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Abstract. Global ocean biogeochemistry models are frequently used to derive a comprehensive estimate of the global ocean

carbon uptake. These models are designed to represent the most important processes of the ocean carbon cycle, but the idealized

process representation and uncertainties in the initialization of model variables lead to errors in their predictions. Here, obser-

vations of ocean physics (temperature and salinity) are assimilated into the ocean biogeochemistry model FESOM-REcoM

:::::::::::::::::
FESOM2.1-REcoM3

:
over the period 2010-2020 to study the effect on the air-sea CO2 flux and other biogeochemical vari-5

ables. The assimilation nearly halves the model-observation differences in sea surface temperature and salinity, with modest

effects on the modeled ecosystem and CO2 fluxes. The main effects
::
of

:::
the

:::::::::::
assimilation on the air-sea CO2 flux occur on

small scales in highly dynamic regions, which pose challenges to ocean models. The largest imprint of assimilation
::
Its

::::::
largest

::::::
imprint is in the Southern Ocean during winter. South of 50◦S, winter CO2 outgassing is reduced and thus the regional CO2

uptake increases by 0.18PgCyr−1 through the assimilation. Other particularly strong regional effects on the air-sea CO2 flux10

are located in the area of the North Atlantic Current. Yet, the effect on the global ocean carbon uptake is a comparatively

small increase by 0.05PgCyr−1 induced by the assimilation, yielding a global mean uptake of 2.78PgCyr−1 for the period

2010-2020.
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1 Introduction15

The ocean plays a pivotal role in regulating the global carbon budget and thereby mitigating the impacts of anthropogenic

carbon dioxide (CO2) emissions on the Earth’s climate. Since the 1960s, the ocean has absorbed consistently around 25%

of anthropogenic CO2 emissions annually (Friedlingstein et al., 2023) and has cumulatively taken up 26–34% of fossil and

land-use change CO2 emissions since the onset of the industrial revolution (Crisp et al., 2022). However, quantification of

air-sea CO2 flux still remains challenging. Air-sea CO2 flux is usually inferred from the gradient of partial pressure (pCO2)20

or fugacity (fCO2) of CO2 across the air-sea interface (Wanninkhof, 2014). Yet, during 2010-2020, which constitutes the best-

sampled decade in terms of surface ocean pCO2 observations so far, observations covered merely 3% of the monthly global

ocean (as calculated from the 1◦x1◦-gridded SOCAT product; Bakker et al., 2016). While the North Atlantic and North Pacific
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are comparably well observed, data remain scarce in vast regions, such as the Indian Ocean, South Pacific and areas south

of 30◦S during austral winter, where less than 1% of SOCAT grid cells have been sampled. Although these observations are25

thought to be representative of a larger area (Jones et al., 2012; Hauck et al., 2020), challenges in deriving a comprehensive

global estimate of the global ocean CO2 uptake arise due to substantial spatial and temporal pCO2 variations and potential

biases induced by the irregular sampling pattern (Denvil-Sommer et al., 2021; Gloege et al., 2021; Hauck et al., 2023b).

Particularly in the Southern Ocean, the uncertainty is considerable (Gerber et al., 2009; Gloege et al., 2021), where estimates

of the mean flux range from -0.37 to −1.25PgCyr−1 for the period 2010-2018 (data provided by Hauck et al., 2023b).30

In the Global Carbon Budget, estimates of the ocean carbon sink were initially derived from hindcast simulations of global

ocean biogeochemistry models (GOBMs) (Le Quéré et al., 2009; Wanninkhof et al., 2013; Hauck et al., 2020). More recently,

air-sea CO2 flux estimates were added based on regression and machine learning techniques, interpolating pCO2 observations

to achieve global coverage through advanced statistical methods (referred to as pCO2 products; Rödenbeck et al., 2015).

Furthermore, atmospheric transport models that ingest atmospheric CO2 measurements were employed to estimate the ocean35

carbon uptake (referred to as atmospheric inversions; Peylin et al., 2013). Although the different estimation methods have

provided valuable and robust insights into large-scale patterns of oceanic carbon uptake (Gruber et al., 2009), discrepancies

have emerged. Assessments based on pCO2-products tend to yield larger estimates of the ocean carbon sink, with stronger

trends towards more uptake, compared to estimates based on models (Friedlingstein et al., 2023; Terhaar et al., 2022). The

larger estimates are supported by ocean interior observations (Müller et al., 2023), atmospheric oxygen data and atmospheric40

inversions (Friedlingstein et al., 2023). For the years 2010-2020, pCO2 products included in the Global Carbon Project suggest

a mean oceanic sink of 3.0± 0.4PgCyr−1, while the mean of Global Carbon Project GOBMs is 2.5± 0.4PgCyr−1 (data

provided by Friedlingstein et al., 2023). Trends over the same time period are 0.7PgCyr−1dec−1 and 0.3PgCyr−1dec−1,

respectively.

Machine learning estimates perform well when trained with sufficient data (Gloege et al., 2021). However, their
::::
Their

:
per-45

formance is less reliable in data-sparse areas. Particularly in the Southern Ocean, many pCO2-products show diverging results

from one another and are likely biased towards more ocean uptake (Hauck et al., 2023b). However even in parts of the North

Pacific, which is undersampled in the 2010s, some pCO2 products show spurious decadal trends (Mayot et al., 2024). Models

provide process-driven estimates of the CO2 flux across the entire global ocean, drawing from the theory of ocean dynamics,

biological and chemical processes (Hauck et al., 2020; Fennel et al., 2022). Despite the growing confidence in our mechanistic50

understanding of the ocean carbon cycle (Crisp et al., 2022), models are also subject to uncertainty. This uncertainty stems

from uncertainties in model parametrizations
:::::::::::::
parametrization, model spin-up and initial conditions, unresolved sub-gridscale

processes and uncertainties in the atmospheric forcing (Hauck et al., 2020; Terhaar et al., 2024).

Data assimilation (DA) can be employed to address the emerging discrepancies between pCO2-products and models (Carroll

et al., 2020). Several studies assimilating ocean surface pCO2 have focused on specific regions (e.g., a baseline state of air-sea55

CO2 fluxes in the Southern Ocean; Verdy and Mazloff, 2017), few years
::::
short

:::::
time

::::::
periods

:
(e.g., optimized biogeochemical

initial fields for the period 2009-2011 in Brix et al., 2015) or the climatological mean state (e.g., corrections of large-scale pCO2

model biases in While et al., 2012). These studies capture well the assimilated pCO2 observations, while obeying physical laws
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and biogeochemical (BGC) equations. Data assimilation also provides
::
can

::::
also

:::
be

::::
used

::
to

:::::::
provide a better understanding of

various components of the ocean carbon cycle, such as the transport of anthropogenic CO2 in the ocean (e.g., a reconstruction60

of anthropogenic carbon storage since 1770 in Gerber et al., 2009), regional and interannual variability of the air-sea CO2 flux

(e.g., global reanalysis in Ford and Barciela, 2017; Carroll et al., 2020; Valsala and Maksyutov, 2010), the biological carbon

pump (e.g., carbon export at a nutrient-rich and nutrient-poor site and estimation of BGC parameters related to air-sea CO2

fluxes in Sursham, 2018; Hemmings et al., 2008, respectively) and specific ecosystems (e.g., the North West European Shelf

ecosystem in Ciavatta et al., 2016, 2018). So far, however, there is no data assimilation product that provides a long-term,65

annually updated estimate of global ocean CO2 uptake.

While previous studies indicate that the available BGC observations, when assimilated in isolation, are too sparse to constrain

the modeled carbon cycle (Verdy and Mazloff, 2017; Spring et al., 2021), the assimilation of physical variables is expected to

have a significant indirect effect on the modeled air-sea CO2 fluxes (Bernardello et al., 2024). This is because the uptake of

atmospheric CO2 depends ultimately on the modeled
::
in

:::::
large

::::
parts

:::
on

:::
the physical carbon transport between the surface, the70

mixed layer and the deep ocean in the form of dissolved inorganic carbon (DIC) through mixing, upwelling and subduction

(Doney et al., 2004). According to current knowledge, ocean physics is the dominant driver of interannual variability of the

global air-sea CO2 flux and also responsible for stagnation and acceleration of the CO2 uptake on decadal scales (Doney

et al., 2009; Keppler and Landschützer, 2019; Mayot et al., 2023; Liao et al., 2020; DeVries et al., 2017). Related to the

strong control that physics exert on the interannual variability of air-sea CO2 fluxes, it was shown in one idealized study that75

assimilating ocean physics at the initial state of a model simulation has a stronger and more positive impact on the modeled

carbon cycle on interannual time-scales than assimilating the BGC initial state (Fransner et al., 2020). However, the relative

importance of uncertainties in physical and biogeochemical fields generally remains an open research question (e.g. Séférian

et al., 2014; Li et al., 2016; Lebehot et al., 2019). Therefore, we here use ensemble-based data assimilation of ocean physics

:::::::
physical

::::::::::
observations

:
into a global ocean

::::::
general

:::::::::
circulation

:::::
model

:::::::
coupled

::
to

::
a biogeochemistry model aiming to improve the80

modeled air-sea CO2 flux for the years 2010-2020. For this, we continuously assimilate temperature and salinity observations

from remote-sensing at the surface and from in-situ profile measurements for eleven years and update the modelled
:::::::
modeled

temperature, salinity, horizontal velocities and sea surface height, using an ensemble Kalman filter variant (Nerger et al., 2012).

Several difficulties are associated with physics DA into GOBMs. A common issue is erroneous equatorial upwelling leading

to unrealistically high biological productivity in the tropics (Park et al., 2018; Gasparin et al., 2021; Raghukumar et al., 2015).85

Furthermore, any coupled ecosystem model is adapted to its associated physical model with its strengths and weaknesses

through carefully selected parameter values and a spin-up to near-equilibrium. Accordingly, the modeled carbon cycle may

react very
::
be sensitive to deviations from the physical state that is typical for this model (Kriest et al., 2020; Spring et al.,

2021). Potentially, this leads to biases in the carbon cycle through physics DA.
::::
Such

::::::
effects

:::::::
highlight

::::::
where

:::::::
physical

::::::
model

:::::
errors

:::
are

:::::::::::
compensated

:::
for

:::
by

:::::
BGC

::::::::::
parameters,

:::
and

:::::::
thereby

::::
DA

::::
may

:::::
reveal

:::::::
critical

::::
areas

::::
for

:::::::::
potentially

:::::::::
unrealistic

:::::
BGC90

:::::
model

::::::::
behavior

::
in

:::::::::
projections

::
in

::
a
::::::::
changing

::::::
climate

::::::::::::::::::::::
(Löptien and Dietze, 2019)

:
. The question therefore arises to what extent

an ecosystem model coupled to a data-assimilated physical model also represents a more realistic biogeochemistry, and which

mechanisms drive the response of the CO2 flux in physics DA approaches. One possible driver is the physical transport of
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DIC and alkalinity because velocities and diffusivity
:::::::
diffusion are changed by the DA, affecting in particular the upwelling

of carbon-rich waters and subduction, which is important to capture the ocean storage of anthropogenic carbon (Davila et al.,95

2022). Furthermore, physics DA may change pCO2 directly through its temperature-dependence, an effect emphasized by

Verdy and Mazloff (2017). Additionally, the modelled
:::::::
modeled

:
biological pump might be altered, for example through the

temperature-dependency of phytoplankton growth or through effects of stratification on nutrient availability.

In this study, we describe the response of the model’s air-sea CO2 flux to physics DA and identify the underlying mechanistic

drivers. To this end, we differentiate between the thermally, DIC- and alkalinity induced components and changes in lateral100

and vertical transport through mixing and advection. We focus, firstly, on the global air-sea CO2 flux. Secondly, we investigate

the Southern Ocean given the relevant impact of DA in Southern Ocean winter in our study. Thirdly, we present regions in the

North Atlantic given observational coverage and relevant local processes there.

