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Abstract. Global ocean biogeochemistry models are frequently used to derive a comprehensive estimate of the global ocean

carbon uptake. These models are designed to represent the most important processes of the ocean carbon cycle, but the idealized

process representation and uncertainties in the initialization of model variables lead to errors in their predictions. Here, observa-

tions of ocean physics (temperature and salinity) are assimilated into the ocean biogeochemistry model FESOM-REcoM over

the period 2010-2020 to study the effect on the air-sea CO2 flux and other biogeochemical variables. While the free running5

model already represents temperature and salinity rather well, the assimilation further improves it and hence influences the

modeled ecosystem and CO2 fluxes. The assimilation has mainly regional effects on the air-sea CO2 flux, with the largest im-

print of assimilation in the Southern Ocean during winter. South of 50◦S, winter CO2 outgassing is reduced and thus the mean

CO2 uptake increases by 0.18PgCyr−1 through the assimilation. Other particularly strong regional effects on the air-sea CO2

flux are located in the area of the North Atlantic Current. Yet, the effect on the global ocean carbon uptake is a comparatively10

small increase by 0.05PgCyr−1 induced by the assimilation, yielding a global mean uptake of 2.78PgCyr−1 for the period

2010-2020.

1 Introduction

The ocean plays a pivotal role in regulating the global carbon budget and thereby mitigating the impacts of anthropogenic15

carbon dioxide (CO2) emissions on the Earth’s climate. Since the 1960s, the ocean has absorbed consistently around 25%

of anthropogenic CO2 emissions annually (Friedlingstein et al., 2023) and has cumulatively taken up 26–34% of fossil and

land-use change CO2 emissions since the onset of the Industrial Revolution (Crisp et al., 2022). However, quantification of

air-sea CO2 flux still remains challenging. Air-sea CO2 flux is usually inferred from the gradient of partial pressure (pCO2)

or fugacity (fCO2) of CO2 across the air-sea interface (Wanninkhof, 2014). Yet, during 2010-2020, which constitutes the best-20

sampled decade in terms of surface ocean pCO2 observations so far, observations covered merely 3% of the monthly global

ocean (as calculated from the 1◦x1◦-gridded SOCAT product; Bakker et al., 2016). While the North Atlantic and North Pacific

are comparably well observed, data remain scarce in vast regions, such as the Indian Ocean, South Pacific and areas south
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of 30◦S during austral winter, where less than 1% of SOCAT grid cells have been sampled. Although these observations are

thought to be representative of a larger area (Jones et al., 2012; Hauck et al., 2020), challenges in deriving a comprehensive25

global estimate of the global ocean CO2 uptake arise due to substantial spatial and temporal pCO2 variations and potential

biases induced by the irregular sampling pattern (Denvil-Sommer et al., 2021; Gloege et al., 2021; Hauck et al., 2023b).

Particularly in the Southern Ocean, the uncertainty is considerable (Gerber et al., 2009; Gloege et al., 2021), where estimates

of the mean flux deviate by 14–26% (Hauck et al., 2023b).

Initially, estimates of the ocean carbon sink were derived from hindcast simulations of global ocean biogeochemistry mod-30

els (GOBMs) (Le Quéré et al., 2009; Wanninkhof et al., 2013; Hauck et al., 2020). More recently, air-sea CO2 flux estimates

were added based on regression and machine learning techniques, interpolating pCO2 observations to achieve global cover-

age through advanced statistical methods (referred to as pCO2 products; Rödenbeck et al., 2015). Furthermore, atmospheric

transport models that ingest atmospheric CO2 measurements were employed to estimate the ocean carbon uptake (referred to

as atmospheric inversions; Peylin et al., 2013). Although the different estimation methods have provided valuable and robust35

insights into large-scale patterns of oceanic carbon uptake (Gruber et al., 2009), discrepancies have emerged. Assessments

based on pCO2-products tend to yield larger estimates of the ocean carbon sink, with stronger trends towards more uptake,

compared to estimates based on models (Friedlingstein et al., 2023; Terhaar et al., 2022). The larger estimates are supported

by ocean interior observations (Müller et al., 2023), atmospheric oxygen data and atmospheric inversions (Friedlingstein et al.,

2023). For the years 2010-2020, pCO2 products suggest a mean oceanic sink of (3.0±0.4) PgCyr−1, while the model mean is40

(2.5±0.4) PgCyr−1, with trends of 0.7 PgCyr−1 dec−1 and 0.3 PgCyr−1 dec−1, respectively (data provided by Friedling-

stein et al., 2023).

Machine learning estimates, on the one hand, perform better when trained with sufficient data, such as in the northern

hemisphere (Gloege et al., 2021). However, as with other methods, their performance is less reliable in data-sparse areas.

Particularly in the Southern Ocean, many pCO2 products show diverging results from one another and are likely biased towards45

more ocean uptake (Hauck et al., 2023b). Models provide process-driven estimates of the CO2 flux across the entire global

ocean, drawing from the theory of ocean dynamics, biological and chemical processes (Hauck et al., 2020; Fennel et al., 2022).

Despite the growing confidence in our mechanistic understanding of the ocean carbon cycle (Crisp et al., 2022), models are

also subjected to uncertainty. This stems from uncertainties in model parametrizations, model spin-up and initial conditions,

unresolved sub-gridscale processes and uncertainties in the atmospheric forcing (Hauck et al., 2020; Terhaar et al., 2024).50

Data assimilation (DA) has been employed to address the emerging discrepancies between data products and models. So

far, DA studies of the air-sea CO2 flux have focused on specific regions (e.g. the Southern Ocean; Verdy and Mazloff, 2017),

few years (e.g. 2009-2011; Brix et al., 2015) or the climatological mean state (e.g. Gerber et al., 2009); apart from a single

multidecadal study covering the global ocean (Carroll et al., 2020). In each of these studies, an Adjoint or Green’s Function DA

approach is used to determine optimised boundary conditions, forcing terms and/or parameter values for the simulation. These55

studies capture well the assimilated pCO2 observations, while obeying physical laws and biogeochemical (BGC) equations.

While previous studies indicate that the available BGC observations, when assimilated in isolation, are too sparse to constrain

the modeled carbon cycle (Verdy and Mazloff, 2017), the assimilation of physical variables is expected to have a significant
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indirect effect on the modeled CO2 uptake because upwelling and subduction of DIC, as well as the physical transport of other

biogeochemical tracers, will be affected (Doney et al., 2004). According to current knowledge, ocean physics is the dominant60

driver of interannual variability in the air-sea CO2 flux (Doney et al., 2009; Keppler and Landschützer, 2019; Mayot et al.,

2023; Liao et al., 2020). Furthermore, in GOBMs, well-constrained physics are particularly important to capture the ocean

storage of anthropogenic carbon (Cant), as the rate of anthropogenic CO2 uptake depends ultimately on the modeled physical

carbon transport from the air-sea interface across the mixed layer into the deep ocean in the form of dissolved inorganic carbon

(DIC) (Davila et al., 2022). It was shown that assimilating ocean physics at the initial state of a model simulation has a stronger65

and more positive impact on the modeled carbon cycle than assimilating the BGC initial state (Fransner et al., 2020). Therefore

the question arises which processes are most important when altered physics change CO2 fluxes in DA approaches. We here

use ensemble-based data assimilation of ocean physics into a global ocean biogeochemistry model to improve the modeled

air-sea CO2 flux for the years 2010-2020. For assimilation we use an ensemble Kalman filter variant (Nerger et al., 2012). With

this approach, we describe the impact of continuously assimilating ocean-physics for eleven years on the model’s air-sea CO270

flux. Here, we identify the mechanisms of how physics DA affects the modeled air-sea CO2 flux, differentiating between the

thermally, DIC- and alkalinity induced components and changes in mixing, and lateral and vertical transport.

An accurate representation of ocean physics is a prerequisite, but not necessarily sufficient for a realistic simulation of the

CO2 flux. Coupled ecosystem models are adapted to the associated physics model with its strengths and weaknesses through

carefully selected parameter values. Furthermore, the natural carbon cycle in models is tuned to an equilibrium for the physical75

model state at pre-industrial conditions without DA, and it was shown that the modeled carbon cycle may react very sensitive

to deviations from this physical state, leading to biases in the carbon cycle through data assimilation (Spring et al., 2021).The

question therefore arises as to what extent an ecosystem model coupled to a data-assimilated physical model also represents

a more realistic biogeochemistry. We will present cases where physics data-assimilation leads to worse and better agreement

with BGC observations. We focus, firstly, on the global air-sea CO2 flux. Secondly, we investigate the Southern Ocean given80

the relevant impact of DA in Southern Ocean winter. Thirdly, we present regions in the North Atlantic given observational

coverage and relevant local processes there.

