
Causal relationships between vegetation productivity, water
availability, and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu 1, 2, Hong-Yi Li 2, Mingjie Shi 1, and L. Ruby Leung 1

1Pacific Northwest National Laboratory, Richland, WA, USA
2Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA

Correspondence: Hong-Yi Li (hongyili.jadison@gmail.com )

Abstract. This study explores the causal relationships between catchment water availability, vapor pressure deficit, and gross

primary productivity across 341 catchments in the contiguous US. Seasonal climatic, hydrological, and vegetation characteris-

tics were represented using the Horton index, ecological aridity index, evaporative fraction index, and carbon uptake efficiency.

Statistical methods, including circularity statistics, correlation analysis, and causality tests, were employed to determine the

complex interactions between catchment wetness, atmospheric dryness, and vegetation carbon uptake. The results revealed5

a maximum lag of two months in the intra-annual variability of catchment water supply-productivity and atmospheric water

demand-productivity relationships, with hysteresis patterns varying with the catchment’s hydrological characteristics. In catch-

ments not permanently under water-limited or energy-limited conditions, vegetation experiences hydrological stress during

the peak growing period, coinciding with the highest gross primary productivity and carbon uptake efficiency being out of

phase with Horton index and in phase with evaporative fraction index. Causality analysis highlights strong temporal conti-10

nuity in GPP seasonal characteristics, with a cause-effect relationship between catchment water supply, atmospheric demand,

and vegetation productivity spanning a maximum of two months. These findings underscore the need for a comprehensive

functional framework that integrates catchment water supply, atmospheric demand, and vegetation productivity to enhance our

understanding and predictive capabilities of ecosystem responses to climate change.

1 Introduction15

Soil wetness and vapor pressure deficit (VPD) are two critical abiotic factors that limit ecosystem productivity and play vital

roles in understanding vegetation carbon dynamics. Soil wetness determines the volume of water that plants can hydraulically

lift (Gentine et al., 2019), while VPD controls the opening and closing of stomata (Grossiord et al., 2020). These factors

are interconnected through the plant hydraulic transport system, which serves as a conduit between the processes at the leaf

surfaces and the water supply at the roots. The structure and physiology of plants, including the stomata and hydraulic transport20

system, enable them to modulate their carbon assimilation rates in response to changes in soil wetness and VPD (Martínez-

Vilalta et al., 2014). Understanding photosynthetic carbon assimilation in relation to soil wetness and VPD fluctuations is

crucial for assessing the effects of climatic and hydrological processes on carbon dynamics in terrestrial ecosystem. However,

understanding the distinct roles of soil moisture and VPD, along with their causal effects on vegetation carbon uptake, remains
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a significant research challenge. This has led to an unharmonized representation of the importance of these two variables in25

data analysis and modeling experiments (Liu et al., 2020).

The importance of soil wetness is particularly pronounced in water-limited subtropical ecosystems (Running et al., 2004;

Seneviratne et al., 2010; Stocker et al., 2018), including drylands that make up about 41% of the global land surface (Cherlet

et al., 2018). In these ecosystems, plant survival is primarily dictated by soil water availability (Anderegg et al., 2015), and the

nonlinear response of carbon fluxes to soil water variability is a critical process that affects an ecosystem’s long-term capacity30

as a carbon sink (Green et al., 2019). Reduced soil wetness can increase near-surface temperature and decrease latent heat flux,

which, under drought conditions, can result in extreme atmospheric aridity owing to soil wetness feedback (Zhou et al., 2019).

A recent global analysis showed that soil wetness drives dryness stress on ecosystem productivity in over 70% of vegetated

land areas, highlighting its significance in carbon dynamics and land-atmosphere interactions (Liu et al., 2020).

On the other hand, VPD is a crucial driver of plant function and a determinant of plant-water relations, in some instances35

influencing vegetation carbon-water exchange more than soil water availability (Giardina et al., 2018; Novick et al., 2016).

An increase in VPD augments the atmospheric demand for water, thereby influencing leaf stomatal conductance and latent

heat flux. However, owing to plant regulatory mechanisms, this does not necessarily lead to decreased vegetation growth

(Massmann et al., 2019; Yuan et al., 2019). High or rapidly increasing VPD causes plants to close their stomata, minimizing

water loss and preventing hydraulic transport system failure, even though it suppresses the photosynthetic rate (Grossiord et40

al., 2020; McAdam and Brodribb, 2015). With the rise in global temperatures and an expected increase in future VPD (Byrne

and O’Gorman, 2013; Hatfield and Prueger, 2015), it is vital to quantify the impact of VPD on ecosystem productivity under

both water-stressed and saturated conditions.

Low soil wetness, high VPD, or a combination of both often triggers hydrological stress in vegetation (Fang et al., 2021;

Grossiord et al., 2020; Liu et al., 2020). Enhanced VPD, in combination with low soil wetness, can induce severe drought45

events (Zhou et al., 2019). Prolonged periods of such conditions can damage the plant’s hydraulic transport system of plants,

potentially increasing mortality rates. However, determining the specific soil wetness and VPD thresholds and their combined

effect that precipitates hydrological stress presents a significant challenge (Fu et al., 2022). Conversely, a season with favorable

conditions can stimulate vegetation growth and increase water usage, thereby accelerating the rate of soil wetness depletion. If

soil wetness conditions are unfavorable in the subsequent season, this can intensify the hydrological stress (Bastos et al., 2020).50

The phenomenon known as ecosystem structural overshoot often occurs when a preceding period of unusually large biomass

leads to a supply-demand imbalance for the current period (Jump et al., 2017; Zhang et al., 2021). Many studies have indicated

that structural overshoots significantly exacerbate drought events (Bastos et al., 2020; Buermann et al., 2018; Goulden and

