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Abstract. Snow height measurements are still the backbone of any snow cover monitoring,
:
whether based on modeling or

remote sensing. These ground-based measurements are often realized with the use of
:::::
using ultrasonic or laser technologies. In

challenging environments, such as high alpine regions, the quality of sensor measurements deteriorates quickly, especially in

the presence of extreme weather conditions or ephemeral snow conditions. Moreover, the sensors by their nature measure the

height of an underlying object and are therefore prone to return other information, such as the height of vegetation, in snow-5

free periods. Quality assessment and real-time classification of automated snow height measurements is therefore desirable in

order
::
are

::::::::
therefore

::::::::
desirable

:
to provide high-quality data for research and operational applications. To this end, we propose

CleanSnow, a machine learning approach to
::
the automated classification of snow height measurements into a snow cover class

and a class corresponding to everything else, which takes into account both the temporal context and the dependencies between

snow height and other sensor measurements. We created a new dataset of manually annotated snow height measurements,10

which allowed us to train our models in a supervised manner as well as quantitatively evaluate our results. Through a series of

experiments and ablation studies to evaluate feature importance and compare several different models, we validated our design

choices and demonstrate
:::::::::::
demonstrated the importance of using temporal information together with information from auxiliary

sensors. CleanSnow achieved
:::::::
achieves

:
a high accuracy

::
of

::::::
almost

::::
98%

:
and represents a new baseline for further research in

the field. The presented approach to snow height classification finds its use in various tasks, ranging from snow modeling to15

climate science.

1 Introduction

Snow height measurements are key in many fields, such as water resources management, avalanche forecasting, climate science,

or
:::
and even tourism. A variety of complex models simulating and calculating snowpack properties therefore exist. For example,

estimating snow water equivalent (SWE) (e.g. Jonas et al., 2009)
::
in

::::
order

:
to assess water resources. In addition, snow height is20

an important parameter for snow hydrological (e.g. Mott et al., 2023) and snow cover modeling (Lehning et al., 1999) used in

operational avalanche forecasting (Morin et al., 2020; Pérez-Guillén et al., 2022; Herla et al., 2023). In climate science, snow

cover is one of the key variables that strongly affect the global energy balance and the atmospheric circulation, due to its high
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albedo, high emissivity
:
, and low thermal conductivity (e.g. Flanner et al., 2011). Snow height signals have also been used to de-

termine vegetation growth and plant phenology (e.g. Jonas et al., 2008; Fontana et al., 2008; Vitasse et al., 2017; Zehnder et al., in prep.)25

::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Jonas et al., 2008; Fontana et al., 2008; Vitasse et al., 2017) and to monitor climate change (e.g. Matiu et al., 2021). Fi-

nally, the snow cover situation directly influences tourism, transportation
:
,
:
and recreational activities (e.g. Willibald et al.,

2021).

Snow height data are nowadays available, sometimes in almost real-time, from airborne or satellite remote sensing and

ground-based automated weather stations (AWS). One of the sensors often mounted at meteorological stations in high alpine30

regions is an ultrasonic snow height sensor (Ryan et al., 2008). Due to the measurement method, snow height data come with

a variety of errors that arise from the harsh mountain conditions the sensor is not originally designed to operate in. In addition,

ultrasonic sensors only measure the distance to the underlying object, be it snow or anything else. It is therefore important to

validate whether the information coming from the snow height sensor really corresponds to snow or not.

Arguably the most precise way of assessing the quality (QA) of snow height measurements is via visual inspection of the35

data by a human expert (Robinson, 1989). Even though it is believed the most reliable, manual quality assessment of data is a

tedious procedure heavily relying on expert knowledge, which is
:
,
:::::
which

::
is

:::::::
however

:
not easily transferable and does not scale

well (Fiebrich et al., 2010). A common practice in snow height QA
::::
both

::::::
manual

::::
and

::::::::
automated

:::::
snow

:::::
height

::::::
quality

::::::::::
assessment

is to distinguish between snow and grass based on static climatological or minimum snow height thresholds. Random errors ,

instead, are typically detected using a maximum snow height threshold or snow height variance (Avanzi et al., 2014).40

There are other sensors usually mounted at an AWS, which
:::::
whose

::::::::
temporal

:::::::
structure can provide information on whether the

measured snow height relates to snow or not, as well as give some indications on the precision of snow height measurement.

The first attempt
::::::
Fusion

::
of

::::::::
temporal

::::::::::
information

::::
from

::::::::
multiple

::::::
sensors

::::::
results

::
in
:::::::::::::::

high-dimensional
::::::::::
multivariate

::::::::::
time-series

::::::
signals,

::::::
which

::::::::
increases

:::
the

:::::::::
complexity

:::
of

:::
the

:::::::
problem.

::::
The

::::
first

:::::::
attempts

:
to leverage other sensor information was

::::::
include

the MeteoIO library developed by Bavay and Egger (2014) , which contains an algorithm for grass detection based on snow45

surface temperature, ground surface temperature , and solar radiation. The algorithm is based on a series of thresholding rules,

an approach that is
:::
and

:::
the

:::::::::::
thresholding

::::::
method

:::
of

::::::::::::::
Tilg et al. (2015).

:::::
Both

:::::::::
algorithms

:::
are

:::::
based

:::
on

::
a

:::::
series

::
of

:::::::::::
thresholding

::::
rules

:::
that

::::::
follow

:::
the

:::::::
physical

:::::::::
properties

::
of

:::::
snow.

:::
In

::::::::
particular,

::::
with

:::
the

::::::::
presence

::
of

:::::
snow,

:::::
snow

::::::
surface

::::::::::
temperature

::::::
(TSS)

::
is

:::::::
expected

::
to

:::
be

::::::
≤ 0◦C.

:::::::
Ground

::::::::::
temperature

::::
(TG)

::
is
::::::::
expected

::
to

::
be

:::::::::
constantly

::::::
around

:::::
0◦C,

::
as

:::::
snow

:::::::
insulates

:::
the

::::::
ground

:::::
from

::::::::::
atmospheric

::::::::::
temperature

::::::::
variations

:::::::::::::
(Domine, 2011)

:
.
::::::::
Reflected

:::::::::
short-wave

::::::::
radiation

:::::::
(RSWR)

::
is

:::::::
expected

::
to

:::
be

::::
high

::::
since

:::::
snow50

:::
has

:
a
:::::
much

:::::
higher

::::::
albedo

::::
than

:::
soil

:::
or

:::::::::
vegetation.

:::::
When

::
no

:::::
snow

::
is

::::::
present,

::::
both

::::
TSS

::::
and

:::
TG

:::::::
typically

:::::
show

::::::
diurnal

:::::::::
variations,

::
in

:::
line

::::
with

:::
the

:::
air

::::::::::
temperature

:::::
(TA).

::::::::
However,

::
it
::
is

:::::
rather

:::::::
difficult

::
to

:::::::
capture

::::::::::
correlations

:::::::
between

:::::::
different

:::::::
features

:::
in

::::
high

::::::::::
dimensional

:::::
space

:::
by

:::::::
defining

:::::::::::
thresholding

:::::
rules.

:::::::::
Moreover,

::::::::::
thresholding

::::::::::
approaches

:::
are

:
known to be rather cumbersome

to modify and does
::
do

:
not generally transfer well to other station data. Observing the recent advances in machine learning,

Blandini et al. (2023) have decided to deal with55

:::::::
Machine

::::::::
learning,

::::::
instead,

::
is

::
an

::::::::::
appropriate

::::::
choice

::
in

::::
such

:::::
cases,

:::
and

:::
has

:::::::
already

:::::
shown

:::
its

:::::
power

::
in

:::::
other

::::
tasks

::::::::::
concerning

::::::
weather

::::
and

:::::::
climate

::::
data

::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::::::::
Vaughan et al., 2022; Luković et al., 2022; Lam et al., 2023

:
).
:::::::::::::::::::

Blandini et al. (2023)
::::::::
addressed

the high dimensionality of the data by proposing
::::
with a random forest

:::
(RF)

:
approach to snow height QA

::::::
quality

:::::::::
assessment,
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solving both snow height classification and anomaly detection at the same time. Random Forest (RF )
:::
RF models (Breiman,

2001) are possibly
:::::::
amongst

:
the most popular choice

::::::
choices

:
of machine learning algorithms used among datascientists60

worldwide.
::
for

:::::::
tabular

::::
data

::::::::::::::::::::
(Grinsztajn et al., 2022).

:::::::::::
Multivariate

::::::::::
time-series

::::::
signals

:::::::
contain

::::
both

::::::::
temporal

::::::::::::
dependencies

:::::::
between

:::::::
different

::::
data

:::::
points

:::::
from

:::
the

::::
same

:::::::
sensor,

::
as

::::
well

::
as

::::::::::
inter-sensor

::::::::::
correlations

:::::::
between

::::::::::::
measurements

:::::
from

:::::::
multiple

:::::::
different

:::::::
sensors. Apart from an attempt by Goehry et al. (2023), random forests, however, cannot easily and explicitly model

the temporal structure
:::::
simple

::::::
models

::::
such

::
as

:::::::
random

:::::
forests

:::
or

::::::::
multilayer

:::::::::
perceptron

::::::
(MLP)

:::::
neural

::::::::
networks

:::::::::::::::::::::::::::::::::::::::::::::
(Rosenblatt, 1958; Hornik et al., 1989; Cybenko, 1989)

:::::
cannot

:::::::::
explicitly

::::::
account

:::
for

::::
the

:::::::
temporal

::::::
nature

:
of the data that we argue is crucial to be able to reliably say whether the65

snow height measurement is erroneous and whether the signal coming from the sensor shows snow or vegetation
::::::
without

:::::::::
engineering

::::::::
complex

::::
and

:::::::
artificial

::::::::
features,

::::
and

:::
are

::::::::
therefore

::
a
:::::
rather

:::::
poor

::::::
design

::::::
choice.

:::
To

::::::::
correctly

:::::::
capture

::::::::
temporal

::::::
patterns

:::
in

:::
the

::::
data,

:::
we

:::::::
instead

::::::
choose

::
to

:::::
work

::::
with

::::::
neural

:::::::
network

::::::
models

::::::::::
specifically

::::::::
designed

::
to

:::::::
operate

::
on

::::::::::
time-series

::::
data,

::::
e.g.,

::::::::
recurrent

::::::
neural

::::::::
networks

:::::::
(RNNs)

:::::::::::::::::::::::::::::::::::
(McCulloch and Pitts, 1943; Kleene, 1951)

:
,
::::
long

:::::::::
short-term

::::::::
memory

:::::::
(LSTM

:::::::
network)

::::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997)

:
,
::::::::
Temporal

:::::::::::
Convolutional

::::::::
Networks

:::::::
(TCNs)

::::::::::::::
(Lea et al., 2016),

:::::::::
TimesNet

::::::::::::::
(Wu et al., 2023)70

::
or

:::::::::::
Transformers

::::::::::::::::::
(Vaswani et al., 2017).