2 Methods

2.1 Model FESOM-REcoM

The oceanic model component, FESOM2.1, computes the advection, diffusion, and mixing of passive biogeochemical trac-85

ers. The model is based on hydrostatic primitive equations under the Boussinesq approximation and utilizes a finite-volume

discretization approach with surface triangles projected vertically to form prisms. Salinity (S), temperature (T), and biogeo-

chemical (BGC) tracers are located at the vertices of triangles (nodes), while the horizontal velocities are centered at the

triangles (elements). The model allows for a variable mesh resolution and incorporates parametrizations for diffusion and

eddy-stirring along isoneutral surfaces, for which parametrized mixing is scaled by mesh resolution (Danilov et al., 2017).90

Vertical mixing is parametrized through the KPP scheme and the mixing depth is specified through a boundary layer, with an
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additional vertical mixing scheme used in the Southern Ocean. The surface salinity is restored towards climatology and scaled

by a fictional flux at the ocean surface of 0.1m/day. A detailed description of FESOM2.1 is provided by Danilov et al. (2017)

and a model assessment by Scholz et al. (2019, 2022).

The ocean biogeochemistry component, the Regulated Ecosystem Model version 3 (REcoM3), describes processes in the95

ocean carbon cycle and represents oceanic carbon in the form of dissolved inorganic carbon (DIC), dissolved organic carbon

(DOC), plankton and detritus (Gürses et al., 2023). REcoM3 contains 28 BGC tracers (listed in Appendix Table A1). There

are two phytoplankton groups: diatoms and small phytoplankton with implicit representation of calcifiers; two zooplankton

groups: mixed and polar macro zooplankton (Karakuş et al., 2021); and two classes of detritus: fast and slow-sinking. REcoM3

includes variable intracellular stoichiometry with ratios of C:N:Chl:CaCO3 for the small phytoplankton and C:N:Chl:Si for100

diatoms, which is propagated to zooplankton and detritus (Schartau et al., 2007; Hohn, 2008). The publicly available Routines

To Model The Ocean Carbonate System (mocsy2.0) (Orr and Epitalon, 2015) are used to compute pCO2 and air-sea CO2

flux, employing the gas-exchange parameterization of Wanninkhof (2014). Alkalinity is restored by a fictional surface flux

of 10m/yr. The current model version FESOM2.1–REcoM3 was assessed by Gürses et al. (2023) and previous versions were

evaluated and applied in global and regional studies of the ocean carbon cycle and planktonic ecosystems (Hauck et al., 2013;105

Schourup-Kristensen et al., 2014; Hauck et al., 2020; Karakuş et al., 2021).

2.2 Data Assimilation

2.2.1 Assimilation method and implementation

For the assimilation, we use the Localized Error Subspace Transform Kalman Filter (LESTKF, Nerger et al., 2012). The

LESTKF incorporates new observations as they emerge by updating the previous estimate of the state. The model state and110

error covariance are represented by an ensemble simulation. A review of the LESTKF and other filters frequently used in

geophysics can be found in Vetra-Carvalho et al. (2018). The assimilation is implemented using the Parallel Data Assimilation

Framework (PDAF2.1), a software environment for data assimilation. PDAF is an open source project and provides fully

implemented DA algorithms (Nerger et al., 2020, pdaf.awi.de). The current implementation builds on the works of Mu et al.

(2022) who used DA of ocean temperature and salinity for sea-ice forecasts with FESOM2.0 coupled to an atmospheric model,115

and Tang et al. (2020) who studied the dynamic impact of oceanic DA into FESOM1.4 onto a coupled atmospheric component.

With localization of the LESTKF, observations are weighted by distance, thereby avoiding the model being influenced by

observations at distant locations through spurious correlations. We use a localization radius of 200 km and choose a 5th-order

polynomial weighting function that mimics a Gaussian function (Gaspari and Cohn, 1999). We apply daily analysis steps at

0 UTC model time, assimilating all available observations for the day. The DA process only directly updates the physical model120

variables temperature, salinity, horizontal velocities and sea surface height. After each assimilation step, corrections are applied

to the analysis state to ensure the consistency of model physics: Salinity is set to a minimum value of zero and temperature

to a minimum value of −2◦C, if necessary. The sea surface height (SSH) update is limited to two standard deviations of the

ensemble. The analysis step is followed by an ensemble forecast of 1 day.
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The ensemble size is 40, a compromise to balance computational resources while ensuring a sufficiently large ensemble

with enough variability even in the deep ocean. The ensemble is generated through an initial perturbation of sea surface

height, horizontal and vertical velocities, temperature, salinity and sea-ice concentration generated from a 1-year model run as

described by Tang et al. (2020). To maintain ensemble spread, we apply a perturbed atmospheric forcing with an autoregressive

perturbation (perturbn) at every model time step (n), with:

perturbn+1 = (1− arc) ∗ perturbn + arc ∗ s ∗ (Nens− 1) ∗ rand

where rand is a stochastic element that is based on a covariance matrix derived from a 72-days-long period of atmospheric125

forcing; the autoregression coefficient (arc) is the inverse number of model steps per day; and s is a scaling factor for each

perturbed atmospheric forcing field. For specific humidity, downwelling longwave radiation and air temperature s = 10 is used.

The perturbation of winds is set to the smaller value s = 2 because the air-sea CO2 flux in the model is particularly sensitive

to perturbations of the wind fields. Because the ensemble spread still decays at each analysis step, an inflation of the ensemble

is applied in each analysis step by applying a forgetting factor ρ (see e.g. Nerger et al., 2005). This inflation uses a time-130

varying forgetting factor between ρ = 0.95 and ρ = 1, where 1 means no inflation and smaller values mean larger inflation.

The strongest inflation (ρ = 0.95) is applied during the first two weeks of the DA process. During the following 75 days ρ is

increased to 0.99 and from thereon stays between 0.99 and 1.0 depending on a temperature threshold for the standard deviation

of the ensemble spread.

2.2.2 Assimilated observations135

We assimilate sea surface temperature (SST), sea surface salinity (SSS) and profiles of temperature (T) and salinity (S). The

assimilated SST observations stem from the Operational Sea Surface Temperature and Ice Analysis (OSTIA) data set (CMEMS

Marine Data Store; Good et al., 2020; Donlon et al., 2012; Stark et al., 2007). OSTIA provides daily gap-free maps of SST at a

horizontal resolution of 0.05◦× 0.05◦, compiled from in-situ and satellite data from infrared and microwave radiometers. The

OSTIA observations were averaged to the FESOM2.1 model grid because their spatial resolution is higher than the nominal140

resolution of the model grid. We prescribe an observation error standard deviation of 0.8◦C for the DA (Nerger et al., 2020).

Observations are excluded in the DA process, if the difference between the model and observation exceeds 2.4◦C and at grid

points with sea ice in the model, as in Tang et al. (2020) and Mu et al. (2022). This keeps the model stable despite large

differences between model and observations at these sites, as water temperature and salinity develop differently under sea ice

than under the influence of the atmosphere (Tang et al., 2020).145

The assimilated SSS data is taken from the European Space Agency (ESA) Sea Surface Salinity Climate Change Initiative

(CCI) (Boutin et al., 2021) v03.21 data set. ESA-CCI contains daily sampled SSS data at a spatial resolution of 50 km and

a time resolution of 1 week. The ESA-CCI observations are averaged to the FESOM2.1 model grid. We prescribe a constant

observation error standard deviation of 0.5 psu (Nerger et al., 2024). Like for the SST data, SSS observations are excluded at

locations where sea ice is present in the model.150
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The assimilated temperature and salinity profiles are taken from the EN.4.2.2 data set (Good et al., 2013). The EN4 dataset

contains quality-controlled profiles from various in-situ ocean profiling instruments. To assimilate the profile observations, the

model values are computed as the average of the grid points of the triangle enclosing the observation because the number of

observations is fewer than model grid points. The observation error standard deviation is set to 0.8◦C for temperature and to

0.5 psu for salinity, as in Tang et al. (2020).155

2.3 Simulation set-up

The model setup for both simulations closely follows (Gürses et al., 2023). The model mesh is irregular and has a nominal

resolution of 1 degree, with enhanced resolution in the equatorial belt and north of 50◦N. It has 47 vertical layers with thickness

ranging from 5 m at the surface to 250 m in the deep ocean, as described by Scholz et al. (2019). The model time step is

45 minutes. For atmospheric forcing, we use JRA55-do v.1.5.0, a reanalysis product tailored for driving ocean-sea-ice models160

(Tsujino et al., 2018). The atmospheric CO2 mixing ratio (xCO2) values were taken from the Global Carbon Budget (Joos and

Spahni, 2008; Ballantyne et al., 2012; Friedlingstein et al., 2023). We use model restart fields from Gürses et al. (2023) where

the model was spun-up by repeating the year-1961 JRA forcing for 189 years with preindustrial atmospheric CO2 conditions,

followed by a period from 1800 to 1957 with increasing atmospheric CO2. Subsequently, simulations were continued with

historical JRA forcing from 1958 to 2009. During the assimilation window (2010-2020), we conduct two ensemble simulations165

to study the impact of data assimilation (DA) covering the period of the years 2010 to 2020: one without DA (referred to as

FREE) and another identical setup applying DA (referred to as ASML).