Bales, 2019; Wolf et al., 2012). Globally, reports indicate that structural overshoots were responsible for approximately 11%

of the drought events from 1981 to 2015 (Zhang et al., 2021). Understanding the lag in vegetation response to alterations in55

soil wetness and VPD is integral to a better understanding of these issues. This enabled us to anticipate and mitigate shifts in

vegetation health and vitality due to changing climatic conditions, given the delayed reaction of vegetation to such changes

rather than an instantaneous reaction.
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In this study, we aimed to advance our understanding of the complex interactions among water availability, atmospheric

dryness, and vegetation productivity by investigating the response of ecosystem carbon uptake to intra-annual variability in60

soil wetness and VPD at the catchment scale. To address the limitations of previous studies, we considered total soil wetness

instead of soil moisture across different soil layers to provide a more comprehensive representation of the water available

for plant use (Abeshu and Li, 2021). Furthermore, we use a 30-meter resolution gross primary productivity (GPP) product

to effectively capture the spatial heterogeneity of catchment GPP. Our study seeks to answer three key questions: 1) How

does catchment GPP respond to soil wetness and VPD across different vegetation types? 2) What are the critical features65

are responsible for between-catchment differences in the vegetation responses? 3) How robust are the causal links between

these variables? By addressing these questions, we aim to provide valuable insights into the complex dynamics of ecosystem

productivity under varying hydrological and atmospheric conditions, with potential implications for ecosystem management

and climate change adaptation. The remainder of this paper is structured as follows: Sections 2 and 3 introduce the data and

methods, section 4 presents the results, section 5 discusses the findings, and section 6 concludes the paper.70

2 Data

This study utilizes the CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) dataset, featuring data

from 671 unimpaired catchments across the contiguous United States (Newman et al., 2015). The use of unimpaired catch-

ments allows for the analysis of vegetation response to soil wetness and VPD under natural conditions, minimizing the influence

of human interventions such as land use change or water management practices. These catchments span across various climatic,75

topographic, and vegetation gradients, providing diverse samples for understanding the relationship between water availability,

atmospheric dryness, and vegetation productivity. The CAMELS dataset comprises daily observed and observation-based hy-

drometeorological datasets, including model outputs such as actual evapotranspiration (ET) from the integrated Snow-17/SAC-

SMA model (Addor et al., 2017; Newman et al., 2015). The CAMELS dataset also provides information on catchment at-

tributes, such as dominant vegetation cover characteristics. Our analysis depends on daily data, including precipitation (rain80

+ melt), maximum and minimum temperature, actual vapor pressure, as well as actual and potential evapotranspiration (PET)

and stream discharge. The daily potential evapotranspiration is estimated using the Priestly-Taylor method. Baseflow is derived

from observed discharge using a one-parameter recursive digital filter with three passes (Nathan and McMahon, 1990).

Beyond the hydrometeorological data, this study also incorporates gross primary productivity data sourced from the Landsat

GPP dataset for the contiguous United States (Robinson et al., 2018). This dataset features a spatial resolution of 30 meters85

and a temporal resolution of 16 days. The high spatial resolution of the Landsat GPP dataset is crucial for capturing the spatial

heterogeneity of catchment GPP. Accessible via Google Earth Engine, this data was masked using catchment polygons over

the period from 1986 to 2021. Subsequently, a time series of the average catchment GPP was constructed at 16-day intervals

and later transformed into a monthly series. The leaf area index (LAI) data was generated for each catchment from the AVHRR

dataset (Claverie and Vermote, 2014) and is used to characterize the vegetation density and growth stage in the catchments.90

Quality control of the data is conducted based on two criteria. The first criterion is the complete absence of missing data
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in both the model output and observation data. The second criterion is that the relative percent error between the simulated

annual mean of the model output ET and the observed ET (calculated as the annual mean precipitation minus the annual mean

discharge) must be less than ten percent. Adhering to these criteria results in a study period ranging from 1986 to 2014 and

includes 341 catchments distributed across the contiguous United States (Fig. 1). These 341 catchments are divided into six95

vegetation groups: Deciduous Broadleaf (DBF) with 85 catchments, Evergreen Forest (Needle leaf + Broadleaf) or EF with

21 catchments, Mixed Forests (MF) with 40 catchments, Croplands or Croplands/Natural Vegetation Mosaic (CL/NVM) with

100 catchments, Grasslands (GL) with 43 catchments, and Savannas, Woody Savannas, or Open/Closed Shrublands dominated

catchments (WSSL) with 51 catchments.

3 Methods100

3.1 Water available for vegetation use

Storage carryover significantly modifies precipitation partitioning at both annual and sub-annual scales. By considering the

inputs and outputs that impact the dynamics of surface and subsurface storage within catchments, the water balance at a

monthly scale is expressed as:

P −ET −Qb−Qs = ∆S (1)105

W −∆S = ET + Qb (2)

P is precipitation, ET is actual evapotranspiration, Qb is baseflow, Qs is surface runoff, and ∆S is the net change in water stor-

age. The term ∆S encompasses changes in surface water storage (including streams, lakes, swamps, and surface depressions)

and subsurface storage. Total wetting (W) refers to precipitation that wets the catchment, excluding precipitation that becomes110

surface runoff. It includes the precipitation that infiltrates and the portion stored on the land surface (i.e., rivers, lakes, swamps,

and surface depressions); thus, P = W +Qs. This represents the first stage of hydrologic partitioning. By substituting P −Qs

as W in Equation (1), Equation (2) is derived, illustrating the second stage of hydrologic partitioning. Catchment wetness

(W −∆S), representing the total water available for vegetation use, will henceforth be referred to as ’Wetness’ throughout

the manuscript. Understanding the dynamics of catchment wetness is crucial for assessing the impact of water availability on115

vegetation productivity and carbon uptake, which is a key focus of this study.

