases. In particular, these stations are located at elevations where summer snowfalls occur, the

snow season duration is very different, or where grass grows during the summer periods.

3 Machinelearning based-snow-eover-elassifieationMethodolo

To distinguish whether snow or other ground cover is under the sensor, other sensor measurements can be used. Based-on-the

meastrements-as-input-features-to-our-modelsTo this end, a combination of seven input variables can be selected, namely HS,

TA, TSSand-RSWR, RSWR, VW, RH and solar altitude. We omitted TG, which was used during manual annotation, as it is
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not available at all IMIS stations and the sensor is also prone to defects. A detailed analysis regarding input variable selection

is provided in Section 4.1.3.
Havingtemporalinfermationfurther-Looking at a data point in the context of its temporal neighborhood helps in determining

whether there is snow or not at a particular time step. fis-often-tmpertant-totoek-at-a-data-peintin-the-contexto empors

neighberhoed-In an operational setting, one would, however, like to be able to make a prediction for each incoming data point
in real-time. This means we cannot access data points in the future, and the context for each data point has to be composed

of itself and preceding data points (history). To reduce computational demands while still allowing for large enough context,

suggest working with window sizes of between 8
i ater-time step corresponds to 30

and 192 time steps, where 1
minutes. The effect of varying time window size on the results is summarized in Section 4.1.4.

We-multivariate temporal characteristics of our data, we opted to use Temporal Convolutional Networks(FEN), which have
proven useful in many applications concerning time-series data (Wan et al., 2019; Pelletier et al., 2019; He and Zhao, 2019;
Hewage et al., 2020). Later, Section 4.2 provides a comparison of eur—cheiee-CleanSnow to other popular models, such as
Random Forests, MLPs, ESTMs—(Hochreiter-and-Sehmidhuber, 1997 Fransformersa variation of an RNN called an LSTM

Transformers, and a recently released model for time-series processing called TimesNet, which yields state-of-the-art results

other time-series-based-tasksvarious standard benchmarks.

3.1 Temporal Convolutional Network (TCN)

Based on well-known convolutional neural networks (CNNs) (Fukushima, 1988; Waibel et al., 1989; Weng et al., 1993; Lecun
et al., 1998), TCNs are variations that consist of dilated, causal 1D convolutional layers that have the same input and output
lengths. Dilation ensures that a specific entry in the output depends on all previous entries in the input, while causal convolution
means that the ¢-th element of the output sequence may only depend on input elements that come before it (elements with
indices {0,...,i}).
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Figure 3. Strueture-Flowchart of the input-data—and-proposed TCN-based architecture with a drawing of an IMIS station on the medified
FEN-employedleft. A time window fer-of 4 input signals of length 48 (1 day) coming from an IMIS station is fed to the TCN, which causally

aggregates information from all time steps into a 128-dimensional latent vector. This information is subsequently fed into the classification

network, which applies a sequence of MLPs to classify the input signal into two classes - Snow or No Snow. Each dilated 1D conv block
has filters described in the format (in—feats input_features X owt—feats output_features @ kernel_size). The composition of each MLP is
described as (in—featsinput_features, hid—feats—thidden features I ,..., ouni—featsoutput_features).

As shown by Lea et al. (2016), with dilations and causal convolutions, TCNs can recover the behavior of RNNs —(e-g-

do-not-suffer-while not suffering from typical drawbacks of RNNs, such as the vanishing gradient problem (Pascanu et al.,

2013), and are therefore easier to train. The use of convolutions instead of a recurrent mechanism also potentially leads to
further performance improvements due to the possibility of parallelization of the convolution operation.

We chose a 4-layer TCN architecture as shown in Figure 3, which has 4-dimensional time series with 48 time steps as the
input. The number of layers and filter sizes were selected so that the output representation of the last point in the input time
series is an aggregation of all previous time steps. In other words, the TCN produces an output representation of the last point
in the input time series by aggregating information from the whole history available at the input. This representation is fed
to an MLP classifier, which first produces a series representation and then uses this representation to produce output class

probabilities.
3.2 Training

Snow height classification is a binary problem. Binary classification problems are typically optimized using the cross-entropy

objeetive-loss function (Good, 1952)-The-simple-eross-entropy-loss-willunfortanately-, which did not yield good results in our
case. Atplaces-ofinterestthatare-available-Many of the stations included in the dataset --the-snow-cover-usually prevails;-henee
ereating significant imbalanee are located in places where snow is present for much of the year, resulting in considerable class
imbalance in our data. Moreover, as-mentioned-in-Seetion2--2in-many-cases-the-classification-taskissimpte-and-we would

like our model to perform well on the challenging edge cases. We-therefore-Therefore, we chose to drive the optimization by the
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so-called focal loss (Lin et al., 2017), which allows the model to preferentially focus and train preferentially-on-hard-examples
on examples that it has difficulty classifying correctly while down-weighting the simple cases throughout the training process.

The focal cross-entropy loss is defined as
N—-1

FL=— " a;(i —pi)"log,(pi), (1)
i=0

where «; is the so-called balancing factor for class ¢, further contributing to class balancing, +y is the focus parameter which
controls the down-weighting of the easy examples, p; is the probability of the sample belonging to the ¢-th class, N = 2 is the
number of classes in the classification problem, and b is the logarithm base; typically b = 10.