2.4 Data analysis

To assess the model results we focus on the ensemble mean. We present CO2 flux estimates for the period 2010-2020, that

are compared to the ’Regional Carbon Cycle Assessment and Processes 2’ (RECCAP2) CO2 flux estimates (DeVries et al.,170

2023). For the comparison of the global air-sea CO2 flux in our simulations with the RECCAP2 CO2 flux estimates, the

river flux adjustment (Friedlingstein et al., 2023; Regnier et al., 2022) is applied to the pCO2 products. Thus, we quantify the

anthropogenic perturbation of the ocean carbon sink without rivers (as SOCEAN in the Global Carbon Budget Friedlingstein

et al., 2023; Hauck et al., 2020), and not the contemporary net air-sea CO2 flux (as in RECCAP2).

To study the effect of DA on the CO2 flux, we define regions where the effect is pronounced and where different mechanisms175

are active. In the Southern Ocean, we use the biomes defined by Fay and McKinley (2014). These are, from North to South,

the Subtropical Seasonally Stratified Biome (STSS), the Subpolar Seasonally Stratified Biome (SPSS) and the Sea-Ice Biome

(ICE) (see Fig. 5). Within the STSS, we differentiate between the area where the assimilation leads to a more positive air-sea

CO2 flux, referred to as STSS+ and the area where the assimilation leads to a more negative air-sea flux, the STSS- (Fig. 5a

and b). In the North Atlantic, we consider four coherent regions, defined by the time-mean difference of the air-sea CO2180

fluxes in ASML and FREE (∆FCO2 , Fig. 6a and b). The Central STSS and Western STSS are located in the central North

Atlantic STSS biome and are confined by ∆FCO2 <−1mmolCday−1m−2 and ∆FCO2 > 1mmolCday1m−2, respectively.

The Newfoundland Basin and East Coast SPSS are part of the SPSS. The former is located east of Newfoundland and south
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of Greenland, and is confined by ∆FCO2 > 3mmolCday−1m−2; and the latter is located off the North American coast and

confined by ∆FCO2 <−1mmolCday−1m−2. The Central STSS and Western STSS lie on the warm side of the NAC, and the185

Newfoundland Basin and West Coast SPSS lie on the cold side of the NAC, which is evident from the modeled surface velocity

field (Fig. A8).

Within these regions, we identify the time of the year when the DA affects air-sea CO2 flux and calculate the difference of

ASML and FREE for SST, SSS, surface velocities and transports, density, boundary layer depth, surface pCO2, DIC, alkalinity

and surface chlorophyll. In order to assess the drivers of dynamic DA effects on surface pCO2, changes in pCO2 are decomposed190

after the simulation into their contributions from changes in SST (SST), surface DIC (DIC) and alkalinity (Alk) following the

linear approximations of Sarmiento and Gruber (2006) and Takahashi et al. (1993):

∆pCO2,DIC =
pCO2

DIC
∗ γDIC ∗∆DIC (1)

∆pCO2,Alk =
pCO2

Alk
∗ γAlk ∗∆Alk (2)195

∆pCO2,SST = pCO2 ∗ exp(0.0423 ∗∆SST) (3)

with

γDIC =
3 ∗Alk ∗DIC− 2 ∗DIC2

(2 ∗DIC−Alk)(Alk−DIC)
(4)

200

γAlk =
−Alk2

(2 ∗DIC−Alk)(Alk−DIC)
(5)

Values for γDIC and γAlk are excluded above 18 and below -19, respectively. This affects parts of the Southern Ocean SPSS

and ICE biome (see white areas in Fig. 7b and c).

To evaluate the impact of the DA on the modeled biogeochemistry, we compare model outputs with independent obser-

vational datasets of surface pCO2, DIC, alkalinity and surface chlorophyll. For each observation type (OBS), we define the205

improvement as:

improvementOBS = |FREE−OBS| − |ASML−OBS| (6)

To evaluate surface pCO2, we use observations from the Surface Ocean CO2 Atlas (SOCAT Version 2023, Bakker et al.,

2023, 2016), which are provided as a monthly gridded and quality-controlled compilation.
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To assess DIC and alkalinity, we compare the modeled surface fields to the GLODAPv2.2023 bottle data (Lauvset et al.,210

2024b). At depth, we compare the model output to the GLODAPv2 DIC and alkalinity climatology (Lauvset et al., 2016),

which is based on observations from the period 1972-2013 and normalized to 2002.

To evaluate global surface chlorophyll, we use observations from ESA-CCI, which is a multi-sensor satellite ocean-color

chlorophyll-a dataset with monthly global coverage (Sathyendranath et al., 2021). In addition, for the Southern Ocean, we use

the mean of three satellite products (Johnson et al., 2013) that were processed with more suitable algorithms for southern high215

latitudes.

3 Effect of DA on ocean physics

Before we investigate the CO2 flux, we first evaluate the effect of DA on the modeled physics. In particular, we compare

the model output of both simulations with the assimilated observations to verify that the assimilation brings them into better

agreement with the observations. Additionally, we compare the temperature and salinity with the partly-independent EN4-OA220

product (Good et al., 2013, updated to version 4.2.2). EN4-OA is an objective analysis ingesting the assimilated EN4 profile

data, interpolated to global coverage on 42 depth levels. Furthermore, we compare the sea-ice concentration with remote

sensing observations from OSI-SAF (EUMETSAT, 2022).

The assimilation improves the agreement with the assimilated SST observations. On a global average, the SST in FREE

is 0.14◦C colder than the observations, which is estimated to lead to a solubility-driven global air-sea flux difference of225

−0.06PgCyr−1. FREE exhibits an extensive cold bias of SST in the tropics and subtropics in all ocean basins and a warm

bias in the Southern Ocean south of 40◦S, visible in Fig. 1a; mean state of SST in Fig. A1). Additionally, FREE shows regional

SST biases in particularly near strong currents or in eddy-rich regions, such as the North Atlantic Current (NAC), Kuroshio,

and the Southern Subtropical Front. The assimilation reduces the SST south of 40◦S and in the North Pacific, and increases

the SST in the tropics and subtropics (see Fig. 1b). The effect of DA is an absolute change by 0.30◦C on global average and230

is particularly strong in the Southern Ocean and in the North Atlantic. Through the assimilation, the model state becomes

more similar to the observations globally, which is evident from the positive improvement in Fig. 1c. In total, the global mean

absolute difference in SST is reduced from 0.59◦C to 0.32◦C. The assimilation-induced change in SST is estimated to drive a

direct solubility-driven effect on the global-air sea CO2 flux of −0.14PgCyr−1. Yet, this global attribution is subject to high

uncertainty due to the non-linear dependency of pCO2 on temperature, and because regionally large effects with opposite signs235

lead to uncertainty in the global mean.

The assimilation also improves the agreement with the assimilated SSS observations. FREE shows a global SSS bias

(0.49 psu, Fig. 1d). The assimilation leads to a global surface freshening (Fig. 1e). There are only a few regions where SSS in

FREE is fresher than the observations and where the DA consequently increases the salinity. One of these regions lies in the

North Atlantic. The assimilation improves the model-observation agreement in 91% of the observed ocean area, particularly240

much in the North Atlantic Central STSS and in the Southern Ocean STSS (Fig. 1f). Albeit negative side effects of temperature
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Figure 1. Effect of data assimilation on sea surface temperature (SST) and sea surface salinity (SSS). All panels show the mean over the

period 2010-2020. (a) The model-observation difference in SST (FREE - OSTIA). (b) The difference ASML - FREE. (c) The improvement

of monthly averaged model SST relative to OSTIA, where positive denotes that the assimilation brings the model closer to observations

(Eq. (6)). (e - f) The same for SSS, computed with SSS from ESA-CCI.

assimilation on SSS in 9% of the observed area, the global mean absolute difference is reduced from 0.32 to 0.17 psu relative

to the observations. The direct solubility-driven effect on the global air-sea CO2 flux is estimated to be negligible.

The assimilation leads to a better agreement with subsurface temperature and salinity data from the non-assimilated EN4-

OA product in the upper 1000 m. In the upper 100-200 m of the ocean, the model-observation difference in temperature245

follows the surface signal (compare Fig. 1a and Fig. 2a), and the difference is reduced by the assimilation (Fig. 2b and c). At

intermediate depth (roughly 200-500 m), a subsurface warm bias exists in FREE in the southern hemisphere at mid-latitudes

(Fig. 2; mean state in Fig. A2). This bias affects the South Pacific, South Atlantic and southern Indian Ocean (not shown). It

might be connected to the model’s surface warm bias in the formation region of Antarctic intermediate water (Fig. 1a). Further

model-observation differences exist at greater depth than 500 m, where the model’s subsurface temperature is colder than the250

observations at almost all latitudes, but warmer than the observations north of 60◦N. At most latitudes and depths, the effect

of the assimilation is to reduce the model observation-differences. This can be seen from the difference of ASML and FREE,

which has a reversed sign (compare Fig. 2a and Fig. 2b). Thereby, the improvement through DA is mostly positive (Fig. 2c).
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Figure 2. Effect of data assimilation on zonally averaged temperature and salinity in the upper 1000 m. All panels show the mean over

the period 2010-2020. (a) The model-observation difference in temperature (FREE - EN4-OA). (b) The difference ASML - FREE. (c) The

improvement of monthly averaged temperature relative to EN4-OA. (d - f) The same for salinity.