Therefore, we aim to develop
:::
We

::::::::
developed

::::::::::
CleanSnow,

:
a machine learning model for the automated classification of snow

height signals into a snow and a no-snow class, which we call CleanSnow . To approach this binary classification problem, we

employed a Temporal Convolutional Network (TCN) (Lea et al., 2016) that explicitly accounts for the temporal relationships

between different points in snow height time series data. To train our TCN, we created a new manually annotated snow height75

dataset composed of 20 measurement stations with around 20 years of data per station. This dataset also allows us to validate

our design choices and evaluate the model in several different scenarios including challenging cases such as snow cover melt

or plant growth periods.

2 Data

We used snow height data from the Swiss Intercantonal Measurement and Information System (IMIS) (Lehning et al., 1999)80

:::::::::::::::::::::::::::::::::::::::::
(Lehning et al., 1999; Liechti and Schweizer, 2024), a network of 131 AWS (as of May 2024) focused on snow measurements

that are distributed throughout the Swiss Alps and Jura region (see Figure 1), mostly located above 2000 m a.s.l. The stations

acquire data regularly in 30-minute intervals and provide ,
::::::::::::
meteorological

::::
data in addition to snow height, also meteorological

data. To analyze snow height (HS), we also leverage measurements such as air temperature (TA), snow surface temperature

(TSS), wind speed (WV), relative humidity (RH), and reflected shortwave radiation (RSWR).85

Map of IMIS stations in Switzerland. Stations marked as full gray circles were not part of the new annotated dataset. Yellow

squares are the stations that have been used for training (14 stations) and red triangles indicate stations used for testing (6

stations). Colours indicate elevation in m a.s.l.

2.1 Quality assessment of snow height measurements
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Figure 1.
:::
Map

::
of

:::::
IMIS

::::::
stations

::
in

:::::::::
Switzerland.

:::::::
Stations

::::::
marked

::
as

:::
full

::::
gray

:::::
circles

::::
were

:::
not

::::
part

::
of

:::
the

:::
new

::::::::
annotated

::::::
dataset.

::::::
Yellow

:::::
squares

:::
are

:::
the

::::::
stations

:::
that

::::
were

::::
used

::
for

::::::
training

:::
(14

:::::::
stations)

:::
and

:::
red

:::::::
triangles

::::::
indicate

::::::
stations

::::
used

::
for

:::::
testing

::
(6
:::::::
stations).

::::::::::
Background

:::::
colours

::::::
indicate

:::::::
elevation

::
in
::
m

::::
a.s.l.

Raw snow height measurements coming from the IMIS network contain many errors and anomalies. Due to how the sensor90

works, it measures the height of an underlying object, independently of whether the object is snow or not. This yields spurious

measurements (e.g., vegetation growth) in summer or generally during snow-free periods.

There have been efforts to mitigate this effect and eliminate the vegetation measurements by using signals from other sensors,

mainly snow surface temperature (TSS) and ground temperature (TG), which seem to be good indicators of whether there is

snow on the ground or not (Tilg et al., 2015). In particular, with the presence of snow, TSS is expected to be ≤ 0◦C. TG is95

expected to be constantly around 0◦C, as snow insulates the ground from atmospheric temperature variations (Domine, 2011)

. When no snow is present instead, both TSS and TG typically show diurnal variations, in line with the air temperature (TA).

For completeness, we also analyze wind speed (WV) since it has a direct influence on snow distribution and was considered in

a recent classification approach (Blandini et al., 2023).

Techniques employing thresholding rules based on the above assumptions (Tilg et al., 2015; Bavay and Egger, 2014) generally100

work well and allow for, in some applications, satisfactory detection of the snow disappearance date at the end of the season

and the timing of the first snow in the fall. Their main drawback lies in the definition of fixed threshold values which are used

together with multiple conditional statements in order to determine the presence or absence of snow. These thresholds are often

4



sensitive to anomalies and outliers in the data and do not transfer always well from one station to another. Moreover, manual

adjustment of these thresholds is rather tedious and impractical with a large number of stations.105

Careful manual exploration showed that the following sensor measurements are key factors in disentangling snow from soil

and vegetation measurements: snow height (HS), air temperature (TA), snow surface temperature (TSS), ground temperature

(TG) and reflected short-wave solar radiation (RSWR). The latter is useful since snow has a much higher albedo than soil or

vegetation.

2.1 Data preparation110

For model development and validation, we prepared a dataset with reliable ground truth information. Manually annotating

snow height data is a tedious process, and doing so for the whole IMIS network is intractable. Therefore, we identified a subset

of IMIS stations that we then manually annotated.

It should be mentioned that annotating
:::::::::
Annotating historical data is problematic

:::::
rather

::::::
difficult, as there is no way of checking

whether there really was snow at the station or not. This means that assessing the presence of snow with the help of information115

from other sensors
:
,
::::
such

:::
as

::
air

:::::::::::
temperature

:::::
(TA),

:::::
snow

::::::
surface

::::::::::
temperature

::::::
(TSS),

:::::::
ground

::::::::::
temperature

:::::
(TG)

:::
and

::::::::
reflected

:::::::::
short-wave

::::
solar

::::::::
radiation

::::::::
(RSWR), should be considered a best effort

::::::::
best-effort approach.

2.1.1 Snow/no-snow dataset

A subset of 20 stations (see Appendix A) which span different locations and elevations and vary in underlying surface (e.g.,

vegetation, bare ground, glacier, etc.) were selected and manually annotated with binary two-class ground truth information120

regarding snow height data:

– Class 0 - Snow - the surface is covered by snow

– Class 1 - No Snow - the surface is snow-free (e.g., vegetation, soil, rocks, etc.)

–
::::
Class

::
1
:
-
:::::
Snow

:
-
:::
the

::::::
surface

::
is
:::::::
covered

::
by

:::::
snow

:

The stations annotated with ground-truth information are depicted in yellow and red in Figure 1. An example of data annota-125

tion is shown in Figure 2, with two detailed views that emphasize the differences in behavior of TSS and RSWR in the presence

and absence of a snow cover. The selected stations mostly contain data between 2000 and 2023, at a 30-minute frequency, with

a few exceptions for stations that have been
::::
were

:
built later (BOR2, FLU2, LAG3, RNZ2 and SHE2; see Appendix A).

2.1.2 Evaluation subset

We leave
:::
left part of the annotated data out during model development, which we later use

:::
used

:
as an independent test set to130

evaluate the generalization abilityof
::::
(e.g.

:::::::
Section

:::
5.2

::
of

:::::::::::::::::::::
Goodfellow et al. (2016)

:
)
::
of

:
our final approach on stations not seen

at training time. We select
::::::
selected

:
6 stations (SLF2, WFJ2, KLO2, TRU2, STN2, SHE2) that contain challenging scenarios
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(a)

(b)

(c)

Figure 2. Examples of manually annotated data for the calendar year 2010 at the station SLF2. (a) shows the snow cover flag and snow

height;
:

in green rectangles mark periods with
:

(1
:::
for snow cover

:
,
:
0
::::::::
otherwise)

::::
and

::::
snow

:::::
height

::
(in

:::::
blue)

::
for

:::
the

:::::
whole

:::
year. (b) focuses on

the end of winter season 2009/2010 illustrating the
:::::
diurnal behavior of TSS and RSWR dependent on whether there is snow or not. (c) is the

same as in (b) for the beginning of the winter season 2010/2011.

and are therefore suitable test cases. In particular, these stations are located at elevations where summer snowfalls occur, the

snow season duration is very different, or where grass grows during the summer periods.

3 Machine learning based snow cover classification
:::::::::::
Methodology135

To distinguish whether snow or other ground cover is under the sensor, other sensor measurements can be used. Based on the

domain expert analysis discussed in Section ?? and empirical experimentation (see Section 4.1.3), we selected four sensor

measurements as input features to our models
::
To

:::
this

::::
end,

::
a

::::::::::
combination

::
of

:::::
seven

:::::
input

::::::::
variables

:::
can

::
be

:::::::
selected, namely HS,

TA, TSSand RSWR
:
,
::::::
RSWR,

:::::
VW,

:::
RH

:::
and

:::::
solar

:::::::
altitude. We omitted TG, which was used during manual annotation, as it is
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not available at all IMIS stations and the sensor is also prone to defects.
::
A

::::::
detailed

:::::::
analysis

:::::::::
regarding

::::
input

:::::::
variable

::::::::
selection140

:
is
::::::::
provided

::
in

::::::
Section

:::::
4.1.3.

:

Having temporal information further
:::::::
Looking

::
at

:
a
::::
data

:::::
point

::
in

::
the

:::::::
context

::
of

::
its

::::::::
temporal

:::::::::::
neighborhood helps in determining

whether there is snow or not at a particular time step. It is often important to look at a data point in the context of its temporal

neighborhood. In an operational setting, one would, however, like to be able to make a prediction for each incoming data point

in real-time. This means we cannot access data points in the future,
:
and the context for each data point has to be composed145

of itself and preceding data points (history). To reduce computational demands while still allowing for large enough context,

we chose to work with a history window of 48 time steps (corresponding to
::::::
suggest

:::::::
working

::::
with

:::::::
window

:::::
sizes

::
of

:::::::
between

::
8

:::
and

:::
192

:::::
time

:::::
steps,

:::::
where 1 day), which has shown to provide the best results , as described later

:::
time

::::
step

::::::::::
corresponds

::
to

:::
30

:::::::
minutes.

:::
The

:::::
effect

:::
of

::::::
varying

::::
time

:::::::
window

::::
size

::
on

:::
the

::::::
results

::
is

::::::::::
summarized

:
in Section 4.1.4.