3.1.1 Catchment atmospheric dryness

VPD, which measures the extent of atmospheric dryness, is calculated as the difference between the actual vapor pressure

(AVP) and saturation vapor pressure (SVP). The mean daily AVP was sourced from the CAMELS dataset and calculated

the mean daily SVP using the Tetens formula, typically used in potential evapotranspiration (Allen et al., 1998). The mean120

daily SVP is the mean of SVP at maximum and minimum daily air temperatures, which is later converted to monthly. VPD

is an important measure of atmospheric dryness, as it directly influences the water demand on vegetation and the rate of
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evapotranspiration. Higher VPD values indicate a greater atmospheric moisture deficit, which can lead to increased water stress

on plants. Investigating the relationship between VPD and vegetation productivity is crucial for understanding the impact of

atmospheric dryness on ecosystem carbon uptake, which is a focus of this study.125

3.1.2 Catchment hydroclimatic and vegetation dynamics

For a more comprehensive understanding of catchment ecohydrological systems functionality, which is crucial for assessing the

impact of water availability and atmospheric dryness on vegetation productivity, we incorporate indices based on ecological,

hydrological, and energy perspectives. To evaluate the seasonal variation of climatic demand-supply interactions, we utilize

the Ecological Aridity Index (EAI). The Horton Index (HI) assesses the hydrologic demand-supply interaction, while the130

energy demand-supply state is characterized using the evaporation fraction (EFI). The EAI, calculated as the ratio of potential

evapotranspiration to catchment wetness (Abeshu and Li, 2021), illustrates the interplay between catchment energy and water

supply for plant water use. Its magnitude can vary from 0 to infinity, with a wetter climate corresponding to lower values. The

HI is defined as evapotranspiration in proportion to the water available for vegetation use within the catchment (Abeshu and Li,

2021). HI can range from 0 to 1, indicating absolute hydrologic wetness and dryness conditions, respectively. EFI represents135

the actual to potential evapotranspiration ratio, indicating the catchment’s energy use efficiency. Its magnitude ranges between

1 and 0, with 1 denoting the most efficient catchments and 0 indicating the least efficient ones. Furthermore, we use the Carbon

Uptake Efficiency (CUE) to characterize catchment vegetation dynamics. According to the light use efficiency model GPP

(Robinson et al., 2018; Jiang et al., 2021) is parameterized as,

GPP = εmax · (Tscalar ·Wscalar) ·APAR (3)140

Where εmax is the maximum radiation conversion efficiency (kg°C MJ−1) specific to a vegetation type, which is down-

regulated by temperature limitation (Tscalar) and water stress (Wscalar) to yield actual radiation conversion efficiency, ε =

εmax ·Tscalar ·Wscalar, and APAR is the absorbed photosynthetically active radiation. Both Tscalar and Wscalar reflect the cli-

matic limits of plant carbon uptake. Hence, under no limiting conditions (i.e., Tscalar = Wscalar = 1), Eqn. (3) leads to estimates

of potential GPP as follows:145

GPPpotential = εmax ·APAR (4)

The ratio of actual to potential GPP, the CUE, can be expressed as:

CUE =
GPP

GPPpotential
= Tscalar ·Wscalar (5)

CUE ranges between 0 and 1. The mean monthly Tscalar and Wscalar were estimated from the mean daily temperature and

VPD data along with Biome-Property-Look-Up-Table (Robinson et al., 2018). CUE = 1 represents an efficient catchment.150

3.2 Statistical analysis

To comprehensively analyze the relationships between catchment hydroclimatic variables and vegetation dynamics, we employ

a range of statistical methods tailored to our study’s objectives. Circularity statistics are used to summarize the intra-annual
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variability of fluxes, providing insights into the seasonality and timing of GPP, Wetness, and VPD. The Granger causality

test and PCMCI+ are employed to investigate potential causal relationships between these variables, helping to identify the155

directionality and strength of their interactions. Principal Component Analysis (PCA) is utilized to explore the degree to which

long-term catchment characteristics explain the variability of mean monthly GPP−Wetness and GPP−VPD relationships,

aiding in the identification of key factors influencing these interactions. Finally, Pearson’s correlation is used to quantify the

strength and direction of monotonic relationships between paired data. By applying these diverse statistical techniques, we aim

to gain a comprehensive understanding of the complex interactions between catchment hydroclimatic variables and vegetation160

dynamics, and their implications for ecosystem functioning and carbon uptake.

Circularity statistics: Circular (directional) statistics is used to summarize the intra-annual variability of fluxes (Dingman,

2015; Fisher, 1993; Markham, 1970). We first convert the average monthly data into vector quantities to implement these

statistics. The vector’s magnitude corresponds to the month’s flux amount, and the vector direction (ϕ) is the month expressed

in a unit of arc. The direction of a given month is the median date of the month measured from January 1st in a clockwise165

direction. In a standard year with 365 days, one day equals 360
365 = 0.986◦ on a circle. This factor adjusts the day of the year

to give the corresponding angular direction on a circle. The mean monthly vector components (C and S) of any catchment

flux Fm were determined as C = Fm cosϕm and S = Fm sinϕm. The resultant, R, is the square root of the sum of the squares

of C and S (i.e.,
√∑

C2 +
∑

S2). The Seasonality Index (SI), a measure of the degree of variation of a given catchment

flux throughout the year (Fisher, 1993), was obtained by dividing the resultant vector R by the annual mean flux. SI values170

range from 0 to 1. A value of 0 suggests a flux uniformly distributed intra-annually, while 1 indicates a flux concentrated

within a single month. The average time of occurrence (ϕ) corresponds to the angular direction of the resultant vector. In this

framework, a ϕ for January 1st represents the north (0°), April 1st represents the east (90°), July 1st represents the south (180°),

and October 1st represents the west (270°). Utilizing this framework, we computed the seasonality index and average time of

occurrence for GPP (SIgpp and ϕgpp), Wetness (SIwetness and ϕwetness), and VPD (SIvpd and ϕvpd) for all catchments. Note that175

the time of occurrence estimation from circularity statistics is less meaningful when the seasonality is very weak.