We run training for a maximum of 300 epochs, feeding the model with a batch of 64-128 samples in each iteration. We allow
for the possibility of early stopping +if the validation loss has not improved for more than 50 epochs. The optimization process
was governed by the AdamW (Loshchilov and Hutter, 2019) optimizer with an initial learning rate of 103, The learning rate

was subject to step decay with factor 0.1, three times, after 50, 100 and 150 epochs.

4 Experiments

3.1 Dataset

In all experiments, we used the snow/no-snow dataset described in Section 2.1.1. This dataset was split into train and evaluation
subsets (see Section 2.1.2). For model training, we further sphit(randomly) divided the training subset into the-part-on-which
we-traned-CleanSnow-and-a-validationpart that-two parts using a 90/10 split: 90% used for training CleanSnow and 10% for
validation. The validation set was used to validate-CleanSnewmonitor CleanSnow’s performance during training and aHewed
for-hyperparameter tuning, and enabled early stopping to aveid-ever-fitting-of-the-medel-prevent overfitting on the training data
(Ying, 2019). Fhe-available-validation-dataset-was-also-used-for-model-hyperparametertunin

The whole training dataset contained a-huge-amount-of-data-approximately 7 million data samples, which would be rather
impractical for experimentation, as it would yield extremely long training times and high compute demands, which might not
always be available. To make our experiments more tractable, we selected roughly 30% of the data from every station in the

training set using filtering by year— (Table B1 shows which years were used from each station).

Wo-soli " ol tisinep.08

3.2 Hyperparameter tuning
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We performed 3-fold cross validation with random training/
training-and-validation splits in order to perform hyperparameter tuning using grid search for the following model architecture
variables: dropout and output_activation for the TCN, batch_norm and activation_function for the remaining 107 forvalidation-
We fix the random seed-in-altour experimentsto-ensure MLP, gamma and alpha parameters of the focal loss as well as optimizer
learning rate._

For all remaining experiments, we have fixed a random seed for the training/validation split remains-the-same-across-different

runs-and-also-to-supportreprodueibility-of-the-in order to ensure easy and full reproducibility of our results. Random splitting

inherently takes care of having samples from different stations and different time periods throughout the whole training subset.

3.3 Ablatienstudies

In-the-We opt for a batch size of 128 samples as it is sufficiently large while still fitting into the GPU memory we had available.
Due to limited computing resources, we do not optimize the remaining hyperparameters and we instead select them based on
similar architectures available in other works and our experience with designing machine learning models.

4 Results

In this section, we summarize experiments performed to evaluate CleanSnow. With a series of ablation studies, we clarify
various design choices and then compare our TCN, the model of choice, to other available options. We continue with a thorough
evaluation of the TCN in different periods of the year, pointing out its strengths and weaknesses. Experiments are concluded
with a case study that demonstrates the use of CleanSnow in vegetation science.

4.1 Experiments with CleanSnow setu

In the following sections, different ablation-studies-experiments with the CleanSnow configuration and model comparisons are
shown to explain our design choices and their contribution to obtaining the best results. Resultspresented-in-this-section-may

All experiments were performed using a TCN with
seven input features, namely HS, TSS, TA, RSWR, RH-(relative-humidity); W-V—(wind-speed)-, WV and solar altitude (which
encodes information about the date and time of the day).

Models were compared using the Receiver Operating Characteristic (ROC) curve (Egan, 1975), which is a plot showing the

performance in terms of the true positive rate (TPR) and the false positive rate (FPR), and the F1-score.
4.1.1 Synthetic ground-truth experiments

To demonstrate the need for annotated data, we trained a model using synthetic ground truth based on empirical rules developed

according to human expert knowledge-

10
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Figure 4. ROC curves for various ablation studies. Every plot additionally shows the macro-F1 score for the threshold where TPR = FPR
(the point on each curve). (a) Importance of manually annotated ground truth data. (b) Effect of class balancing. (c) Importance of input

features. (d) Influence of sequence length on model performance.
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_(see Appendix C). We compared the model trained with the synthetic ground truth information to the model trained with

the manually annotated data. The results in Figure 4(a) demonstrate the inability of thresholding rules to generate reliable
ground-truth information that could be leveraged for training. This resulted in the TCN SynthSynthetic Ground Truth model
not learning the correct relationships between different input variables, yielding an Fl-score of 93% and therefore having a

much-worse-performanee-than-lower performance than TCN AnnotManual Ground Truth, which was trained with our manually
annotated dataset and achieved a Fl-score of 97%.

4.1.2 Class balancing

Our training dataset included roughly twice as many snow-covered samples as snow-free samples. We applied class balancing

by adjusting the class weights of the focal cross entropy loss and observed how that affected the performance of CleanSnow.