However, this approach leads to a multivariate temporal input signal with high dimensionality. Therefore, it would be difficult150

to capture correlations between different feature points manually by defining, e.g., thresholding rules. Machine learning,

instead, is an appropriate choice in such cases, and has already shown its power in other tasks concerning weather and

climate data (e.g. Vaughan et al., 2022; Luković et al., 2022; Lam et al., 2023). The multivariate time-series signal contains

both temporal dependencies between different data points from the same sensor, as well as inter-sensor correlations between

measurements from multiple different sensors. Simple models such as random forests (Breiman, 2001) or multilayer perceptron155

(MLP) neural networks (Rosenblatt, 1958; Hornik et al., 1989; Cybenko, 1989) cannot explicitly
::
To

:
account for the temporal

nature of the datawithout engineering complex and artificial features, and are therefore a rather poor design choice. To correctly

capture temporal patterns in the data, we instead chose to work with neural network models specifically designed to operate on

time-series data, e.g., recurrent neural networks (McCulloch and Pitts, 1943; Kleene, 1951), Temporal Convolutional Networks (Lea et al., 2016)

, TimesNet (Wu et al., 2023) or Transformers (Vaswani et al., 2017).160

We
::::::::::
multivariate

:::::::
temporal

::::::::::::
characteristics

::
of

::::
our

::::
data,

:::
we opted to use Temporal Convolutional Networks(TCN), which have

proven useful in many applications concerning time-series data (Wan et al., 2019; Pelletier et al., 2019; He and Zhao, 2019;

Hewage et al., 2020). Later, Section 4.2 provides a comparison of our choice
:::::::::
CleanSnow

:
to other popular models, such as

Random Forests, MLPs, LSTMs (Hochreiter and Schmidhuber, 1997), Transformers
:
a
::::::::
variation

::
of

:::
an

::::
RNN

::::::
called

::
an

:::::::
LSTM,

:::::::::::
Transformers,

:
and a recently released model for time-series processing called TimesNet, which yields state-of-the-art results165

on standard benchmarks in several different applications, including long- and short-term forecasting, anomaly detection, and

other time-series based tasks
::::::
various

:::::::
standard

::::::::::
benchmarks.

3.1 Temporal Convolutional Network (TCN)

Based on well-known convolutional neural networks (CNNs) (Fukushima, 1988; Waibel et al., 1989; Weng et al., 1993; Lecun

et al., 1998), TCNs are variations that consist of dilated, causal 1D convolutional layers that have the same input and output170

lengths. Dilation ensures that a specific entry in the output depends on all previous entries in the input, while causal convolution

means that the i-th element of the output sequence may only depend on input elements that come before it (elements with

indices {0, . . . , i}).
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Figure 3. Structure
:::::::
Flowchart

:
of the input data and

:::::::
proposed

:::::::::
TCN-based architecture

:::
with

:
a
:::::::
drawing of

::
an

::::
IMIS

::::::
station

::
on

:
the modified

TCN employed
::
left. A time window for

::
of 4 input signals of length 48

::
(1

:::
day)

::::::
coming

::::
from

::
an

::::
IMIS

:::::
station

:
is fed to the TCN, which causally

aggregates information from all time steps into a 128-dimensional latent vector. This information is subsequently fed into the classification

network, which applies a sequence of MLPs to classify the input signal into two classes - Snow or No Snow. Each dilated 1D conv block

has filters described in the format (in_feats
:::::::::::
input_features × out_feats

::::::::::::
output_features @ kernel_size). The composition of each MLP is

described as (in_feats
::::::::::
input_features, hid_feats_1

::::::::::::::
hidden_features_1, . . . , out_feats

:::::::::::
output_features).

As shown by Lea et al. (2016), with dilations and causal convolutions, TCNs can recover the behavior of RNNs (e.g.

LSTMs or GRUs (Cho et al., 2014)) and achieve state-of-the-art results compared to RNNs on many tasks. Moreover, TCNs175

do not suffer
:::::
while

:::
not

::::::::
suffering from typical drawbacks of RNNs, such as the vanishing gradient problem (Pascanu et al.,

2013), and are therefore easier to train. The use of convolutions instead of a recurrent mechanism also potentially leads to

further performance improvements due to the possibility of parallelization of the convolution operation.

We chose a 4-layer TCN architecture as shown in Figure 3, which has 4-dimensional time series with 48 time steps as the

input. The number of layers and filter sizes were selected so that the output representation of the last point in the input time180

series is an aggregation of all previous time steps. In other words, the TCN produces an output representation of the last point

in the input time series by aggregating information from the whole history available at the input. This representation is fed

to an MLP classifier, which first produces a series representation and then uses this representation to produce output class

probabilities.

3.2 Training185

Snow height classification is a binary problem. Binary classification problems are typically optimized using the cross-entropy

objective
:::
loss function (Good, 1952). The simple cross-entropy loss will unfortunately

:
,
:::::
which

:::
did not yield good results in our

case. At places of interest that are available
::::
Many

::
of

:::
the

:::::::
stations

:::::::
included

:
in the dataset , the snow cover usually prevails, hence

creating significant imbalance
:::
are

::::::
located

::
in

::::::
places

:::::
where

:::::
snow

::
is

::::::
present

:::
for

:::::
much

::
of

:::
the

::::
year,

::::::::
resulting

::
in

::::::::::
considerable

:::::
class

::::::::
imbalance

::
in

:::
our

::::
data. Moreover, as mentioned in Section 2.1.2, in many cases the classification task is simple, and we would190

like our model to perform well on the challenging edge cases. We therefore
::::::::
Therefore,

:::
we chose to drive the optimization by the

8



so-called focal loss (Lin et al., 2017), which allows the model to
:::::::::::
preferentially focus and train preferentially on hard examples ,

::
on

::::::::
examples

::::
that

:
it
:::
has

::::::::
difficulty

:::::::::
classifying

::::::::
correctly while down-weighting the simple cases throughout the training process.

The focal cross-entropy loss is defined as

FL =−
N−1∑
i=0

αi(i− pi)
γ logb(pi), (1)195

where αi is the so-called balancing factor for class i, further contributing to class balancing, γ is the focus parameter which

controls the down-weighting of the easy examples, pi is the probability of the sample belonging to the i-th class, N = 2 is the

number of classes in the classification problem, and b is the logarithm base; typically b= 10.

We run training for a maximum of 300 epochs, feeding the model with a batch of 64
:::
128

:
samples in each iteration. We allow

for the possibility of early stopping , if the validation loss has not improved for more than 50 epochs. The optimization process200

was governed by the AdamW (Loshchilov and Hutter, 2019) optimizer with an initial learning rate of 10−3. The learning rate

was subject to step decay with factor 0.1, three times, after 50, 100 and 150 epochs.

4 Experiments

In this section, we summarize experiments performed to evaluate CleanSnow. We start by describing the dataset used throughout

the experiments. With a series of ablation studies, we clarify various design choices and then compare our TCN, the model of205

choice, to other available options. We continue with a thorough evaluation of the TCN in different periods of the year, pointing

out its strengths and weaknesses. Experiments are concluded with a case study that demonstrates the use of CleanSnow in

vegetation science.

3.1 Dataset

In all experiments, we used the snow/no-snow dataset described in Section 2.1.1. This dataset was split into train and evaluation210

subsets (see Section 2.1.2). For model training, we further split
:::::::::
(randomly)

:::::::
divided

:
the training subset into the part on which

we trained CleanSnow and a validationpart that
:::
two

::::
parts

:::::
using

::
a

:::::
90/10

::::
split:

:::::
90%

::::
used

:::
for

::::::
training

::::::::::
CleanSnow

::::
and

::::
10%

:::
for

::::::::
validation.

::::
The

:::::::::
validation

::
set

:
was used to validate CleanSnow

::::::
monitor

:::::::::::
CleanSnow’s

:::::::::::
performance during training and allowed

for
::::::::::::
hyperparameter

::::::
tuning,

::::
and

::::::
enabled

:
early stopping to avoid over-fitting of the model

::::::
prevent

:::::::::
overfitting on the training data

(Ying, 2019). The available validation dataset was also used for model hyperparameter tuning.215

The whole training dataset contained a huge amount of data
::::::::::::
approximately

:
7
:::::::
million

:::
data

::::::::
samples,

:
which would be rather

impractical for experimentation
:
, as it would yield extremely long training times and high compute demands, which might not

always be available. To make our experiments more tractable, we selected roughly 30% of the data from every station in the

training set using filtering by year.
:
(Table B1 shows which years were used from each station

:
).

We split our trainingdataset randomly using a 90220

3.2
::::::::::::::

Hyperparameter
::::::
tuning

9



:::
We

:::::::::
performed

:::::
5-fold

:::::
cross

::::::::
validation

:::::
with

::::::
random

:::::::
training/10 split, meaning we used 90% of the training subset for model

training and
::::::::
validation

:::::
splits

::
in

:::::
order

::
to

:::::::
perform

:::::::::::::
hyperparameter

:::::
tuning

:::::
using

::::
grid

:::::
search

:::
for

:::
the

::::::::
following

::::::
model

::::::::::
architecture

::::::::
variables:

::::::
dropout

:::
and

::::::::::::::
output_activation

:::
for

:::
the

:::::
TCN,

::::::::::
batch_norm

:::
and

::::::::::::::::
activation_function

::
for

:
the remaining 10% for validation.

We fix the random seed in all our experimentsto ensure
::::
MLP,

::::::
gamma

:::
and

:::::
alpha

:::::::::
parameters

::
of

:::
the

::::
focal

::::
loss

::
as

::::
well

::
as

::::::::
optimizer225

:::::::
learning

::::
rate.

:::
For

::
all

:::::::::
remaining

::::::::::
experiments,

:::
we

::::
have

:::::
fixed

:
a
::::::
random

::::
seed

:::
for

:
the training/validation split remains the same across different

runs and also to support reproducibility of the
::
in

:::::
order

::
to

:::::
ensure

:::::
easy

:::
and

:::
full

:::::::::::::
reproducibility

::
of

:::
our

:
results. Random splitting

inherently takes care of having samples from different stations and different time periods throughout the whole training subset.

3.3 Ablation studies230

In the
:::
We

:::
opt

::
for

::
a
:::::
batch

:::
size

:
of

::::
128

:::::::
samples

::
as

:
it
::
is

:::::::::
sufficiently

:::::
large

:::::
while

:::
still

:::::
fitting

::::
into

:::
the

::::
GPU

::::::::
memory

::
we

::::
had

::::::::
available.