Granger causality test: Granger causality is a statistical concept used to determine if one time series can help predict another

(Stokes and Purdon, 2017). The test is based on the principles of temporal precedence and predictability (Granger, 1969). That

is, if one time series causes another, then past values of the causing series should contain information that can be used to

improve the prediction of the second series (Stokes and Purdon, 2017). The Granger causality test involves regressing each180

time series on its own past values and the past values of the other series. If the coefficients are significant, the test concludes

that the first-series Granger causes the second series. Note that the Granger causality test does not prove true causality in

the philosophical sense. It only shows that one series can be used to forecast another, not whether changes in the first series

necessarily cause changes in the second.

PCMCI+ for causal analysis: PCMCI+ is a statistical method to discover potential causal relationships between time185

series. It blends two key components: the Peter and Clark (PC) algorithm and the momentary conditional independence (MCI).

The PC algorithm, a constraint-based method for causal discovery, is used to select conditions, while MCI, a measure of

the degree to which two random variables are independent given the values of other variables, is used to test for momentary
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conditional independence (Runge, 2018; Runge et al., 2019a). The underlying assumption of PCMCI+ is that if two variables

demonstrate statistical dependence, they may hold a causal relationship, and conversely, if they are statistically independent,190

likely, they do not have a causal relationship (Runge et al., 2019a, b). It is crucial to remember that while PCMCI+ can

suggest causal relationships, it does not confirm them. PCMCI+ has been tested and applied to flux tower data (Krich et al.,

2022, 2020), and we apply it to the catchment scale to discover the GPP−Wetness and GPP−VPD causal links. A partial

correlation is employed for conditional independence test statistics to assess the causal strength.

Principal Component Analysis (PCA): PCA is a statistical technique commonly used in data analysis and machine learn-195

ing. It is a dimension reduction method that transforms a large set of variables that may be correlated into a smaller set of

uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the

data as possible, and each succeeding component accounts for as much of the remaining variability as possible under the con-

straint that it is orthogonal (uncorrelated) to the preceding components. PCA identifies the axes in the data space along which

the data varies the most and reorients the data along these axes. This process of transformation and reduction can help simplify200

the data description and highlight important relationships between variables. We employed PCA to explore the degree to which

long-term catchment characteristics explain the variability of mean monthly GPP−Wetness and GPP−VPD relationships.

Pearson’s r: Pearson’s correlation is a metric for quantifying the degree of a monotonic relationship between paired data.

It ranges from −1 to +1. Generally, 0 < |r| ≤ 0.20 is considered negligible, 0.21 < |r| ≤ 0.40 is weak, 0.41 < |r| ≤ 0.60 is

moderate, 0.61 < |r| ≤ 0.80 is strong, and 0.81 < |r| ≤ 1.00 is very strong.205

4 Results

We evaluated the strength of monotonic relationship strength between the three components (i.e., GPP, VPD, and Wetness)

at annual and monthly scales using Pearson’s r. In 72% of the study catchments, we observed a strong negative correlation

between Wetness and VPD on an annual scale. Another 20% of the catchments exhibited a moderate negative correlation. For

the monthly scale, after grouping the data by month, we computed the correlation coefficient between Wetness and VPD for210

each month. During months of high water demand (June-August), we found a moderate to strong negative correlation in 80%

of the catchments (Fig. 2a). This pattern persisted for 73% of the catchments in September. We carried out a similar monthly

scale analysis for GPP−VPD and GPP−Wetness (Figs. 2b and c). Over 60% of the catchments demonstrated a moderate to

strong positive correlation between Wetness and GPP during the peak growing months (June-August). A moderate to strong

negative correlation between GPP and VPD emerged in more than 66% of the catchments from June to September. During215

the most productive months (June-August), a weak correlation of GPP−Wetness and GPP−VPD persists for 30-40% of the

catchments (Fig. 2b and c). This could be because there is a lag between the vegetation’s response to water supply and demand.

To investigate this, we performed cross-correlation analyses for GPP−Wetness and GPP−VPD using monthly data. We found

that the best association between GPP and Wetness is at zero lag (i.e., vegetation responds to a change in water supply in the

same month) for 57% of the catchments and at one-month lag (i.e., vegetation responds to a change in the water supply after220

one month) for another 37%. The correlation coefficient at the corresponding lags is ≥ 0.8 for all catchments. Similarly, the
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best association between GPP and VPD is at zero lag for 14.5% of the catchments and a one-month lag for 73%. The results

suggest that water supply-productivity and water demand-productivity cause-effect interactions occur within a maximum span

of two months (i.e., +1 month from GPP). Granger causality tests indicated that Wetness and VPD significantly affected GPP

in all catchments, demonstrating their compound effect on seasonal GPP patterns.225

We further explored the spatial relationships among GPP, Wetness, and VPD across different vegetation types using mean

monthly values. We conducted these analyses independently for each of the six vegetation classes described in Section 2.

Our results revealed a strong positive association (r ≥ 0.61) between GPP and Wetness in WSSL and GL catchments (Fig.