2 Methods

2.1 Model FESOM-REcoM
::::::::::::::::::
FESOM2.1-REcoM3105

The oceanic model component, FESOM2.1, computes the advection , diffusion, and mixing
:::
and

:::::::
diffusion

:
of passive biogeo-

chemical tracers. The model is based on hydrostatic primitive equations under the Boussinesq approximation and utilizes a

finite-volume discretization approach with surface triangles projected vertically to form prisms. Salinity (S), temperature (T),

and biogeochemical tracers are located at the vertices of triangles (nodes), while the horizontal velocities are centered at the

triangles (elements). The model allows for a variable mesh resolution (see Section 2.2) and incorporates parametrizations for110

diffusion and eddy-stirring along isoneutral surfaces, for which parametrized mixing is scaled by mesh resolution (Danilov

et al., 2017). Vertical mixing is parametrized through the KPP scheme and the mixing depth is specified through a ’boundary

layer’ (the layer of active mixing, which may have a vertical structure because the mixing of all properties across the layer

is not instantaneous, as opposed to the mixed layer which is defined by already well-mixed properties, Large et al., 1994),

with an additional vertical mixing scheme used in the Southern Ocean (Monin–Obukhov parametrization, Timmermann and115

Beckmann, 2004). The surface salinity (SSS) is restored towards the World Ocean Atlas climatology through a fictional surface

flux with vSSS = 50m/300days according to equation
:::::::
Equation

:
1 and as in Gürses et al. (2023):

(SSSclim −SSSmodel) ∗ vSSS ∗ (hsurf)
−1 (1)

with surface-layer width
:::::::
thickness

:
hsurf . A detailed description of FESOM2.1 and a model assessment are provided by Danilov

et al. (2017) and Scholz et al. (2019, 2022).120

The ocean biogeochemistry component, the Regulated Ecosystem Model version 3 (REcoM3), describes processes in the

ocean carbon cycle and represents oceanic carbon in the form of dissolved inorganic carbon, dissolved organic carbon, plankton

and detritus (Gürses et al., 2023). REcoM3 contains 28 BGC tracers (listed in Appendix Table A1). There are two phytoplank-

ton groups: diatoms and small phytoplankton with implicit representation of calcifiers; two zooplankton groups: mixed and

polar macro zooplankton (Karakuş et al., 2021); and two classes of detritus. REcoM3 includes variable intracellular stoi-125
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chiometry with ratios of C:N:Chl:CaCO3 for the small phytoplankton and C:N:Chl:Si for diatoms, which is propagated to

zooplankton and detritus (Schartau et al., 2007; Hohn, 2008). The publicly available Routines To Model The Ocean Carbonate

System (mocsy2.0, Orr and Epitalon, 2015) are used to compute pCO2 and air-sea CO2 flux, employing the gas-exchange

parameterization
:::::::::::::
parametrization of Wanninkhof (2014). Alkalinity is restored by a fictional surface flux of 10myr−1 (as in

Hauck et al., 2013; Schourup-Kristensen et al., 2014; Gürses et al., 2023). The current model version FESOM2.1–REcoM3 was130

assessed by Gürses et al. (2023) and previous versions were evaluated and applied in global and regional studies of the ocean

carbon cycle and planktonic ecosystems (Hauck et al., 2013; Schourup-Kristensen et al., 2014; Hauck et al., 2020; Karakuş

et al., 2021).

2.2 Simulation set-up

The model setup for both simulations closely follows Gürses et al. (2023). The mesh resolution is nominally 1 degree, ranging135

between 120 km and 20 km with enhanced resolution in the equatorial belt and north of 50◦N (126858 surface nodes). It has 47

vertical layers with thickness ranging from 5 m at the surface to 250 m in the deep ocean, as described by Scholz et al. (2019,

CORE mesh). The model time step is 45 minutes. For atmospheric forcing, JRA55-do v.1.5.0 is used, a reanalysis product

tailored for driving ocean-sea-ice models (Tsujino et al., 2018). The atmospheric CO2 mixing ratio (xCO2) values were taken

from the Global Carbon Budget (Joos and Spahni, 2008; Ballantyne et al., 2012; Friedlingstein et al., 2023). We use model140

restart fields from Gürses et al. (2023) where the model was spun-up by repeating the year-1961 JRA forcing for 189 years

with preindustrial atmospheric CO2 conditions, followed by a period from 1800 to 1957 with increasing atmospheric CO2.

Subsequently, simulations were continued with historical JRA forcing from 1958 to 2009. During the assimilation window

(2010-2020), we conduct two ensemble simulations to study the impact of data assimilation (DA): one without DA (referred

to as FREE) and another identical setup applying DA (referred to as ASML). For each simulation, the ensemble mean for the145

following variables is written as output: temperature, salinity, velocity, boundary-layer depth, surface pCO2, DIC, alkalinity,

nutrients, chlorophyll, net primary production and biological export through sinking of detritus at 190 m. For the year 2020,

additional output is available for individual ensemble members, mixed-layer depth, physical sources or sinks of DIC and alka-

linity through horizontal and vertical advection and diffusion, and biological net sources or sinks of DIC and alkalinity through

combined processes: For DIC, the net biological term is the sum of photosynthesis, respiration, remineralization of dissolved150

organic carbon, and formation and dissolution of calcite (Gürses et al., 2023, equation A6)
:::::::::::::::::::::::::::
(Gürses et al., 2023, Equation A6).

For alkalinity, the net biological term is the sum of nitrogen assimilation and remineralization, and formation and dissolution

of calcite (Gürses et al., 2023, equation A7)
:::::::::::::::::::::::::::
(Gürses et al., 2023, Equation A7).

2.3 Data Assimilation

2.3.1 Assimilated observations155

The assimilated observations are sea surface temperature (SST), sea surface salinity and profiles of temperature and salinity.

The assimilated SST observations are from the Operational Sea Surface Temperature and Ice Analysis (OSTIA) data set
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(CMEMS Marine Data Store; Good et al., 2020; Donlon et al., 2012; Stark et al., 2007). OSTIA provides daily gap-free

maps of SST at a horizontal resolution of 0.05◦× 0.05◦, compiled from in-situ and satellite data from infrared and microwave

radiometers. The OSTIA observations were averaged to the FESOM2.1 model grid because their spatial resolution is higher160

than the nominal resolution of the model grid. An observation error standard deviation of 0.8◦C is prescribed for the DA

following Nerger et al. (2020). Observations are excluded in the DA process if the difference between the model and observation

exceeds three times the observation error standard deviation, thus 2.4◦C, and at grid points with sea ice in the model, as in

Tang et al. (2020) and Mu et al. (2022). This exclusion keeps the model stable despite large differences between model and

observations at these sites, in particular as water temperature and salinity develop differently under sea ice than under the165

influence of the atmosphere (Tang et al., 2020). Instead, a ‘gentler’ correction is made by assimilating neighboring points.

After the initial phase, about 7% of SST observations are excluded because of the 2.4◦C-threshold. Nevertheless, the data

assimilation still has a strong effect in areas where these large model-observation discrepancies are typically found (North

Atlantic, Japan and Southern Ocean).

The assimilated SSS data is taken from the European Space Agency (ESA) Sea Surface Salinity Climate Change Initiative170

(CCI) v03.21 data set (Boutin et al., 2021). ESA-CCI contains daily data at a spatial resolution of 50 km, albeit not capturing

temporal variability below weekly. The ESA-CCI observations are averaged to the FESOM2.1 model grid. We prescribe a

constant observation error standard deviation of 0.5 psu following Nerger et al. (2024). Like for the SST data, SSS observations

are excluded at locations where sea ice is present in the model.

The assimilated temperature and salinity profiles are taken from the EN.4.2.2 data set (Good et al., 2013). The EN4 dataset175

contains quality-controlled profiles from various in-situ ocean profiling instruments. To assimilate the profiles, the observations

are assigned to the respective model layers (depth range) in the vertical. In the horizontal, the model values are computed as

the average of the grid points of the triangle enclosing the observation. The observation error standard deviation is set to 0.8◦C

for temperature and to 0.5 psu for salinity
::::::
without

::::::::
excluding

:::::::::::
observations, as in Tang et al. (2020).

2.3.2 Assimilation method and implementation180

For the assimilation, we use the Localized Error Subspace Transform Kalman Filter (LESTKF, Nerger et al., 2012). The

LESTKF sequentially updates the model forecast, incorporating observations when and where available. The model state and

error covariance are represented by an ensemble simulation. Thereby, the assimilation of temperature and salinity affects the

state of the physical model in its whole, including the horizontal velocities and sea-surface height. A review of the LESTKF

and other filters frequently used in geophysics can be found in Vetra-Carvalho et al. (2018). The assimilation is implemented185

using the Parallel Data Assimilation Framework (PDAF2.1
:::::
PDAF

::::::
version

:::
2.1), a software environment for data assimilation.

PDAF is an open source project and provides fully implemented DA algorithms (Nerger et al., 2020, pdaf.awi.de). The current

implementation builds on the works of Mu et al. (2022) who used DA of ocean temperature and salinity for sea-ice forecasts

with FESOM2.0 coupled to an atmospheric model, and Tang et al. (2020) who studied the dynamic impact of oceanic DA into

FESOM1.4 onto a coupled atmospheric component.190
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With localization of the LESTKF, the observation error is increased for an increasing horizontal distance between an obser-

vation and a model grid point, which weighs down the influence of a more distant observation. This avoids that the model is

influenced by observations at distant locations through spurious ensemble estimated correlations. We use a localization radius

of 200 km and choose a 5th-order polynomial weighting function that mimics a Gaussian function (Gaspari and Cohn, 1999).

We apply daily analysis steps at 0UTC model time, assimilating all available observations for the day. The DA process only195

directly updates the physical model variables temperature, salinity, horizontal velocities and sea surface height. After each

assimilation step, corrections are applied to the analysis state to ensure the consistency of model physics: Salinity is set to

a minimum value of zero and temperature to a minimum value of −2◦C, if the value is otherwise below. The increment of

sea surface height (SSH) is limited to two standard deviations of the ensemble. While in the simulation the correction was

necessary for about 10% of SSH updates and 0.01‰
::::::
10−5%

:
of temperature valuesat each step, the correction of salinity was200

never required. The analysis step is followed by an ensemble forecast of 1 day.

The ensemble size is 40, a compromise to balance computational resources while ensuring a sufficiently large ensemble

with enough variability even in the deep ocean. The ensemble is generated through an initial perturbation of sea surface height,

horizontal and vertical velocities, temperature, salinity and sea-ice concentration based on the implementation of Tang et al.

(2020). This initial ensemble perturbation is generated by second-order exact sampling (Pham, 2001) from a model trajectory205

of FESOM2.1. With this method, the leading Empirical Orthogonal Functions (EOFs) of a model trajectory are used to generate

an ensemble perturbation that contains the leading patterns of model variability. A time-scale must be chosen for the variability

that is represented by the ensemble. Here, we chose variability on a weekly time-scale (Tang et al., 2020).

To maintain ensemble spread, we apply a perturbed atmospheric forcing with an autoregressive perturbation (perturbe,n) at

every model time step (n) to each ensemble member (e), with:210

perturbe,n+1 = (1− arc) ∗ perturbe,n +arc ∗ s ∗ rande (2)

where rand
:::::
rande:is a stochastic element, again generated by second-order exact sampling from a 72-days-long trajectory

of atmospheric forcing fields that captures patterns of day-to-day atmospheric variability. The autoregression coefficient (arc)

can be used to tune how quickly the perturbation changes and is set to the inverse number of model steps per day. s is

a scaling factor for each perturbed atmospheric forcing field. For specific humidity, downwelling longwave radiation and215

air temperature s= 10 is used. The perturbation of winds is set to the smaller value s= 2 because the air-sea CO2 flux in

the model is particularly sensitive to perturbations of the wind fields. Due to the functioning of the Kalman filter (which

updates the model error covariance in each analysis step to reflect the new reduced uncertainty), the ensemble spread decays

at each analysis step. As the method relies on a sufficiently large ensemble spread, an inflation of the ensemble covariance

is applied (Pham et al., 1998). Thereby, the ensemble covariance matrix is amplified by a factor of 1/ρ before entering the220

updating step. This so-called forgetting factor downweighs that past observations have reduced the model uncertainty (see e.g.

Nerger et al., 2005). The forgetting factor is tuned to maintain model uncertainty, where ρ= 1 means no inflation and smaller

values mean larger inflation. Here, we use a time-varying forgetting factor between ρ= 0.95 and ρ= 1. The strongest inflation

(ρ= 0.95) is applied during the first two weeks of the DA process.
::::
This

::
is

:::::
when

:::
the

:::
DA

::::::::::
increments

:::
are

::::::
largest

:::::::
because

:::
the
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:::::
model

::::
state

::::::::
estimates

:::
are

:::::::
furthest

::::
from

:::
the

:::::::::::
observations.