:::
Due

::
to
:::::::
limited

:::::::::
computing

::::::::
resources,

:::
we

:::
do

:::
not

:::::::
optimize

:::
the

:::::::::
remaining

::::::::::::::
hyperparameters

:::
and

:::
we

::::::
instead

::::::
select

::::
them

:::::
based

:::
on

::::::
similar

::::::::::
architectures

::::::::
available

::
in

:::::
other

:::::
works

:::
and

:::
our

::::::::::
experience

::::
with

::::::::
designing

:::::::
machine

:::::::
learning

:::::::
models.

:

4
::::::
Results

::
In

:::
this

:::::::
section,

:::
we

::::::::::
summarize

::::::::::
experiments

:::::::::
performed

::
to
::::::::

evaluate
::::::::::
CleanSnow.

:::::
With

:
a
:::::
series

:::
of

:::::::
ablation

:::::::
studies,

:::
we

::::::
clarify235

::::::
various

:::::
design

:::::::
choices

:::
and

::::
then

:::::::
compare

:::
our

:::::
TCN,

:::
the

::::::
model

::
of

::::::
choice,

::
to

::::
other

::::::::
available

:::::::
options.

:::
We

:::::::
continue

::::
with

:
a
::::::::
thorough

::::::::
evaluation

::
of
:::

the
:::::

TCN
::
in

::::::::
different

::::::
periods

::
of

:::
the

:::::
year,

:::::::
pointing

:::
out

:::
its

:::::::
strengths

::::
and

::::::::::
weaknesses.

:::::::::::
Experiments

:::
are

:::::::::
concluded

::::
with

:
a
::::
case

:::::
study

:::
that

:::::::::::
demonstrates

:::
the

:::
use

:::
of

:::::::::
CleanSnow

::
in

:::::::::
vegetation

:::::::
science.

4.1
::::::::::

Experiments
:::::
with

::::::::::
CleanSnow

:::::
setup

::
In

:::
the following sections, different ablation studies

::::::::::
experiments

::::
with

:::
the

:::::::::
CleanSnow

:::::::::::
configuration

:
and model comparisons are240

shown to explain our design choices and their contribution to obtaining the best results. Results presented in this section may

serve as guidelines for designing machine learning solutions for snow height classification. All ablation studies were performed

with a version of the TCN developed before feature elimination, which took
:::
All

::::::::::
experiments

::::
were

:::::::::
performed

:::::
using

:
a
:::::
TCN

::::
with

seven input features, namely HS, TSS, TA, RSWR, RH (relative humidity), WV (wind speed)
:
,
:::
WV

:
and solar altitude (which

encodes information about the date and time of the day).245

Models were compared using the Receiver Operating Characteristic (ROC) curve (Egan, 1975), which is a plot showing the

performance in terms of the true positive rate (TPR) and the false positive rate (FPR),
::::
and

:::
the

:::::::
F1-score.

4.1.1 Synthetic ground-truth experiments

To demonstrate the need for annotated data, we trained a model using synthetic ground truth based on empirical rules developed

according to human expert knowledge. In order for a sample to correspond to snow cover, the following condition had to be250

10



(a) (b)

(c) (d)

Figure 4. ROC curves for various ablation studies. Every plot additionally shows the macro-F1 score for the threshold where TPR = FPR

(the point on each curve). (a) Importance of manually annotated ground truth data. (b) Effect of class balancing. (c) Importance of input

features. (d) Influence of sequence length on model performance.
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met:((
1

N

N−1∑
n=0

TSSn

)
≤ 0.0

)
∧

((
1

N

N−1∑
n=0

RSWRn

)
≥ 300.0

)
,

where N is the length of the time window.

::::
(see

::::::::
Appendix

:::
C).

:
We compared the model trained with the synthetic ground truth information to the model trained with

the manually annotated data. The results in Figure 4(a) demonstrate the inability of thresholding rules to generate reliable255

ground-truth information that could be leveraged for training. This resulted in the TCN Synth
:::::::
Synthetic

:::::::
Ground

:::::
Truth model

not learning the correct relationships between different input variables
:
,
:::::::
yielding

::
an

::::::::
F1-score

::
of

:::::
93% and therefore having a

much worse performance than
:::::
lower

:::::::::::
performance

:::
than

:
TCN Annot

::::::
Manual

:::::::
Ground

::::
Truth, which was trained with our manually

annotated dataset
:::
and

::::::::
achieved

:
a
::::::::
F1-score

::
of

::::
97%.

4.1.2 Class balancing260

Our training dataset included roughly twice as many snow-covered samples as snow-free samples. We applied class balancing

by adjusting the class weights of the focal cross entropy loss and observed how that affected the performance of CleanSnow.

:::
We

::::
have

::::::::
assigned

:
a
::::::
weight

::
of

::::
1.0

::
to

:::
the

::::
class

:::::::::::
representing

:::::
snow

:::
and

::
a
::::::
weight

::
of

:::
0.5

:::
to

:::
the

::::
class

:::::::::::
representing

::::
bare

:::::::
ground,

::
as

::::
there

:::
are

::::::::::::
approximately

:::::
twice

::
as

:::::
many

::::
data

:::::::
samples

:::::
from

:::
the

:::::::::::
snow-covered

::::::
period.

:
Figure 4(b) shows that class balancing

improved the performance
::::
from

::
an

:::::::
F1-score

:::
of

:::::
95.2%

::
to
::::::
96.7%

:
and was therefore a valid design choice in our pipeline.265

4.1.3 Feature importance

We performed an ablation study training the model
:::::::::
CleanSnow with a leave-one-out strategy for the input features to validate

their importance for the model decision-making. We picked the TCN architecture as it is our choice for the final solution. A

comparison of TCN models with different input features missing is shown in
:
(Figure 4(c)

:
).

The HS, TSS, TA and RSWR signals proved
::::
were

:::::
found

:
to be important

:::
(i.e.

::::
their

:::::::
removal

:::::::
resulted

::
in

:
a
::::::::
reduction

::
in

::::::
model270

::::::::::
performance

::::
with

::
a

:::::::
decrease

::
in

:::
the

::::::::
F1-score

::
of

::
up

::
to
::::
4%), in line with what was discussed above for manual data annotation.

On the other hand,
::::::::
removing

:
WV and RH had no beneficial effect and even slightly deteriorated the overall performance

::::
from

::
the

:::::
input

:::::::
features

::::
only

::::::::::
marginally

::::::::
improved

:::::
model

::::::::::::
performance,

:::::::::
suggesting

:::
that

::::
they

:::::
have

::
no

:::::::
positive

:::::
effect. Hence neither

feature provided any additional information useful for classification. Interestingly,
::::::::
However,

::
for

:::::
other

::::
tasks

:::::
such

::
as,

::::
e.g.,

:::::
snow

:::::
height

:::::::
anomaly

:::::::::
detection,

::::
WV

:::::
might

::::
very

::::
well

::
be

::
an

:::::::::
important

:::::
signal

:::::::
carrying

::::::::::
information

:::::
about

:::::
snow

:::::::
transport

:::
by

::::
wind

::::
and275

:::::
related

:::::::::::
phenomena.

:::::::::::
Interestingly,

::::::::
removing

:
solar altitude, which encodes information about date and timein continuous way,

deteriorated
:
,
::::::::
improved

:
the performance of the modelconsiderably.

::::::::::
(increasing

:::
the

::::::::
F1-score

::
by

::::::
1.5%).

::::
We

:::::::
attribute

:::
this

:::
to

::
the

::::
fact

::::
that

::::
solar

:::::::
altitude

::::::::::
information

:::::::::
potentially

::::::
makes

:::
the

::::::
model

::::::
decide

:::::
based

::
on

::::
the

::::
date

:::
and

::::
time

:::
of

:::
the

::::
year,

::::::
which

::
is

::::::::::
undesirable.

:::
As

:::::
much

::
as

::::
date

::::
and

::::
time

::::::::::
information

:::
are

::::::::
generally

:::::
valid

::::::::
indicators

:::
of

:::
the

::::::
season

:::
and

::::::::
therefore

:::::
have

:
a
::::::
strong

:::::::
influence

:::
on

:::
the

:::::::
presence

::
of

:::::
snow,

::::
they

:::::
might

:::::::
hamper

::::::::::::::
decision-making,

::::::::
especially

::
at
:::
the

:::::::::
beginning

:::
and

:::
end

::
of

:::
the

:::::
snow

::::::
season280

:::
and

::
in

:::
the

::::
case

::
of

:::::::
summer

:::::::::
snowfalls,

:::::
whose

:::::::::
occurrence

::::::
varies

::::
from

::::
year

::
to

::::
year.

:
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Accordingly
::::::::
Therefore, we chose our final model to have four input features, namely HS, TSS, TA and RSWR.

4.1.4 Sequence length selection

One of the key model architectural hyperparameters
:::::::::
parameters

::
to

::::::
choose

:
is the length of the history the models can use

top
:::::
model

::::
can

:::
use

:::
to predict the current time step. Figure 4(d) shows the relationship between history length and model285

performancein Figure 4(d). The best results were obtained with a history length of 48 time steps (24 hours)
::::::::
achieving

:::
an

:::::::
F1-score

:::
of

::::
97%; very similar results were obtained with a history of length 32 (18 hours)

::::
with

::
an

::::::::
F1-score

::
of

::::
96%. A history

length shorter than 24 time steps deteriorated the performance. Likewise , the performance decreased for history lengths larger

than 96 time steps. Accordingly, we selected the history length to be 48 time steps as a compromise between sufficient but not

too much context for the model.290

4.2 Model selection

To choose the right architecture for the task at hand, we experimented with several state-of-the-art machine learning models for

single time-step and time-series processing, compared their performance
:
,
:
and finally selected the one that performed the best

overall. Our model of choice was TCN, which was explained in Section 3.1
::
the

:::::
TCN. A short description of the other models

we evaluated is provided in Appendix D.295

To have a balanced model which
:::
that

:
does not favor one of the classes, we selected the decision threshold as the point where

TPR= FPR. We evaluated the
::::
each model for two scenarios: one with all seven input features and one with only the four

relevant features.