We have assigned a weight of 1.0 to the class representing snow and a weight of 0.5 to the class representing bare ground
as there are approximately twice as many data samples from the snow-covered period. Figure 4(b) shows that class balancing

improved the performance from an F1-score of 95.2% to 96.7% and was therefore a valid design choice in our pipeline.
4.1.3 Feature importance

We performed an ablation study training the-medel-CleanSnow with a leave-one-out strategy for the input features to validate
their 1mp0rtance for the model decision- maklng%ﬁwkeéﬁ%&memf%%mehewﬁ%ﬂ%—ﬁﬂﬂ}%e}um
i (Figure 4(c)).
The HS, TSS, TA and RSWR signals preved-were found to be important (i.e. their removal resulted in a reduction in model
Mmﬂleﬂscoredu&(ﬂl%) in line with what was discussed above for manual data annotation.

On the other hand, removing WV and RH & reefrom

%WMMQWW%MWMWWM Hence neither
feature provided any additional information useful for classification. Interestingly;-However, for other tasks such as, e.g., snow
height anomaly detection, WV might very well be an important signal carrying information about snow transport by wind and
related phenomena. Interestingly, removing solar altitude, which encodes information about date and timein-contintous-way;
deteriorated-, improved the performance of the modeleensiderably— (increasing the Fl-score by 1.5%). We attribute this to
the fact that solar altitude information potentially makes the model decide based on the date and time of the year, which is
undesirable. As much as date and time information are generally valid indicators of the season and therefore have a strong
influence on the presence of snow, they might hamper decision-making, especially at the beginning and end of the snow season
and in the case of summer snowfalls, whose occurrence varies from year to year.

12
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AeeordinglyTherefore, we chose our final model to have four input features, namely HS, TSS, TA and RSWR.

4.1.4 Sequence length selection

One of the key medel-architectural-hyperparameters-parameters to choose is the length of the history the medels-can—use

top-model can use to predict the current time step. Figure 4(d) shows the relationship between history length and model
performancein—Figure—4(d). The best results were obtained with a history length of 48 time steps (24 hours) achieving an
Fl-score of 97%; very similar results were obtained with a history of length 32 (18 hours) with an F1-score of 96%. A history
length shorter than 24 time steps deteriorated the performance. Likewise -the-performanee-deereased-for history lengths larger
than 96 time steps. Accordingly, we selected the history length to be 48 time steps as a compromise between sufficient but not

too much context for the model.
4.2 Model selection

To choose the right architecture for the task at hand, we experimented with several state-of-the-art machine learning models for
single time-step and time-series processing, compared their performance, and finally selected the one that performed the best
overall. Our model of choice was TEN;-which-was-explained-in-Seetion-3-1the TCN. A short description of the other models
we evaluated is provided in Appendix D.

To have a balanced model svhich-that does not favor one of the classes, we selected the decision threshold as the point where
TPR = FPR. We evaluated the-each model for two scenarios: one with all seven input features and one with only the four
relevant features.

Figure 5 shows the overall best performance of the TCN with an F1-score of 97.8%. Removing RH, WV and solar altitude,
which were identified as irrelevant features resulted in a significant improvement of the LSTM modelperformanee, equaling
the performance of the TCN having an Fl-score of 97.7%. Nevertheless, we opted for the TCN as it was on par with the
LSTM, and the results in Figure 5(a) suggest that the TCN is more resilient to unimportant features in the input. In addition,
the TCN showed-advantagesfor-training-over RNNsis known to be easier to train compared to LSTMs. Interestingly, for RF

the performance imp

on the selection of input features, suggesting its ability to deal with uninformative inputs.

4.3 Performance analysis per station

To better understand the generalization capabilities of the model, we evaluated its performance for each test station separately.

The results in terms of confusion matrices are presented in Figure 6 and suggest good generalization capability of the model for

most stations, with-the-exeeption-of-except SLF2 and STN2.

?-The stations SLF2 (1563 m) and STN2 (2914
m) were considerably outside the elevation range that was available during training, Moreover, these two stations are rather
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Figure 5. Model comparison shown as ROC curves for two different versions of the six models (LSTM, TCN, TimesNet, Transformer, MLP
and RF): Model performance with (a) all seven input features - HS, TSS, TA, RSWR, RH, WV and solar altitude, and (b) with the four
relevant input features - HS, TSS, TA and RSWR. Every plot additionally shows the maere-F+seere-macro Fl-score for the threshold where
TPR = FPR (the point on the curve).

special cases compared to most of the other stations and can be considered out-of-distribution samples. The station SLEF2 is

located on a meadow in the village of Davos, which seems to have a positive effect on the classification into the class no snow

as it was the only station with an Fl-score for class no snow higher than for class snow. The station STN2, instead, stands on
a glacier, which results in very different ground properties compared to any other station in the dataset. This is reflected by a
lower Fl-score for the class no snow. especially as STN2 reached an F1-score of only 94.5% (which is 2% less than any other
station in the test set). In addition, from Figures 6 and 7 one can further conclude that the model generally performs-—skightly

better-in-correctly-classifyingclassifies the presence of snow ;compared-to-classification-of snow-free-ground—slightly better

than the absence of snow._
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Ttis-It is also important to understand whether CleanSnow generalizes to stations at different locations with different elevations.
The Results presented in Figure 7 suggest that the model performance was very stable for stations at elevations between
reughly-abouty 2100 and 2700 m a.s.1., while it dropped-decreased for stations located either below or above this range. This
corresponds to the fact that 80% of stations in our training set were in this range and only two stations were below 2000 m and
one station was at 2800 m.

