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Abstract 

Thermal sensitivity, defined as the slope of a linear regression between stream and air temperature, is a useful indicator of 

the strength of coupling between meteorological forcings and stream temperature, or conversely, of the presence of non-

atmospheric thermal influences such as groundwater contributions to streamflow. Furthermore, thermal sensitivity is known 

to be responsive to environmental change. This study expands the current state of knowledge of stream thermal sensitivity in 10 

cold, northern regions across catchment scales, investigates the environmental controls of thermal sensitivity across a range 

of catchment dispositions, and assesses the thermal influence of environmental conditions unique to cold regions, namely 

permafrost. We conducted a linear regression analysis relating modelled mean daily air and stream temperature in 57 

catchments in Yukon, Canada, with catchment areas ranging from 5.4 to 86,500 km2, and with catchment mean permafrost 

probabilities ranging from 0.0 to 0.99. Thermal sensitivities obtained from the linear regressions ranged from 0.14 to 0.84ºC 15 

ºC−1, with a median of 0.56ºC ºC−1, and the regression intercepts ranged from -0.07 to 7.60ºC, with the mean regression 

Nash-Sutcliffe efficiency of 0.81. Thermal sensitivity was positively related to catchment area, land covers representing 

surface water storage, and streamflow ‘flashiness’ or a lack of groundwater contributions. The greatest single environmental 

characteristic explaining the variance in thermal sensitivity was catchment topography and physiography (9% variance 

explained); however, 39% of the variance in thermal sensitivity was explained jointly by catchment physiography, land 20 

cover, and permafrost presence indicators, suggesting thermal sensitivity is the result of multiple interacting controls. The 

primary influence of permafrost on thermal sensitivity appeared to be indirect; permafrost controls on catchment properties 

affecting stream water residence time, subsurface water storage, and subsurface runoff processes provide separate and 

counter-acting effects influencing thermal sensitivity. 

1. Introduction 25 

Stream temperature is a master water quality variable as it mediates stream physical and biotic processes, and is a primary 

control on ecosystem productivity, aquatic species distributions, hydrochemistry through substrate weathering, and nutrient 

availability (Ebersole et al., 2001; Brown et al., 2004; Anderson, 2005; Caissie, 2006; McNamara et al., 2008; Parkinson et 

al., 2016; McDowell et al., 2017). Stream temperatures and thermal regimes are sensitive to changes in local or global 
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environmental conditions, and northern latitudes have experienced rapid change in response to climate warming with air 30 

temperatures increasing at twice the global average rate (Vincent et al., 2015). Northern and cold regions have unique 

environmental conditions, such as permafrost presence, which strongly controls surface and subsurface hydrology, and 

which are also sensitive to climate warming (Walvoord et al., 2012; Woo, 2012). While there is increasing interest in 

understanding the influence of cold regions hydrological processes on stream temperature (e.g., King and Neilson, 2019; 

Sjöberg et al., 2021), there is a distinct lack of knowledge regarding the influence of northern hydrological processes on 35 

stream thermal regimes. Permafrost may alter the relationship between groundwater hydrology and stream thermal regimes 

as it is understood in temperate catchments, where streams with relatively high groundwater contribution have lower thermal 

sensitivity (e.g., Kelleher et al., 2012; Wissler et al., 2022; McGill et al., 2024). Permafrost presence strongly influences 

catchment soil storage and runoff response time, which are also hypothesized to influence stream temperature (Woo 2012; 

Sjöberg et al., 2021). The primary processes influencing northern stream thermal regimes may not be the same as those in 40 

temperate regions, and may have unique responses to shifting climatic and hydrological conditions. 

 

Stream temperature is ultimately controlled by the stream heat budget, and the primary processes governing stream 

temperature have received extensive attention over the past decades (Brown, 1969; Constantz, 1998; Webb and Zhang, 1999; 

Johnson, 2004; Moore et al., 2005b; Leach and Moore, 2010). Radiative heat exchanges (i.e., shortwave and longwave 45 

radiation) between the stream and the atmosphere often dominate the stream heat budget in all regions, including northern 

catchments alike, but local topography, channel morphology, and the timing and volume of streamflow and lateral inflows 

also influence stream temperature (Story et al., 2003; Caissie, 2006; King et al., 2016). Environmental controls through 

seasonal snow cover, local riparian vegetation and channel shading, permafrost presence and distribution, and wildfires 

(Isaak et al., 2010; Leach and Moore, 2010, 2015; MacDonald et al., 2014; Dugdale et al., 2018; King and Neilson, 2019; 50 

Wondzell et al., 2019; Sjöberg et al., 2021), as well as anthropogenic disturbances such as watercourse-impounding 

reservoirs, timber harvesting, and natural resource extraction (Bjerklie and LaPerriere, 1985; Lowney, 2000; Moore et al., 

2005a) all exert additional controls on stream temperature by altering energy exchanges between the water and its 

surroundings. The processes governing stream temperature are complex, may act at the sub-reach or catchment scale, and 

often have counteracting influences with different processes simultaneously heating and cooling stream water. The 55 

cumulative effects of the atmospheric, and non-atmospheric, landscape conditions controlling stream temperature ultimately 

describe how stream temperature responds to surrounding conditions. 