:
During the following 75 days ρ is increased to 0.99. From month 17225

onwards
::::::
onward, the forgetting factor is set to either 0.99 or 1.0 depending on the ensemble standard deviation of temperature.

The ensemble standard deviation of the local instantaneous air-sea CO2 fluxes that results from the perturbation of physical

fields is larger than that of the global CO2 flux, with a mean standard deviation of 0.32mmolm−2day−1 for monthly means of

local fluxes compared to a standard deviation of 0.0068mmolm−2day−1 (0.01PgCyr−1) for the annual global flux in FREE

in the year 2020. The largest ensemble standard deviation
:::::::
(Fig. A1

::
a) is generated in the Southern Ocean, the North Atlantic230

and the North Pacific(map in Fig. A1a), which corresponds to regions of high uncertainty in existing CO2 flux estimates

(Pérez et al., 2024; Hauck et al., 2023a; Mayot et al., 2024). However, the modelled
:::::::
modeled

:
standard deviation should not be

understood as the true uncertainty of the model, but as a value dependent on tuning (Evensen, 2003).

2.4 Data analysis

We present CO2 flux estimates for the period 2010-2020, that are compared to the ’Regional Carbon Cycle Assessment and235

Processes 2’ (RECCAP2) global air-sea CO2 flux estimates (DeVries et al., 2023). The RECCAP2 pCO2 products account for

oceanic outgassing of river carbon into the atmosphere. To make them comparable with our estimate stemming from a model

without river carbon input, we apply a river flux adjustment (Friedlingstein et al., 2023; Regnier et al., 2022) to the RECCAP2

pCO2 products. Thus, we quantify the anthropogenic perturbation of the ocean carbon sink (as SOCEAN in the Global Carbon

Budget Friedlingstein et al., 2023; Hauck et al., 2020), and not the contemporary net air-sea CO2 flux with outgassing of river240

carbon (as in the original RECCAP2 pCO2 products).

To study the effect of DA on the CO2 flux, we define regions where the effect is pronounced and where different mechanisms

are active,
::::::::
time-mean

::::::
air-sea

:::::
CO2 :::

flux
:::::::::
difference

::::::::::::::
ASML−FREE

::::::::
(∆FCO2

)
::
is
::::::::::
pronounced

:
based on the biomes defined by

Fay and McKinley (2014). These
:::::
biome

:::::::::
definition

::
of

:::::::::::::::::::::
Fay and McKinley (2014)

:
.
:::::::::
Originally,

:::::
these are, going polewards from

the subtropics in each hemisphere, the Subtropical Seasonally Stratified Biome (STSS), the Subpolar Seasonally Stratified245

Biome (SPSS) and the Sea-Ice Biome (ICE). In the Southern Ocean (
:::::::
denoted

::
by

::::::::
subscript

:SO
) , within the STSSSO, we dif-

ferentiate between the area where
:::::::
∆FCO2 ::

is
:::::::
positive

:
(the assimilation leads to a more positive air-sea CO2 flux (positive:

:::
flux

::::::
change

:::::::
directed

:
out of the ocean) , referred to as

:::::
region

:
’STSSSO+

:
’ and the area where the assimilation leads to a more

negativeair-sea flux, the
::::::
∆FCO2::

is
::::::::
negative,

::::::
referred

:::
to

::
as

:::::
region

::
’STSSSO− (Fig. 5aand b)

:
’.

:::
All

::::::::
Southern

:::::
Ocean

:::::::
regions

:::
are

:::::::
outlined

::
in

:::::
Fig. 5

:
a. In the North Atlantic (

::::::
denoted

:::
by

:::::::
subscript

:NA), we consider four coherent regions within the STSSNA250

and SPSSNA , defined by the time-mean difference of the air-sea CO2 fluxes in ASML and FREE (∆FCO2 ). The
:::::::
outlined

::
in

:::::
Fig. 7

:
a.
::::
The

::::::
regions

::
’Central STSSNA− and ’

::::
and

:
’Western STSSNA+

:
’
:
are located in the central North Atlantic STSSNA

biome and are confined by ∆FCO2
<−1mmolCday−1m−2 and ∆FCO2

> 1mmolCday1m−2, respectively(see Fig. 7b).

The Newfoundland Basin
::::::
defined

::
by

:::::::
∆FCO2::::

less
::::
than

:::::::::::::::::::
−1mmolCm−2day−1

::::
and

::::::
∆FCO2:::::::

greater
::::
than

:::::::::::::::::
1mmolCm−2day1,

::::::::::
respectively.

::::
The

::::::
regions

::::::::::::::
’Newfoundland

:::::::
BasinNA+and

:
’
:::
and

::
’Coastal SPSSNA−

:
’
:
are part of the SPSSNA. The former is255

located east of Newfoundland and south of Greenland, and is confined by ∆FCO2 > 3mmolCday−1m−2
:::::
defined

:::
by

:::::::
∆FCO2

::::::
greater

:::
than

::::::::::::::::::
3mmolCm−2day−1; and the latter is located off the North American coast and confined by ∆FCO2 <−1mmolCday−1m−2

::::::
defined

::
by

:::::::
∆FCO2 :::

less
::::
than

::::::::::::::::::::
−1mmolCm−2day−1. The Central STSSNA− and Western STSSNA+ lie on the warm side of the North

8



Atlantic Current (NAC), and the Newfoundland Basin
::NA+ and Coastal SPSSNA− lie on the cold side of the NAC, which is

evident from the modeled surface velocity field (Fig. A2a).260

Within these regions, we identify the time of the year when the DA affects air-sea CO2 flux and calculate the difference

of ASML and FREE
::::::::::::::
ASML−FREE

:
for physical and biogeochemical fields. In order to assess the dynamic DA effects on

surface pCO2, it is useful to distinguish between different variables that constitute the change in pCO2. Oceanic pCO2 varies

mainly with temperature, DIC and alkalinity. Thus, we decompose changes in pCO2 into their contributions from changes

in SST, surface DIC and surface alkalinity (Alk). For that, we apply the following approximations of Sarmiento and Gruber265

(2006) and Takahashi et al. (1993):

∆pCO2,DIC =
pCO2

DIC
∗·γDIC∗·∆DIC (3)

∆pCO2,Alk =
pCO2

Alk
∗·γAlk∗·∆Alk (4)

270

∆pCO2,SST = pCO2∗·exp(0.0423∗0.0423 °C−1·
::::::::::

∆SST) (5)

Here, differences between ASML and FREE are denoted by ∆; else, the average of ASML and FREE is used for the computa-

tion. The sensitivities γDIC and γAlk describe how pCO2 varies with changes in one variable while keeping all other variables

constant. For the sensitivities, we use an approximation derived from seawater carbonate chemistry following Sarmiento and

Gruber (2006):275

γDIC =
3 ∗Alk ∗DIC− 2 ∗DIC2

(2 ∗DIC−Alk)(Alk−DIC)

3 ·Alk ·DIC− 2 ·DIC2

(2 ·DIC−Alk)(Alk−DIC)
:::::::::::::::::::::::

(6)

γAlk =
−Alk2

(2 ∗DIC−Alk)(Alk−DIC)

−Alk2

(2 ·DIC−Alk)(Alk−DIC)
:::::::::::::::::::::::

(7)

Based on the range of valid values for γDIC and γAlk according to the explicit formulation by Egleston et al. (2010), values

are excluded above 18 and below -19, respectively. This affects parts of the Southern Ocean SPSSSO and ICESO biome (see280

white areas in Fig. 6b and c). Finally, the effect on the air-sea CO2 flux relates directly to the pCO2-difference at each grid

point, as detailed in Orr et al. (2017, equations 6-15):
::::::::::::::::::::::::::
Orr et al. (2017, Equations 6-15)

:
:

∆FCO2
∆FCO2
::::::

= α · kw ·∆pCO2 (8)

where α is the solubility of CO2 in seawater and kw is the gas-transfer velocity.
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To evaluate the impact of DA on ocean physics, we compare the simulated SST and SSS to the assimilated observations285

(Section 2.3.1). For temperature and salinity at depth, we use the EN4-OA product (Good et al., 2013, updated to version 4.2.2).

EN4-OA is an objective analysis ingesting the assimilated EN4 profile data, interpolated to global coverage on 42 depth levels.

Furthermore, we compare the sea-ice concentration with remote sensing observations from OSI-SAF 2010-2020 (EUMETSAT,

2022), the mixed-layer depth in the year 2020 with the profile-observation based climatology of de Boyer Montégut et al. (2004,

updated version 2023) and the horizontal near-surface velocities 2010-2020 with the drifter-based climatology of Laurindo et al.290

(2017).

To evaluate the impact of the DA on biogeochemistry, we compare model outputs with observational datasets of surface

pCO2, DIC, alkalinity and surface chlorophyll. To evaluate surface pCO2, we use observations from the Surface Ocean CO2

Atlas (SOCAT Version 2023, Bakker et al., 2023, 2016), which are provided as a monthly gridded and quality-controlled

compilation. To assess DIC and alkalinity, we compare the modeled surface fields to the GLODAPv2.2023 bottle data (Lauvset295

et al., 2024b). At depth, we compare the model output to the GLODAPv2 DIC and alkalinity climatology (Lauvset et al., 2016),

which is based on observations from the period 1972-2013 and normalized to 2002. To evaluate global surface chlorophyll,

we use observations from ESA-CCI, which is a multi-sensor satellite ocean-color chlorophyll-a dataset with monthly global

coverage (Sathyendranath et al., 2021). In addition, for the Southern Ocean, we use the mean of three satellite products (Johnson

et al., 2013) that were processed with more suitable algorithms for southern high latitudes. For each observation type (OBS),300

we define the improvement as:

improvementOBS = |FREE−OBS| − |ASML−OBS| (9)

3 Results

3.1 Effect of DA on ocean physics

Before we investigate the CO2 flux, we first evaluate the effect of DA on the modeled physics. In particular, we compare305

the model output of both simulations with the assimilated observations to verify that the assimilation brings them into better

agreement with the observations. The assimilation improves the agreement with the assimilated SST observations. On a global

average, the SST in FREE is 0.14◦C colder than the observations, which is estimated to lead to a solubility-driven global

air-sea flux difference of −0.06PgCyr−1 (Eqs. (5) and (8)). FREE exhibits
::
the

::::::
result

::
of

:
an extensive cold bias of SST in

the tropics and subtropics in all ocean basins and a warm bias in the Southern Ocean south of 40◦S , visible in (Fig. 1a;310

mean state of SST in Fig. A3a). Additionally, FREE shows regional SST biases
::
In

:::::::
addition,

:::::
there

::
are

:::::::
regional

::::
SST

::::::::::
differences

::::::::::::
FREE−OBS in particular near strong currents or

:::
and

:
in eddy-rich regions, such as the NAC, Kuroshio, and the Southern

Subtropical Front. The assimilation reduces the SST south of 40◦S and in the North Pacific, and increases the
:::::
These

::::
SST

:::::::::
differences

:::
are

::::::::
estimated

::
to

::::
lead

::
to

::
a
::::::::::::::
solubility-driven

:::::
global

::::::
air-sea

::::
flux

::::::::
difference

:::
of

::::::::::::::
−0.06PgCyr−1

:::::::::
(Equations

::
5

:::
and

:::
8).

:::
The

::::::::::
assimilation

::::::::
increases

:
SST in the tropics and subtropics (see Fig. 1b). The effect of DA is an absolute change by 0.30◦C315
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on global average and is particularly strong
:::
and

:::::::
reduces

::::
SST

:::::
south

::
of

::::::
40◦S,

::::
with

::::::::::
particularly

:::::
large

:::::
effects

:
in the Southern

Ocean and in the North Atlantic . Through the assimilation, the model state becomes more similar to the observations globally,

which is evident from the positive improvement in Fig. 1c. In total
::::::::
(difference

::::::::::::::
ASML−FREE

::
in
::::::
Fig. 1

::
b).