The

higher-thanfer-elass-seemingly good
erformance of the model should however be analyzed in detail. There are periods for which it is rather easy to correctl
classify snow as snow and snow-free ground as no snow, and other times of the year when the problem becomes much harder.

Z; ad;—stands—on—a—gla W s d ground-properties—compared-to—any-other—station—in—th
ataset—This is reflected-by-aratherlow Fl-score-for-theclassno-snowdiscussed in detail later in Section 4.4.
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Figure 6. Performance evaluation of each test station separately, shown in terms of confusion matrices ordered by elevation: SFL2, SHE2
KLO2, TRU2, WFJ2, STN2. Each confusion matrix has targets as rows and predictions as columns.
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Figure 7. Model performance for the six stations ef-in the test subset as a function of elevation. The F+seore-F1-score is shown separately
for the classification of snow (red line) and no snow (green line). The blue columns indicate the elevation distribution in the training subset

(14 stations).

4.4 Performance for different times of the year

Classification of snow height measurements into snow and snow-free ground can be both a simple and rather challenging task
depending on the location and time of the year. We provide a per-month performance analysis in Figure 8, which shows that the
model mostly had trouble predicting snow-free ground in winter months. This is because very little training data for that class
were available during December, January, February and March;-and-it-was-net-well-represented-in-the-trainingset—Thetack-of
sround < onths-1s1u phasized-by-the-fact-that-, Furthermore, we had no samples-from-this
elass-snow-free samples in the test set for February and March. In summer instead, the results suggest CleanSnow was able to

detect most of the summer snowfalls (with approximately 20% performance drop compared to full winter) while retaining very

good performance on predicting snow-free ground. At the end of winter, in May and June, the model performance was also

very good, suggesting that CleanSnow can be used to accurately predict the snow disappearance date (as a longer snow-free
eriod after a long period with constant snow cover).

1 500k
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" No Snow Samples E
—
So.6 Test F1 Score (Snow) 300k 8
w0 Test F1 Score (No Snow)
— ;=
0.4 200k E
H#
0.2 100k
0 0
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Figure 8. Performance of the model for each month of the yearseparately. The F1 score is shown separately for the classification of snow
(red line) and no snow (green-yellow line). The blue columns indicate the distribution of snow samples, while the yellow columns indicate

the distribution of the no-snow samples.
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In addition, we analyzed the model performance for each season. To this end, we split the test dataset into four different

seasonal clusters:

— Winter season was defined as the period with mostly continuous snow cover (December, January, February, March, and
April)

— Summer season was the part of the year typically without snow (July, August and September)
— End of winter season defined the snowmelt period resulting in snow-free ground (May, June and July)

— Start of winter season included the months when it starts snowing more often and at some point a continuous snow

cover forms on the ground (September, October and November)

In the following sections we describe the model performance for each of the four seasonal clusters in detail and point out some

season-specific challenges.
4.4.1 Winter season

For snow classification, the middle of winter is presumably the easiest time of the yearto-deal-with. Besides some low-elevation
stations and some exceptional seasons with a very late onset of winter or very early snowmelt, the task should be rather
trivial, as the snow cover is continuous in time. Figure 9(a) demonstrates that the model confidently classified snow (TPR =

99-4%99.36%) in contrast to the-elassifieation-ef-snow-free groundwith-FPR-=-88-4% (TPR = 88.35%).
4.4.2 Summer season

In contrast to full winter, the classification of snow in the summer was-is more challenging. Besides snow-free ground, there
were many stations where vegetation grew-—Thisresults- (approximately 20% of the data in the test set). This resulted in non-
zero snow height sensor measurements, which do not correspond to snow. Exceptions were stations at high elevations (e.g., on
a glacier) and winters when the snow did not melt until the beginning of summer.

The snow height signal for snow-free ground typically oscillates with high frequency and either stays around zero or grows
in the presence of vegetation under the sensor. The surface temperature and air temperature will most of the time oscillate high
above 0°C, showing a diurnal cycle. During overcast periods or in the presence of precipitation, TA and TSS will show the
same value. Due to the lower albedo of snow-free ground, smaller amounts of reflected-solarradiation(RSWR>RSWR are
measured. Based on the above assumptions, summer snowfalls can be detected when TA equals TSS, which is followed by
larger values of RSWR with a simultaneous decrease in TSS. If there is vegetation growing under the station, the HS signal
counter-intuitively decreases as the plants get pressed down by the snow. In the case of snow-free ground under the sensor, the
HS signal will increase as expected during a snowfall.