 

Physically based stream temperature models can be used to investigate controls on stream temperature and enable robust 

predictions of its response to environmental change, but have historically been developed for site-scale studies and face 60 

ongoing limitations to regional implementation due to high input-data and computational demands (Dugdale et al., 2017). 

Linear regression analysis is a simpler alternate approach to investigate the environmental controls on stream thermal 

regimes by relating stream and air temperature (Crisp and Howson, 1982; Stefan and Preud’homme, 1993; Hilderbrand et 
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al., 2014; Wissler et al., 2022; McGill et al., 2024). The regression slope, commonly termed the ‘thermal sensitivity’, 

provides insight into the degree of coupling between stream temperature and atmospheric forcings or the influence of non-65 

atmospheric processes such as groundwater or glacier meltwater contributions to streamflow. Thermal sensitivity analysis 

has been effectively used in streams across a range of spatial and temporal scales, can identify the environmental controls on 

thermal sensitivity, and has provided insight into how stream thermal sensitivities respond to environmental change (e.g., 

Ducharne, 2008; Vliet et al., 2011; Kelleher et al., 2012; Luce et al., 2014; Winfree et al., 2018; Leach and Moore, 2019; 

McGill et al., 2024). Most thermal sensitivity studies to date have focused on temperate regions and have developed into a 70 

robust body of literature. Recently, however, there has been increasing interest in improving our understanding of stream 

thermal regimes in cold, northern regions, which have received far less attention but have unique hydrological processes that, 

when altered, will have uncertain consequences for stream thermal regimes (e.g., Lisi et al., 2015; King et al., 2016; Bolduc 

et al., 2018; Winfree et al., 2018; Docherty et al., 2019; King and Neilson, 2019; Fabris et al., 2020). 

 75 

While many of the processes identified in temperate regions as controls of thermal sensitivity are likely to apply in northern 

regions as well, near-surface permafrost strongly alters surface and subsurface hydrology (Woo, 2012; Kurylyk and 

Walvoord, 2021), leading to uncertainty in the transferability of our current understanding of the controls of thermal 

sensitivity to northern regions. Permafrost presence affects hydrology through its influence on vegetation community 

composition and snowpack accumulation patterns, surface water bodies, and regional groundwater patterns (Jorgenson et al., 80 

2001; Shur and Jorgenson, 2007; Pomeroy and Gray, 1995; Walvoord et al., 2012; Woo, 2012; Grünberg et al., 2020), all of 

which are expected to influence stream thermal sensitivity. Current research suggests that permafrost may have 

counteracting influences on stream temperature depending on scale and process, e.g.: by warming lateral inflows in 

headwater catchments or moderating the heat flux from hyporheic exchange (King and Neilson, 2019; Sjöberg et al., 2021), 

but the net effect of permafrost on thermal regimes across scales is unclear. Compounding our limited understanding of the 85 

role permafrost plays in influencing thermal sensitivity, northern environments have experienced rapid change in response to 

climate warming, with air temperature increases > 2ºC already realized in northern Canada (Zipper et al., 2018; Bush and 

Lemmen, 2019; DeBeer et al., 2021), and permafrost degradation in response to climate change is expected to alter 

groundwater temperature and dynamics (Ge et al., 2011; Kurylyk et al., 2016; Chiasson-Poirier et al., 2020), with emergent 

flow pathways shifting the timing and magnitude of streamflow and therefore also expected to alter thermal sensitivity. 90 

 

Northern regions have unique environmental conditions different to temperate latitudes, and northern landscape 

characteristics like permafrost are known to control surface and subsurface hydrology. The ongoing environmental changes 

in northern regions, such as altered subsurface flow regimes due to permafrost degradation and shifting vegetation 

distributions, are expected to influence stream thermal sensitivities. Despite this knowledge, however, there is uncertainty in 95 

the key environmental controls of thermal sensitivity in northern regions, and how thermal sensitivity will respond to these 

changing conditions. Considering these gaps in knowledge, we set our research objectives for this study to 1) describe the 
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range and variability of stream thermal sensitivity across a range of catchment sizes and permafrost dispositions in Yukon, 

Canada; 2) identify key environmental factors correlated with thermal sensitivity in northern streams; and 3) investigate the 

role that permafrost plays in influencing thermal sensitivity. This study also serves to set a ‘baseline’ of current stream 100 

thermal conditions against which future thermal regimes, in response to changing environmental conditions, may be 

compared. 

2. Methods 

2.1 Study area 

Yukon Territory, in northwest Canada, has a southern border on 60ºN latitude and extends north to the Arctic Ocean, and has 105 

a total area of approximately 483,000 km2  (Fig. 1). The physiography of Yukon varies from the maritime-influenced, 

glacierized St. Elias Mountains in the southwest, to tundra coast in the north, with a northward transition from boreal forest 

to taiga cordillera through the territory. Annual precipitation ranges from > 2,000 mm in the mountainous southwest to ~250 

to 300 mm in lower elevations of the interior. Mean annual temperatures (MAT) range from -10ºC in the north to between -2 

and 0ºC in the south. Interior Yukon has a continental climate which results in intense, convective precipitation events 110 

through the summer months. Much of Yukon has mean daily air temperature > 10ºC during the summer months of June, 

July, and August, bolstered by long daylight hours, and daily maximum air temperatures can exceed 25ºC. 