Figure 5 shows the overall best performance of the TCN
:::
with

:::
an

:::::::
F1-score

::
of

::::::
97.8%. Removing RH, WV and solar altitude,

which were identified as irrelevant features resulted in a significant improvement of the LSTM modelperformance,
::::::::
equaling300

::
the

:::::::::::
performance

:::
of

:::
the

:::::
TCN

::::::
having

::
an

::::::::
F1-score

::
of

::::::
97.7%. Nevertheless, we opted for the TCN as it was on par with the

LSTM, and the results in Figure 5(a) suggest that the TCN is more resilient to unimportant features in the input. In addition,

the TCN showed advantages for training over RNNs
::
is

::::::
known

::
to

::
be

::::::
easier

::
to

::::
train

::::::::
compared

:::
to

::::::
LSTMs. Interestingly, for RF

the performance improved when using all features, which suggests it may learn undesired and spurious (see Section 4.1.3)

relationships between inputs to distinguish snow from snow-free ground based on WV, RH and solar altitude
:
is
::::
less

:::::::::
dependent305

::
on

:::
the

::::::::
selection

::
of

::::
input

::::::::
features,

:::::::::
suggesting

::
its

::::::
ability

::
to

::::
deal

::::
with

:::::::::::
uninformative

::::::
inputs.

4.3 Performance analysis per station

To better understand the generalization capabilities of the model, we evaluated its performance for each test station separately.

The results in terms of confusion matrices are presented in Figure 6 and suggest good generalization capability of the model for

most stations, with the exception of
:::::
except SLF2 and STN2. These two stations lie in very particular locations and are therefore310

out of distribution samples, which are described in detail below in Section ??.
:::
The

:::::::
stations

:::::
SLF2

:::::
(1563

:::
m)

:::
and

:::::
STN2

::::::
(2914

::
m)

:::::
were

:::::::::::
considerably

::::::
outside

:::
the

::::::::
elevation

:::::
range

::::
that

:::
was

::::::::
available

::::::
during

:::::::
training.

:::::::::
Moreover,

:::::
these

::::
two

::::::
stations

:::
are

::::::
rather

13



(a) (b)

Figure 5. Model comparison shown as ROC curves for two different versions of the six models
:::::
(LSTM,

:::::
TCN,

::::::::
TimesNet,

::::::::::
Transformer,

::::
MLP

:::
and

:::
RF): Model performance with (a) all seven input features - HS, TSS, TA, RSWR, RH, WV and solar altitude, and (b) with the four

relevant input features - HS, TSS, TA and RSWR. Every plot additionally shows the macro-F1 score
:::::
macro

:::::::
F1-score for the threshold where

TPR = FPR (the point on the curve).

::::::
special

::::
cases

:::::::::
compared

::
to

:::::
most

::
of

:::
the

:::::
other

::::::
stations

::::
and

:::
can

:::
be

:::::::::
considered

:::::::::::::::
out-of-distribution

::::::::
samples.

::::
The

::::::
station

:::::
SLF2

::
is

::::::
located

::
on

::
a

:::::::
meadow

::
in

:::
the

::::::
village

::
of

::::::
Davos,

:::::
which

::::::
seems

::
to

::::
have

:
a
:::::::
positive

:::::
effect

::
on

:::
the

:::::::::::
classification

::::
into

:::
the

::::
class

:::
no

::::
snow

:
,

::
as

:
it
::::
was

:::
the

::::
only

::::::
station

::::
with

::
an

::::::::
F1-score

:::
for

::::
class

:::
no

::::
snow

:::::
higher

::::
than

:::
for

::::
class

:::::
snow

:
.
:::
The

::::::
station

::::::
STN2,

:::::::
instead,

:::::
stands

:::
on315

:
a
::::::
glacier,

::::::
which

::::::
results

::
in

::::
very

:::::::
different

::::::
ground

:::::::::
properties

::::::::
compared

:::
to

:::
any

:::::
other

::::::
station

::
in

:::
the

::::::
dataset.

::::
This

::
is
::::::::
reflected

::
by

::
a

:::::
lower

:::::::
F1-score

:::
for

:::
the

::::
class

:::
no

::::
snow

:
,
::::::::
especially

::
as

::::::
STN2

::::::
reached

:::
an

:::::::
F1-score

::
of
:::::
only

:::::
94.5%

::::::
(which

::
is
:::
2%

::::
less

::::
than

:::
any

:::::
other

:::::
station

::
in
::::

the
:::
test

::::
set). In addition, from Figures 6 and 7 one can further conclude that the model generally performs slightly

better in correctly classifying
:::::::
classifies

:::
the

:
presence of snow , compared to classification of snow-free ground.

::::::
slightly

:::::
better

:::
than

:::
the

:::::::
absence

::
of

:::::
snow.

:
320

The seemingly good performance of the model should however be taken with a grain of salt. There are periods for which it is

rather easy to correctly classify snowas snow and snow-free ground as no snow and other times of the year, when the problem

becomes much harder. This is discussed in detail later in Section 4.4.

Confusion matrices for each test station separately ordered by elevation.

4.4 Influence of station location325
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It is
::
It

:
is
::::
also important to understand whether CleanSnow generalizes to stations at different locations with different elevations.

:::
The

:
Results presented in Figure 7 suggest that the model performance was very stable for stations at elevations between

roughly
:::::
abouty

:
2100 and 2700 m a.s.l., while it dropped

::::::::
decreased for stations located either below or above this range. This

corresponds to the fact that 80% of stations in our training set were in this range and only two stations were below 2000 m and

one station was at 2800 m.330

The two stations where model performance was lowest, SLF2 (1563 m) and STN2 (2914 m) were considerably outside the

elevation range that was available during training. Moreover, these two stations are rather special cases compared to most of the

other stations. SLF2 is located on a meadow in the village of Davos which seems to have a positive effect on the classification

into the class no snow, as it was the only station with a F1 score for class no snow higher than for class
::::::::
seemingly

:::::
good

::::::::::
performance

::
of
::::

the
:::::
model

::::::
should

::::::::
however

:::
be

:::::::
analyzed

:::
in

:::::
detail.

::::::
There

:::
are

::::::
periods

:::
for

::::::
which

::
it
::
is

:::::
rather

:::::
easy

::
to

::::::::
correctly335

::::::
classify

:::::
snow

::
as snow

:::
and

::::::::
snow-free

:::::::
ground

::
as

::
no

:::::
snow,

::::
and

::::
other

:::::
times

::
of

:::
the

::::
year

:::::
when

:::
the

:::::::
problem

::::::::
becomes

:::::
much

:::::
harder.

STN2, instead, stands on a glacier, which results in very different ground properties compared to any other station in the

dataset. This is reflected by a rather low F1 score for the class no snow
::::::::
discussed

::
in

:::::
detail

::::
later

::
in

:::::::
Section

:::
4.4.

(a) SLF2 (1563 m) (b) SHE2 (1852 m) (c) KLO2 (2147 m)

(d) TRU2 (2459 m) (e) WFJ2 (2536 m) (f) STN2 (2914 m)

Figure 6.
::::::::::
Performance

::::::::
evaluation

::
of

:::
each

:::
test

::::::
station

::::::::
separately,

:::::
shown

::
in

::::
terms

::
of
::::::::

confusion
:::::::
matrices

::::::
ordered

::
by

:::::::
elevation:

:::::
SFL2,

::::::
SHE2,

:::::
KLO2,

:::::
TRU2,

::::::
WFJ2,

:::::
STN2.

::::
Each

:::::::
confusion

::::::
matrix

::
has

::::::
targets

::
as

:::
rows

:::
and

:::::::::
predictions

::
as

:::::::
columns.
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Figure 7. Model performance for the six stations of
:
in
:

the test subset as a function of elevation. The F1 score
::::::
F1-score

:
is shown separately

for the classification of snow (red line) and no snow (green line). The blue columns indicate the elevation distribution in the training subset

(14 stations).

4.4 Performance for different times of the year

Classification of snow height measurements into snow and snow-free ground can be both a simple and rather challenging task340

depending on the location and time of the year. We provide a per-month performance analysis in Figure 8, which shows that the

model mostly had trouble predicting snow-free ground in winter months. This is because very little training data for that class

were available during December, January, February and March, and it was not well represented in the training set. The lack of

data for snow-free ground in these months is further emphasized by the fact that
:
.
:::::::::::
Furthermore, we had no samples from this

class
::::::::
snow-free

:::::::
samples

:
in the test set for February and March. In summer instead, the results suggest CleanSnow was able to345

detect most of the summer snowfalls
:::::
(with

::::::::::::
approximately

::::
20%

::::::::::
performance

:::::
drop

::::::::
compared

::
to

:::
full

::::::
winter)

:
while retaining very

good performance on predicting snow-free ground. At the end of winter, in May and June, the model performance was also

very good, suggesting that CleanSnow can
::
be

::::
used

::
to
:

accurately predict the snow disappearance date
:::
(as

:
a
::::::

longer
:::::::::
snow-free

:::::
period

::::
after

::
a

::::
long

:::::
period

::::
with

::::::::
constant

::::
snow

::::::
cover).

Figure 8. Performance of the model for each month of the yearseparately. The F1 score is shown separately for the classification of snow

(red line) and no snow (green
:::::
yellow line). The blue columns indicate the distribution of snow samples, while the yellow columns indicate

the distribution of the no-snow samples.
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In addition, we analyzed the model performance for each season. To this end, we split the test dataset into four different350

seasonal clusters:

– Winter season was defined as the period with mostly continuous snow cover (December, January, February, March,
:
and

April)

– Summer season was the part of the year typically without snow (July, August and September)

– End of winter season defined the snowmelt period resulting in snow-free ground (May, June and July)355

– Start of winter season included the months when it starts snowing more often and at some point a continuous snow

cover forms on the ground (September, October and November)

In the following sections we describe the model performance for each of the four seasonal clusters in detail and point out some

season-specific challenges.

4.4.1 Winter season360

For snow classification, the middle of winter is presumably the easiest time of the yearto deal with. Besides some low-elevation

stations and some exceptional seasons with a very late onset of winter or very early snowmelt, the task should be rather

trivial, as the snow cover is continuous in time. Figure 9(a) demonstrates that the model confidently classified snow (TPR =

99.4%
::::::
99.36%) in contrast to the classification of snow-free groundwith TPR = 88.4%

::::::::::::::
(TPR = 88.35%).

4.4.2 Summer season365

In contrast to full winter,
::
the

:
classification of snow in the summer was

:
is

:
more challenging. Besides snow-free ground, there

were many stations where vegetation grew. This results
:::::::::::::
(approximately

::::
20%

::
of

:::
the

::::
data

::
in

:::
the

::::
test

:::
set).

:::::
This

::::::
resulted

:
in non-

zero snow height sensor measurements, which do not correspond to snow. Exceptions were stations at high elevations (e.g., on

a glacier) and winters when the snow did not melt until the beginning of summer.