:::::::
Thereby, the global

mean absolute difference of SST to the observations
:::::::::::::::
model-observation

:::::::::
difference is reduced from

::::::::
−0.14◦C

::
to

:::::::::
−0.12◦C,

:::
and

::::
from

:
0.59◦C to 0.32◦C . The

:
in

:::::::
absolute

::::::
terms.

::::
This

:
assimilation-induced change in SST is estimated to drive a direct320

solubility-driven effect on the global-air sea CO2 flux of −0.14PgCyr−1 (Eqs. (5) and (8)
::::::::
Equations

:
5
::::
and

:
8). Yet, this global

attribution is subject to high uncertainty due to the non-linear dependency of pCO2 on temperature, and because regionally

large effects with opposite signs lead to uncertainty in the global mean.

The assimilation also improves the agreement with the assimilated SSS observations. Additional experiments with and

without salinity restoring towards climatology show that the best agreement with the SSS-CCI observations is achieved by325

simultaneously using assimilation and restoring. A benefit of the additional use of restoring is the global coverage of the SSS

climatology. FREE shows a global SSS bias (0.49 psu, Fig. 1d). The assimilation leads to a global surface freshening (Fig. 1e).

There are only a few regions where SSS in FREE is fresher than the observations and where the DA consequently increases

the salinity, as for example in parts of the North Atlantic. The assimilation improves the model-observation agreement in

91% of the observed ocean area, particularly in the North Atlantic Central STSSNA− and in the Southern Ocean STSSSO330

(Fig. 1f). Tests with the assimilation of temperature alone show negative side-effects of temperature assimilation on SSS in

some locations (not shown). In the final set-up with combined assimilation, negative effects on SSS are found in 9% of the

observed area. Globally, the mean absolute difference is reduced from 0.32 to 0.17 psu relative to the SSS observations. The

direct solubility-driven effect of salinity differences on the global air-sea CO2 flux is estimated to be negligible.

The assimilation leads to a better agreement with subsurface temperature and salinity data from the EN4-OA product in335

the upper 1000 m. In the upper 100-200 m of the ocean, the model-observation difference in temperature follows the surface

signal (compare Fig. 1a and Fig. 2a), and the difference is reduced by the assimilation (Fig. 2b and c). At intermediate depth

(roughly 200-500 m), a subsurface warm bias exists in FREE in the southern hemisphere at mid-latitudes (Fig. 2; mean state

in Fig. A4a). This bias affects the South Pacific, South Atlantic and southern Indian Ocean (not shown). The bias might be

connected to the model’s surface warm bias in the formation region of Antarctic intermediate water (Fig. 1a). Further model-340

observation differences exist at greater depth than 500 m, where the model’s temperature is colder than the observations at

almost all latitudes, but warmer than the observations north of 60◦N. At most latitudes and depths, the effect of the assimilation

is to reduce the model observation-differences (Fig. 2c).

The model is more saline than the observations from the surface down to a depth of about 1000 m for most latitudes (Fig. 2d).

This shows that the model-observation difference in this depth range follows the surface signal. The exceptions to this are at345

high latitudes below 200 m, where FREE is fresher than the observations. At all other latitudes, the assimilation acts towards a

freshening, with the strongest effect near the surface (Fig. 2e). This improves the agreement with observations particularly near

the surface (Fig. 2d). However, the improvement is smaller at depth and becomes even negative for some latitudes in greater

depth. This might be due to the limited amount of assimilated in-situ salinity profiles.
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Figure 1. Effect of data assimilation on sea surface temperature (SST) and sea surface salinity (SSS). All panels show the mean over the

period 2010-2020. (a) The model-observation difference in SST (FREE - OSTIA). (b) The difference ASML - FREE. (c) The improvement

of monthly averaged model SST relative to OSTIA, where positive denotes that the assimilation brings the model closer to observations

(Eq. (9)). (d - f) The same for SSS, computed with SSS from ESA-CCI.

The effect of the assimilation on temperature and salinity is most pronounced in the upper 1000 m and, below that, mostly350

decreases with depth (not shown). After the second year of assimilation, the mean absolute difference between ASML and

FREE stabilizes in the range 0.35− 0.36◦C for SST and 0.20− 0.25psu for SSS, while the effect of DA on the 3D fields

:::::::::
subsurface

::::::::::
temperature

:::
and

::::::
salinity

:
keeps increasing throughout the years 2010-2020.

Sea ice reacts dynamically to the changed ocean physical state. In the Southern Ocean, FREE is characterized by a lower

sea-ice concentration compared to OSI-SAF observations. The sea-ice extent, here defined as the area where the sea-ice con-355

centration is more than 15%, reaches a maximum in September. The maximum extent is smaller in FREE than OSI-SAF, which

is demonstrated by the 15%-line surrounding that area for FREE and OSI-SAF (Fig. 3a; mean state of sea-ice concentration

in Fig. A5), and by the sea-ice concentration difference for the month September (Fig. 3b). Through DA, a higher Antarctic

sea-ice concentration is obtained(see Fig. 3b). This improves the agreement with OSI-SAF (Fig. 3c). During all other seasons,

the assimilation leads to a higher sea-ice concentration in the Antarctic, a larger sea-ice extent and a better agreement with360
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Figure 2. Effect of data assimilation on zonally averaged temperature and salinity in the upper 1000 m. All panels show the mean over

the period 2010-2020. (a) The model-observation difference in temperature (FREE - EN4-OA). (b) The difference ASML - FREE. (c) The

improvement of monthly averaged temperature relative to EN4-OA. (d - f) The same for salinity.

OSI-SAF as well (only September is shown). In the Arctic, the differences between FREE, ASML and OSI-SAF are regionally

different (not shown).

The boundary-layer depth and mixed-layer depth are mostly reduced through DA. In particular, deep water formation events

characterised by a mixed-layer depth of more than 1000 m or 500 m occur less frequently in ASML (not shown). This improves

the agreement with the profile-observation based mixed-layer climatology of de Boyer Montégut et al. (2004), reducing the365

mean absolute difference to the climatology from 27 m to 19 m (comparison of mixer-layer depth in Fig. A6). In addition, the

absolute difference of near-surface horizontal velocities to the drifter-observation based climatology of Laurindo et al. (2017) is

reduced by about 10% through DA (comparison of surface velocities in Fig. A7). The biological productivity near the equator is

stable in ASML and FREE, indicating that FESOM-REcoM
:::::::::::::::::
FESOM2.1-REcoM3 does not suffer from the erroneous upwelling

known from previous DA studies (Park et al., 2018). The meridional overturning, however, shows spurious structures, which370

may point to hidden assimilation artifacts on vertical velocities. Throughout the assimilation period, spurious, spatially limited

and often deep overturning structures emerge, evolve through several months or years, and disappear in the tropical Indian,

Pacific and Atlantic basin (not shown). Thereby, the surface overturning cell sometimes breaks apart where it should extend

over the equator, exposing the bottom cell to the surface (Fig. A8b). Transport in the North Atlantic at 26.5◦N, an indicator

for the strength of the Atlantic Meridional Overturning Circulation, is between 8-9 Sv in FREE. In ASML, during the first375

two years of assimilation, transport at 26.5◦N decreases to below 3 Sv and, during the following years, recovers to 7-8 Sv

(2016-2020). One possible cause is the effect of data assimilation on the eddy parameterisation (Gent and Mcwilliams, 1990).

The parameterised eddy activity is relevant for the dynamics in the deep ocean, and corrupting it may have a negative impact
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Figure 3. Effect of data assimilation on Antarctic sea-ice concentration in September. All panels show differences in the sea-ice concentration

averaged for the month September over the period 2010-2020. The 15%-line for FREE, ASML and OSI-SAF observations is shown as a

dashed, continuous or dotted line in panels a or b, respectively. (a) The difference between FREE and OSI-SAF observations. (b) The

difference between ASML and FREE
::::::::::::
ASML−FREE. (c) The improvement of September mean sea-ice concentration.

on the large-scale oceanic circulation, as described in Sidorenko (2004, Chapter 5.5 onwards) for a previous version of the

ocean model FESOM.380

In summary, the ASML temperature and salinity fields from the surface to several hundred meters below, and mixed-layer

depth are in good agreement with observations, and the agreement of horizontal near-surface velocities with observations is

improved. This can be interpreted as an indication that the velocity field in the upper part of the ocean is also well represented.

Although the spurious effects on deep ocean circulation should be further addressed in future work, we are confident that the

DA provides an improved physical state in the upper ocean, which serves as an improved basis to estimate the air-sea CO2 flux.385

3.2 Effect of DA on global CO2 flux

The ocean absorbs 2.78PgCyr−1 in ASML and 2.83PgCyr−1 in FREE during 2010-2020 (Fig. 4b), thus the assimilation

decreases the global mean oceanic CO2 uptake by 0.05PgCyr−1. The temporal evolution of the annual global CO2 flux is

similar in ASML and FREE (Fig. 4a). The first assimilation year, 2010, stands out because it is one of the very few years

during which the assimilation increases the oceanic CO2 uptake. This slightly reduces the trend in CO2 uptake 2010-2020390

from −0.40±0.09PgCyr−1dec−1 in FREE to −0.38±0.11PgCyr−1dec−1 in ASML (negative: into the ocean). The trend,
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thereby, remains within its confidence interval. Furthermore, the assimilation reduces the interannual variability of the global

mean oceanic uptake slightly, demonstrated by a standard deviation of detrended annual means of 0.11PgCyr−1 in FREE and

0.08PgCyr−1 in ASML (not significantly different according to F-test). Through DA, the ensemble standard deviation of the

global CO2 flux is reduced from 1.0× 10−2PgCyr−1 in FREE to 0.7× 10−2PgCyr−1 in ASML in the year 2020.395

The strongest time-mean air-sea CO2 flux is found at mid and high latitudes (Fig. 4c). The large-scale pattern of the CO2

flux is generally very similar in FREE and in ASML (FREE not shown). The largest local changes through DA, both towards

stronger or weaker CO2 fluxes, occur in the North Atlantic in the area of the NAC and in the coastal North Pacific (Fig. 4d).

The most prominent large-scale effect though, is in the Southern Ocean (Fig. 4e and f). South of 50◦S, the area-integrated

CO2 uptake increases by 0.18PgCyr−1 through the assimilation. In contrast, the uptake decreases by 0.07PgCyr−1 between400

40-50◦S. With the exception of the Southern Ocean, CO2 uptake decreases in all world oceans by a small amount (Fig. 4d).

3.3 Effect of DA on regional CO2 fluxes and their drivers

3.3.1 Southern Ocean

In the Southern Ocean, the ocean takes up CO2 in the annual average (Fig. 5a), with regionally heterogeneous effects of DA

(Fig. 5b). While the effect of DA on surface pCO2 and the air-sea CO2 flux can almost entirely be explained by the combined405

variation of DIC and alkalinity at most latitudes north of 40 °S, the thermal effect also needs to be considered in the Southern

Ocean (global zonal mean pCO2-effects in Fig. A9a). In the following, we examine how the assimilation influences the air-sea

CO2 flux across individual regions in the Southern Ocean.

STSSSO In the northernmost biome of the Southern Ocean, the subtropical seasonally stratified biome (STSSSO), the mean

oceanic CO2 uptake is comparably high (Fig. 5a). The uptake is largest in austral winter and spring (June to November, Fig. 5c410

and d). The part of the STSSSO characterized by a positive CO2 flux difference between ASML and FREE
::::::::::::::
ASML−FREE

(positive difference: reduced uptake through assimilation), which we call the STSSSO+, roughly forms an outer northerly ring

around the STSSSO biome (hatched area in Fig. 5a and b). The reduction of CO2 uptake in the STSSSO+ is greatest in winter

and spring from July to October (Fig. 5g).