For the salinity, the model is more saline than the observations from the surface down to a depth of about 1000 m for

most latitudes (Fig. 2d). This shows that the model-observation difference in this depth range follows the surface signal. The255

exceptions to this are at high latitudes below 200 m, where FREE is fresher than the observations. At all other latitudes, the

assimilation acts towards a freshening, with the strongest effect near the surface (Fig. 2e). This improves the agreement with

observations particularly near the surface (Fig. 2d). However, the improvement is smaller at depth and becomes even negative

for some latitudes in greater depth. This might be due to the limited amount of assimilated in situ salinity profiles.

The effect of the assimilation on temperature and salinity is most pronounced in the upper 1000 m and, below that, mostly260

decreases with depth (not shown). After the second year of assimilation, the mean absolute difference between ASML and

FREE stabilizes in the range 0.35− 0.36◦C for SST and 0.20− 0.25psu for SSS, while the difference of the 3D fields keeps

increasing throughout the years 2010-2020.

Sea ice reacts dynamically to the changed ocean physical state. In the Southern Ocean, FREE is characterized by a lower

sea-ice concentration compared to OSI-SAF observations. The maximum extent of sea-ice in September is smaller in FREE265

than OSI-SAF, which is demonstrated by the 15%-lines for FREE and OSI-SAF (Fig. 3a; mean state of sea-ice concentration

in Fig. A3), and by the sea-ice concentration difference for the month September (Fig. 3b). Through DA, a higher Antarctic

sea-ice concentration is obtained (see Fig. 3b). This improves the agreement with OSI-SAF (Fig. 3c). During all other seasons,

the assimilation leads to a higher sea-ice concentration in the Antarctic, a larger sea-ice extent and a better agreement with

OSI-SAF as well (only September is shown). In the Arctic, the differences between FREE, ASML and OSI-SAF are regionally270

different (not shown).
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Figure 3. Effect of data assimilation on Antarctic sea-ice concentration in September. All panels show differences in the sea-ice concentration

averaged for the month September over the period 2010-2020. The 15%-line for FREE, ASML and OSI-SAF observations is shown as a

dashed, continuous or dotted line in panels a or b, respectively. (a) The difference between FREE and OSI-SAF observations. (b) The

difference between ASML and FREE. (c) The improvement of September mean sea-ice concentration.

A common issue in data assimilation in GOBMs is erroneous equatorial upwelling, leading to unrealistically high biological

productivity in the tropics (Park et al., 2018). In FESOM-REcoM, the biological productivity near the equator is stable in

ASML. The meridional overturning, however, shows spurious structures, which may point to hidden assimilation artifacts on

vertical velocities (see Appendix Text A1 for further discussion). The temperature and salinity fields at and near the surface in275

ASML are in good agreement with the observations. Thus, it can be assumed that the velocities in the upper part of the ocean

are also well represented. Therefore, we are confident that the DA provides an improved physical state in the upper ocean,

which serves as an improved basis to estimate the air-sea CO2 flux, although the spurious effects on deep ocean circulation

should be further addressed in future work.

4 Results280

4.1 Global CO2 flux

The ocean absorbs 2.78PgCdec−1 in ASML and 2.83PgCdec−1 in FREE during 2010-2020 (Fig. 4b), thus the assimilation

decreases the global mean oceanic CO2 uptake by 0.05PgCdec−1. The temporal evolution of the annual global CO2 flux is
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similar in ASML and FREE (Fig. 4a). The first assimilation year, 2010, stands out because it is one of the very few years

during which the assimilation increases the oceanic CO2 uptake. This slightly reduces the trend in CO2 uptake 2010-2020285

((−0.40± 0.09)PgCdec−1 versus (−0.38± 0.11)PgCdec−1). The trend, thereby, remains within its confidence interval.

Furthermore, the assimilation reduces the interannual variability of the global mean oceanic uptake slightly, demonstrated by

a standard deviation of detrended annual means of 0.11PgCdec−1 in FREE and 0.08PgCdec−1 in ASML (not significantly

different according to F-test).

The strongest time-mean air-sea CO2 flux (negative: into the ocean) is found at mid and high latitudes (Fig. 4c). The large-290

scale pattern of the CO2 flux is generally very similar in FREE and in ASML (FREE not shown). However, the effect of the

assimilation on the CO2 flux varies from region to region (Fig. 4d). The largest local changes, both towards stronger or weaker

CO2 fluxes, occur in the North Atlantic in the area of the NAC and in the coastal North Pacific. The most prominent large-scale

effect though, is in the Southern Ocean. South of 50◦S, the area-integrated CO2 uptake increases by 0.18PgCdec−1 through

the assimilation (Fig. 4e and f). In contrast, the uptake decreases by 0.07PgCdec−1 between 40-50◦S. With the exception of295

the Southern Ocean, CO2 uptake decreases in all world oceans by a small amount (Fig. 4d and e).

4.2 Regional CO2 fluxes and their drivers

The impact of the DA on the CO2 flux is particularly large in the Southern Ocean, where we now inspect individual regions.

In the northernmost biome of the Southern Ocean, the subtropical seasonally stratified biome (STSS, outlined in Fig. 5a), the

mean oceanic CO2 uptake is high (Fig. 5a). Here, the uptake is largest in austral winter and spring (June to November, Fig. 5c300

and d). In the more northern part of the STSS, which we call the STSS+, the CO2 uptake is reduced through the assimilation,

demonstrated by a positive flux difference between ASML and FREE in this area (Fig. 5b). The reduction is greatest in winter

and spring, which is shown through a positive flux difference between ASML and FREE from July to October (Fig. 5g). In

contrast, in the more southern part of the STSS, which we call the STSS-, the assimilation increases the oceanic CO2 uptake

(Fig. 5b). The increase of CO2 uptake through DA is largest in summer and autumn (November to April, Fig. 5h).305

Further south, in the subpolar seasonally stratified biome (SPSS), the ocean absorbs CO2 all year-round (Fig. 5a). The

oceanic uptake is increased through the assimilation, shown by a negative difference of ASML and FREE in Fig. 5b. The

largest difference between ASML and FREE is seen in spring from September to October (Fig. 5i). Due to the seasonal effect

of DA, the seasonal cycle of the CO2 flux in the SPSS is altered. In ASML, the CO2 uptake is weakest in February, gets

stronger in autumn (MAM), stalls growing in winter (JJA) and resumes to get stronger in spring (SON), reaching peak uptake310

in November (Fig. 5e). In FREE, the CO2 uptake is weakening in winter, is weakest in September and gets stronger afterwards,

reaching peak uptake in December.

In the seasonally ice-covered biome (ICE) surrounding the Antarctic continent, the time-mean CO2 flux is smaller than in

the other biomes (Fig. 5a). In this region, the ocean absorbs CO2 during summer and there is a smaller outgassing during winter

(Fig. 5f), as the region is mostly ice-covered in winter (see sea-ice concentration in September in Fig. 3). In the northern part315

of the ICE biome, close to the SPSS, the effect of the assimilation is similar to the effect within the SPSS itself (Fig. 5b).

Here, the assimilation acts to increase ocean CO2 uptake or to weaken CO2 outgassing during winter and spring (Fig. 5i and j).
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Figure 4. Effect of data assimilation on the air-sea CO2 flux (negative: into the ocean). (a) Annual time-series of global flux in PgCdec−1 in

FESOM-REcoM-PDAF with ASML (black) and FREE (violet); and RECCAP estimates (DeVries et al., 2023) with pCO2-products (orange)

and GOBMs (blue) and their respective ensemble means (bold lines). Here, the river flux adjustment (−0.65PgCdec−1) was applied to

the pCO2 products. (b) Time-mean global flux 2010-2018 in ASML (black), FREE (violet); and RECCAP estimates grouped by method

(DeVries et al., 2023). Crosses represent individual estimates (e.g. individual GOBMs) and bars represent the ensemble mean (e.g. mean of

twelve GOBMs). Here, the river flux term was applied to all estimates except the models following the Global Carbon Budget methodology

(Friedlingstein et al., 2023). For FESOM-RECoM-PDAF, additionally the time-mean 2010-2020 is shown (horizontal lines). (c) Spatial

distribution of CO2 flux averaged over the period 2010-2020 in ASML. (d) Spatial distribution of CO2 flux difference between ASML and

FREE averaged over the period 2010-2020 (e) Zonal averages of CO2 flux 2010-2020 in ASML and FREE, and their difference in (f).
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Figure 5. Effect of data assimilation on Southern Ocean CO2 flux and its seasonality averaged over the period 2010-2020. Negative numbers

indicate a flux into the ocean. (a) Map of mean CO2 flux in ASML. (b) Map of difference between CO2 flux in ASML and FREE. (c - f)

Seasonal cycle of air-sea CO2 flux by region. (g - j) Seasonal difference in air-sea CO2 flux between ASML and FREE by region. Note the

different scales.