 

Areas with MAT consistently < 0ºC may be underlain by permafrost; and the permafrost extent is reflected in the MAT 

gradient from north to south (Fig. 1). Permafrost extents are classified as isolated, sporadic, discontinuous, or continuous, 115 

with permafrost coverage corresponding to <  10%, 10-50%, 50-90%, and >  90%, respectively (Obu et al., 2019). 

Permafrost presence is a strong control on surface characteristics (e.g., vegetation) and hydrology throughout Yukon (Smith 

et al., 2004). 

2.2 Data 

All data processing and analysis was conducted using the R programming language, version 4.2.0 (R Core Team, 2022). 120 

2.2.1 Stream temperature and discharge 

A data set of continuous sub-daily stream temperature (ºC) and discharge (m3 s−1) was acquired from multiple agencies that 

operate hydrometric stations in streams across Yukon. The Yukon Territorial Government Water Resources Branch (YTG-

WRB) provided data for 15 streams it monitors; the Water Survey of Canada (WSC) provided data for 34 stations, and a 

further eight streams are monitored by the Watershed Hydrology Group (WHG, authors’ affiliation) at McMaster University, 125 

for a total of 57 sites. Discharge time series were also requested, but were unavailable for seven of the streams. The sub-daily 
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data provided by YTG-WRB and WHG were primarily at 15 minute intervals, while the WSC data were primarily at hourly 

intervals. 

 

Data were omitted from the sub-daily data set if they met the following criteria: site-days where > 15% of the observations 130 

were missing; unrealistic water temperature (e.g., > 100oC or <-60oC); and quality flags indicating erroneous or potentially 

inaccurate data. Mean daily stream temperature and discharge were calculated from the filtered sub-daily data. Visual 

inspection of the stream temperature and discharge time series for indicators of poor data quality, such as frequent or 

extended data gaps or unexplained spikes in either data type, was conducted for each site and led to the omission of data 

from WSC station number 09BA001, as the data was of poor quality, and the omission of data from YTB-WRB station 135 

number 29AB009, as it was a partial duplicate of station number 29AB002. This study considered the post-freshet open 

water period, so data were further filtered to be within 1 July and 15 October, and stream and air temperature data < 0oC 

were also omitted. The analysis-ready temperature and discharge data set had 35,597 values of mean daily stream 

temperature and 26,159 concurrent values of mean daily discharge forming the model period of 24 August 1997 through 30 

August 2023. 140 

 

The stream temperature measurements were obtained using a variety of instruments over their periods of record. Details 

regarding sensor accuracy and resolution for instruments known to have been used were compiled and assessed, but are 

incomplete. Direct attribution of a sensor to all site-years of data is unfortunately not possible. Additionally, it should be 

noted that no information is available regarding the instruments used by the WSC. Given the uncertainty in the specific 145 

instrument used for any given data, it should be assumed that the lowest known sensor accuracy applies to all the data (i.e., 

accuracy of ± 0.44oC). 

2.2.2 Stream network and catchment delineations 

Catchment delineations for the WSC stations were obtained from the National Hydro Network (NHN) Basin Polygon spatial 

data set (Water Survey of Canada, 2016). The delineations for the remaining stations operated by YTG-WRB and WHG 150 

were computed using the 32 m spatial resolution ArcticDEM v4.1 digital elevation model (DEM, Porter et al., 2023) as the 

input DEM for the catchment delineation processes available through the R package, whitebox (Wu and Brown, 2022). The 

catchment delineations’ accuracy was assessed visually and small, manual corrections were made where required. Catchment 

areas ranged from 5.4 to 86,500 km2. 

 155 

Canada1Water has enhanced the NHN GeoBase data set by deriving stream network properties for all stream vectors 

included in the NHN (Canada1Water, 2023). The Strahler stream order (SO) and Shreve magnitude of each stream at the 

hydrometric station was extracted using this data set. 
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2.2.3 Meteorology 

Due to the remote nature of many of the hydrometric stations and the sparse network of meteorological stations in Yukon, 160 

gridded climate reanalysis data were used to obtain consistent estimates of air temperature and other meteorological 

variables across all sites. ERA5-Land is a gridded climate data product that provides near-real-time global climate data at a 

spatial resolution of ~10 km at hourly or daily intervals (Muñoz-Sabater et al., 2021), and its greater accuracy in comparison 

to well-established but coarser resolution gridded data products (e.g., ERA5, NARR) has been demonstrated in recent stream 

temperature modelling research (Gatien et al., 2023; Mihalevich et al., 2022). 165 

 

The ERA5-Land data set was queried using Google Earth Engine to extract continuous time series of the mean daily air 

temperature at 2 m above surface (ºC) and precipitation (mm), and daily catchment-averaged values of snow cover (as a 

proportion). Time series were extracted from 1991 through 2023, to permit the calculation of climate normals (e.g., 1991 to 

2020) to be used as climatic predictor variables in the modelling analysis. The modelled air temperature and precipitation 170 

time series were extracted from the ERA5-Land grid cell overlying each hydrometric station location, and catchment mean 

snow cover values were extracted using the catchment delineations created as described in Sect. 2.2.2. 