Despite-the-challenging-setting;Figure 9(b) demonstrates that the model accurately detected snow-free ground with 99:2%
99% accuracy. The effect of summer vegetation is shown in Figure 10(a). On the other hand, detecting a snowfall in the summer

proved to be difficult, and even more so when vegetation was present. In this very difficult setting CleanSnow achieved a
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Figure 9. Confusion matrices for each of the four seasonal clusters. Each confusion matrix has targets as rows and predictions as columns.

performance of 8+3%81%. A partial detection of a summer snowfall is shown in Figure 10(c). CleanSnow succeeded in

detecting the main event but failed to correctly classify a few hours both at the start and the end of the summer snowfall.
4.4.3 Start and end of winter season

The transition periods between winter and summer and vice versa are key periods for the detection of the first snow and its

385 disappearance, which are both dates of interest in climate science. These two seasonal clusters contain both data with rather
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Figure 10. Examples of classification results by CleanSnow. The snow height signal is depicted in blue. The model predictions in terms of
probability (0 - 1) are shown in green. The dashed horizontal line denotes the decision threshold selected to balance the model performance
on predictions for binary-elassifieationboth classes. The red-shaded areas show-mark regions with classification errors (i.e. samples being
assigned to the wrong class). (a) shows a correct classification of summer vegetation growth (the non-zero blue curve is classified with

robability lower than the decision threshold, therefore being assigned to class no-snow). (b) is an example of early October snowfall that has

been classified partially correctly. (c) demonstrates the model’s capability to detect summer snowfalls as well as scattered snowfalls at the
beginning of winter. (d) is evidence that the model does not always perform well, here making mistakes at the beginning of the next winter

season.
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continuous snow cover and with bare ground or vegetation growth. Such data are therefore a perfect test case for the-approach
we-developedCleanSnow.

In our experiments, the end-of-winter season was the easier case to classify, achieving a very competitive performance of
98% for snow and 99% for snow-free ground (Figure 9(c) and Figure 10). We attribute this high accuracy to the fact that the
transition from snow-covered to snow-free ground was often rather smooth, and once the snowpack had melted, there were not
many periods with snow persisting on the ground. The beginning of summer was typically represented by high air temperatures,

which caused TSS to oscillate with the daily cycle indicating snow-free ground; simultaneously RSWR noticeably decreased

once the snow had completely melted. E

On the other hand, classification during the start-of-winter season was more challenging: the model achieved an accuracy
of 953%-95% for snow and 93-2%-93% for snow-free ground (Figure 9(d) and Figure 10). There were multiple snowfalls
at the beginning of the season after which the snow melted again completely. In addition, in late autumn and the beginning
of winter, temperatures occasionally dropped and the ground froze overnight. This resulted in TSS being constantly less than

or equal to 0°C even without snow, which might force the model to focus more on RSWR and HS during decision-making,

potentially decreasing its decision power.
i
4.5 Comparison to manual observations

A perfect test case are stations with concurrent manual observations, i.e., measurements manually performed by human ob-
servers. Such measurements were available for the two stations WFJ2 and SLF2 located in the region of Davos.

Since the manual measurements were done only once per day, we resampled our predictions from 30-minute intervals
into 24-hour intervals. We averaged probability scores over the 24 hours (48 automatic measurements) to obtain the per-day
probability score.

The performance comparison on annotated automatic measurements versus manual observations in Figure 11 confirms that
we had produced high-quality annotations for the historical data. Some days with snow were erroneously annotated as snow-
free ground. This can be related both to short snowfalls which disappear in daily aggregation and also to the fact that manual
observations were performed around 08:00 CET in the morning, while our data were daily averaged values. Such misalignment
might produce additional disagreements between manual observations and our annotations.

The results also show that CleanSnow achieved a very good performance when evaluated against daily manual observations.

The differences in performance between the two ground-truth sources (approximately 2% in TPR and 1.5% in TNR) were

attributed to the inconsistencies between the manual annotations of automatic measurements and manual observations.
4.6 Comparison to other approaches

To further demonstrate the added value of our machine learning approach, we compared it to other state-of-the-art methods
such as filtering used in the physics-based snow cover model SNOWPACK (Lehning et al., 1999). In particular, we considered
the snow water equivalent (SWE) provided by SNOWPACK since the HS signal is filtered to calculate SWE. Therefore, SWE
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Figure 11. Confusion matrices for daily-aggregated-values-on-comparison of model performance evaluated against our annotations (left) ¥s-
and against human ebservationsobserver measurements (right). Results for station WFJ2 are in (a) and (b), followed by results for SLF2 in

(c) and (d).

should be a good indicator of whether the HS signal relates to snow or not. If the HS signal does not represent snow, one would
expect SWE to be 0. In addition, we also compared CleanSnow to thresholding-based filters implemented in the MeteolO
library, which were mainly designed to filter vegetation growth measurements in summer.