Thereby, interestingly, the assimilation hinders outgassing of CO2 from May to November in ASML in the ICE biome (Fig. 5f;

comparison of winter outgassing with other estimates in Fig. A4). In the southern part of the ICE biome, near the Antarctic

continent, the effect of the DA on the CO2 flux is small.320

In the North Atlantic, the assimilation has noticeable effects on the CO2 flux in the area of the NAC. In this region, the ocean

absorbs CO2 in the annual average (Fig. 6a). However, the ocean releases some CO2 during summer, while the sea surface
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Figure 6. Effect of data assimilation on North Atlantic CO2 flux and its seasonality averaged over the period 2010-2020. Negative numbers

indicate a flux into the ocean. (a) Map of mean CO2flux in ASML. (b) Map of difference betweenCO2flux in ASML and FREE. (c - f)

Seasonal cycle of air-seaCO2flux by region. (g - j) Seasonal difference in air-seaCO2flux between ASML and FREE by region. Note different

scales.

warms (Fig. 6c-f). In the Central STSS, the effect of the DA is to prevent outgassing during summer (Fig. 6c and g). In the

Western STSS and in the Newfoundland Basin, the ocean CO2 uptake is decreased during winter (Fig. 6d,e,h and j). In the

East Coast SPSS, the ocean CO2 uptake is increased (Fig. 6f and j). The regionally different dynamics of the effects of the325

assimilation that drive these differences in the air-sea CO2 flux in the North Atlantic and Southern Ocean, will be investigated

next.

In the Southern Ocean, the reduced CO2 uptake and increased pCO2 in the STSS+ region is driven by increased surface

DIC and lowered alkalinity (Fig. 7b and c, hatched area). These, as well as the colder SST and fresher SSS in the STSS+

region (Fig. 1b and e) are indications for a year-round stronger influence of subantarctic waters. This is evident as in the330

subantarctic, surface DIC is higher and surface alkalinity is lower than in the subtropical Southern Ocean (Fig. A5c and d),

and, furthermore, the subantarctic is characterized by cold temperatures and low salinity (Fig. A5 a and b). In addition, reduced

net primary production (NPP) in spring contributes to higher DIC in the STSS+ region in ASML (not shown). In contrast, the

increased CO2 uptake and reduced pCO2 in the STSS- is driven by lower surface DIC and by increased alkalinity (Fig. 7b and

c, non-hatched area). These, together with higher SST in ASML than FREE in the STSS- regions (Fig. 1b), indicate a higher335

presence of subtropical waters (see characteristics of subtropical waters in Fig. A5). Moreover, higher NPP contributes to lower
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DIC in the STSS- region in ASML (not shown). The seasonality of the effect of DA on the air-sea CO2 flux (Fig. 5c-d,g-h) is

determined by seasonal temperature differences between ASML and FREE (Fig. 7d-g). In the STSS+ region, SST is slightly

reduced during summer (Fig. 7f). This lowers pCO2 in the STSS+ region (Fig. 7a), counteracts the effects of DIC and alkalinity

on pCO2 and thus dampens the overall effect on the air-sea CO2 flux during summer. In contrast, in the STSS- region, the SST340

is higher in ASML than FREE during winter (Fig. 7e and g). This increases pCO2 in the STSS- region (Fig. 7a), counteracting

the effects of lower DIC and higher alkalinity on pCO2 and dampening the overall effect during winter. In summary, the

contrasting effects in the STSS are probably generated by a horizontal redistribution of water masses within the STSS biome.

In the center of the STSS, the Subantarctic Front is located, which is associated with the Antarctic Circumpolar Current (ACC)

and characterized by a strong gradient in SST, SSS and various other tracers (Chapman et al., 2020). Because SST and SSS345

are directly influenced and improved by the assimilation, the position of this front is also expected to change as a result of

the assimilation, leading to a horizontal relocation of waters separated by the front. In addition, differences in the horizontal

transport of DIC and alkalinity by the ACC (transport not shown), and differences in the velocities between ASML and FREE

(Fig. A6), indicate a horizontal redistribution with zonal and meridional components.

In the SPSS, the increased CO2 uptake and lower surface pCO2 during winter and spring is driven by a combination of350

lower DIC and colder temperatures (Fig. 7a and b), which outweigh the opposite effect of a decrease in alkalinity on pCO2

(Fig. 7c). Surface DIC is generally high due to upwelling of carbon-rich deep water (Hauck et al., 2023a). The reason for lower

surface DIC in ASML is likely that the upward transport of DIC is reduced through a more stable stratification, which is shown

by a reduced density in the upper 300 m and an increased density below that (Fig. 7h). Thereby, the densities in the SPSS

agree better with densities calculated from EN4-OA. The more stable stratification reduces the depth of the boundary layer355

in winter and spring (not shown). Vertical mixing within the boundary layer affects the vertical profile of DIC, towards lower

DIC in ASML above 100 m and higher DIC below (Fig. 7i). The vertical profile of DIC in ASML is closer to GLODAP DIC

observations, albeit some differences to GLODAP still exist. Besides the fact that the differences in stratification and boundary

layer depth affect the vertical DIC profile, they also imply less available surface nutrients in ASML. Probably due to that, in

the SPSS, ASML features lower NPP, lower chlorophyll concentrations and a lower phytoplankton biomass (not shown).360

In the Northern part of the ICE biome near the SPSS, the reduced outgassing and decreased pCO2 during winter and spring

is driven by similar processes as within the SPSS. Again, lower surface DIC and colder temperatures (Fig. 7a and b) outweigh

the opposite effect of a decrease in alkalinity on pCO2 (Fig. 7c). As in the SPSS, the reason for the decrease in pCO2, is, firstly,

a more stable stratification through surface freshening, which reduces DIC above 100 m depth and increases DIC below (not

shown). Secondly, as the surface temperature is lower in ASML (Fig. 1b), the winter sea-ice concentration is higher (Fig. 3b),365

which prevents winter outgassing of CO2.

In summary, in the Southern Ocean, the main effects of the DA on the CO2 flux are, firstly, an increase of the uptake in the

SPSS caused by a more stable stratification and thus less upward transport of naturally carbon-rich water through mixing and

secondly, an overall decrease of uptake in the STSS as a consequence from a horizontal redistribution of water masses within

the STSS.370
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Figure 7. Drivers of the effects of data assimilation on air-sea CO2 fluxes in the Southern Ocean. Panels a, b and c show the effects of SST,

DIC and alkalinity differences between the ASML and FREE simulations on surface pCO2, where positive denotes an increase in pCO2.

Hatching inside the STSS indicates where net pCO2 is increased through the assimilation (STSS+). (d and e) Seasonal cycle of SST averaged

over the regions STSS+ and STSS- for the ASML and the FREE, and (f and g) the difference between ASML and FREE for each region.

(h) Potential density profiles for the SPSS in the Southern Ocean, with FREE (violet line) and ASML (dashed black line) based on daily T

and S, and with EN4-OA (dotted green line) based on monthly T and S. (i) DIC profiles for the SPSS in the Southern Ocean, showing FREE

(violet line), ASML (dashed black line) from 2010-2020 and climatological DIC from GLODAP.
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In the North Atlantic, the effects of the DA on the CO2 flux are locally large, but there are differences to the Southern Ocean.

In the Central STSS, the effect of the DA is towards increased uptake of CO2 during boreal summer and autumn in ASML

(Fig. 6g). This prevents summer outgassing, which occurs from June to October in FREE (Fig. 6c). The reason for the higher

uptake and decreased surface pCO2 is higher alkalinity in ASML (Fig. 8b). In this region, the alkalinity effect, which reduces

pCO2, outweighs the opposing effects of DIC and SST on pCO2 (Fig. 8a and c). A higher alkalinity could point to the presence375

of waters of subtropical origin (Fig. A7d), transported northward with the NAC (Völker et al., 2002). Other fingerprints of

waters advected by the NAC are a warm SST particularly in winter, a higher salinity and higher DIC than that of North Atlantic

subpolar waters (Fig. A7a-c, Völker et al., 2002). The assimilation causes a change in these properties, towards a higher SST,

higher salinity and higher DIC in the Central STSS (Fig. A7). Simultaneously, ASML represents higher NPP, biological carbon

export at 200 m, surface chlorophyll and column integrated phytoplankton biomass in spring, which is shown by the example380

of surface chlorophyll difference between ASML and FREE in Fig. 8e. This is facilitated by more available nutrients through

winter mixing in the surface boundary layer, which is deeper in ASML (Fig. 8d). In combination, the higher biological export

of carbon and the higher alkalinity in ASML result in lowered surface pCO2 and higher oceanic uptake.

In the Western STSS, the DA reduces the CO2 uptake and increases pCO2 mainly during winter, as a direct effect of increased

SST (Fig. 8a). In this region, the thermal effect of DA, which increases pCO2, is dominant over the combined effect of DIC385

and alkalinity. The latter have effects comparable in magnitude to SST, but mostly cancel each other out (Fig. 8b-c). The effect

of DA on surface properties (SST, SSS, DIC and alkalinity) in the Western STSS is similar to the effect in the Central STSS,

which indicates a higher influence of subtropical waters in both regions.