The increase in pCO2 in the STSSSO+ is partly driven by lowered alkalinity and partly by increased surface DIC (Fig. 6b415

and c). These, as well as the colder SST and fresher SSS in the STSSSO+ (Fig. 1b and e) are indications for a year-round

stronger influence of subantarctic waters. This is evident from typical water properties in the subantarctic and subtropical

Southern Ocean. In the subantarctic, surface DIC is higher, surface alkalinity is lower, temperature is colder and salinity is

lower (maps of mean SST, SSS, DIC and alkalinity in Fig. A10). In the fragmented area of the STSSSO+, different factors

contribute to regional changes of the surface DIC and alkalinity budget in ASML (sources minus sinks of DIC and alkalinity in420

Fig. A11). Depending on location, an increased upward transport of DIC through mixing, an increase of DIC through a reduced

biological sink of DIC in spring, or a decrease of alkalinity through changes in horizontal and vertical advection dominates. The

seasonality of the effect of DA on the air-sea CO2 flux in the STSSSO+ (Fig. 5c and g) is determined by seasonal temperature

differences between ASML and FREE (Fig. 6d and f). During summer, SST is slightly reduced (Fig. 6f), which lowers pCO2
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Figure 4. Effect of data assimilation on the air-sea CO2 flux (negative: into the ocean). (a) Annual time-series of global flux in PgCyr−1

in FESOM-REcoM-PDAF
:::::::::::::::
FESOM2.1-REcoM3

:
with ASML (black) and FREE (violet); and RECCAP2 estimates (DeVries et al., 2023)

with pCO2-products (orange) and GOBMs (blue) and their respective means (bold lines). Here, the river flux adjustment (−0.65PgCyr−1)

was applied to the pCO2 products. (b) Time-mean global flux 2010-2018 in ASML (black), FREE (violet); and RECCAP estimates grouped

by method (DeVries et al., 2023). Crosses represent individual estimates (e.g. individual GOBMs) and bars represent the method mean

(e.g. mean of twelve GOBMs). Here, the river flux term was applied to all estimates except the models following the Global Carbon Budget

methodology (Friedlingstein et al., 2023). For FESOM-RECoM-PDAF
:::::::::::::::
FESOM2.1-REcoM3, additionally the time-mean 2010-2020 is shown

(horizontal lines). (c) Spatial distribution of CO2 flux averaged over the period 2010-2020 in ASML. (d) Spatial distribution of CO2 flux

difference between ASML and FREE
::::::::::::
ASML−FREE

:
averaged over the period 2010-2020 (e) Zonal averages of CO2 flux 2010-2020 in

ASML and FREE, and their difference in (f).
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Figure 5. Effect of data assimilation on Southern Ocean CO2 flux
:::::::
(negative:

::::
into

:::
the

:::::
ocean)

:
and its seasonality averaged over the period

2010-2020. Negative numbers indicate a flux into the ocean. Additionally, lines in a and b denote the regions, and the green hatching denotes

the STSSSO+. (a) Map of mean CO2 flux in ASML. (b) Map of difference between CO2 flux in ASML and FREE
:::::::
difference

:::::::::::::
ASML−FREE.

(c - f) Seasonal cycle of air-sea CO2 flux by region. Shading indicates the range of ensemble members in the year 2020. (g - j) Seasonal

difference in air-sea CO2 flux between ASML and FREE
::::::::
difference

:::::::::::::
ASML−FREE by region. Note the different scales.
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(Fig. 6a). This counteracts the effects of DIC and alkalinity on pCO2 (Fig. 6b and c) and thus dampens the overall DA-effect425

on the air-sea CO2 flux during summer.

The part of the STSSSO characterized by a negative CO2 flux difference between ASML and FREE
::::::::::::::
ASML−FREE, which

we call the STSSSO−, is a fragmented region and roughly consists of segments of an inner southerly ring (non-hatched area in

Fig. 5a and b). Here, the increase of CO2 uptake through DA is largest in summer and autumn (November to April, Fig. 5h).

The reduction of pCO2 is driven by increased alkalinity, and partly also by lower surface DIC (Fig. 6b and c, non-hatched430

area). These, together with higher SST in ASML than FREE in the STSSSO− regions (Fig. 1b), indicate a higher presence of

subtropical waters (see characteristics of subtropical waters in Fig. A10). Where there is lower DIC in the STSSSO− in ASML

(Fig. 6b), this can mostly be explained by an increased biological sink of DIC, with the addition of sharply defined local

changes in horizontal advection of DIC and alkalinity (Fig. A11). Additionally, seasonal temperature effects occur. During

winter, SST is higher in ASML than in FREE (Fig. 6e and g). This increases pCO2 in the STSSSO− (Fig. 6a), counteracting435

the effects of lower DIC and higher alkalinity on pCO2 and dampening the overall DA-effect during winter.

The contrasting effects in the STSSSO indicate a horizontal shift of water masses within the STSSSO biome. In the center

of the STSSSO, the Subantarctic Front is located, which is associated with the Antarctic Circumpolar Current (ACC) and

characterized by a strong gradient in SST, SSS and various other tracers (Chapman et al., 2020). Because SST and SSS are

directly influenced and improved by the assimilation, the position of this front is also expected to change as a result of the440

assimilation, leading to a horizontal relocation of waters separated by the front. With the relocation of the front, dynamic shifts

in regional characteristics occur, such as the amount of DIC and alkalinity transported vertically through mixing, and biological

sources and sinks of DIC and alkalinity.

SPSSSO Further south, in the subpolar seasonally stratified biome (SPSSSO), the ocean absorbs CO2 all year-round

(Fig. 5a). The oceanic uptake is increased through the assimilation, shown by a negative difference of ASML and FREE445

:::
flux

:::::::::
difference

::::::::::::::
ASML−FREE in Fig. 5b. The largest difference between ASML and FREE is seen in spring from September

to October (Fig. 5i). Due to the seasonally varying effect of DA, the seasonal cycle of the CO2 flux in the SPSSSO is altered.

In ASML, the CO2 uptake is weakest in February, gets stronger in autumn (MAM), stagnates in winter (JJA) and resumes to

grow in spring (SON), reaching peak uptake in November (Fig. 5e). In FREE, the CO2 uptake weakens in winter, is weakest

in September and gets stronger afterwards, reaching peak uptake in December.450

In the SPSSSO, the increased CO2 uptake and lower surface pCO2 during winter and spring is driven by a combination of

colder temperatures and lower DIC (Fig. 6a and b), which outweighs the opposite effect of a decrease in alkalinity on pCO2

(Fig. 6c, relative importance of thermal effect in Fig. A12a). Surface DIC is generally high due to upward transport of carbon-

rich deep water (e.g. Hauck et al., 2023a). The reason for lower surface DIC in ASML is that the upward transport through

mixing is reduced (Fig. A11) through a more stable stratification, which is also evident from a reduced density in the upper455

300 m and an increased density below that (Fig. 6h). Thereby, the densities in the SPSSSO agree better with densities calculated

from EN4-OA. Boundary layer and mixed layer in winter and spring are shallower and thereby in better agreement with the

observation-based climatology (Fig. A6). Vertical mixing within the boundary layer affects the vertical profiles of DIC and

alkalinity, towards lower DIC in ASML above 100 m and higher DIC below (Fig. 6i). The vertical profile of DIC in ASML
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is closer to GLODAP DIC observations, albeit some differences to GLODAP still exist. Besides the fact that the differences460

in stratification and boundary-layer depth affect the vertical DIC profile, they also imply less available surface nutrients in

ASML. Probably due to a combination of lower nutrient availability and colder surface temperature, ASML features lower

NPP, lower chlorophyll concentrations and a lower phytoplankton biomass in the SPSSSO (not shown). Thereby, the modeled

biogeochemical cycle adjusts to the lower transport of nutrients to the surface by transferring less organic material to depth,

ultimately acting to compensate about 60% of the difference in physical transport of DIC (Fig. A13a) and adding to the465

reduction in surface alkalinity (Fig. A13b). Within the SPSSSO (roughly south of 50 °S), differences between FREE and

ASML in terms of the temperature effect on pCO2, vertical transport of DIC and alkalinity and biological sources and sinks

are larger than at any other latitude (Fig. A13).

ICESO In the seasonally ice-covered biome (ICESO) surrounding the Antarctic continent, the time-mean CO2 flux is

smaller than in other biomes (Fig. 5a). In this region, the ocean absorbs CO2 during summer and there is a smaller outgassing470

during winter (Fig. 5f), as the region is mostly ice-covered in winter (see sea-ice concentration in September in Fig. 3). In

the northern part of the ICESO biome, close to the SPSSSO, the effect of the assimilation is similar to the effect within the

SPSSSO itself (Fig. 5b). Here, the assimilation acts to increase ocean CO2 uptake or to weaken CO2 outgassing during winter

and spring (Fig. 5i and j). Thereby, interestingly, the assimilation hinders outgassing of CO2 from May to November in ASML

in the ICESO biome (Fig. 5f; comparison of winter outgassing with other estimates in Fig. A14). The reduced outgassing and475

decreased pCO2 during winter and spring is driven by similar processes as within the SPSSSO. Again, lower surface DIC

and colder temperatures (Fig. 6a and b) outweigh the opposite effect of a decrease in alkalinity on pCO2 (Fig. 6c). As in the

SPSSSO, the reason for the decrease in pCO2, is reduced surface DIC and increased DIC below 100 m as a result of less upward

transport of DIC through mixing (Fig. A11) in a more stable stratification due to surface freshening (Fig. 1e). In addition, as

the surface temperature is lower in ASML (Fig. 1b), the winter sea-ice concentration is higher (Fig. 3b), which prevents winter480

outgassing of CO2. In the southern part of the ICESO biome, near the Antarctic continent, the effect of the DA on the CO2 flux

is small.

In summary, in the Southern Ocean, the main effects of the DA on the CO2 flux are, firstly an increase of the uptake in the

SPSSSO caused by surface cooling and by a more stable stratification and thus less upward transport of naturally carbon-rich

water through mixing, and secondly an overall lower CO2 uptake in the STSSSO as a consequence from a spatial redistribution485

of fluxes near the Subantarctic Front.

3.3.2 North Atlantic

In the North Atlantic, the assimilation has noticeable effects on the CO2 flux in the area of the North Atlantic Current, where

the ocean absorbs CO2 in the annual average (Fig. 7a). During summer however, the ocean releases CO2 while the sea surface

warms (Fig. 7c-f). In the Central STSSNA−, the effect of the DA is to prevent outgassing during summer (Fig. 7c and g). In the490

Western STSSNA+ and in the Newfoundland Basin
::NA+, the ocean CO2 uptake is decreased during winter (Fig. 7d, e, h and j).

The regionally different dynamics of the effects of the assimilation that drive these differences in the air-sea CO2 flux in the

North Atlantic are investigated next.

19



Figure 6. Drivers of the effects of data assimilation on air-sea CO2 fluxes
::::
pCO2:in the Southern Ocean. Panels a, b and c show the effects of

SST, DIC and alkalinity differences between the ASML and FREE
:::::::::::::
ASML−FREE simulations on surface pCO2, where positive denotes

an increase in pCO2. Hatching
::::::::::
Additionally,

::::::
hatching

:
inside the STSSSO indicates where net pCO2 is increased through the assimilation

(STSSSO+). (d and e) Seasonal cycle of SST averaged over the regions STSSSO+ and STSSSO−, and (f and g) the difference between ASML

and FREE
::::::::::::
ASML−FREE

:
for each region. (h) Potential density profiles for the SPSSSO, with FREE (violet line) and ASML (dashed black

line) based on daily T and S, and with EN4-OA (dotted green line) based on monthly T and S. (i) DIC profiles for the SPSSSO, showing

FREE (violet line), ASML (dashed black line) from 2010-2020 and climatological DIC from GLODAP. Shading in d, e, h and i indicates the

range of ensemble members in the year 2020.
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Figure 7. Effect of data assimilation on North Atlantic CO2 flux
:::::::
(negative:

:::
into

:::
the

::::::
ocean) and its seasonality averaged over the period

2010-2020. Negative numbers indicate a flux into the ocean. (a) Map of mean CO2 flux in ASML. (b) Map of difference between CO2 flux in

ASML and FREE
:::::::
difference

:::::::::::::
ASML−FREE. (c - f) Seasonal cycle of air-sea CO2 flux by region. Shading indicates the range of ensemble

members in the year 2020. (g - j) Seasonal difference in air-sea CO2 flux between ASML and FREE
:::::::
difference

:::::::::::::
ASML−FREE by region.

Note different scales.
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Central STSSNA− In the Central STSSNA−, the effect of the DA is overall towards a more negative flux of CO2 from

May to November (Fig. 7g). Thus, spring and autumn CO2 uptake are increased and summer outgassing is prevented in495

ASML (Fig. 7c). The reason for decreased surface pCO2 is higher alkalinity in ASML (Fig. 8c). In this region, the alkalinity

effect, which reduces pCO2, outweighs the opposing effects of DIC and SST on pCO2 (Fig. 8a and b). A higher alkalin-

ity could point to the presence of waters of subtropical origin transported northward with the NAC (Völker et al., 2002).