The snow height signal for snow-free ground typically oscillates with high frequency and either stays around zero or grows370

in the presence of vegetation under the sensor. The surface temperature and air temperature will most of the time oscillate high

above 0◦C,
:
showing a diurnal cycle. During overcast periods or in the presence of precipitation, TA and TSS will show the

same value. Due to the lower albedo of snow-free ground, smaller amounts of reflected solar radiation (RSWR )
::::::
RSWR are

measured. Based on the above assumptions, summer snowfalls can be detected when TA equals TSS
:
,
:
which is followed by

larger values of RSWR with a simultaneous decrease in TSS. If there is vegetation growing under the station, the HS signal375

counter-intuitively decreases as the plants get pressed down by the snow. In the case of snow-free ground under the sensor, the

HS signal will increase as expected during a snowfall.

Despite the challenging setting, Figure 9(b) demonstrates that the model accurately detected snow-free ground with 99.2%

::::
99% accuracy. The effect of summer vegetation is shown in Figure 10(a). On the other hand, detecting a snowfall in the summer

proved to be difficult, and even more so when vegetation was present. In this very difficult setting CleanSnow achieved a380
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(a) Winter season (December - April) (b) Summer season (July - September)

(c) End of winter season (May - July) (d) Start of winter season (October - December)

Figure 9. Confusion matrices for each of the four seasonal clusters.
::::
Each

:::::::
confusion

:::::
matrix

:::
has

:::::
targets

::
as
::::
rows

:::
and

:::::::::
predictions

::
as

:::::::
columns.

performance of 81.1%
:::
81%. A partial detection of a summer snowfall is shown in Figure 10(c). CleanSnow succeeded in

detecting the main event but failed to correctly classify a few hours both at the start and the end of the summer snowfall.

4.4.3 Start and end of winter season

The transition periods between winter and summer and vice versa are key periods for the detection of the first snow and its

disappearance, which are both dates of interest in climate science. These two seasonal clusters contain both data with rather385
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(a) SLF2 (1563 m), Year 2020

(b) SHE2 (1852 m), Year 2022

(c) TRU2 (2459 m), Year 2005

(d) STN2 (2914 m), Year 2013

Figure 10. Examples of classification results
::
by

:::::::::
CleanSnow. The snow height signal is depicted in blue. The model predictions in terms of

probability (0 - 1) are shown in green. The dashed horizontal line denotes the decision threshold
::::::
selected

::
to

::::::
balance

::
the

:::::
model

::::::::::
performance

::
on

::::::::
predictions

:
for binary classification

:::
both

::::::
classes. The red-shaded areas show

::::
mark

::::::
regions

::::
with classification errors

::::
(i.e.

::::::
samples

:::::
being

::::::
assigned

::
to
:::
the

:::::
wrong

:::::
class). (a) shows a correct classification of summer vegetation growth

:::
(the

:::::::
non-zero

::::
blue

:::::
curve

::
is

:::::::
classified

::::
with

::::::::
probability

::::
lower

::::
than

::
the

:::::::
decision

:::::::
threshold,

:::::::
therefore

:::::
being

::::::
assigned

::
to

::::
class

::::::
no-snow

:
). (b) is an example of early October snowfall that has

been classified partially correctly. (c) demonstrates the model’s capability to detect summer snowfalls as well as scattered snowfalls at the

beginning of winter. (d) is evidence that the model does not always perform well, here making mistakes at the beginning of the next winter

season.
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continuous snow cover and with bare ground or vegetation growth. Such data are therefore a perfect test case for the approach

we developed
:::::::::
CleanSnow.

In our experiments, the end-of-winter season was the easier case to classify, achieving a very competitive performance of

98% for snow and 99% for snow-free ground (Figure 9(c)
:::
and

::::::
Figure

:::
10). We attribute this high accuracy to the fact that the

transition from snow-covered to snow-free ground was often rather smooth, and once the snowpack had melted, there were not390

many periods with snow persisting on the ground. The beginning of summer was typically represented by high air temperatures,

which caused TSS to oscillate with the daily cycle indicating snow-free ground; simultaneously RSWR noticeably decreased

once the snow had completely melted. Examples for end-of-winter season detection are shown in Figure 10.

On the other hand, classification during the start-of-winter season was more challenging: the model achieved an accuracy

of 95.1%
::::
95%

:
for snow and 93.2%

:::
93%

:
for snow-free ground (Figure 9(d)

:::
and

:::::
Figure

:::
10). There were multiple snowfalls395

at the beginning of the season after which the snow melted again completely. In addition, in late autumn and the beginning

of winter, temperatures occasionally dropped and the ground froze overnight. This resulted in TSS being constantly less than

or equal to 0◦C even without snow
:
,
:
which might force the model to focus more on RSWR and HS during decision-making,

potentially decreasing its decision power. The tricky nature of snow height classification at the-start-of-winter season is shown

in Figure 10.400

4.5 Comparison to manual observations

A perfect test case are stations with concurrent manual observations, i.e., measurements manually performed by human ob-

servers. Such measurements were available for the two stations WFJ2 and SLF2 located in the region of Davos.

Since the manual measurements were done only once per day, we resampled our predictions from 30-minute intervals

into 24-hour intervals. We averaged probability scores over the 24 hours (48 automatic measurements) to obtain the per-day405

probability score.

The performance comparison on annotated automatic measurements versus manual observations in Figure 11 confirms that

we had produced high-quality annotations for the historical data. Some days with snow were erroneously annotated as snow-

free ground. This can be related both to short snowfalls which disappear in daily aggregation and also to the fact that manual

observations were performed around 08:00 CET in the morning, while our data were daily averaged values. Such misalignment410

might produce additional disagreements between manual observations and our annotations.

The results also show that CleanSnow achieved
:
a very good performance when evaluated against daily manual observations.

The differences in performance between the two ground-truth sources
:::::::::::::
(approximately

::::
2%

::
in

::::
TPR

::::
and

:::::
1.5%

::
in

:::::
TNR)

:
were

attributed to the inconsistencies between the manual annotations of automatic measurements and manual observations.

4.6 Comparison to other approaches415

To further demonstrate the added value of our machine learning approach, we compared it to other state-of-the-art methods

such as filtering used in the physics-based snow cover model SNOWPACK (Lehning et al., 1999). In particular, we considered

the snow water equivalent (SWE) provided by SNOWPACK since the HS signal is filtered to calculate SWE. Therefore, SWE
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(a) WFJ2 Annotations (b) WFJ2 Observations

(c) SLF2 Annotations (d) SLF2 Observations

Figure 11. Confusion matrices for daily aggregated values on
::::::::
comparison

::
of

:::::
model

::::::::::
performance

:::::::
evaluated

::::::
against our annotations (left) vs.

:::
and

:::::
against

:
human observations

::::::
observer

:::::::::::
measurements (right). Results for station WFJ2 are in (a) and (b), followed by results for SLF2 in

(c) and (d).

should be a good indicator of whether the HS signal relates to snow or not. If the HS signal does not represent snow, one would

expect SWE to be 0. In addition, we also compared CleanSnow to thresholding-based filters implemented in the MeteoIO420

library, which were mainly designed to filter vegetation growth measurements in summer.

Figure 12 shows the comparison of the snow height classification by our TCN model to classification based on SWE cal-

culated by SNOWPACK and the MeteoIO filter. The results clearly show
::::::
suggest

:::
that

:
the machine learning approach to be

21



Figure 12. Performance
:::::::::
Comparison

::
to

:::::
other

::::::::
approaches

:::::
shown

:::
as

:::::::::
performance

:
(F1 score

::::::
F1-score) per station for the TCN

:::::::::
CleanSnow

(blue), the filter based on the SWE from SNOWPACK (red) and the thresholding filter from MeteoIO (green
:::::
yellow).

superior
:
is
::::::::
superior

::
in

::::
most

:::::
cases. This might be attributed to the fact that both SNOWPACK and MeteoIO use thresholding-

based rules based on TSS and TG to filter HS similarly to the approach described by Tilg et al. (2015). The optimal threshold425

values vary across different stations, which requires per-station calibration of the thresholds. Moreover, TG-based filtering is

problematic since, as already mentioned, the TG sensor is prone to failures and the signal is therefore often missing at some

stations.

4.7 Case study: Vegetation science
:::::::
growth

Besides obvious applications in snow science, a reliable separation of snowfall from plant growth also has benefits for biological430

research. Removing HS measurements classified as snow allows
:::
for the extraction of a clean vegetation signal and pinning

down
:::
the

::::::
pinning

::::::
down

::
of

:
reoccurring events in the life cycle of alpine vegetation – referred to as vegetation phenology.

Given the long running time of continuous snow /plant height data collection
:::::
Since

:::::
snow

:::
and

::::
plant

:::::::
heights

::::
have

::::
been

::::::::
recorded

::
for

::
a
::::
very

::::
long

::::
time, it is possible to relate the timing of green-up (i.e. the start of vegetation growth) or other phenological

phases to snow climate parameters, and study phenological shifts over time – an excellent indicator of climate change (e.g.435

Inouye, 2022). We extracted 25 years of vegetation growth data from HS measurement data at TUJ2 (Culmatsch, 2262 m

a.s.l.), an IMIS station characterized by tall plant growth. Within the 20 years of data, the algorithm flagged all snow days

during the vegetation period which were then removed. Snow disappearance and snowmelt dates were defined as the first,

respectively the last, day of the continuous winter snow cover. We fitted a logistic growth curve (Kong et al., 2022) to the

clean plant growth measurements and defined the start of growth by a 10% threshold of maximum plant height (Figure 13).440

Vegetation green-up was directly linked to the timing of snowmelt, consistent with other studies (Jerome et al., 2021; Jonas

et al., 2008), while late snowfall events shifted the start of growth towards later calendar days. Linear regression analysis

revealed an earlier occurrence of green-up over the study period coinciding with an increase in spring temperatures measured

at the station (Zehnder et al., in prep.). Despite insignificant changes in snowmelt timing, the shorter lag between snowmelt

and initiation of plant growth indicated
:::::::
suggests

:
a warming-driven advancement in phenology at the study site. This case study445
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highlights the importance of long-term monitoring and automated machine learning approaches in understanding climate-

induced phenological shifts, with implications for ecosystem dynamics in remote alpine regions.

Figure 13. An example of a logistic growth curve (in dark green) fitted to height measurements data from TUJ2, in the vegetation season of

::
the

:
year 2019. Snow height data corresponding to snow are shown with blue stars, while plant signal is shown with green diamonds. The red

cross marks the snowmelt date, while the orange diamond marks the start of plant growth.