3a), which is consistent with the expectation that these vegetation types, inhabiting water-limited environments, would exhibit

rapid responses to changes in water availability. For CL/NVM and DBF, the relationship ranged from moderate to strong230

and positive, except during the peak carbon uptake period in the summer months (June-August). In contrast, EF (4 months)

and MF (5 months) showed a moderate relationship (r > 0.41) only during the dormant months (October-March) (Fig. 3a).

The GPP−VPD relationship exhibited a distinct seasonal pattern across vegetation types (Fig. 3b). During the dormant months

(typically October-March), we observed a moderate to strong positive relationship (r ≥ 0.41) for all vegetation types, except for

WSSL. Conversely, during the peak growing season (June-August), the relationship was moderate to strong and negative (r ≤235

−0.41). This negative association can be attributed to the relatively high atmospheric water demand during these months, which

tends to induce stomatal closure in plants, reducing carbon uptake relative to the potential. The positive association between

GPP and Wetness for most vegetation types during the non-growing periods suggests a relatively rapid vegetation response to

changes in catchment water supply. However, the lack of a significant GPP−Wetness association during the most productive

months, except for WSSL and GL, coupled with a strong negative GPP−VPD association, implies a delayed response to240

catchment water supply in most catchments during this period. These findings highlight the complex interplay between water

availability, atmospheric dryness, and vegetation productivity across different ecosystems. The varying strengths and directions

of the relationships between GPP, Wetness, and VPD demonstrate the importance of considering both the spatial and temporal

dimensions when investigating the drivers of ecosystem productivity. Understanding these relationships is crucial for predicting

the responses of different vegetation types to changes in water availability and atmospheric dryness, with implications for245

ecosystem functioning and carbon uptake in the face of climate change.

To better understand how the GPP−Wetness and GPP−VPD relationships change throughout the year, we used circular

statistics to summarize their intra-annual variability. This analysis yielded two statistical measures for each variable: Season-

ality Index (SI) and average time of occurrence (ϕ). The SI values varied with geographic latitude, with a general trend of

increasing SI from south to north for all three variables within a given longitudinal swath (Fig. 4a). Comparing the SI values250

among the variables revealed that SIgpp > SIwetness for 86% of the catchments and SIgpp > SIvpd for 92% of the catchments,

indicating that catchment vegetation productivity exhibits greater intra-annual variability than both catchment wetness and

atmospheric demand. Furthermore, SIwetness > SIvpd for 66% of the catchments, suggesting that atmospheric water demand is

the least varied component among the three in most cases. When converting the angular estimations of ϕ to months, we found

that the average time of occurrence for Wetness and GPP matched for 73% of the catchments, while ϕgpp was delayed by at255

least one month for another 23% (Fig. 4b). The ϕvpd differed by at least +1 month from ϕgpp and ϕwetness for 91% and 95%
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of the catchments, respectively. However, it is important to note that the time of occurrence is less meaningful when the GPP

seasonality is weak; therefore, we relied primarily on the seasonality strength for further analysis. These findings highlight the

spatial variability in the seasonality of GPP, Wetness, and VPD across the study catchments (Fig. 4c). The higher SI values

for GPP compared to Wetness and VPD suggest that vegetation productivity is more sensitive to seasonal changes than water260

availability and atmospheric dryness. The differences in the timing of peak values for GPP, Wetness, and VPD, as indicated by

the ϕ values, further underscore the complex interplay between these variables and the potential for lagged responses of vege-

tation to changes in water supply and demand. The strength of seasonality, combined with lag in vegetation response, creates

hysteresis between GPP and the abiotic driving variables, namely Wetness and VPD. Hysteresis is a phenomenon that occurs

when changes in an effect lag behind changes in the causal variable. We first examined the hysteresis patterns of GPP−Wetness265

and GPP−VPD in the six dominant vegetation groups. To standardize the comparison across catchments within each group, we

normalized all three variables by their mean values exceeding the 90th percentile. Figures 5 and 6 illustrate the GPP−Wetness

and GPP−VPD hysteresis in the six vegetation groups. As displayed, hysteresis can manifest in various defining patterns such

as size and direction. Hysteresis can be narrow (e.g., Fig. 5e) or wide (Fig. 5a) based on size, and it can proceed in a clockwise

(e.g., Fig. 6) or counterclockwise direction (i.e., Fig. 5). The lag between the variables primarily dictates the direction of the270

hysteresis, whereas factors influencing the size of the hysteresis can differ for GPP−Wetness and GPP−VPD hysteresis.

To establish a standard measure of the relative size of the hysteresis loop for comparisons across catchments, we calculated

the area within the loop. We probed the drivers of these characteristics by assessing the relationships between the hysteresis loop

area and the long-term catchment characteristics using PCA. First, we evaluated several variables in relation to the areas of the

hysteresis loops, filtering out those that showed a significant correlation with both the GPP−Wetness and GPP−VPD hysteresis275

loop area. The identified variables include the long-term climatic aridity (with ρGPP−Wetness =−0.381, ρGPP−VPD =−0.677),

PET-P phase-index (ρ(PET,P ), phase agreement between P and PET seasonal pattern) (ρGPP−Wetness =−0.242, ρGPP−VPD =

−0.379), peak LAI (ρGPP−Wetness = 0.531, ρGPP−VPD = 0.707), the fraction of forest (ρGPP−Wetness = 0.482, ρGPP−VPD = 0.674)

and vegetation root depth (ρGPP−Wetness = 0.511, ρGPP−VPD = 0.62). We then conducted a PCA on these variables in relation to

the area of the hysteresis loop, the results of which are depicted in Fig. 7. The first two components from the PCA collectively280

accounted for more than 80% of the variability in the loop sizes for both the GPP−Wetness and GPP−VPD hysteresis. For

both GPP−Wetness and GPP−VPD, all variables, except for the PET-P phase-index, made significant contributions to the

variability along the first principal component (PC-1), as shown in Fig. 7b. However, the PET-P phase-index was the dominant

contributor to the variability along the second principal component (PC-2), but only for GPP−Wetness, as illustrated in Fig.