Other fingerprints of waters transported by the NAC are a warm SST particularly in winter, a higher salinity and higher

DIC than that of North Atlantic subpolar waters (maps of mean SST, SSS, DIC, alkalinity in Fig. A15; Völker et al., 2002)500

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(maps of SST, SSS, DIC, alkalinity in Fig. A15; Völker et al., 2002). The assimilation causes a change in these properties, to-

wards a higher SST, higher salinity and higher DIC in the Central STSSNA−. Simultaneously, ASML represents a deeper

boundary layer in this region (Fig. 8d). While changes in the North Atlantic mixed-layer depth overall result in a spatial pattern

in ASML that more closely aligns with the pattern in the observation-based mixed-layer climatology, the modelled
:::::::
modeled

mixed layer in the simulations is still overall deeper than in the climatology, leading to less agreement in the Central STSSNA−505

(Fig. A6). Likely facilitated by higher SST and more available nutrients through deeper mixing in winter and spring, ASML

features a higher biological sink of DIC above 190 m (Fig. A16d), more biological carbon export through sinking of detritus at

190 m, more column integrated phytoplankton biomass and surface chlorophyll in spring, which is illustrated by the example

of surface chlorophyll difference between ASML and FREE in Fig. 8e. In combination, the higher alkalinity associated with

NAC transport and the higher biological sink of DIC result in lowered surface pCO2 and higher oceanic uptake.510

Western STSSNA+ In the Western STSSNA+, the DA reduces the CO2 uptake and increases pCO2 mainly during winter, as

a direct effect of increased SST (Fig. 8a). The direct thermal effect is dominant over the combined effect of DIC and alkalinity

(relative importance of thermal effect in Fig. A12b). The latter have effects comparable in magnitude to SST, but mostly cancel

each other out (Fig. 8b-c). The effect of DA on surface properties (SST, SSS, DIC and alkalinity) in the Western STSSNA+ is

similar to the effect in the Central STSSNA−, which indicates a higher influence of subtropical waters in both regions.515

Newfoundland Basin
::NA+ In the Newfoundland Basin

::NA+, the dominant effect of DA is a reduction of the CO2 uptake

and an increase of pCO2 mainly during winter, as a direct effect of increased SST (Fig. 8a). In addition, ASML also features a

more stable stratification due to lower density at the surface than FREE (Fig. 8f), which mostly affects DIC at 50-400 m depth

through reduced subduction of DIC (Fig. 8g). Furthermore, ASML represents less surface chlorophyll in the Newfoundland

Basin
::NA+ (Fig. 8e) as a result of a redistribution of biomass from the surface to 50-400 m depth due to spring mixing (not520

shown). The downward mixing of biomass results in an increase of the biological sink of DIC above 50 m likely due to more

primary production near the surface, and a decrease of the biological sink at 50-400 m likely due to more remineralization at

this depth. However, the differences in the biological sink of DIC are compensated by mixing of DIC (profiles not shown).

Overall, differences of the regional DIC profile to the observational GLODAP climatology slightly increase (Fig. 8g).

Coastal SPSSNA− In the Coastal SPSSNA−, pCO2 is reduced and the ocean CO2 uptake is increased in ASML during525

winter and spring (Fig. 7f and j). The reduction of pCO2 is facilitated by colder SST (Fig. 8a). This might be due to subpolar

water masses penetrating further south along the coast in ASML because the location where the current separates from the

coast is further south in ASML (velocities in Fig. A2).
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In summary, DA affects the CO2 flux in the North Atlantic mainly through changes in SST, combined with changes in

horizontal advection of DIC and alkalinity near the NAC. Changes in the vertical mixing of DIC and alkalinity are largely530

compensated by feedbacks in biogeochemical cycles. Which of these effects is dominant, however, varies from region to

region.

3.4 Comparison with biogeochemical observations

3.4.1 pCO2 (SOCAT)

To evaluate the modeled air-sea CO2 flux based on observations, surface pCO2 is the most informative variable, as it is closely535

related to the air-sea CO2 flux. Effects of the DA on the modeled ecosystem and associated carbon fluxes, as well as thermal and

dynamical effects that affect the CO2 flux, are all included in pCO2. The global mean of absolute monthly model-observation

differences to the available SOCAT pCO2 observations is 27.26µatm for FREE. For ASML, the difference is slightly larger

with 27.60µatm. On global average, pCO2 is higher than in SOCAT by 3.70µatm in FREE and 4.59µatm in ASML, as

regions with positive and negative differences to SOCAT compensate (Fig. 9a). As an illustration of the regional changes540

through DA, the absolute differences in pCO2 amount to 8.08µatm (absolute difference ASML-FREE calculated at every grid

point then averaged globally), which is ±27% of the mean absolute model-observation difference. A linear offline estimation

demonstrates that this change in pCO2 would lead to an absolute change in the air-sea CO2 flux by 1.06mmolCm−2day−1

on average (Eq. (8)
::::::::
Equation

:
8).

Overall, FREE and ASML show very similar regional pCO2 differences compared to SOCAT (difference of FREE and545

SOCAT in Fig. 9a; difference of ASML and SOCAT not shown). In the subtropical and tropical Atlantic and the subtropical

Pacific, FREE and ASML have higher pCO2 than SOCAT, while in the equatorial Pacific, pCO2 is lower. At high latitudes,

FREE and ASML represent mostly lower pCO2 than SOCAT.

In the Southern Ocean, the simulations represent lower pCO2 than SOCAT in the SPSSSO and ICESO biomes in the annual

mean (Fig. 9c), which is dominated by summer differences to SOCAT (not shown) when most observations are available.550

Through the assimilation, pCO2 is slightly increased in summer and mostly reduced in winter (not shown), leading to an overall

better agreement with SOCAT (Fig. 9e). In contrast, in the STSS, FREE and ASML represent higher pCO2 than SOCAT, and

through the assimilation, the agreement with SOCAT decreases.

In the North Atlantic, the simulations and SOCAT show a similar large-scale pattern, namely that pCO2 is higher in the

subtropics (ASML: around 400µatm) than in the subpolar regions (ASML: around 280µatm). Yet, this latitudinal difference555

of pCO2 is stronger in the simulations compared to SOCAT, meaning that in the subtropics, pCO2 in the simulations is higher

than in SOCAT (Fig. 9d), while it is lower in the subpolar regions. Furthermore, in both simulations there is a pronounced

pCO2 surface gradient in the NAC and North Atlantic Subpolar Gyre region, whose position is changed by the assimilation,

and which appears to be further northward in SOCAT. Thereby, the assimilation overall leads to a better agreement with

SOCAT, in particular through a decrease of pCO2 in the Central STSSNA−, where the average difference is reduced from560

26µatm (FREE - SOCAT) to 1µatm (ASML - SOCAT). However, in the Newfoundland Basin
::NA+, the average difference
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Figure 8. Drivers of the effects of data assimilation on air-sea CO2 flux
::::
pCO2:in the North Atlantic. Panels a, b and c show the effects of

SST, surface DIC and alkalinity differences between ASML and FREE
::::::::::::
ASML−FREE on surface pCO2. (d) Difference of boundary layer

depth (ASML - FREE
:::::::::::::
ASML−FREE) for spring (MAM) 2010-2020, where positive denotes a shallower boundary layer in the ASML.

(e) Difference of surface chlorophyll (ASML-FREE
:::::::::::::
ASML−FREE) for spring (MAM) 2010-2020. (f) Potential density profiles for the

Newfoundland Basin
::NA+ region, with FREE (violet line) and ASML (dashed black line) based on daily T and S, and with EN4-OA (dotted

green line) based on monthly T and S. (g) DIC profiles for the Newfoundland Basin
::NA+ region, showing FREE (violet line), ASML (dashed

black line) from 2010-2020 and climatological DIC from GLODAP. Shading in f and g indicates the range of ensemble members in the year

2020.
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Figure 9. Partial pressure of CO2 (pCO2) at the surface averaged over the years 2010-2020. Panels (a-c) show the difference between FREE

and SOCAT observations in (a) the global ocean, (b) Southern Ocean and (c) North Atlantic; panels (d-f) show the impact of the assimilation

as ’improvement’ relative to SOCAT observations computed from monthly mean pCO2 in the same regions. Positive values (green color)

denote a reduced difference to SOCAT.

is reversed from −17µatm (FREE - SOCAT) into 13µatm (ASML - SOCAT), which is associated with a larger absolute

discrepancy of ASML and SOCAT.

3.4.2 DIC and alkalinity (GLODAP)

DIC and alkalinity are two of the most important variables from which pCO2 is derived (Section 3.3). Comparing them with565

observations provides more insights into the strengths and weaknesses of the modeled carbonate system than a comparison with

pCO2 observations alone. The FESOM-REcoM
:::::::::::::::::
FESOM2.1-REcoM3

:
simulations represent higher surface DIC than GLODAP

bottle observations (Lauvset et al., 2024a, gridded monthly-means) on average (Fig. 10a), with a global mean surface difference

FREE-GLODAP of 6.46mmolCm−3 for DIC. Although fewer DIC observations are available than pCO2 observations, simi-

larities between the respective model-observations differences for DIC and pCO2 can be recognized. For example, DIC in the570
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model is lower in the tropical and subtropical Atlantic than GLODAP, and higher in the polar Atlantic. This is consistent with

SOCAT pCO2 observations in the same areas. The model-observation differences to GLODAP DIC and SOCAT pCO2 are also

consistent with each other in the north Pacific. The assimilation induces absolute changes in surface DIC of 6.33mmolCm−3

on global average, with regional differences in sign. These changes slightly reduce the mean absolute difference to the surface

observations from 32.78mmolCm−3 to 32.15mmolCm−3, and yield a mixed picture of the improvement (Fig. 10b).575

While the trend in surface DIC due to anthropogenic input makes it necessary to compare the model with contemporane-

ous observations at the ocean surface, a comparison with climatological data is meaningful below a depth of approximately

200 m. In fact, the modeled global distribution of DIC at depth is overall similar to that in the GLODAP climatology for

both simulations (zonal mean DIC surface to 1000 m depth in Fig. A17). For example, the model results and GLODAP

data sets show that DIC is lowest in the isopycnals of the subtropical gyres (2050− 2150mmolCm−3; Fig. A17a) and that580

DIC mostly increases with depth and is higher in the Pacific (2420mmolCm−3 at 1000 m in the North Pacific) than in the

Atlantic (2320mmolCm−3 below 3000 m in the South Atlantic). Yet, depending on the ocean basin and depth, there can

be both negative and positive differences between the simulations and the GLODAP climatology, which are in the order of

20mmolCm−3 (Fig. A17c). On a global average, the assimilation leads to an increase in DIC between 200-600 m depth and

a reduction of DIC between the surface and 200m
:::
200

::
m, with the largest effect in the upper 400 m (Fig. A17b). This leads585

to an improved agreement with the GLODAP climatology, with the largest global mean improvement at a depth of 400 m

(2.5mmolCm−3; Fig. A17d). Below 1000 m depth, the global mean absolute difference FREE-ASML of DIC and alkalinity

is only 1− 2mmolm−3 and is therefore substantially smaller than at the surface.

The comparison with GLODAP bottle alkalinity at the surface shows a similar spatial patterns as for DIC (see Fig. 10a

and c). The magnitude of the bias is also comparable (14mmolAlkm−3). The global mean of the absolute difference ASML-590

FREE of surface alkalinity is 7.72mmolAlkm−3. The assimilation leads to a reduction of the absolute difference of the

model alkalinity to GLODAP from 34.34mmolAlkm−3 to 32.60mmolAlkm−3. Since the effects of physics assimilation on

alkalinity and DIC are regionally consistent, regions of improved or deteriorated agreement with GLODAP often coincide for

both variables (compare Fig. 10b and d). Because changes of DIC and alkalinity have an opposing effect on the CO2 flux, it is

likely that their correlation results in compensating effects. A linear estimate shows that the joint effect of DIC and alkalinity595

changes is responsible for a change in the CO2 flux in the order of 1.22mmolCm−2day−1 on average, and, globally integrated,

the assimilation-induced changes in DIC and alkalinity lead to an estimated net increase of the air-sea CO2 flux in the order of

0.50PgCyr−1 (Eqs. (3), (4) and (8)
::::::::
Equations

::
4,

:
3
::::
and

:
8). However, this linear offline estimate is subject to a large uncertainty

because regionally large effects with opposite sign lead to uncertainty in the global mean.