 

The ERA5-Land grid attributes a mean surface elevation to each grid cell. In mountainous regions, however, the earth 

surface will span a range of elevations within a given grid cell’s domain. Because air temperature varies with elevation and 175 

given that many of the hydrometric stations are located in mountainous regions, a temperature lapse rate adjustment was 

applied to the ERA5-Land air temperature time series as follows: 

𝑇𝑎 = 𝑇𝑎,𝐸 + (𝑧 − 𝑧𝐸) ⋅ 𝛤𝑚  (1) 

where 𝑇𝑎 is the lapse-corrected air temperature (ºC), 𝑇𝑎,𝐸  is the air temperature at 2 m above surface as extracted from 

ERA5-Land (ºC), 𝑧 is the elevation of a given hydrometric station (masl), and 𝑧𝐸  is the elevation (masl) of a given ERA5-180 

Land grid cell that overlies a given hydrometric station, and 𝛤𝑚 is a month-specific adiabatic lapse rate adjustment (ºC m−1) 

applicable to North America (Kunkel, 1989). Mean annual air temperature was calculated for each station from the lapse-

adjusted modelled air temperature time series. 

 

Total daily precipitation was extracted for each hydrometric station and summed to total annual and total summer (June, 185 

July, August) precipitation. Climate normals of total annual and summer precipitation were calculated for the period 1991 to 

2020 to be used in the modelling analysis. The daily snow cover proportions were extracted for each catchment for the 

period of record, and the catchment mean and median daily values of snow cover were computed accordingly. 
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2.2.4 Landcover 

Terrain indices were calculated and extracted for each catchment and catchment stream network using ArcticDEM v4.1 and 190 

the R package terra (Hijmans, 2023). Land cover classifications were extracted for each catchment from the ESA 

WorldCover 10 m 2020 v100 data set (Zanaga et al., 2021) and the fractional coverage of each land cover class within a 

catchment was computed. Catchment mean permafrost probability was derived from the Northern Hemisphere Ground 

Temperature Map (Obu et al., 2018), which is a gridded data set including estimated permafrost probability fraction at 1 km 

resolution developed using a ‘temperature at the top of the permafrost’ model representing permafrost conditions from 2000 195 

to 2016, and catchment median active layer thickness (ALT) was extracted from a similar data set (Ran et al., 2021). 

2.2.5 Indices and derived values 

Shallow and regional hydrogeological patterns influence stream thermal regimes, and are related to catchment soil storage 

and runoff regimes (Kelleher et al., 2012; Sjöberg et al., 2021), but given the lack of groundwater flux or soil storage data, 

several proxy indices were derived from the available streamflow data. These indices are the Baseflow index (𝐵𝐹𝐼 , 200 

dimensionless), Richards-Baker index (𝑅𝐵𝐼, dimensionless), and the estimated coefficients from a streamflow recession 

regression. 

 

The 𝐵𝐹𝐼 is an indicator of groundwater contributions to streamflow in the absence of local hydrogeological data (Gustard et 

al., 1992). 𝐵𝐹𝐼 is computed as the ratio of base flow to total discharge over a specified time period (e.g., annual or seasonal) 205 

after a base flow separation algorithm is applied to the streamflow time series. Baseflow separation was conducted following 

the methods of Tallaksen and Lanen (2004) in the R package lfstat (Laaha and Koffler, 2022), and the long-term mean 𝐵𝐹𝐼 

was computed for each stream over the study period (1 July to 15 October). Conversely to the 𝐵𝐹𝐼, the 𝑅𝐵𝐼 is an index of 

hydrograph ‘flashiness’ whereby rapid runoff generation indicates a lack of or unavailability of catchment storage (Baker et 

al., 2004). The 𝑅𝐵𝐼 is a simpler index that describes daily variation in flow relative to total discharge; it was calculated for 210 

each station-year as follows: 

𝑅𝐵𝐼 =
∑ |𝑛
𝑖=1 𝑄𝑖−𝑄𝑖−1|

∑ 𝑄𝑖
𝑛
𝑖=1

  (2) 

where 𝑄 is mean daily streamflow (m3 s−1), and 𝑖 = days and 𝑛 = the number of days between 1 July and 15 October, and 

the long-term mean 𝑅𝐵𝐼 for each station was computed from the annual values. 

 215 

The rate of streamflow recession can provide information about flow path complexity (Hinzman et al., 2020) as well as 

active layer thickness (i.e., soil storage, Sergeant et al., 2023) in catchments with substantial permafrost coverage. These 

catchment storage-discharge relationships were assessed by fitting a linear regression to the log-transformed recession curve 

as follows: 
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ln (−
𝑑𝑞

𝑑𝑡
) = ln(𝛼) + 𝛽ln(𝑄)  (3) 220 

where 𝑑𝑞/𝑑𝑡 is the change in mean daily runoff per day (mm d−2), and 𝛼 (mm d−2) and 𝛽 (-) are estimated coefficients. 