Figure 12 shows the comparison of the snow height classification by our TCN model to classification based on SWE cal-

culated by SNOWPACK and the MeteolO filter. The results etearlyshow-suggest that the machine learning approach to-be
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Figure 12. Performanee-Comparison to other approaches shown as performance (Ft-seereF1-score) per station for the-FEN-CleanSnow
(blue), the filter based on the SWE from SNOWPACK (red) and the thresholding filter from MeteolO (greenyellow).

supertor-is superior in most cases. This might be attributed to the fact that both SNOWPACK and MeteolO use thresholding-
based rules based on TSS and TG to filter HS similarly to the approach described by Tilg et al. (2015). The optimal threshold
values vary across different stations, which requires per-station calibration of the thresholds. Moreover, TG-based filtering is
problematic since, as already mentioned, the TG sensor is prone to failures and the signal is therefore often missing at some

stations.
4.7 Case study: Vegetation seieneegrowth

Besides obvious applications in snow science, a reliable separation of snowfall from plant growth also has benefits for biological
research. Removing HS measurements classified as snow allows for the extraction of a clean vegetation signal and pinning
down-the pinning down of reoccurring events in the life cycle of alpine vegetation — referred to as vegetation phenology.
for a very long time, it is possible to relate the timing of green-up (i.e. the start of vegetation growth) or other phenological
phases to snow climate parameters, and study phenological shifts over time — an excellent indicator of climate change (e.g.
Inouye, 2022). We extracted 25 years of vegetation growth data from HS measurement data at TUJ2 (Culmatsch, 2262 m
a.s.l.), an IMIS station characterized by tall plant growth. Within the 20 years of data, the algorithm flagged all snow days
during the vegetation period which were then removed. Snow disappearance and snowmelt dates were defined as the first,
respectively the last, day of the continuous winter snow cover. We fitted a logistic growth curve (Kong et al., 2022) to the
clean plant growth measurements and defined the start of growth by a 10% threshold of maximum plant height (Figure 13).
Vegetation green-up was directly linked to the timing of snowmelt, consistent with other studies (Jerome et al., 2021; Jonas
et al., 2008), while late snowfall events shifted the start of growth towards later calendar days. Linear regression analysis
revealed an earlier occurrence of green-up over the study period coinciding with an increase in spring temperatures measured
at the station<Zehnder-et-alsin-prep-). Despite insignificant changes in snowmelt timing, the shorter lag between snowmelt
and initiation of plant growth indieated-suggests a warming-driven advancement in phenology at the study site. This case study
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highlights the importance of long-term monitoring and automated machine learning approaches in understanding climate-

induced phenological shifts, with implications for ecosystem dynamics in remote alpine regions.
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Figure 13. An example of a logistic growth curve (in dark green) fitted to height measurements data from TUJ2, in the vegetation season of
the year 2019. Snow height data corresponding to snow are shown with blue stars, while plant signal is shown with green diamonds. The red

cross marks the snowmelt date, while the orange diamond marks the start of plant growth.

5 Discussion

We proposed a deep learning-based approach to snow height signal classificationte-automate-the-, which is a crucial step in
automating the snow height signal quality-checking process. In addition to selecting an appropriate model, we provided some
good practices to develop machine learning models for automated snow height classification. In-the-follewing-paragraphs;—we
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5.1 Best practices for snow height classification using machine learning

In our analysis, we aimed to establish good practices for further development of machine learning methods for snow height
classification and quality assessment. We showed that learning from synthetic ground-truth data generated using thresholding
rules proposed in the past did not work well, as the predefined thresholds did not generalize to all stations without modifications.
This emphasizes the need for well-annotated data for training. Next, we pointed out the importance of addressing the class
imbalance problem to achieve the best possible performance. Furthermore, we demonstrated the superiority of sequence-based
models (TCN, LSTM, TimesNet and Transformer) over single time-step-based models (RF and MLP), which confirms the
need for temporal context to achieve a high classification performance. We acknowledge the existence of techniques that allow
one to feed RF and MLP models with sequences of data, e.g., lagged features (i.e., adding data from previous time steps as
extra input features). Nevertheless, we argue that such techniques do not treat sequential data as a causal sequence, which is
conceptually non-ideal and might potentially lead to the resulting model becoming less explainable in how it treats temporal
information. Another important aspect to consider is the sequence length. We performed an analysis of the performance for
the length of the time window (i.e., the size of the temporal context), which revealed that the ideal length was around 48 time
steps, as shorter and longer time windows resulted in a deterioration of the model performance. Subsequently, we showed that
it was important to evaluate the model performance during the critical times of the year (the start and the end of the winter

season) to reveal their true performance.
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5.2 Preeessing-Deep learning models for snow height classification

We studied the suitability of state-of-the-art deep learning models for the snow height classification task. Several cutting-edge
deep learning architectures have been evaluated against each other, resulting in the superiority of a TCN over the other
compared methods. CleanSnow reached an accuracy of 97.7% on the independent test set when we used a decision threshold
that balanced the model performance on predictions for both classes - snow and no-snow. Hence, the results indicate that
the approach generalizes well to unseen stations that are within the distribution of the training set. A detailed performance
evaluation for each station in the test set showed that the model performed very well except for the data of the stations SLE2
and STN2, which are two particular cases that were not well represented in the training data. The station SLE2 is located low.
in a valley and STN2 is on a glacier. In addition to being out-of-distribution, such special environments, compared to those of
most other stations in the dataset, might cause slightly different behavior of the auxiliary variables used during HS analysis
and result in a performance decrease.