7c.285

The intra-annual variability within individual catchments revealed two primary patterns in the relationships between GPP

and the abiotic drivers, Wetness and VPD. These patterns manifest in the size and direction of the hysteresis loops, as depicted

in Figure 8. Firstly, regarding the direction of hysteresis, VPD typically peaked approximately one month after the GPP peak,

creating a clockwise hysteresis loop when GPP is plotted as a function of VPD (Figs. 8c and 8f). In contrast, for the majority

of the 341 catchments analyzed, the intra-annual Wetness peak precedes or coincides with the GPP peak, resulting in a coun-290

terclockwise hysteresis loop when GPP is plotted against Wetness (Fig. 8b). However, a relatively clear clockwise pattern is
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observed in 40 of these catchments (Fig. 8b), characterized by low seasonality in both the HI and the EFI, with high values

throughout the year. Secondly, the size of the hysteresis loop varies across catchments. The catchments exhibiting a clockwise

GPP−Wetness hysteresis pattern also display low seasonality in the carbon uptake efficiency and low monthly CUE values,

resulting in a narrow hysteresis loop. These findings suggest that a narrow hysteresis predominantly occurs when Wetness295

approaches the PET across all months, indicating a minimal lag between GPP and Wetness.

Figure 9 presents the causal strengths between monthly GPP, its past values, and its relationship with Wetness and VPD, con-

sidering lags of up to four months. Our analysis uncovers a strong positive causal link in GPP autocorrelation at a one-month

lag across diverse catchments (Fig. 9d). This finding suggests that a given month’s GPP value is significantly influenced by

the preceding month’s value, echoing the temporal continuity frequently observed in biological and environmental time series.300

However, this positive correlation inverts to negative at a two-month lag (Fig. 9g). This unexpected pattern, persisting in catch-

ments where the causal link remains statistically significant, is more likely to indicate a spurious connection rather than natural

ecological processes. We hypothesize that the seasonality typical of environmental data could be the source of such anoma-

lies, potentially introducing misleading correlations. As a result, we consider only the one-month lag as a valid connection in

our analysis. The strong positive autocorrelation in GPP at a one-month lag (Fig. 9d) suggests that vegetation productivity in305

a given month is significantly influenced by the conditions and dynamics of the preceding month. This temporal carry-over

effect could arise from various factors, such as the persistence of environmental conditions (e.g., soil moisture, temperature)

or the lagged response of vegetation to changes in these conditions due to physiological processes like carbon allocation and

biomass accumulation. Capturing this autocorrelation is crucial for accurately representing the inertia and memory effects in

ecosystem processes and improving the predictive capabilities of vegetation productivity models.310

Causal links between Wetness and GPP generally exhibit a positive and statistically significant relationship in 99% of the

catchments at zero lag (Fig. 9b). The proportion of catchments with a significant positive connection reduces to 81% at a

one-month lag (Fig. 9e), 34% at a two-month lag (Fig. 9h), and 5% at a three-month lag (Fig. 9k). As observed in the GPP

autocorrelation, negative MCI values are regarded as spurious, primarily due to our expectation of a positive influence of

catchment water availability on vegetation productivity. The strength of the VPD-GPP causal links is only significant for 194315

catchments at lag zero (Fig. 9c), of which 153 are positive and 41 are negative. These results display a spatial pattern: catch-

ments with a negative MCI are predominantly in arid regions, while those with a positive MCI are generally found in relatively

humid regions. The contrasting spatial patterns observed for the VPD-GPP causal links at lag zero (Fig. 9c) highlight the

varying responses of vegetation productivity to vapor pressure deficit (VPD) across different hydroclimatic regimes. In arid

regions, characterized by low water availability, high VPD levels can induce stomatal closure in plants as a water conserva-320

tion mechanism, leading to a negative causal link between VPD and GPP. Conversely, in humid regions with abundant water

supply, moderate VPD levels can stimulate transpiration and carbon uptake, resulting in a positive causal link. These divergent

responses reflect the intricate balance between water demand and supply, as well as the adaptations of vegetation to their re-

spective environmental conditions. Incorporating this spatial variability in the VPD-GPP relationship is crucial for accurately

representing the coupled water and carbon cycles in terrestrial ecosystem models, particularly under changing climatic con-325

ditions. Consequently, a positive causal link is prevalent in humid climates, while a negative causal link is observed in arid
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climates. At a one-month lag, approximately 80% of the 341 catchments demonstrate a positive causal link, albeit with varying

degrees of strength (Fig. 9f). Both the number of catchments exhibiting significant causal links and the strength of these links

decrease as the lag increases (Figs. 9i and l).

5 Discussions330

Our analysis of Wetness-VPD relationships at the annual scale revealed that wet and dry years correspond to low and high

atmospheric water demands, respectively. This finding aligns with previous research that investigated the relationship between

annual soil wetness and VPD (Liu et al., 2020; Seneviratne et al., 2010; Zhou et al., 2019). Delving deeper, our monthly scale

analysis showed a robust negative correlation between Wetness and VPD during the most productive periods for vegetation

(i.e., June, July, and August) while during other months, this negative correlation was observed in fewer than 25% of the335

341 catchments we analyzed. This suggests that the critical productive months may disproportionately influence the patterns

observed at the annual scale. Our lag correlation analysis between GPP, Wetness, and VPD hints at a complex supply-demand-

productivity cause-and-effect process at the catchment scale, typically unfolding over a span of two months. The GPP responds

to Wetness with a maximum lag of one month, whereas VPD generally lags behind GPP by one month. Previous research has

shown similar characteristics in the GPP−VPD relationship, even for diurnal scale analysis (Zhou et al., 2014).340