3.4.3 Surface chlorophyll (OC-CCI)600

The representation of chlorophyll by the model is of interest as a proxy for primary production. Surface chlorophyll reflects the

phytoplankton state and biomass, and therefore, effects of the DA on the biological model state can be seen in the total surface

chlorophyll concentration. A comparison of the modeled surface chlorophyll with remotely-sensed chlorophyll from OC-CCI

reveals that both simulations feature a higher surface chlorophyll concentration than OC-CCI (FREE-OBS in Fig. 11a and
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Figure 10. Comparison of the model result
:::::
results with surface DIC and alkalinity bottle observations from GLODAP

::::::
globally

:
over the years

2010 to 2020. (a) Difference of
:::::

Surface
:
DIC between FREE and GLODAP

::::::::
differences

::::::::::::::::
FREE−GLODAP. (b) Improvement of monthly

surface DIC relative to GLODAP. (c and d) For alkalinity.
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c). In FREE, the difference to OC-CCI is 0.02mgm−3 on global average, with low deviations in the tropics and an enhanced605

difference north of 30◦N (0.12mgm−3) and south of 30◦S (0.24mgm−3). Apart from this, both simulations capture the global

distribution of chlorophyll well. The simulations show the seasonal maxima in each hemisphere around one month earlier in

the year (not shown). South of 30◦S, FREE is in better agreement with chlorophyll-a from Johnson et al.’s (2013) Southern

Ocean specific chlorophyll product (Fig. 11b) than with OC-CCI data (Fig. 11a).

On global average, the assimilation slightly reduces the differences between model and OC-CCI data, from a global mean610

absolute difference of 0.31mgm−3 to 0.29mgm−3. The assimilation changes the chlorophyll concentration by an absolute

value of 0.05mgm−3 on average, which is 15% of the global mean absolute difference to OC-CCI. There are regions in which

assimilation leads to a reduction in chlorophyll and thus to better agreement with the satellite products, for example in the

North Atlantic Subpolar Gyre and the Southern Ocean SPSSSO (Fig. 11e and f). In contrast, the model reacts to the DA with

an increase in chlorophyll in the North Atlantic Central STSSNA− and the Argentine Basin, which leads to poorer agreement.615

4 Discussion

The improvement in temperature and salinity overall leads to a heterogeneous picture in biogeochemistry. While near-surface

temperature and salinity fields are improved through DA almost everywhere, the global mean absolute difference of modeled

surface pCO2 to SOCAT remains similar in ASML compared to FREE, and this also applies to the model-observation differ-

ences for surface chlorophyll, DIC and alkalinity (Section 3.4). Where improvements in one BGC variable occur, these do not620

necessarily lead to consistent improvement in all BGC variables. For example, the representation of pCO2 improves while that

of chlorophyll deteriorates in the North Atlantic Central STSSNA− (Fig. 11f and Fig. 9f). In the Southern Ocean SPSSSO, the

reduction of modeled surface chlorophyll in spring and the increase of pCO2 in summer lead to a better agreement with pCO2

observations, yet the available observations of DIC and alkalinity do not resolve the regional scales to evaluate the correspond-

ing changes in these variables (Fig. 9, Fig. 10 and Fig. 11f). The uncertainty represented by the ensemble is reduced by the625

DA, which has the most obvious effect on the directly assimilated fields (SST in Fig. 6d and e and density in Fig. 8f). The

ensemble standard deviation of the CO2 flux, where it is large in FREE, is constrained by the DA to globally more uniform and

smaller values (Fig. 5c-f, Fig. 7c-f and Fig. A1). Only in the North Pacific, the standard deviation of CO2 fluxes is equally high

in ASML and FREE, precisely in a region that also presents a challenge for pCO2 products (compare Fig. A1 and Mayot et al.,

2024, Figure 5a). In the rest of the ocean, the reduced uncertainty represented by the ensemble does not necessarily coincide630

with improved agreement with BGC observations. One possible reason for improvement of model-data mismatch in one vari-

able with worsening in another may lie in inconsistencies between the observational datasets. Another reason may be missing

processes in the model and the use of constant BGC model parameters. Those parameters are responsible for linking changes

between ecosystem variables and in reality, they vary across space and time depending on species composition in the ecosys-

tem (Mamnun et al., 2023, Chapter 3). Overly simplified links between ecosystem variables can lead to cancelling
::::::::
canceling635

errors, which means that the state of one variable may worsen as a result of improving the other through DA (as in Ford and

Barciela, 2017).
::
For

::::::::
example,

:::::::
surface

::::::::::
chlorophyll

:::::::
(Fig. 11

:
f)

::::
and

:::::
pCO2 ::::::

(Fig. 9
:
f)
::
in
::::

the
::::::
central

:::::::::
Greenland

:::
Sea

:::::::::
deteriorate

:::
in

28



Figure 11. Surface chlorophyll averaged over
::
for the years 2010-2020: (a-c) difference between FREE and SOCAT observations in (a) the

global ocean, (b) the Southern Ocean and (c) the North Atlantic; (d-f) impact of the assimilation as ’improvement’ relative to the observations

in the same regions. Panels (a, c, d) and (f) compare to monthly OC-CCI observations, panels (b) and (e) refer to the climatology for 1998-

2019 by Johnson et al. (2013).

:::::::
response

::
to

::::::::::::
improvements

::
of

::::
SST

::::::
(Fig. 1

::
c),

::::
SSS

::::::
(Fig. 1

:
f)
::::
and

::::::
sea-ice

:::::::::::
concentration

::::
(not

:::::::
shown).

::::
This

:::::
could

:::::::
indicate

::::
that

:::
the

::::
BGC

:::::::::::::
parametrization

:::::::::::
compensates

:::
for

::::
flaws

:::
in

::
the

::::
free

:::::::
running

:::::::
physical

::::::
model

::
in

:::
this

::::::
region.

::::
The

::::::::
parameter

:::::::::
mismatch

:::::
might

::::
cause

:::::::::
difficulties

:::
in

::::::::
modeling

:::
the

::::::
change

::
of

::::
BGC

::::::::
variables

:::::
under

:::
the

:::::::
ongoing

::::
loss

::
of

:::::
Arctic

:::
sea

:::
ice

::::::::::::::::
(Chen et al., 2016).

:
640

The major effects of physics DA on BGC variables seem to be related to
:::::
follow changes of SST and are largely uniform over

the full period of DA (Section 3.4). Surface chlorophyll changes follow
::::
show

:
a
::::::
pattern

::::::
similar

::
to
:
SST changes (Figs. 1 and 11).

The modeled phytoplankton growth is temperature-dependent (Gürses et al., 2023). Furthermore, indirect temperature effects

on plankton dynamics due to stratification and mixing changes contribute, albeit those can have heterogeneous effects and the

correlation of chlorophyll and boundary-layer depth is less clear (not shown). The changes of surface DIC and alkalinity show645

similar spatial patterns with regional heterogeneity (Section 3.3), again with the major changes being coherent with the changes

in SST (Fig. 1). Furthermore, the effects of the assimilation on DIC and on temperature in the upper 1000 m correlate regionally:
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Cooling through DA at intermediate depth (Fig. 2b) is usually accompanied by higher DIC in ASML (Fig. A17b), while

warming through DA near the surface occurs together with reduced DIC in ASML. An overall more stable ocean stratification

in the upper hundreds of meters explains why. On global average, the assimilation leads to lower DIC above 200 m and higher650

DIC between 200-600 m depth. In regions of substantial DA effects on vertical transport of DIC, as for example in the Central

STSSNA− or in the SPSSSO (Section 3.3), the modelled
:::::::
modeled

:
biogeochemical cycles adjust dynamically to the altered

vertical transport. The resulting changes in biological sources and sinks of DIC compensate for 20-70% of the changes in

vertical transport of DIC (Fig. A13a). In addition to changes in stability and mixing, the assimilation affects the distribution

of DIC and alkalinity through local changes in near-surface horizontal transport. As the horizontal distribution of surface DIC,655

alkalinity and SST is governed by latitudinal gradients and common pathways of transport (Figs. A10 and A15), all of them

undergo similar changes as the SST field is modified. An exception to this is in the STSSSO, where regional shifts along

contrasting surface gradients of DIC, alkalinity and temperature affect the respective variables differently (Section 3.3). These

shifts change the spatial pattern of air-sea CO2 fluxes. With the exception of the Southern Ocean, zonally averaged changes

in surface pCO2 are dominated by the combined effects of surface alkalinity and DIC on pCO2 (Fig. A9a). Because alkalinity660

and DIC are usually modified according to the same pattern through mechanisms acting on both, their effects on pCO2 are

anticorrelated (Fig. A9b). The direct thermal effect on pCO2 can still be the largest locally, for example in the North Atlantic

Newfoundland Basin
::NA+ (Fig. A12b). While the DA dynamically induces changes in surface pCO2 everywhere, the strongest

effects on the air-sea CO2 flux are at high latitudes, where pCO2 changes are amplified by high wind velocities.

The net effect of DA on the global air-sea CO2 flux varies from year to year between −0.12PgCyr−1 and 0.15PgCyr−1,665

which is small compared to the changes in regional CO2 fluxes. The global net effect of lateral redistribution of alkalinity

and DIC at the ocean surface is a result of compensation between regions where alkalinity and DIC are added and removed.

Similarly, regional SST effects on surface pCO2 mostly balance out globally, because DA primarily induces a correction of

regional SST biases, reducing the mean absolute difference to the observations from 0.59◦C to 0.32◦C, rather than changing

the global mean SST, which differs by only 0.02◦C between FREE and ASML. DA-induced differences in vertical transport of670

DIC are comparably large south of 50◦S, but approximately 95% of them are balanced globally by opposing changes in vertical

transport further north (vertical transport of DIC in Fig. A13a). In particular, the effect of DA on subduction of DIC through

vertical advection into the ocean’s deeper layers (not shown), which is the rate-limiting step on oceanic uptake of anthropogenic

CO2 emissions (DeVries, 2022), appears small, which may be due to an insufficient amount of deep observations. Besides,

experiments on longer time scales might be necessary to generate a visible effect of deep circulation changes on the ocean’s675

carbon cycle (Cao et al., 2009), which could however lead to imbalances in the CO2 flux (Lebehot et al., 2019; Kriest et al.,

2020; Primeau and Deleersnijder, 2009). Another possible reason why the DA effect on the global CO2 flux in our simulation

is small, is the variable stoichiometry in REcoM. The dynamic biological functioning reduces the sensitivity of critical fields,

like DIC, to physical changes (Buchanan et al., 2018). Furthermore, negative feedback effects between surface alkalinity, DIC,

atmospheric pCO2 and air-sea fluxes might reduce the overall response (Bunsen et al., 2024).680

The overall impact of the DA on the air-sea CO2 flux on a global scale is modest (0.05PgCyr−1) compared to the differences

between other estimates (e.g., a standard deviation of 0.45PgCyr−1 of GOBMs in DeVries et al., 2023). The global air-sea

30



CO2 flux estimates of FREE and ASML fall in the range of previous model estimates and in the range of previous pCO2

products (Fig. 4a and b) for the period 2010-2018, during which comparable estimates are available (DeVries et al., 2023).