5.3 Generalization

The generalization ability of CleanSnow to elevations that are within the range included in the training set is good. These

elevations represent the Alps, which is the region of interest for us. Generalization to out-of-distribution samples (stations

located at elevations that are not well represented in the training data) is rather poor. Out-of-distribution generalization

however, remains an open problem in the machine learning community. One possibility for improving out-of-distribution
eneralization is to explicitly express some known behavior (e.g.

hysical constraints, etc.) in a neural network. Such models
are known as Physics Informed Neural Networks (PINN) (Raissi et al., 2019) and can be implemented either by adding a
regularization term to the loss function or by incorporating the constraints directly into the model architecture. In both cases,
such constraints help the model to correctly extrapolate to situations that were not represented in the training data,

54  Limitations

One of raw-senser-dataOne-of-the known limitations of CleanSnow is the fact that it operates on raw data, meaning the inputs
may contain both anomalies (e.g. spikes) and missing values. Even though CleanSnow seem-seems to be resilient to anomalies,
it would be good practice to perform anomaly detection and filtering before running the proposed snow height classification
models. We argue that filtering obvious spikes in the snow height signal is a rather trivial procedure and can be solved by
employing statistical methods such as Hampel filtering (Pearson, 1999) or an exponential moving average filter (Kendall and
Stuart, 1966). However. other more subtle variations are very challenging to detect by both the human eye and automated
methods.

Deating with-missing datais-more complieatedCleanSnow can only be applied in cases where the full history needed to make
a prediction is available. At the moment, in the case of missing samples in the 48-time step context, the samples were discarded

without being run through the model.

make-a-predietion-is-availableDealing with missing data is far more complicated than filtering anomalies. A simple solution

25



530

535

540

545

550

for periods of up to several time steps would be linear interpolation. However, as the size of the interpolated interval increases,
this fails to produce an accurate reconstruction of the missing data. To impute larger periods of missing data, methods that take
into consideration both spatial and temporal context should be employed. This is, however, out of the scope of this work, and

we therefore leave it as a possible future research direction.

6 Conclusions

Automated snow height measurements are key input data for many modeling approaches in climate sciences, snow hydrology,
and avalanche forecasting. Erroneous snow height measurement deteriorate the performance of these models. We demonstrated
how to mitigate the aforementioned issues by the use of deep-learning methods for automated snow height classification. Our
contributions can be summarized as three-fold. First, we adapted-created a novel machine learning approach to snow height
signal classification that operates directly on time-series data. Second, we provided an in-depth comparison of several machine
learning models applied to snow height classification. Third, we introduced a new benchmark dataset with annotated snow
height data, which sets a baseline and can be used for further research in the field. The proposed approach achieved a high
accuracy of 97.7% and generalized well to previously unseen stations. CleanSnow can be implemented as a component of an

arbitrary snow height quality assessment pipeline without the need for any special hardware.

Code availability. The exact version of the software used to produce the results in this manuscript is available at
https://doi.org/10.5281/zenodo.12698071, while current and future versions of it can be found at

https://gitlabext.wsl.ch/jan.svoboda/snow-height-classification.

Data availability. The manually annotated dataset that we used to both train and evaluate CleanSnow is publicly available for research under

CC BY-NC! license at https://doi.org/10.5281/zenodo.13324736

Appendix A: List of stations in the snow/no-snow dataset

This section provides the list of IMIS stations used in our snow/no-snow dataset (see Section 2.1.1) together with their metadata.
Table A1 shows the stations ordered by increasing elevation. The column Subset indicates whether a station was used for

training or testing.

Uhttps://creativecommons.org/licenses/by-nc/4.0/
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Station ID || Latitude [°N] | Longitude [E] | Elevation [m] | Available since | Subset |

SLF2 46.8127 9.8482 1563 November 1997 test
AMD2 47.1708 9.1468 1610 October 1997 train
GLA2 46.9966 9.0375 1632 November 2000 train
SHE2 46.7488 7.8124 1852 October 2001 test

ILI2 46.1913 6.8277 2022 March 2000 train
GUT2 46.6793 8.2896 2115 November 1999 train
KLO2 46.9091 9.8738 2147 November 1996 test
TUM2 46.7810 9.0214 2191 October 2002 train
FNH2 46.1007 6.9641 2252 September 1997 train
KLO3 46.8412 9.9316 2299 November 1996 train
LAG3 46.4245 9.6977 2300 November 2009 | train
FLU2 46.7527 9.9464 2394 October 2003 train
RNZ2 46.6855 8.6267 2400 December 2008 train
TRU2 46.3709 7.5855 2459 November 1996 test
BOR2 46.2905 8.1093 2517 September 2001 train
WEFJ2 46.8296 9.8092 2536 January 1996 test
ARO3 46.0874 7.5620 2602 September 1996 train
SPN2 46.2294 8.1176 2620 November 1996 train
FOU2 45.9717 7.0672 2800 October 1999 train
STN2 46.1678 7.7505 2914 October 1998 test

Table Al. List of stations that are part of the snow/no-snow dataset, together with their auxiliary information, ordered by elevation. The

column Subset denotes whether station belongs to the train or test set.

Appendix B: Subsampling of the training data

To run experiments in a reasonable time and make sure they were computationally tractable, we sub-sampled the training
dataset to reduce the amount of training samples. In Table B1 we list which years were selected for each station for the training

set.