2.3 Analysis on the controls of thermal sensitivity 

The range of thermal sensitivity across Yukon streams, and the catchment controls on their magnitudes, were determined 

through a sequence of regression analyses. In general terms, the influence of groundwater contributions to streamflow 

(Johnson et al., 2020), runoff as influenced by catchment storage and permafrost disposition (Sjöberg et al., 2021), stream 225 

discharge and stream order (Webb et al., 2003; Kelleher et al., 2012), and the influence of catchment and channel topography 

on groundwater contributions (Hare et al., 2021) and stream shading (Rutherford et al., 1997) have been identified or 

suspected to be influences on stream thermal regimes. The suite of catchment characteristics and indices described in Sects. 

2.2.4 and 2.2.5, and as provided in Table 1, were selected and assessed on the basis that they may explain regional controls 

in stream thermal sensitivity. 230 

 

Linear Regression 

Linear regression was used to determine site-specific relationships between modelled air temperature and stream temperature 

and the influence of including discharge as a predictor in the linear regressions was assessed. A linear regression relating 

stream temperature to air temperature was applied to each stream: 235 

𝑇𝑤 = 𝑇𝑆 ⋅ 𝑇𝑎 +𝐵𝑇 + 𝜖  (4) 

where 𝑇𝑤  is mean daily stream temperature (ºC), 𝑇𝑎 is mean daily modelled air temperature (ºC), 𝑇𝑆 is the slope of the 

regression (ºC ºC−1), 𝐵𝑇 is the intercept (ºC), and 𝜖 is the residual error (ºC). The slope is commonly referred to as the 

stream’s thermal sensitivity (TS), which represents the stream temperature response to a change in air temperature. Here, we 

refer to the intercept, 𝐵𝑇, as the baseline temperature, which provides information regarding the thermal processes affecting 240 

a stream when air temperatures decrease to 0ºC. Equation (4) was expanded with the inclusion of discharge as a predictor 

variable to: 

𝑇𝑤 = 𝑇𝑆 ⋅ 𝑇𝑎 + 𝑙 ⋅ 𝑄 + 𝐵𝑇 + 𝜖  (5) 

where 𝑙 is an estimated coefficient (ºC s m−3). To assess the potential impact of the maximum uncertainty assumed for the 

observed 𝑇𝑤, a randomly distributed binomial error of ± 0.44ºC with equal probability for -0.44ºC or 0.44ºC was applied to 245 

the observed 𝑇𝑤, and Equation (4) was re-fit using the uncertainty adjusted 𝑇𝑤. 
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A time trend analysis of estimated coefficients and residual errors was conducted to investigate whether there are differences 

in seasonal thermal sensitivity across the permafrost classifications. This was done by fitting (Eq. 4) to the pooled data set 

filtered to include only observations in the first two weeks of July. The resultant estimated coefficients were applied to 250 

weekly subsets of the full data set and the corresponding residuals, 𝜖 , were calculated and grouped by permafrost 

classification. 

Redundancy analysis, variance partitioning, and multiple regression 

The relationships between the estimated coefficients (𝑇𝑆 and 𝐵𝑇) and catchment characteristics and indices were explored 

using redundancy analysis (RDA) and correlations to better understand the magnitude and direction of influence among the 255 

environmental variables and 𝑇𝑆 and 𝐵𝑇. RDA is a two-step process which involves 1) fitting multiple linear regressions 

between an explanatory variable matrix and a multivariate response matrix followed by 2) a principal component analysis of 

the fitted values. The RDA shows the correlations between multiple explanatory and response variables, and produces 

statistical models that can be tested for significance. Upon conducting an additional variance partitioning analysis, RDA 

provides estimates of the individual and combined proportions of variance explained by each predictor. Forward-selection of 260 

the full suite of catchment and environmental variables was conducted prior to the RDA to remove colinear predictors; 

Table 1 presents the forward-selected variables and variable grouping applied to the RDA. Additionally, Pearson’s 

correlations were computed between TS and BT, and the forward-selected variables for catchments grouped by permafrost 

classification, to identify trends between the response and predictors across permafrost classes. Lastly, a stepwise multiple 

regression model was used to identify which catchment or environmental properties were significant predictors (assessed at 265 

𝑝 < 0.05) of 𝑇𝑆. 

The linear and multiple regressions’ performance was assessed by calculating model-specific root-mean-squared error 

(RMSE, ºC), and Nash-Sutcliffe efficiency (NSE, dimensionless) as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑇𝑤,î − 𝑇𝑤,i)

2𝑚
𝑖=1   (6) 

𝑁𝑆𝐸 = 1 −
1
𝑚
∑ (𝑇𝑤,î−𝑇𝑤,𝑖)

2𝑚
𝑖=1

1

𝑚
∑ (𝑇𝑤,𝑖−𝑇𝑤,i‾ )

2𝑚
𝑖=1

  (7) 270 

where 𝑇𝑤,î  is the estimated stream temperature on day i (ºC), 𝑇𝑤,𝑖 is the observed mean daily stream temperature on day i 

(ºC), 𝑇𝑤,i‾  is the observed mean stream temperature on day i (ºC), and 𝑚 is the number of observations in the fitting data set. 
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3. Results 

3.1 Temperature and discharge statistics 

A broad range of meteorological and hydrological conditions were represented in the data set (Fig. 2). While the full range of 275 

𝑇𝑤 was from 0.01ºC to 20.9ºC, the smaller streams, SO 2 and 3, had comparable median daily 𝑇𝑤 values of 4.9ºC and 4.5ºC, 

respectively, while the larger streams, SO 4 to 7, had median daily 𝑇𝑤  between 8.4ºC and 9.9ºC, respectively. The 

distribution of modelled air temperature across the sites was similar, with a median 𝑇𝑎 ranging from 11.2ºC to 12.2ºC for 

sites with SO 3 to 7, while SO 2 and 8 had a median 𝑇𝑎 of 9.1ºC and 13.1ºC, respectively. Streamflow increased with SO, 

with median streamflows ranging from 0.12 to 85.5 m3 s−1. Runoff was relatively uniform across all orders with median 280 

daily runoff values ranging from 0.74 to 1.31 mm d−1, although smaller order streams appear to have greater runoff than the 

larger order streams. 