In the Newfoundland Basin, the dominant effect of DA is a reduction of the CO2 uptake and an increase of pCO2 mainly

during winter, as a direct effect of increased SST (Fig. 8a). In addition, ASML also features shallower winter mixing inside the390

boundary layer (Fig. 8d) and a more stable stratification due to lower density at the surface than FREE (Fig. 8f). Consequently,

DIC and alkalinity in the upper 100 m are slightly reduced. Neverless, some differences to GLODAP-DIC observations remain

(DIC in Fig. 8g). However, the thermal effect of DA, which increases pCO2, is dominant over the combined effect of DIC and

alkalinity on pCO2 (Fig. 8b and c), as the latter cancel each other out. Furthermore, surface nutrients, NPP, export production,

biomass and surface chlorophyll are reduced (surface chlorophyll in Fig. 8e), probably due to shallower mixing. In the Western395

Boundary STSS, the increased CO2 uptake and reduced pCO2 in ASML during winter and spring is facilitated by colder

SST (Fig. 8a). This might be due to subpolar water masses penetrating further south along the coast in ASML because the

location where the current separates from the coast is further south in ASML (Fig. A8). In summary, DA affects the CO2 flux

in the North Atlantic mainly through horizontal and vertical redistribution of DIC and alkalinity, and through changes in SST.

However, which of these effects is dominant varies from region to region.400

4.3 Comparison with biogeochemical observations

To evaluate the modeled air-sea CO2 flux based on observations, surface pCO2 is the most informative variable, as it is closely

related to the air-sea CO2 flux. Effects of the DA on the modeled ecosystem and associated carbon fluxes, as well as thermal and

dynamical effects that affect the CO2 flux, are all included in pCO2. The global mean of absolute monthly model-observation
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Figure 8. Drivers of the effects of data assimilation on air-sea CO2 flux in the North Atlantic. Panels a, b and c show the effects of SST,

surface DIC and alkalinity differences between ASML and FREE on surface pCO2. (d) Difference of boundary layer depth (ASML - FREE)

for spring (MAM) 2010-2020, where positive denotes a shallower boundary layer in the ASML. (e) Difference of surface chlorophyll

(ASML-FREE) for spring (MAM) 2010-2020. (f) Potential density profiles for the Newfoundland Basin region, with FREE (violet line)

and ASML (dashed black line) based on daily T and S, and with EN4-OA (dotted green line) based on monthly T and S. (g) DIC profiles

for the Newfoundland Basin region, showing FREE (violet line), ASML (dashed black line) from 2010-2020 and climatological DIC from

GLODAP.
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differences to the available SOCAT pCO2 observations is 27.26µatm for FREE. For ASML, the difference is slightly larger405

with 27.60µatm. On global average, pCO2 is higher than in SOCAT by 3.70µatm in FREE and 4.59µatm in ASML, as

regions with positive and negative differences to SOCAT compensate (Fig. 9a). The assimilation changes pCO2 by a mean

absolute value of 8.08µatm, which is ±27% of the mean absolute model-observation difference. A linear offline estimation

demonstrates that this change in pCO2 would lead to an absolute change in the air-sea CO2 flux by 1.06mmolCm−2 day−1

on average.410

Overall, FREE and ASML show very similar regional pCO2 differences compared to SOCAT (difference of FREE and

SOCAT in (Fig. 9a); difference of ASML and SOCAT not shown). In the subtropical and tropical Atlantic and the subtropical

Pacific, FREE and ASML have higher pCO2 than SOCAT, while in the equatorial Pacific, the pCO2 is lower. At high latitudes,

FREE and ASML represent mostly lower pCO2 than SOCAT.

In the Southern Ocean, the simulations represent lower pCO2 than SOCAT in the SPSS and ICE biomes in the annual mean415

(Fig. 9c), which is dominated by summer differences to SOCAT (not shown) when most observations are available. Through

the assimilation, pCO2 is increased in summer and reduced in winter (not shown), leading to an overall better agreement with

SOCAT (Fig. 9e). In contrast, in the STSS, FREE and ASML represent higher pCO2 than SOCAT, and through the assimilation,

the agreement with SOCAT decreases.

In the North Atlantic, the simulations and SOCAT show a similar large-scale pattern, namely that pCO2 is higher in the420

subtropics (ASML: around 400µatm) than in the subpolar regions (ASML: around 280µatm). Yet, this latitudinal difference

of pCO2 is stronger in the simulations compared to SOCAT, meaning that in the subtropics, pCO2 in the simulations is higher

than in SOCAT (Fig. 9d), while it is lower in the subpolar regions. Furthermore, in both simulations there is a pronounced pCO2

surface gradient in the NAC and Subpolar Gyre region, whose position is changed by the assimilation, and which appears to be

further northward in SOCAT. Thereby, the assimilation overall leads to a better agreement with SOCAT, in particular through425

a decrease of pCO2 in the Central STSS, where the average difference is reduced from 26µatm (FREE - SOCAT) to 1µatm

(ASML - SOCAT). However, in the Newfoundland basin, the average difference is turned from −17µatm (FREE - SOCAT)

into 13µatm (ASML - SOCAT), which is associated with a larger absolute discrepancy of ASML and SOCAT.

DIC and alkalinity are two of the most important variables from which pCO2 is derived (Section 4.2). Comparing them with

observations provides more insights into the strengths and weaknesses of the modeled carbonate system than a comparison with430

pCO2 observations alone. The FESOM-REcoM simulations represent higher surface DIC than GLODAP bottle observations

(Lauvset et al., 2024a, gridded monthly-means) on average (Fig. 10a), with a global mean surface difference FREE-GLODAP

of 6.46mmolCm−3 for DIC. Although fewer DIC observations are available than pCO2 observations, similarities between the

respective model-observations differences for DIC and pCO2 can be recognized. For example, DIC in the model is lower in the

tropical and subtropical Atlantic than GLODAP, and higher in the polar Atlantic. This is consistent with SOCAT pCO2 obser-435

vations in the same areas. The model-observation differences to GLODAP DIC and SOCAT pCO2 are also consistent with each

other in the north Pacific. The assimilation induces absolute changes in surface DIC of 6.33mmolCm−3 on global average,

with regional differences in sign. These changes slightly reduce the mean absolute difference to the surface observations from

32.78mmolCm−3 to 32.15mmolCm−3, and yield a mixed picture of the improvement (Fig. 10b).
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Figure 9. Partial pressure of CO2 (pCO2) at the surface averaged over the years 2010-2020. Panels (a-c) show the difference between FREE

and SOCAT observations in (a) the global ocean, (b) Southern Ocean and (c) North Atlantic; panels (d-f) show the impact of the assimilation

as ’improvement’ relative to SOCAT observations computed from monthly mean pCO2 in the same regions. Positive values (green color)

denote a reduced difference to SOCAT.
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While the trend in surface DIC due to anthropogenic input makes it necessary to compare the model with contemporaneous440

observations at the ocean surface, a comparison with climatological data is meaningful below a depth of approximately 200 m.

In fact, the modeled global distribution of DIC at depth is overall similar to that in the GLODAP climatology (Fig. A9).

For example, the model results and GLODAP data sets show that DIC is lowest in the isopycnals of the subtropical gyres

(2050−2150mmolCm−3; Fig. A9a) and that DIC mostly increases with depth and is higher in the Pacific (2420mmolCm−3

at 1000 m in the North Pacific) than in the Atlantic (2320mmolCm−3 below 3000 m in the South Atlantic). Yet, depending445

on the ocean basin and depth, there can be both negative and positive differences between the simulations and the GLODAP

climatology, which are in the order of 20mmolCm−3 (Fig. A9c). On a global average, the assimilation leads to an increase in

DIC between 200-600 m depth and a reduction of DIC between the surface and 200m, with the largest effect in the upper 400 m

(Fig. A9b). This leads to an improved agreement with the GLODAP climatology, with the largest global mean improvement

at a depth of 400 m (2.5mmolCm−3; (Fig. A9d). Below 1000 m depth, the global mean absolute difference FREE-ASML of450

DIC and alkalinity is only 1− 2mmolm−3 and is therefore substantially smaller than at the surface.

The comparison with GLODAP bottle alkalinity at the surface shows a similar spatial patterns as for DIC (see Fig. 10a

and c). The magnitude of the bias is also comparable (14mmolAlkm−3). The global mean of the absolute difference ASML-

FREE of surface alkalinity is 7.72mmolAlkm−3. The assimilation leads to a reduction of the absolute difference of the

model alkalinity to GLODAP from 34.34mmolAlkm−3 to 32.60mmolAlkm−3. Since the effects of physics assimilation455

on alkalinity and DIC are regionally consistent, regions of improved or deteriorated agreement with GLODAP often coincide

for both variables (compare Fig. 10b and d). Since changes of DIC and alkalinity have an opposing effect on the CO2 flux,

it is likely that their correlation results in compensating effects. A linear estimate shows that the joint effect of DIC and

alkalinity changes is responsible for a change in the CO2 flux in the order of 1.22mmolCm−2day−1 on average, and, globally

integrated, the assimilation-induced changes in DIC and alkalinity lead to an estimated net increase of the air-sea CO2 flux by460

0.50PgCyr−1. However, this linear offline estimate is subject to a large uncertainty.