555 Appendix C: Synthetic ground-truth generation
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Station ID H Selected years

AMD2 1998, 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
GLA2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022
IL12 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
GUT2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
TUM2 2004, 2007, 2010, 2013, 2016, 2019, 2022
FNH2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
KLO3 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
LAG3 2011, 2014, 2017, 2020, 2023
FLU2 2005, 2008, 2011, 2014, 2017, 2020, 2023
RNZ2 2010, 2013, 2016, 2019, 2022
BOR2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
ARO3 1998, 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021
SPN2 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023
FOU2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

Table B1. List of years for each station that were selected as part of the sub-sampled training dataset.

We generated synthetic ground-truth data by applying thresholding rules inspired by works of Bavay and Egger (2014); Tilg et al. (2015)
to the HS measurements. In order for a sample to correspond to snow cover, the following condition had to be met:

1 N—-1 1 N—-1
((N > TSSn> < 0.0) A <<N > RSWRn> > 300.0) ., (C1)
n=0

n=0

where N is the length of the time window.

560 Appendix D: Machine learning models

For completeness, we provide a short description of every machine learning model that was used in our performance compari-

son.
D1 Random Forest (RF)

Implemented in many data science libraries and easy to use, Random Forests (RFs) are a popular choice of machine learning
565 algorithm that can provide satisfactory predictions in both classification and regression tasks. In practice, RF is an ensemble
approach, which produces a final prediction as a combination of outputs of many decision trees. It often works well on tabular

data, but there are no mechanisms that would allow for a more principled representation of temporal, spatial or graph structures.
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In our experiments we used the RF classifier implementation from the Scikit-Learn library (Pedregosa et al., 2011), setting
the number of decision trees to 1000 and maximum depth of each tree to 50. We left the other parameters at their default

settings and trained the RFs using the Gini criterion (Gini, 1936).
D2 Multilayer Perceptron (MLP)

Being one of the first neural network models that can learn non-linear functions, MLPs have shown their power in natural
language processing (NLP) and serve as a foundational component for many other neural network models nowadays. Finding
their applications in both regression and classification tasks, MLPs can serve as an alternative to the RFs presented above.
Putting them in comparison with RFs, MLPs can be generally more difficult to train for a given task and often exhibit lower
performance, especially with tabular data. This is due to their nature of learning smooth (sometimes overly smooth) solutions,
thereby causing them to not perform well on problems with a non-smooth decision boundary. Grinsztajn et al. (2022) argue
this is due to the gradient descent approach to MLP optimization. They also show that MLPs are more affected by, e.g.,
uninformative features compared to RFs.

We designed an MLP composed of an input layer with 7 input dimensions and 32 output features, followed by 3 hidden
layers with 64, 128 and 256 output features, respectively. Each hidden layer had batch normalization (Ioffe and Szegedy, 2015)
and Rectified Linear Unit (ReLU) activation functions (Fukushima, 1969; Nair and Hinton, 2010) appended to it. The MLP

was concluded with an output layer which takes a 256-feature representation and produces the final class probability score.
D3 Long short-term memory (LSTM)

Belonging to the family of recurrent neural networks (RNNs), the original models developed for time series processing,
GRU (Cho et al., 2014) and long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) are variations that al-
low the model to better capture long-term dependencies compared to RNNs, which tend to forget inputs that came much earlier
in the history. We chose to use an LSTM in our experiments, as it is one of the gold standards in deep learning for time-series
processing.

The LSTM model we used in our experiments took an input with 7 dimensions and was composed of 3 recurrent layers with

hidden dimensions of 64, 128 and 256, followed by an output MLP classifier that produced the final probability scores.
D4 TimesNet

Recently released and setting the new state-of-the-art performance on many standard benchmarks, TimesNet (Wu et al., 2023)
has become one of the models of choice for time series processing in general. Its main characteristic is the transformation of a
1-dimensional time series signal into a 2-dimensional one, which allows it to capture complex temporal variations in the signal.
The conversion of a time series into a 2-dimensional signal is based on detecting signal periods using amplitude information
from a Fast Fourier Transform (FFT) and ordering the signal chunks into a 2-dimensional array. Applying 2-dimensional

convolutions to this array allows it to capture both inter- and intra-period variations in the signal.
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In our experiments we used a modification where the definition of signal periods is fixed and not determined by the FFT.
We used 5 periods to split the signal, namely 48, 32, 24, 16 and 8. The model was then composed of 3 layers with each layer
having 2 blocks and 128 hidden features.

D5 Transformer

Since ithas-been-broughtto-thepublie’s-attentionthey were published in 2017, transformers have revolutionized many areas of

deep learning, achieving new state-of-the-art results mostly in natural language processing and computer vision. Transformers
are model-models based on an attention mechanism (Vaswani et al., 2017) that were originally proposed for sequence-to-
sequence tasks.

Here we employed a modification of the traditional transformer. In particular, we took the classical transformer encoder
in order to produce a latent representation for the input sequence, where each point is conditioned on the past context. The
encoder was composed of 2 layers with hidden dimensions of 128 and 4 attention heads. Both the input positional encoding
and encoder have a dropout of 0.1 applied. The latent representation produced by the transformer encoder was average pooled

and passed to an MLP readout network, which produced the classification probability scores.
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