We compare here to two other data assimilating BGC model approaches, namely ECCO-Darwin (global; Carroll et al., 2020)685

and B-SOSE, which is restricted to the Southern Ocean (Verdy and Mazloff, 2017). Both approaches use Linearized Least

Squares Optimization data assimilation methods (4D-var/adjoint and Green’s function, Wunsch, 1996; Menemenlis et al.,

2005). However, the largest difference to our study is probably that they assimilate BGC observations in addition to physical

data. Thus, as expected, the effect on pCO2 in our study is smaller (3%) than in ECCO-Darwin and B-SOSE where a reduction

in pCO2 model-data misfit of 6% and 64% was reported, respectively (here given as quadratic misfit). The global CO2 flux690

(2010-2018) is smaller in FESOM2.1-REcoM3-PDAF
::::::::
-REcoM3

:
(−2.73PgCyr−1 in FREE and −2.78PgCyr−1 in ASML)

than in ECCO-Darwin (−3.13PgCyr−1). The discrepancy between the CO2 flux estimates based on models and pCO2-

products is an area of active research and not fully resolved (Friedlingstein et al., 2023; DeVries et al., 2023). On the one hand,

model biases in the Atlantic Meridional Overturning Circulation, in Southern Ocean ventilation and possibly biases in the

surface ocean carbonate chemistry were suggested as reasons why models might underestimate the global mean CO2 uptake695

in recent decades (Friedlingstein et al., 2023; Terhaar et al., 2024, 2022). On the other hand, the sparsity of observations is

a concern for the pCO2 products. According to one testbed simulation, the pCO2 products reflect the global mean and the

seasonal cycle relatively well, while the decadal variability may be overestimated (Gloege et al., 2021). An overestimation of

the decadal trend, as suggested by Hauck et al. (2023b), could explain the high estimates of the pCO2 products for the present-

day global mean CO2 flux. In contrast, for the North Atlantic, it was argued that pCO2 is comparatively well constrained by700

observations in the last decade but not in the 1980s, which has an erroneous influence on the long-term trend (Pérez et al.,

2024).

The effects of data assimilation on the CO2 flux are most pronounced in the Southern Ocean STSSSO and SPSSSO in winter.

Verdy and Mazloff (2017) also found the largest effects of assimilation on the CO2 flux in this region. Although the region is of

crucial importance for the global ocean carbon sink, it also has the greatest uncertainty due to the lack of ship-based winter ob-705

servations (Friedlingstein et al., 2023; Hauck et al., 2020). In the last decade, the number of winter observations has increased

due to the introduction of biogeochemical Argo floats (Johnson et al., 2017; Williams et al., 2017), although the float-based

pCO2 derived from pH measurements and estimated alkalinity is subject to higher uncertainty compared to direct pCO2 mea-

surements (Williams et al., 2017; Bakker et al., 2016). Machine learning approaches incorporating BGC Argo float observations

suggest a stronger winter outgassing around Antarctica, particularly south of 50◦S in the SPSSSO and ICESO biomes, for 2015-710

2017 (Bushinsky et al., 2019; Gray et al., 2018). This results in a lower estimate of annual Southern Ocean CO2 uptake in the

float products. One suggestion in the literature is that model inadequacies in the representation of mixing and upwelling in the

Southern Ocean might cause the discrepancy between float products and models (Gray et al., 2018). However, improvements

in the modeled ocean physics and changes in mixing through data assimilation do not lead to closer agreement between the

FESOM-REcoM
:::::::::::::::::
FESOM2.1-REcoM3

:
estimate and the float products (comparison of FESOM-REcoM

:::::::::::::::::
FESOM2.1-REcoM3,715

float products and B-SOSE in Fig. A14). In contrast, ASML shows even weaker winter outgassing and stronger summer uptake

south of 50◦S than FREE, which brings the FESOM-REcoM
:::::::::::::::::
FESOM2.1-REcoM3 estimate further away from the float prod-
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ucts. However, ASML is brought close to B-SOSE in terms of winter outgassing in the Antarctic polar ocean south of 60◦S and

winter uptake in the STSSSO around 40◦S. Additionally, airborne CO2 flux estimates and direct pCO2 measurements stemming

from a sail drone have questioned the estimates of winter outgassing based on the BGC floats, either attributing the high pCO2720

values to possible biases in the floats’ measuring devices or to anomalously high pCO2 in the years 2015-2016 (Long et al.,

2021; Sutton et al., 2021).

5 Conclusion

We apply data assimilation of temperature and salinity into a global ocean-biogeochemical model to improve the physical

state for the years 2010-2020. The simulation is then assessed with regard to the effects on the biogeochemical variables.725

The experiments show that the effect of data assimilation (DA) on biogeochemical variables is mostly related to temperature

changes. While the air-sea CO2 flux and pCO2 are directly affected by sea surface temperature, the DA also induces indirect

changes to pCO2 through dissolved inorganic carbon (DIC) and alkalinity. Globally integrated, these are more relevant for pCO2

than the direct temperature effect. Yet, which of these factors has a dominant effect on pCO2 varies locally. The assimilation

leads to regional shifts in areas of CO2 outgassing and uptake. Local effects on the air-sea CO2 flux are particularly large730

in dynamic regions such as the North Atlantic Current and near the Subantarctic Front, whose pathways are challenging for

the model to resolve without DA. The largest effect on the air-sea CO2 flux occurs in the Southern Ocean during winter. In

the simulation with assimilation, the uptake south of 50◦S is increased due to shallower mixing and surface cooling, and the

uptake northward of that (40-50◦S) is weakened. In this area of the ocean, the uncertainty in current estimates of CO2 fluxes

is particularly high. Overall, the uncertainty inherent to the biogeochemical model appears to be larger than the uncertainties735

induced through physical biases in the free running model. Locally, the changes in surface pCO2, chlorophyll, alkalinity, and

DIC caused by the assimilation range between about 15 and 30% of the mean absolute model-observation difference. Yet,

local improvements in one variable do not necessarily come along with improvements across other observed biogeochemical

variables. Therefore, globally, physics DA does not generally improve the difference between the model and observations. In

total, the effect of physics DA on the global ocean carbon uptake is with 0.05PgCyr−1 small compared to the spread between740

previous estimates of models, pCO2 products and other DA estimates. While the assimilation of temperature and salinity

improves the representation of these two and also of mixed-layer depth, sea-ice concentration and horizontal near-surface

velocities, possible errors in the vertical velocities and overturning circulation are not eliminated. Further biogeochemical

variables are only indirectly affected. To this end, the additional assimilation of biogeochemical observations is an obvious

next step to reduce the uncertainty stemming from the ecosystem model and to improve the model-observation differences for745

biogeochemical variables.
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Code and data availability. The code used to perform the free simulation and the data assimilation is available at 10.5281/zenodo.11495274.

This code archive additionally contains Jupyter Notebooks to produce the manuscript figures from the model output. The processed model

output data underlying the figures of this manuscript are available at 10.5281/zenodo.11495081.

Appendix A750

Table A1. List of tracers in REcoM3

Tracers in REcoM3

Dissolved inorganic nitrogen and carbon (DIN, DIC)

Dissolved organic nitrogen and carbon (DON, DOC)

Alkalinity

Oxygen

Iron

Silicate

Intracellular concentrations of nitrogen, carbon, chlorophyll, and calcium in small phytoplankton (PhyN, PhyC, PhyChl,

PhyCalc)

Intracellular concentrations of nitrogen, carbon, chlorophyll, and silicate in diatoms (DiaN, DiaC, DiaChl, DiaSi)

Intracellular concentrations of nitrogen and carbon in each of two zooplankton groups (HetN, HetC, Zoo2N, Zoo2C)

Two size classes of detritus for nitrogen, carbon, silicate, and calcium (DetN, DetC, DetSi, DetCalc; and DetZ2N, DetZ2C,

DetZ2Si, DetZ2Calc)
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Figure A1. Ensemble standard deviation of monthly air-sea CO2 flux in the year 2020 in (a) FREE and (b) ASML.
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Figure A2. North Atlantic surface velocities, (a) time-mean in ASML and (b) difference ASML-FREE
:::::::::::::
ASML−FREE.
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Figure A3. Time-mean sea surface (a) temperature and (b) salinity in ASML.
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Figure A4. Zonally averaged time-mean (a) temperature and (b) salinity in ASML.
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Figure A5. September mean Antarctic sea-ice concentration in ASML.
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Figure A6. Mixed-layer depth (a,b) in FREE and (c,d) ASML in the year 2020, (e,f) de Boyer Montégut et al.’s (2004) profile-based

climatology v2023 and (g,h) the improvement through DA relative to the climatology. On the left: time-mean mixed layer, on the right:

maximum of monthly-mean mixed layer. For FREE and ASML (a,b,c,d), the mean absolute difference to the climatology is given in the

bottom-left corner.
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Figure A7. Near-surface velocities (a,b) in FREE and (c,d) ASML for the period 2010-2020, (e,f) Laurindo et al.’s (2017) climatology from

drifter observations and (g,h) the improvement through DA relative to the climatology. On the left: zonal velocities, on the right: meridional

velocities. For FREE and ASML (a,b,c,d), the mean absolute difference to the climatology is given in the bottom-left corner.
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Figure A8. Global meridional overturning in (a) FREE, (b) ASML and (c) difference ASML-FREE.
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Figure A9. The net difference (ASML-FREE)
:::::::::::::
ASML−FREE of surface pCO2 by latitude (panel a, blue line), and the offline-approximated

effects causing that pCO2 difference for the period 2010-2020: Thermal effect (panel a, red line); non-thermal effect calculated, firstly , as the

residual i.e. net-minus-thermal (panels a and b, light-green dotted lines)and,
::
and

:
secondly , as the sum of alkalinity and DIC effects (panels a

and b, light-green solid lines); and effects of alkalinity and DIC individually (panel b, orange and dark-green lines). The shaded areas in the

background indicate the zonal extent of defined biomes in the Southern Ocean: ICESO in light-blue, SPSSSO in blue and STSSSO in pink.

Colors blend where the regions overlap.
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Figure A10. Southern Ocean time-mean sea surface in ASML, (a) temperature, (b) salinity, (c) DIC and (d) alkalinity
::
in

:::::
ASML.
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Figure A11. The difference (ASML-FREE)
::::::::::::
ASML−FREE

:
of source and sink terms for the ocean’s DIC and alkalinity content integrated

over 0-190 m in the Southern Ocean in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Biological

terms for DIC are the sum of: photosynthesis, respiration, remineralization of dissolved organic carbon, and formation and dissolution of

calcite. Biological terms for alkalinity are the sum of: nitrogen assimilation and remineralization, and formation and dissolution of calcite.
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Figure A12. Linear offline estimate of the dominance of thermal versus the non-thermal effect through the assimilation on pCO2 in the

Southern Ocean and North Atlantic for the period 2010-2020.
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Figure A13. The difference (ASML-FREE)
::::::::::::
ASML−FREE

:
of source and sink terms for the ocean’s (a) DIC and (b) alkalinity content

integrated over 0-190 m per 1◦ latitude in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Meridional

transport is averaged across bins of 5◦ latitude. In panel b, vertical and horizontal transport are summed up for readability. Biological terms

for DIC are the sum of: photosynthesis, respiration, remineralization of dissolved organic carbon, and formation and dissolution of calcite.

Biological terms for alkalinity are the sum of: nitrogen assimilation and remineralization, and formation and dissolution of calcite.
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Figure A14. Zonally averaged winter (JJA) air-sea CO2 flux
:::::::

(negative:
:::
into

::
the

::::::
ocean) in FREE, ASML and previous estimates (Hauck et al.,

2023a; Verdy and Mazloff, 2017).
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Figure A15. North Atlantic time-mean sea surface in ASML, (a) temperature, (b) salinity, (c) DIC and (d) alkalinity
::
in

:::::
ASML.
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Figure A16. The difference (ASML-FREE)
::::::::::::
ASML−FREE

:
of source and sink terms for the ocean’s DIC and alkalinity content integrated

over 0-190 m in the North Atlantic in the year 2020. Transport terms include advection and diffusion of DIC and alkalinity. Biological terms

for DIC are the sum of: photosynthesis, respiration, remineralization of dissolved organic carbon, and formation and dissolution of calcite.

Biological terms for alkalinity are the sum of: nitrogen assimilation and remineralization, and formation and dissolution of calcite.
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Figure A17. Zonally averaged DIC,
:
:
:
(a) time-mean in ASML, (b) difference ASML-FREE

:::::::::::::
ASML−FREE, (c) difference FREE-OBS

compared to
:::::::::::
FREE−OBS

:::::
based

::
on

:
the GLODAP climatology for DIC (Lauvset et al., 2016) and (d) improvement respective to the

GLODAPclimatology.
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Figure A18. Surface velocities in the Southern Ocean, (a) time-mean in ASML and (b) difference ASML-FREE
::::::::::::
ASML−FREE.
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