The representation of chlorophyll by the model is of interest as a pCO2-independent proxy for primary production. Surface

chlorophyll reflects the phytoplankton state and biomass, and therefore, effects of the DA on the biological model state can

be seen in the total surface chlorophyll concentration. A comparison of the modeled surface chlorophyll with remotely-sensed

chlorophyll from OC-CCI reveals that the simulations capture the global distribution of chlorophyll well (Fig. 11). The sim-465

ulations show the seasonal maxima in each hemisphere around one month earlier in the year (not shown). FREE features a

higher surface chlorophyll concentration than OC-CCI by 0.02mgm−3 on average, with low deviations in the tropics and an

enhanced difference north of 30◦N (0.12mgm−3) and south of 30◦S (0.24mgm−3) (Fig. 11a). South of 30◦S, FREE is in

better agreement with chlorophyll-a from Johnson et al.’s (2013) Southern Ocean specific chlorophyll product (Fig. 11a) than

with OC-CCI data.470

On global average, the assimilation slightly reduces the differences between model and OC-CCI data, from a global mean

absolute difference of 0.31mgm−3 to 0.29mgm−3. The assimilation changes the chlorophyll concentration by an absolute

value of 0.05mgm−3 on average, which is 15% of the global mean absolute difference to OC-CCI. There are regions in which

assimilation leads to a reduction in chlorophyll and thus to better agreement with the satellite products, for example in the
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Figure 10. Comparison of the model result with surface DIC and alkalinity bottle observations from GLODAP over the years 2010 to 2020.

(a) Difference of DIC between FREE and GLODAP. (b) Improvement of monthly surface DIC relative to GLODAP. (c and d) For alkalinity.
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Figure 11. Surface chlorophyll averaged over the years 2010-2020: (a-c) difference between FREE and SOCAT observations in (a) the global

ocean, (b) the Southern Ocean and (c) the North Atlantic; (d-f) impact of the assimilation as ’improvement’ relative to the observations in the

same regions. Panels (a, c, d) and (f) compare to monthly OC-CCI observations, panels (b) and (e) refer to the climatology for 1998-2019 by

Johnson et al. (2013).

North Atlantic Subpolar Gyre and the Southern Ocean SPSS (Fig. 11b and e). In contrast, the model reacts to the DA with an475

increase in chlorophyll in the North Atlantic Central STSS and the Argentine Basin (Fig. 11b and f), which leads to poorer

agreement.

5 Discussion

The assimilation of physics has different effects on BGC surface variables, though the major effects seem to be related to

changes of SST (Section 4.3). Surface chlorophyll changes follow SST changes (Fig. 11 and Fig. 1), as the modeled phy-480
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toplankton growth is temperature-dependent (Gürses et al., 2023). The changes of surface DIC and alkalinity show similar

spatial patterns with regional heterogeneity (Section 4.2), again with the major changes being coherent with the changes in

SST (Fig. 1). Furthermore, the effects of the assimilation on DIC and on temperature in the upper 1000 m correlate regionally.

Cooling at intermediate depth (Fig. 2b) is usually accompanied by higher DIC (Fig. A9), while warming near the surface co-

occurs with reduced DIC. An overall more stable ocean stratification in the upper hundreds of meters explains why; on global485

average, the assimilation leads to lower DIC above 200 m and higher DIC between 200-600 m depth. In addition to changes in

stability and mixing, the assimilation affects the distribution of DIC and alkalinity through changes in horizontal and vertical

advection, with changes in the horizontal advection being about an order of magnitude larger than in the vertical. The hori-

zontal distribution of surface DIC, alkalinity and SST is governed by latitudinal gradients and common pathways of advective

transport, so that all of them undergo similar changes as the SST field is modified. The exception to this is the Southern Ocean490

STSS, where changes in the horizontal transport of DIC, alkalinity and temperature along contrasting surface gradients affect

the respective variables differently (Section 4.2, Fig. A5, Fig. A6). The physics assimilation affects pCO2 directly through the

thermal effect, but also indirectly through changes of DIC and alkalinity, among other factors. Globally, changes in pCO2 are

dominated by changes in DIC and alkalinity, but regionally, also the thermal effect can be the largest, for example in the North

Atlantic Newfoundland Basin (Fig. A10). While the DA dynamically induces changes in surface pCO2 globally, the strongest495

effects on the air-sea CO2 flux are at high latitudes, where the pCO2 changes are amplified by high wind velocities.

The improvement in ocean physics overall leads to a more heterogeneous picture in biogeochemistry. While near-surface

temperature and salinity fields are improved through DA almost everywhere, the global mean absolute difference of modeled

surface pCO2 to SOCAT remains similar in ASML compared to FREE, and this also applies to the model-observation differ-

ences for surface chlorophyll, DIC and alkalinity (Section 4.3). Where improvements in one BGC variable occur, these do not500

necessarily lead to consistent improvement in all BGC variables. For example, the representation of pCO2 improves while that

of chlorophyll deteriorates in the North Atlantic Central STSS (Fig. 11f and Fig. 9f). In the Southern SPSS, the reduction of

modeled surface chlorophyll and the summer increase of pCO2 in the Southern Ocean SPSS lead to a better agreement with

observations, yet the available observations of DIC and alkalinity do not resolve the regional scales to evaluate the correspond-

ing changes in these variables (Fig. 9, Fig. 10 and Fig. 11). One possible reason for improvement of model-data mismatch in505

one variable with worsening in another may lie in inconsistencies between the observational datasets. Another reason may be

missing processes in the model or the use of constant BGC model parameters. Those parameters are responsible for linking

changes between ecosystem variables and in reality, they vary across space and time depending on species composition in the

ecosystem (Mamnun et al., 2023, Chapter 3).

The global air-sea CO2 flux estimates of FREE and ASML fall in the range of previous model estimates and in the range of510

previous pCO2 products (Fig. 4a and b) for the period 2010-2018, during which comparable estimates are available (DeVries

et al., 2023). Thus, the overall impact of the DA on the air-sea CO2 flux on a global scale is modest (0.05PgCdec−1) compared

to the differences between other estimates (e.g., a standard deviation of 0.20PgCdec−1 in DeVries et al., 2023). However,

regionally, the effects of DA are more pronounced.
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There are two other data assimilating BGC model approaches, namely ECCO-Darwin (global; Carroll et al., 2020)) and515

B-SOSE, which is restricted to the Southern Ocean (Verdy and Mazloff, 2017). Both approaches use Linearized Least Squares

Optimization data assimilation methods (4D-var/adjoint and Green’s function, Wunsch, 1996; Menemenlis et al., 2005). How-

ever, the largest difference to our study is probably that they assimilate BGC observations in addition to physical data. Thus,

as expected, the effect on pCO2 in our study is smaller (3%) than in ECCO-Darwin and B-SOSE where a reduction in pCO2

model data misfit of 6% and 64% was reported, respectively (here given as quadratic misfit).520

The global CO2 flux is smaller in FESOM2.1-REcoM3-PDAF (−2.73PgCdec−1) than in ECCO-Darwin (−3.13PgCdec−1)

(2010-2018). The global CO2 flux in ASML is similar to FREE and does not drive the estimate closer towards the higher esti-

mates of the ECCO-Darwin or the observation-based pCO2-products (−2.87PgCdec−1). Similarly, the trend and interannual

variability of the CO2 flux is hardly changed by the assimilation, suggesting that a flawed representation of ocean physics as

an argument for the models underestimating the CO2 flux trend is unlikely.525

The discrepancy between the CO2 flux estimates based on models and pCO2-products is an area of active research and is

not fully resolved (Friedlingstein et al., 2023; DeVries et al., 2023). On the one hand, model biases in the AMOC, in Southern

Ocean ventilation and possibly biases in the surface ocean carbonate chemistry were suggested as reasons why models might

underestimate the global mean CO2 uptake in recent decades (Friedlingstein et al., 2023; Terhaar et al., 2024, 2022). On the

other hand, the sparsity of observations is a concern for the pCO2 products. According to one testbed simulation, the pCO2530

products reflect the global mean and the seasonal cycle relatively well, while the decadal variability may be overestimated

(Gloege et al., 2021). An overestimation of the decadal trend, as suggested by Hauck et al. (2023b), could explain the high

estimates of the pCO2 products for the present-day global mean CO2 flux. In contrast, for the North Atlantic, it was argued

that pCO2 is comparatively well constrained by observations in the last decade but not in the 1980s, which has an erroneous

influence on the long-term trend (Pérez et al., 2024).535

The effects of data assimilation on the CO2 flux are most pronounced in the Southern Ocean STSS and SPSS in winter.