The vegetation’s response time is the primary determinant of the hysteresis direction between GPP−Wetness, as well as

GPP−VPD. As water availability is a crucial driver for plant growth, a delay in response typically results in a counterclockwise

GPP−Wetness hysteresis curve. Conversely, a clockwise hysteresis curve is somewhat unexpected. Catchments that show this

feature usually have high energy and water-use efficiency yet low carbon uptake efficiency throughout the year. Interestingly,

most months for these catchments show that ET approximates Wetness, meaning ET predominantly defines the second stage345

of hydrologic partitioning, and the hysteresis between GPP and ET follows a clockwise direction, as affirmed by prior research

(Zhou et al., 2014). Catchments with a counterclockwise GPP−Wetness hysteresis exhibit three unique traits: i) HI and EFI

are not synchronized, ii) CUE aligns with HI during the greening and browning phases, and iii) CUE is in-phase with EFI

during peak growing periods. It is worth noting that the mismatch between CUE and HI during peak carbon uptake periods

in most catchments indicates that their vegetation experiences hydrologic stress. Catchment increases its water use efficiency350

as it progressively dries out. In other words, the amount of carbon taken up by vegetation at the expense of one unit of water

increases with catchment hydrological stress (i.e., ↑ HI). This is validated seasonally by a strong correlation between HI

and GPP. However, there is a decrease in carbon uptake efficiency (i.e., the ratio of carbon absorbed to its potential value)

with increasing HI, especially during periods of hydrologic stress (i.e., when HI → 1). This pattern holds for catchments that

remain water-limited throughout the year. For catchments where hydrologic conditions alternate between water-limited and355

energy-limited states within a year, this phenomenon occurs specifically when the catchment is in a water-limited state. Both

intra-annual and long-term hydrologic variations strongly correlate with the size of the hysteresis loop. Wetter catchments

typically display wider hysteresis, while narrow hysteresis is typical in dry catchments. A narrow hysteresis curve signals a

catchment that is efficient in energy and water use but falls short in carbon uptake relative to its potential. Overall, the hysteresis
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loop size variation between catchments can be sufficiently explained by climatic (e.g., aridity, sync in the phase of PET and P)360

and landscape features (e.g., fraction forest, LAI, and root depth).

Our causality analysis reveals significant influences of GPP (autocorrelation), Wetness, and VPD on the current month’s GPP

at zero and one-month lag. The strong one-month autocorrelation of GPP across different catchments reinforces the prevalent

notion of temporal continuity in environmental processes. The negative correlation observed at a two-month lag, which we

initially perceived as counterintuitive, invites further scrutiny. The inherent seasonality in environmental datasets might ex-365

plain these anomalies, suggesting careful interpretation. This further underlines the need to differentiate natural ecological

processes from statistical artifacts, prompting our focus for the GPP autocorrelation on one-month lags as ecologically relevant

connections. The Wetness influence on GPP demonstrated through a statistically significant relationship at zero lag across all

catchments, confirms the critical role of water availability in vegetation productivity. A significant causal link strength appeared

even with a one-month lag in approximately 280 catchments. Our analysis also unveils the subtle interaction between climate370

and photosynthesis through the causal links between VPD and GPP. Even though the cross-correlation analysis shows VPD

lagging behind GPP, the significant influence of VPD on GPP extends back up to 2 months. A larger number of catchments

(282) demonstrated significant causal links at a one-month lag (i.e., GPP lagging VPD). Notably, in the VPD-GPP causal link,

catchments with negative MCIs mostly appear in arid regions, reflecting the plants’ defensive mechanism of stomatal closure

under high VPD conditions, leading to reduced carbon uptake. Conversely, a positive MCI in humid climates validates the375

stimulating impact of moderate VPD levels on GPP through enhanced transpiration. As lags increased, a decline in the number

of catchments and the strength of significant causal links suggest a diminishing effect over time, stressing the importance of

considering temporal lags in ecological modeling. These observations provide a crucial foundation for future research and

could guide the development of more accurate and region-specific eco-hydrological models. Overall, the causal analysis sup-

ports the lag correlation analysis, indicating that most of the cause-effect relationship between Wetness and GPP, and VPD and380

GPP spans a maximum of two months.

6 Conclusions

This study employs a comparative analysis to investigate the lag in vegetation productivity response to catchment wetness

and atmospheric dryness, utilizing 341 catchments distributed across topographic, climatic, and vegetation gradients of the

contiguous US. Using comparative analysis, we investigated the intra-annual variability and connectedness between catchment385

water available for vegetation use, atmospheric water demand, and vegetation carbon uptake. Our primary objective was to

evaluate the interactions between these variables, particularly the controlling factors at the catchment scale. These controlling

factors could provide insights into the causal relationships between the variables. However, the questions that emerged from

our findings remain: How robust are these causal links? Furthermore, we aimed to determine if specific periods are critical

drivers for these links. Specifically, are certain months primarily influencing the GPP−Wetness and GPP−VPD causal link?390

Our correlation analysis showed a strong, inverse relationship between Wetness and VPD on an annual scale. Yet, this

pattern seemed to stem from a few highly productive months predominantly. Correlation analysis of GPP with Wetness and
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VPD at a monthly scale revealed a stronger connection during these specific months across all catchments. Further, our cross-

correlation analysis showed a lag in the cause-effect relationships between water supply, atmospheric demand, and vegetation

productivity from 0 to 2 months. Moreover, Granger causality tests also support that Wetness and VPD have a statistically395

significant impact on GPP across all catchments, emphasizing the compound effect of these factors on the seasonal dynamics of

catchment GPP. The study further explored the spatial relationship between GPP, Wetness, and VPD across different vegetation

classes, revealing various interactions across vegetation types and seasons. Most notably, strong positive correlations between

GPP and Wetness were observed in catchments in water-limited vegetation types during non-growing periods, whereas a

negative correlation emerged during the peak growing season. These findings imply a swift response of vegetation to changes400

in water supply during non-growing periods but a delayed response during peak productivity months, highlighting the temporal

sensitivity of vegetation to changes in water availability.