5 Discussion

We proposed a deep learning-based approach to snow height signal classificationto automate the
:
,
:::::
which

::
is

::
a

::::::
crucial

::::
step

::
in

:::::::::
automating

:::
the

:::::
snow

:::::
height

:::::
signal

:
quality-checking process. In addition to selecting an appropriate model, we provided some450

good practices to develop machine learning models for automated snow height classification. In the following paragraphs, we

critically review our main findings.

5.1 Disentangling snow height from vegetation

To add labels to historical snow height measurements, we needed to understand which sensor measurements were informative

to separate snow height from snow-free ground measurements. We initially selected seven signals: HS, TA, TSS, RH, RSWR,455

WV, and solar altitude.

In Section 4.1.3 we showed that only HS, TA, TSS and RSWR were important for the classification of the snow height

signal into snow and snow-free ground, which is in line with domain expert knowledge. The behavior of these four variables

was explained earlier in Section ??. In contrast to domain expertise, we did not employ TG, as it was not available at all stations

and, moreover, sensors measuring TG are prone to failures. Nevertheless, TG is expected to potentially further improve the460

results if used.

The remaining sensor measurements, namely RH, WV and solar altitude, were identified as uninformative for the disentanglement

of snow and snow-free ground measurements. However, for other tasks such as, e.g., snow height anomaly detection, WV might
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very well be an important signal carrying information about snow transport by wind and related phenomena. Interestingly, solar

altitude, which carries information about date and time, led to a deterioration of model performance. We attribute this to the465

fact that solar altitude information potentially makes the model take decisions based on the date and time of the year, which

is rather undesirable. As much as date and time information are generally valid indicators of the season and therefore have a

strong influence on the presence of snow, they might hamper decision-making, especially at the beginning and end of the snow

season and in the case of summer snowfalls, whose occurrences vary from year to year.

5.1 Deep learning models for snow height classification470

Second, the suitability of state-of-the-art deep learning models for the snow height classification task has been studied. Several

cutting-edge deep learning architectures have been evaluated against each other, resulting in the superiority of a Temporal

Convolutional Network over the other compared methods. The TCN reached an accuracy of 97.7% when we used a decision

threshold that balanced the model performance on predictions for both classes - snow and no-snow. No data from the test

stations were used during training. Hence, the results indicate that the approach generalizes well to unseen stations. A detailed475

performance evaluation for each station in the test set showed that the model performed very well except on SLF2 and STN2,

which are two particular cases. The station SLF2 is located low in a valley and STN2 on a glacier. Such special environments,

compared to those of most other stations in the dataset, might cause slightly different behavior of the auxiliary variables used

during HS analysis and result in a performance decrease.

5.1 Best practices for snow height classification using machine learning480

In our analysis, we aimed to establish good practices for further development of machine learning methods for snow height

classification and quality assessment. We showed that learning from synthetic ground-truth data generated using thresholding

rules proposed in the past did not work well, as the predefined thresholds did not generalize to all stations without modifications.

This emphasizes the need for well-annotated data for training. Next, we pointed out the importance of addressing the class

imbalance problem to achieve the best possible performance. Furthermore, we demonstrated the superiority of sequence-based485

models (TCN, LSTM, TimesNet and Transformer) over single time-step-based models (RF and MLP), which confirms the

need for temporal context to achieve a high classification performance. We acknowledge the existence of techniques that allow

one to feed RF and MLP models with sequences of data, e.g., lagged features (i.e., adding data from previous time steps as

extra input features). Nevertheless, we argue that such techniques do not treat sequential data as a causal sequence, which is

conceptually non-ideal and might potentially lead to the resulting model becoming less explainable in how it treats temporal490

information. Another important aspect to consider is the sequence length. We performed an analysis of the performance for

the length of the time window (i.e., the size of the temporal context), which revealed that the ideal length was around 48 time

steps, as shorter and longer time windows resulted in a deterioration of the model performance. Subsequently, we showed that

it was important to evaluate the model performance during the critical times of the year (the start and the end of the winter

season) to reveal their true performance.495
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5.2 Processing
::::
Deep

::::::::
learning

::::::
models

:::
for

:::::
snow

::::::
height

::::::::::::
classification

:::
We

::::::
studied

:::
the

::::::::
suitability

:::
of

::::::::::::
state-of-the-art

::::
deep

:::::::
learning

:::::::
models

::
for

:::
the

:::::
snow

::::::
height

:::::::::::
classification

::::
task.

::::::
Several

:::::::::::
cutting-edge

::::
deep

:::::::
learning

:::::::::::
architectures

:::::
have

::::
been

:::::::::
evaluated

::::::
against

:::::
each

:::::
other,

::::::::
resulting

::
in

::::
the

:::::::::
superiority

:::
of

:
a
:::::

TCN
:::::

over
:::
the

:::::
other

::::::::
compared

::::::::
methods.

:::::::::
CleanSnow

:::::::
reached

:::
an

:::::::
accuracy

::
of

::::::
97.7%

:::
on

:::
the

::::::::::
independent

:::
test

:::
set

:::::
when

:::
we

::::
used

::
a

:::::::
decision

::::::::
threshold

:::
that

::::::::
balanced

:::
the

::::::
model

:::::::::::
performance

::
on

::::::::::
predictions

:::
for

::::
both

:::::::
classes

:
-
:::::
snow

::
and

::::::::
no-snow.

:::::::
Hence,

:::
the

::::::
results

:::::::
indicate

::::
that500

::
the

::::::::
approach

::::::::::
generalizes

::::
well

::
to
:::::::

unseen
::::::
stations

::::
that

:::
are

::::::
within

:::
the

::::::::::
distribution

::
of

::::
the

::::::
training

::::
set.

::
A

:::::::
detailed

:::::::::::
performance

::::::::
evaluation

:::
for

::::
each

::::::
station

::
in
:::
the

::::
test

:::
set

::::::
showed

::::
that

:::
the

:::::
model

:::::::::
performed

::::
very

::::
well

::::::
except

:::
for

:::
the

::::
data

::
of

:::
the

:::::::
stations

:::::
SLF2

:::
and

::::::
STN2,

:::::
which

:::
are

::::
two

::::::::
particular

:::::
cases

:::
that

:::::
were

:::
not

::::
well

:::::::::
represented

::
in
:::
the

:::::::
training

:::::
data.

:::
The

::::::
station

:::::
SLF2

::
is

::::::
located

::::
low

::
in

:
a
:::::
valley

::::
and

:::::
STN2

::
is

::
on

::
a
::::::
glacier.

::
In

:::::::
addition

::
to
:::::

being
::::::::::::::::
out-of-distribution,

::::
such

::::::
special

::::::::::::
environments,

:::::::::
compared

::
to

:::::
those

::
of

::::
most

:::::
other

::::::
stations

:::
in

:::
the

::::::
dataset,

::::::
might

:::::
cause

::::::
slightly

::::::::
different

:::::::
behavior

:::
of

:::
the

::::::::
auxiliary

:::::::
variables

:::::
used

:::::
during

::::
HS

:::::::
analysis505

:::
and

:::::
result

::
in

:
a
:::::::::::
performance

::::::::
decrease.

5.3
::::::::::::
Generalization

:::
The

::::::::::::
generalization

::::::
ability

::
of

::::::::::
CleanSnow

::
to
:::::::::

elevations
::::
that

:::
are

::::::
within

:::
the

:::::
range

::::::::
included

::
in

:::
the

:::::::
training

:::
set

::
is

:::::
good.

::::::
These

::::::::
elevations

::::::::
represent

:::
the

:::::
Alps,

::::::
which

::
is

:::
the

::::::
region

::
of

:::::::
interest

:::
for

:::
us.

::::::::::::
Generalization

:::
to

:::::::::::::::
out-of-distribution

:::::::
samples

::::::::
(stations

::::::
located

::
at

:::::::::
elevations

::::
that

:::
are

:::
not

:::::
well

::::::::::
represented

::
in

::::
the

:::::::
training

::::
data)

:::
is

:::::
rather

:::::
poor.

::::::::::::::::
Out-of-distribution

:::::::::::::
generalization,510

:::::::
however,

:::::::
remains

:::
an

:::::
open

:::::::
problem

::
in
::::

the
:::::::
machine

::::::::
learning

::::::::::
community.

::::
One

:::::::::
possibility

:::
for

:::::::::
improving

::::::::::::::::
out-of-distribution

:::::::::::
generalization

::
is
::
to

::::::::
explicitly

:::::::
express

:::::
some

::::::
known

:::::::
behavior

::::
(e.g.

:::::::
physical

::::::::::
constraints,

::::
etc.)

::
in

::
a
:::::
neural

::::::::
network.

::::
Such

:::::::
models

::
are

:::::::
known

::
as

:::::::
Physics

::::::::
Informed

::::::
Neural

:::::::::
Networks

:::::::
(PINN)

::::::::::::::::
(Raissi et al., 2019)

:::
and

::::
can

:::
be

:::::::::::
implemented

:::::
either

:::
by

::::::
adding

::
a

:::::::::::
regularization

::::
term

::
to
:::
the

::::
loss

:::::::
function

:::
or

::
by

:::::::::::
incorporating

:::
the

::::::::::
constraints

::::::
directly

::::
into

:::
the

::::::
model

::::::::::
architecture.

::
In

::::
both

::::::
cases,

::::
such

:::::::::
constraints

::::
help

:::
the

:::::
model

::
to

::::::::
correctly

:::::::::
extrapolate

::
to

::::::::
situations

::::
that

::::
were

:::
not

::::::::::
represented

::
in

:::
the

:::::::
training

::::
data.

:
515

5.4
:::::::::
Limitations

:::
One

:
of raw sensor dataOne of the known limitations of CleanSnow is the fact that it operates on raw data

:
, meaning the inputs

may contain both anomalies (e.g. spikes) and missing values. Even though CleanSnow seem
::::
seems

:
to be resilient to anomalies,

it would be good practice to perform anomaly detection and filtering before running the proposed snow height classification

models. We argue that filtering obvious spikes in
::
the

:
snow height signal is a rather trivial procedure and can be solved by520

employing statistical methods such as Hampel filtering (Pearson, 1999) or an exponential moving average filter (Kendall and

Stuart, 1966). However. other more subtle variations are very challenging to detect by both the human eye and automated

methods.