Verdy and Mazloff (2017) also found the largest effects of assimilation on the CO2 flux in this region. Although the region

is of crucial importance for the global ocean carbon sink, it also has the greatest uncertainty due to the lack of ship-based

winter observations (Friedlingstein et al., 2023; Hauck et al., 2020). In the last decade, the number of winter observations

has increased due to the introduction of biogeochemical Argo floats (Johnson et al., 2017; Williams et al., 2017), although540

the float-based pCO2 derived from pH measurements and estimated alkalinity is subject to higher uncertainty compared to

direct pCO2 measurements (Williams et al., 2017; Bakker et al., 2016). Machine learning approaches incorporating BGC Argo

float observations suggest a stronger winter outgassing around Antarctica, particularly south of 50◦S in the SPSS and ICE

biomes, for 2015-2017 (Bushinsky et al., 2019; Gray et al., 2018). This results in a lower estimate of annual Southern Ocean

CO2 uptake in the float products. One suggestion in the literature was that model inadequacies in the representation of mixing545

and upwelling in the Southern Ocean could cause the discrepancy between float products and models (Gray et al., 2018).

However, improvements in the modeled ocean physics and changes in mixing through data assimilation do not lead to not

lead to closer agreement between the FESOM-REcoM estimate and the float products. In contrast, ASML shows even weaker

winter outgassing and stronger summer uptake south of 50◦S than FREE, which brings the FESOM-REcoM estimate further
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away from the float products. However, ASML is brought close to B-SOSE in terms of winter outgassing in the Antarctic polar550

ocean (south of 60◦S) and winter uptake in the STSS (at 40◦S). Additionally, airborne CO2 flux estimates and direct pCO2

measurements stemming from a sail drone have questioned the estimates of winter outgassing based on the BGC floats, either

attributing the high pCO2 values to possible biases in the floats’ measuring devices or to anomalously high pCO2 in the years

2015-2016 (Long et al., 2021; Sutton et al., 2021). Based on the assumption of preindustrial steady state conditions, a larger

natural CO2 outgassing in the Southern Ocean needs to be compensated by other ocean regions (Gray et al., 2018). The regional555

differences caused by the data assimilation in the Southern Ocean and elsewhere largely balance out globally and appear to be

shifts in the areas where outgassing occurs. These regional shifts follow shifts in sea surface temperature and the distribution

of dissolved inorganic carbon (DIC) and alkalinity.

The comparably small effect of physics DA on the air-sea CO2 flux suggests that the physical processes are already well-

represented in FREE when compared to the uncertainties arising from the biogeochemistry model. The response of REcoM to560

changes in model physics might be small due to its variable stoichiometry, as the study by (Buchanan et al., 2018) indicated

that dynamic biological functioning reduces the sensitivity of critical fields, like carbon, to physical changes. Furthermore,

negative feedback effects between alkalinity, DIC, atmospheric pCO2, and air-sea fluxes might reduce the overall response

(Bunsen et al., 2024). While surface physics are well constrained in the ASML run, questions remain about the dynamics of

the mixed layer and deep ocean. Experiments on decadal or longer time scales might be necessary to represent the adjustment565

of the ocean’s carbon cycle to changes in the circulation (Cao et al., 2009). In ASML though, the effect on the CO2 flux is

already as strong in the first two years as at the end of the period, and it appears to be governed by interannual variability

rather than showing a continuous adjustment. Despite the higher resolution in dynamic regions of the North Atlantic and the

Arctic, strong currents and their exact locations, such as the North Atlantic Current and Antarctic Circumpolar Current, are

challenging for the model to resolve. These are improved through the assimilation, which is the basis for realistically modeling570

biogeochemistry in these regions as well.

6 Conclusion

We apply data assimilation of temperature and salinity into a global ocean-biogeochemical model to improve the physical

state for the years 2010-2020. The simulation is then assessed with regard to the effects on the biogeochemical variables.

The experiments show that the effect of data assimilation (DA) on biogeochemical variables is mostly related to temperature575

changes. While the air-sea CO2 flux and pCO2 are directly affected by sea surface temperature, the DA also induced indirect

changes to pCO2 through dissolved inorganic carbon (DIC) and alkalinity. Globally integrated, these are more relevant for

pCO2 than the direct effect. Yet, which of these factors has a dominant effect on pCO2 varies locally. The assimilation leads to

changes in the horizontal advection of DIC and alkalinity, thereby regionally shifting areas of CO2 outgassing and uptake. The

largest effect on the air-sea CO2 flux occurs in the Southern Ocean during winter. In the simulation with assimilation, the uptake580

south of 50◦S is increased, and the uptake northward of that (40-50◦S) is weakened. In this part of the ocean, the uncertainty

in current estimates of CO2 fluxes is particularly high. Furthermore, the assimilation has locally strong effects in the area of the
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North Atlantic current. Overall, the uncertainty inherent to the biogeochemical model appears to be larger than the uncertainties

induced through physical biases in the free running model. Locally, the changes in surface pCO2, chlorophyll, alkalinity, and

DIC caused by the assimilation are of the magnitude of 15-30% of the mean absolute model-observation difference. Yet,585

local improvements in one variable do not necessarily come along with improvements across other observed biogeochemical

variables. Therefore, globally, physics DA does not generally improve the difference between the model and observations. In

total, the effect of physics DA on the global ocean carbon uptake is small with 0.05PgCyr−1 compared to the spread between

previous estimates of models, pCO2 products and other DA estimates. While the assimilation of temperature and salinity

improves the physical state, possible errors in the mixed layer depth and overturning circulation are not fully eliminated. Further590

biogeochemical variables are only indirectly affected. To this end, the additional assimilation of biogeochemical observations

is an obvious next step to reduce the uncertainty stemming from the ecosystem model and to improve the model observation

differences for biogeochemical variables.

Code and data availability. The code used to perform the free simulation and the data assimilation is available at 10.5281/zenodo.11495274.

This code archive additionally contains a notebook to produce the manuscript figures from the model output. The processed model output595

data underlying the figures of this manuscript are available at 10.5281/zenodo.11495081.

Appendix A

Table A1. List of tracers in REcoM3

Tracers in REcoM3

Dissolved inorganic nitrogen and carbon (DIN, DIC)

Dissolved organic nitrogen and carbon (DON, DOC)

Alkalinity

Oxygen

Iron

Silicate

Intracellular concentrations of nitrogen, carbon, chlorophyll, and calcium in small phytoplankton (PhyN, PhyC, PhyChl,

PhyCalc)

Intracellular concentrations of nitrogen, carbon, chlorophyll, and silicate in diatoms (DiaN, DiaC, DiaChl, DiaSi)

Intracellular concentrations of nitrogen and carbon in each of two zooplankton groups (HetN, HetC, Zoo2N, Zoo2C)

Two size classes of detritus for nitrogen, carbon, silicate, and calcium (DetN, DetC, DetSi, DetCalc; and DetZ2N, DetZ2C,

DetZ2Si, DetZ2Calc)
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Figure A1. Time-mean sea surface (a) temperature and (b) salinity in ASML.

29

https://doi.org/10.5194/egusphere-2024-1750
Preprint. Discussion started: 20 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure A2. Zonally averaged time-mean (a) temperature and (b) salinity in ASML.
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Figure A3. September mean antarctic sea-ice concentration in ASML.
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Figure A4. Zonally averaged winter (JJA) air-sea CO2 flux in FREE, ASML and previous estimates (DeVries et al., 2023; Verdy and Mazloff,

2017).
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Figure A5. Southern Ocean time-mean sea surface in ASML, (a) temperature, (b) salinity, (c) dissolved inorganic carbon (DIC) and (d)

alkalinity.
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Figure A6. Surface velocities in the Southern Ocean, (a) time-mean in ASML and (b) difference ASML-FREE.
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Figure A7. North Atlantic time-mean sea surface in ASML, (a) temperature, (b) salinity, (c) dissolved inorganic carbon (DIC) and (d)

alkalinity.
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Figure A8. North Atlantic surface velocities, (a) time-mean in ASML and (b) difference ASML-FREE.
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Figure A9. Zonally averaged dissolved inorganic carbon (DIC), (a) time-mean in ASML, (b) difference ASML-FREE, (c) difference FREE-

OBS compared to the GLODAP climatology for DIC (Lauvset et al., 2016) and (d) improvement respective to the GLODAP climatology.
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Figure A10. Linear offline estimate of the dominance of thermal versus the non-thermal effect through the assimilation on pCO2.
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Text A1: Velocity field A problem with deep equatorial vertical velocities is indicated by artifacts of the meridional over-

turning in ASML. Throughout the assimilation period, spurious, spatially limited and often deep overturning structures emerge,

evolve through several months or years, and disappear in the tropical Indian, Pacific and Atlantic basin (not shown). Thereby,600

the surface overturning cell sometimes breaks apart where it should extend over the equator, exposing the bottom cell to the

surface. One possible cause is the effect of data assimilation on the eddy parameterisation (Gent and Mcwilliams, 1990). The

parameterised eddy activity is relevant for the dynamics in the deep ocean, and corrupting it can have a negative impact on

the large-scale oceanic circulation, as described in Sidorenko (2004, Chapter 5.5 onwards) for a previous version of the ocean

model FESOM.605
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