 

Peak flows typically occurred during the snowmelt freshet in May, with 52% of the streams experiencing annual peak flow 

prior to 1 June; however, peak flows also occurred throughout the summer and are associated with intense convective 285 

storms. Stream temperature was strongly seasonal across all sites and permafrost classifications (Fig. 3), with streams 

warming from 𝑇𝑤 near 0ºC during freshet, to their respective annual 𝑇𝑤 maxima occurring through July and early August. 

3.2 Thermal sensitivity 

Site-specific RMSE and NSE from fitting Eq. (4) ranged from 0.46 to 2.65ºC, and 0.35 to 0.92, respectively, with 

corresponding means of 1.21ºC and 0.81. Catchments classified as continuous permafrost consistently had lower NSE than 290 

catchments with sporadic or isolated permafrost, which were consistently greater, while discontinuous permafrost 

catchments model performance increased with increasing stream order (Fig. 4). The mean NSE for each permafrost class 

was 0.73, 0.82, and 0.83 for continuous, discontinuous, and sporadic and isolated, respectively. 

 

The range of 𝑇𝑆 and 𝐵𝑇 from fitting Eq. (4) was 0.14 to 0.84ºC ºC−1 and -0.07 to 7.60ºC, respectively (Fig. 5, Fig. S1 in the 295 

Supplement). The minimum 𝑇𝑆 observed was 0.14 for the WSC station number 08AB001; the low 𝑇𝑆 of this catchment is 

attributable to its glacierized status, and due to the substantial thermal influence of glacial melt water. Values of 𝑇𝑆 near 0 

represent streams with low sensitivity to atmospheric conditions, while high values (e.g., > 0.9) indicate close coupling 

between 𝑇𝑎 and 𝑇𝑤 . While the minimum 𝑇𝑆 (0.14) corresponded to a glacierized catchment, eight other non-glacierized 

catchments had 𝑇𝑆 < 0.3 and 19 in total had 𝑇𝑆 < 0.50. Conversely, only six streams had a 𝑇𝑆 > 0.70, indicating few 300 

streams had high sensitivity. The 𝐵𝑇 generally increased with decreasing permafrost coverage, with mean 𝐵𝑇 increasing 

from 1.81 to 2.62ºC between continuous and sporadic and isolated permafrost classes and with increasing catchment area. 
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The uncertainty assessment conducted through the re-fitting of Eq. (4) with the randomly distributed binomial error of  ± 

0.44ºC resulted in comparable but slightly worse model statistics. The site-specific mean RMSE and mean NSE from model 305 

fitted to the uncertainty-adjusted 𝑇𝑤 were 1.29ºC and 0.78, respectively, in comparison to the model statistics reported above 

of mean RMSE and mean NSE of 1.21ºC and 0.81, respectively. The range of TS and BT from the uncertainty adjusted 

model fit was 0.13 to 0.84ºC ºC−1 and 0.05 to 7.63ºC, respectively, which are also comparable to the ranges reported above. 

The mean difference in site-specific estimates of TS and BT between the model results (Fig. 5) and the uncertainty 

assessment results was −2.7 × 10−4ºC ºC−1  and 0.01ºC.  310 

 

The addition of 𝑄 as a predictor in Eq. (5) slightly improved model performance; RMSE and NSE ranged from 0.33 to 

2.48ºC, and 0.54 to 0.93, respectively, with corresponding means of 1.14ºC and 0.84. The estimated coefficients representing 

𝑇𝑆 and 𝐵𝑇 ranged from 0.08 to 0.86, and 0.25 to 7.58, respectively. Model statistics corresponding to Eqs. (4) and (5) are 

summarized in Table 2. 315 

 

The addition of 𝑄 as a predictor had a greater impact on the estimated 𝐵𝑇 than the estimated 𝑇𝑆. The difference in site-

specific 𝑇𝑆 estimated by the two models was an order of magnitude less than the fitted values; the 𝑇𝑆 difference ranged from 

-0.06 to 0.08, with a 𝑇𝑆 difference < 0.02 for 66% of the streams. In contrast, the difference in 𝐵𝑇 estimated by both models 

was in the same order of magnitude as the estimated values, and ranged from -6.3 to 1.34. Equation (4) was re-fitted to the 320 

same subset of data as Eq. (5) and both models’ Akaike Information Criterion (AIC) were compared to determine whether 

Eq. (5) was a significant improvement, using a threshold of |𝛥𝐴𝐼𝐶| > 2. Equation 5 had an AIC 1357 less than Eq. (4) and 

was deemed a significantly better model. 