Vegetation response lagged behind changes in Wetness, and changes in VPD followed the vegetation response, resulting

in a hysteresis phenomenon. The sizes of this hysteresis varied, reflecting diverse vegetation responses to shifts in Wetness

and VPD across various catchments and vegetation types. We conducted PCA using selected variables that had a significant405

correlation with the areas of the GPP−Wetness and GPP−VPD hysteresis loops. The analysis showed that the first two principal

components accounted for more than 80% of the variability of the size of the hysteresis loops across catchments. This finding

points to long-term properties as fundamental drivers of the differences between catchments. It is also worth noting that other

sets of long-term catchment properties could potentially explain this variability to a similar extent.

Our causality analysis revealed a strong positive causal link between the current and the preceding month’s GPP, reflecting410

the temporal continuity typical of ecological processes. We also found a significant positive causal link between Wetness and

GPP with no lag and at a one-month lag. The VPD-GPP relationship exhibited a significant link with a delay of up to two

months, with a positive connection in humid climates and a negative one in arid regions. Collectively, these causality analysis

results indicate that the cause-effect relationship between catchment water supply and productivity, as well as atmospheric

demand and GPP, spans a maximum period of two months. These findings offer valuable insights into the mechanisms and415

patterns of vegetation responses to changes in water availability, underlining the need to account for these factors in vegetation

productivity models.

Data availability. Catchment hydrometeorological data used in this study come from the CAMELS dataset (https://ral.ucar.edu/solutions/

products/camels). Data for GPP are sourced from the Continental US Landsat product provided by the University of Montana Numerical

Terradynamic Simulation Group (NTSG) through Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/UMT_420

NTSG_v2_LANDSAT_GPP). The Leaf Area Index data is obtained from AVHRR, also available through Google Earth Engine (https:

//developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_AVHRR_LAI_FAPAR_V5).
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Figure 1. (a) Spatial distribution of the 341 study catchments across the contiguous United States, with catchments color-coded based on their

long-term mean annual green vegetation fraction. (b) Scatterplot showing the relationship between the mean annual ecological aridity index

(PET / W) and the mean annual Horton index (ET / W) for the study catchments. The dashed line represents the energy limit (ET=PET)

and water limit (ET = P). (c) Number of catchments within each dominant vegetation type: Evergreen Forest (EF), Deciduous Broadleaf

Forest (DBF), Mixed Forest (MF), Woody Savannas and Shrublands (WSSL), Grasslands (GL), and Croplands/Natural Vegetation Mosaic

(CL/NVM).
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Figure 2. Heatmaps showing monthly Pearson’s r indicating within catchment relationships between a) Wetness-VPD, b) GPP-VPD, and

c) GPP-Wetness. The monthly Pearson correlations for each catchment are computed independently. Vegetation types include Evergreen

Forest (EF), Deciduous Broadleaf Forest (DBF), Mixed Forest (MF), Woody Savannas and Shrublands (WSSL), Grasslands (GL), and

Croplands/Natural Vegetation Mosaic (CL/NVM).
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Figure 3. Circularity statistics for (a) VPD, (b)Wetness and (c) GPP. The SI values range from 0 to 1, with higher values indicating stronger

seasonality. The orientation of the arrows indicates the average time of occurrence φ, which should be judged relative to the provided four

main directions.
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Figure 4. Hysteresis patterns between normalized GPP and Wetness for the six vegetation groups. The variables are normalized by their

mean values exceeding the 90th percentile. The dashed line represents the median hysteresis curve. The letters on the color bar represent

months, with J for January, F for February, and so on. 21
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Figure 5. Heatmaps showing the Pearson’s r indicating between catchments relationships for (a) Wetness and VPD, (b) GPP and VPD, and

(c) GPP and Wetness for each vegetation type. The color scale represents the strength and direction of the correlations, with blue indicating

negative correlations and red indicating positive correlations.
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Figure 6. Hysteresis patterns between normalized GPP and VPD for the six vegetation groups. The dashed line represents the median

hysteresis curve. The letters on the color bar represent months, with J for January, F for February, and so on.
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Figure 7. Principal Component Analysis (PCA) results showing the relationships between the hysteresis loop area and long-term catchment

characteristics for (a) GPP-Wetness and GPP-VPD hysteresis. (a) The first two principal components (PC-1 and PC-2) collectively account

for more than 80% of the variability in the loop sizes for both GPP-Wetness and GPP-VPD hysteresis. (b) and (c) show the contributions of

the identified variables to the variability along PC-1 and PC-2 for GPP-Wetness and GPP-VPD hysteresis, respectively.
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Figure 8. GPP-Wetness and GPP-VPD hysteresis patterns. Upper row is for narrow hysteresis and bottom row is for wide hysteresis. The

arrows on b, c, e and f indicate the direction of hysteresis.
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Figure 9. Spatial patterns of the causal link strength, measured by the Momentary Conditional Independence (MCI), monthly GPP with its

past months values and (b, e, h, k), GPP and Wetness (c, f, i, l) and GPP and VPD (b, e, h, k) at 0, 1, 2, and 3 months lag. The color scale

indicates the MCI values, ranging from negative (blue) to positive (red), reflecting the strength and direction of the causal link.
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