Dealing with missing data is more complicated
:::::::::
CleanSnow

:::
can

::::
only

:::
be

::::::
applied

::
in

:::::
cases

:::::
where

:::
the

:::
full

::::::
history

::::::
needed

::
to

:::::
make

:
a
::::::::
prediction

::
is
::::::::
available. At the moment, in the case of missing samples in the 48-time step context, the samples were discarded525

without being run through the model. Therefore, CleanSnow can only be applied in cases where the full history needed to

make a prediction is available
:::::::
Dealing

::::
with

:::::::
missing

::::
data

:
is
:::

far
:::::
more

::::::::::
complicated

::::
than

:::::::
filtering

:::::::::
anomalies. A simple solution
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for periods of up to several time steps would be linear interpolation. However, as the size of the interpolated interval increases,

this fails to produce an accurate reconstruction of the missing data. To impute larger periods of missing data, methods that take

into consideration both spatial and temporal context should be employed. This is, however, out of the scope of this work, and530

we therefore leave it as a possible future research direction.

6 Conclusions

Automated snow height measurements are key input data for many modeling approaches in climate sciences, snow hydrology,

and avalanche forecasting. Erroneous snow height measurement deteriorate the performance of these models. We demonstrated

how to mitigate the aforementioned issues by the use of deep-learning methods for automated snow height classification. Our535

contributions can be summarized as three-fold. First, we adapted
::::::
created

:
a novel machine learning approach to snow height

signal classification that operates directly on time-series data. Second, we provided an in-depth comparison of several machine

learning models applied to snow height classification. Third, we introduced a new benchmark dataset with annotated snow

height data, which sets a baseline and can be used for further research in the field. The proposed approach achieved a high

accuracy of 97.7% and generalized well to previously unseen stations. CleanSnow can be implemented as a component of an540

arbitrary snow height quality assessment pipeline without the need for any special hardware.

Code availability. The exact version of the software used to produce the results in this manuscript is available at

https://doi.org/10.5281/zenodo.12698071, while current and future versions of it can be found at

https://gitlabext.wsl.ch/jan.svoboda/snow-height-classification.

Data availability. The manually annotated dataset that we used to both train and evaluate CleanSnow is publicly available for research under545

CC BY-NC1 license at https://doi.org/10.5281/zenodo.13324736

Appendix A: List of stations in the snow/no-snow dataset

This section provides the list of IMIS stations used in our snow/no-snow dataset (see Section 2.1.1) together with their metadata.

Table A1 shows the stations ordered by increasing elevation. The column Subset indicates whether a station was used for

training or testing.550

1https://creativecommons.org/licenses/by-nc/4.0/
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Station ID Latitude [°N] Longitude [°E] Elevation [m] Available since Subset

SLF2 46.8127 9.8482 1563 November 1997 test

AMD2 47.1708 9.1468 1610 October 1997 train

GLA2 46.9966 9.0375 1632 November 2000 train

SHE2 46.7488 7.8124 1852 October 2001 test

ILI2 46.1913 6.8277 2022 March 2000 train

GUT2 46.6793 8.2896 2115 November 1999 train

KLO2 46.9091 9.8738 2147 November 1996 test

TUM2 46.7810 9.0214 2191 October 2002 train

FNH2 46.1007 6.9641 2252 September 1997 train

KLO3 46.8412 9.9316 2299 November 1996 train

LAG3 46.4245 9.6977 2300 November 2009 train

FLU2 46.7527 9.9464 2394 October 2003 train

RNZ2 46.6855 8.6267 2400 December 2008 train

TRU2 46.3709 7.5855 2459 November 1996 test

BOR2 46.2905 8.1093 2517 September 2001 train

WFJ2 46.8296 9.8092 2536 January 1996 test

ARO3 46.0874 7.5620 2602 September 1996 train

SPN2 46.2294 8.1176 2620 November 1996 train

FOU2 45.9717 7.0672 2800 October 1999 train

STN2 46.1678 7.7505 2914 October 1998 test

Table A1. List of stations that are part of the snow/no-snow dataset, together with their auxiliary information, ordered by elevation.
:::
The

:::::
column

::::::
Subset

::::::
denotes

::::::
whether

:::::
station

::::::
belongs

::
to

:::
the

:::
train

::
or
:::
test

:::
set.

:

Appendix B: Subsampling of the training data

To run experiments in a reasonable time and make sure they were computationally tractable, we sub-sampled the training

dataset to reduce the amount of training samples. In Table B1 we list which years were selected for each station for the training

set.

Appendix C:
::::::::
Synthetic

::::::::::::
ground-truth

:::::::::
generation555
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Station ID Selected years

AMD2 1998, 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

GLA2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

ILI2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

GUT2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

TUM2 2004, 2007, 2010, 2013, 2016, 2019, 2022

FNH2 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

KLO3 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

LAG3 2011, 2014, 2017, 2020, 2023

FLU2 2005, 2008, 2011, 2014, 2017, 2020, 2023

RNZ2 2010, 2013, 2016, 2019, 2022

BOR2 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

ARO3 1998, 2000, 2003, 2006, 2009, 2012, 2015, 2018, 2021

SPN2 1999, 2002, 2005, 2008, 2011, 2014, 2017, 2020, 2023

FOU2 2001, 2004, 2007, 2010, 2013, 2016, 2019, 2022

Table B1. List of years for each station that were selected as part of the sub-sampled training dataset.

:::
We

::::::::
generated

:::::::
synthetic

:::::::::::
ground-truth

::::
data

::
by

:::::::
applying

:::::::::::
thresholding

::::
rules

:::::::
inspired

::
by

:::::
works

::
of
::::::::::::::::::::::::::::::::::::

Bavay and Egger (2014); Tilg et al. (2015)

::
to

:::
the

::::
HS

::::::::::::
measurements.

::
In

:::::
order

:::
for

:
a
::::::
sample

::
to

::::::::::
correspond

::
to

::::
snow

::::::
cover,

:::
the

::::::::
following

::::::::
condition

:::
had

::
to
:::
be

::::
met:((

1

N

N−1∑
n=0

TSSn

)
≤ 0.0

)
∧

((
1

N

N−1∑
n=0

RSWRn

)
≥ 300.0

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::

(C1)

:::::
where

::
N

::
is

:::
the

:::::
length

:::
of

:::
the

::::
time

:::::::
window.

Appendix D: Machine learning models560

For completeness, we provide a short description of every machine learning model that was used in our performance compari-

son.

D1 Random Forest (RF)

Implemented in many data science libraries and easy to use, Random Forests (RFs) are a popular choice of machine learning

algorithm that can provide satisfactory predictions in both classification and regression tasks. In practice, RF is an ensemble565

approach, which produces a final prediction as a combination of outputs of many decision trees. It often works well on tabular

data, but there are no mechanisms that would allow for a more principled representation of temporal, spatial or graph structures.
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In our experiments we used the RF classifier implementation from the Scikit-Learn library (Pedregosa et al., 2011), setting

the number of decision trees to 1000 and maximum depth of each tree to 50. We left the other parameters at their default

settings and trained the RFs using the Gini criterion (Gini, 1936).570

D2 Multilayer Perceptron (MLP)

Being one of the first neural network models that can learn non-linear functions, MLPs have shown their power in natural

language processing (NLP) and serve as a foundational component for many other neural network models nowadays. Finding

their applications in both regression and classification tasks, MLPs can serve as an alternative to the RFs presented above.

Putting them in comparison with RFs, MLPs can be generally more difficult to train for a given task and often exhibit lower575

performance, especially with tabular data. This is due to their nature of learning smooth (sometimes overly smooth) solutions,

thereby causing them to not perform well on problems with
:
a non-smooth decision boundary. Grinsztajn et al. (2022) argue

this is due to the gradient descent approach to MLP optimization. They also show that MLPs are more affected by, e.g.,

uninformative features compared to RFs.

We designed an MLP composed of an input layer with 7 input dimensions and 32 output features, followed by 3 hidden580

layers with 64, 128 and 256 output features, respectively. Each hidden layer had batch normalization (Ioffe and Szegedy, 2015)

and Rectified Linear Unit (ReLU) activation functions (Fukushima, 1969; Nair and Hinton, 2010) appended to it. The MLP

was concluded with an output layer which takes a 256-feature representation and produces the final class probability score.

D3 Long short-term memory (LSTM)

Belonging to the family of recurrent neural networks (RNNs), the original models developed for time series processing,585

GRU (Cho et al., 2014) and long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) are variations that al-

low the model to better capture long-term dependencies compared to RNNs, which tend to forget inputs that came much earlier

in
:::
the history. We chose to use an LSTM in our experiments, as it is one of the gold standards in deep learning for time-series

processing.

The LSTM model we used in our experiments took an input with 7 dimensions and was composed of 3 recurrent layers with590

hidden dimensions of 64, 128 and 256, followed by an output MLP classifier that produced the final probability scores.

D4 TimesNet

Recently released and setting the new state-of-the-art performance on many standard benchmarks, TimesNet (Wu et al., 2023)

has become one of the models of choice for time series processing in general. Its main characteristic is the transformation of a

1-dimensional time series signal into a 2-dimensional one, which allows it to capture complex temporal variations in the signal.595

The conversion of a time series into a 2-dimensional signal is based on detecting signal periods using amplitude information

from a Fast Fourier Transform (FFT) and ordering the signal chunks into a 2-dimensional array. Applying 2-dimensional

convolutions to this array allows it to capture both inter- and intra-period variations in the signal.
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In our experiments we used a modification where the definition of signal periods is fixed and not determined by the FFT.

We used 5 periods to split the signal, namely 48, 32, 24, 16 and 8. The model was then composed of 3 layers with each layer600

having 2 blocks and 128 hidden features.

D5 Transformer

Since it has been brought to the public’s attention
:::
they

::::
were

:::::::::
published in 2017, transformers have revolutionized many areas of

deep learning, achieving new state-of-the-art results mostly in natural language processing and computer vision. Transformers

are model
::::::
models based on an attention mechanism (Vaswani et al., 2017) that were originally proposed for sequence-to-605

sequence tasks.

Here we employed a modification of the traditional transformer. In particular, we took the classical transformer encoder

in order to produce a latent representation for the input sequence, where each point is conditioned on the past context. The

encoder was composed of 2 layers with hidden dimensions of 128 and 4 attention heads. Both the input positional encoding

and encoder have a dropout of 0.1 applied. The latent representation produced by the transformer encoder was average pooled610

and passed to an MLP readout network, which produced the classification probability scores.
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