 

Residual errors displayed increasing negative bias through the summer from the time trend analysis (Fig. 6). The mean 325 

residual error for each permafrost classification began decreasing by the second week of August; however, discontinuous 

permafrost catchments did not have an overall negative bias until the third week in August, and sporadic and isolated 

catchments until the beginning of September. Increasing negative bias indicates the fitted coefficients representing 1 July to 

14 July increasingly over-estimated 𝑇𝑤 through the summer, with greater overestimation with increasing permafrost extent. 

3.3 Redundancy analysis 330 

Catchment physiography 

Variance in 𝑇𝑆 and 𝐵𝑇 was generally consistently explained by catchment physiography metrics (Panel (a), Fig. 7), as seen 

by the alignment of arrows representing physiography variables with TS and BT. A greater portion of variance in 𝑇𝑆 and 𝐵𝑇 

was explained by topographical variables (e.g., stream network 𝑇𝑃𝐼, catchment average slope and 𝑇𝑅𝐼) than the ‘magnitude’ 

variables of catchment area or Shreve stream magnitude. Topographical variables were consistently correlated across 335 
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permafrost classes (Fig. 8), and had stronger correlations with 𝑇𝑆 (Pearson 𝑟 ranged from -0.89 to 0.84) than with 𝐵𝑇, which 

was weakly correlated with the ‘magnitude’ and ‘shading’ metrics, with 𝑟 values of 0.37 and 0.36 for log10(𝐴) and 𝑇𝑅𝐼, 

respectively. 𝑇𝑆 was negatively related to greater catchment slope and terrain shading (𝑇𝑃𝐼 has the opposite relation because 

more positive values of 𝑇𝑃𝐼  indicate less topographic shading), whereas both ‘magnitude’ variables were positively 

correlated with 𝐵𝑇. 340 

 

Climatology 

In comparison to catchment physiography, climate variables were generally weakly correlated to 𝑇𝑆 and 𝐵𝑇  (Panel (b), 

Fig. 7), and explained a smaller portion of variance. The greatest correlation between 𝑇𝑆 and a climatological variable was 

with 𝑀𝐴𝑇, as 𝑟 ranged from -0.63 to 0.67 for continuous and discontinuous permafrost classes, respectively. Summer and 345 

total precipitation had a variable correlation with 𝑇𝑆  across permafrost classes, with 𝑟  ranging from -0.52 for total 

precipitation in continuous permafrost, to 0.36 in discontinuous permafrost (Fig. 8). Longer seasonal snow cover was 

positively correlated with 𝐵𝑇, but due to the sign of the relationship, this is suspected to relate to catchment size and the 

associated stream network heat accumulation (Panel (a), Fig. 7) rather than persistent snow packs suppressing 𝐵𝑇 with cold 

melt water. 350 

 

Land cover 

Of the RDA models, land cover explained the most variance in 𝐵𝑇 and 𝑇𝑆, but there was substantial variability in the 

magnitude and direction of the correlations between the predictor and response variables (Panel (c), Fig. 7). The patterns of 

correlations were generally consistent across permafrost classes (Fig. 8), with the strongest correlations between thermal 355 

sensitivity and catchment tree cover (𝑟 ranged from 0.40 to 0.46); this positive relationship likely reflects the probability of 

greater forest cover in larger catchments rather than a direct influence on 𝑇𝑆. Land covers negatively related to 𝑇𝑆 were 

moss and lichen, and bare land (𝑟 ranged from -0.66 and -0.34, across both variables, respectively), but these land covers 

would not be expected to increase stream shading, and hence moderate 𝑇𝑆. They were, however, correlated with catchment 

physiography variables that were negatively correlated with 𝑇𝑆 (e.g., 𝑟 = 0.67 with mean catchment slope), and therefore 360 

likely overlap with catchment physiographical variables in the total variance explained. Across permafrost classes, 𝐵𝑇 was 

consistently positively related to land covers representing surface water storage (i.e., water and herbaceous wetland) with the 

greatest correlations for continuous and sporadic and isolated permafrost catchments (Fig. 8), which, if connected to the 

stream network, can act as sources of relatively warm water during the summer. 

 365 
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Permafrost indicators 

Variance in 𝑇𝑆 and 𝐵𝑇 was explained by a gradient in catchment permafrost disposition (e.g., mean permafrost probabilty 

and 𝐴𝐿𝑇) and in the catchment flow regime (i.e., whether streamflow is dominated by flashy flow response or baseflow 

contributions) as seen in Panel (d) of Fig. 7. The correlations between these ‘permafrost indicator’ variables and 𝑇𝑆 were not 

consistent across permafrost classes, with continuous permafrost catchmetns often having opposing relationships with 𝑇𝑆 in 370 

comparison to the other permafrost classes (Fig. 8). The greatest correlations in continuous permafrost catchments were 

between 𝑇𝑆 and the flow regime variables, with 𝑟 = 0.87 and 0.80 for 𝛼 and 𝑅𝐵𝐼, respectively, while 𝐵𝐹𝐼 had an 𝑟 = -0.88. 

Thermal sensitivity was positively correlated with catchment mean permafrost probability in continuous permafrost 

catchments (𝑟 = 0.55), and negatively correlated in the other permafrost classes with 𝑟 = -0.57 and -0.26 for discontinuous 

and sporadic and isolated permafrost catchments, respectively. There is likely some collinearity in the variance explained by 375 

these predictors, as both permafrost probability and 𝐴𝐿𝑇 had moderate to strong correlations with the flow metrics. For 

example, the strongest correlation was between permafrost probability and 𝐵𝐹𝐼 with 𝑟 = -0.68, and the weakest correlation is 

between 𝐴𝐿𝑇 and 𝑅𝐵𝐼 with an 𝑟 = -0.52. 

 

The influence of permafrost disposition in explaining variance in 𝐵𝑇 and 𝑇𝑆 was variable among the RDA models (see 380 

colour legend in Fig. 7). Baseline temperature appeared to have the strongest relationship with the gradient in permafrost 

disposition, with 𝐵𝑇  generally increasing with decreasing permafrost coverage for all RDA models except catchment 

physiography. The overlap in permafrost classifications in the RDA, however, precludes a definitive relationship. 

Variance partitioning 

Variance partitioning revealed that all of the individual RDA models (Fig. 7) had statistically significant individual 385 

contributions to explaining the variance in 𝑇𝑆 and 𝐵𝑇 (𝑝 < 0.05, Panel (a), Fig. 9) when accounting for the other RDA 

models. The individual RDA models explained between 9% to 14% of the variance in 𝑇𝑆 and 𝐵𝑇; the adjusted explanatory 

power of each RDA model was similar (ranged from 36% to 39%), except for the climatology RDA which only explained 

15% of the total variance with the other models considered. 

 390 

The individual RDA models had less explanatory power for 𝑇𝑆 alone despite having the greatest combined adjusted 𝑅2 of 

0.73 (Panel (b), Fig. 9). Only the catchment physiography RDA model had a statistically significant individual contribution 

(grey oval, Panel (b), Fig. 9) explaining 9% of the total variance. The physiography and permafrost RDA models (grey and 

pink ovals, respectively, in Panel (b) Fig. 9) had the greatest explanatory power overall, explaining 76% and 52% of the 

variance in 𝑇𝑆, but a substantial portion of each model’s skill is redundant with the other models. A combined 39% of the 395 

variance in 𝑇𝑆 was explained jointly by the catchment physiography, land cover, and permafrost indicator RDA models, 
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indicating that 𝑇𝑆 is an integrated response to multiple catchment properties and is relatively insensitive to any one type of 

catchment characteristic. 

 

Similar to the full RDA model, the individual RDA models all were statistically significant in their individual contributions 400 

to explaining variance in 𝐵𝑇  (Panel (c), Fig. 9). The land cover and climate RDA models were the greatest individual 

contributors with 33% and 28% of the variance in 𝐵𝑇 explained, respectively. The permafrost RDA model explained 21% of 

the variance, while catchment physiography explained only 10% by itself. The combined adjusted 𝑅2  of 0.67 was 

comparable to the full model (𝑅2 = 0.70) and to the 𝑇𝑆 variance partitioning, but there was less redundancy or collinearity in 

how catchment properties explain variance in 𝐵𝑇. 405 

3.4 Multiple regression 

The catchment properties used in the RDA (Table 1) and 𝑇𝑆 coefficients from the linear model were used to fit a multiple 

linear regression model through stepwise model selection (retention of additional predictor variables assessed at 𝑝 < 0.05). 

For this analysis, the 𝑇𝑆 was modelled for the 46 catchments with streamflow records to permit inclusion of streamflow-

derived candidate variables (e.g., 𝐵𝐹𝐼, 𝛼). The final model form was as follows: 410 

𝑇𝑆̂ = 0.0947 ⋅ log10(𝐴) − 0.0168 ⋅ 𝐶𝑆 + 0.0262 ⋅ 𝑊 + 0.457 ⋅ 𝛼 + 0.428  (8) 

where 𝑇𝑆̂ is the predicted thermal sensitivity (ºC ºC−1), log10(𝐴) is the log of catchment area, 𝐶𝑆 is the mean catchment 

slope (º), 𝑊 is surface water land cover as a proportion of catchment area (-), 𝛼 is the intercept of the recession curve (mm 

d−1 d−1), respectively. The model described by Eq. (8), as shown in Fig. 10, had an 𝑅2  of 0.76, with standard error of 

0.076ºC ºC−1, and a mean residual error of essentially zero (-1.1 × 10−18ºC ºC−1). During model selection, one candidate 415 

model of note was identified, as it related the influence of catchment permafrost variables to 𝑇𝑆. While this candidate model 

was not the best performing, it was fully statistically significant, and had the following form: 

𝑇𝑆̂ = −0.326 ⋅ 𝑃𝐹 − 0.00429 ⋅ 𝐴𝐿𝑇 + 1.171  (9) 

where 𝑃𝐹 is the catchment mean permafrost probability (-), and 𝐴𝐿𝑇 is the catchment median active layer thickness (cm). 

The 𝑇𝑆 for one catchment (Blind Creek, a 3𝑟𝑑 order stream in a discontinuous permafrost catchment near Faro, Yukon) is 420 

not well estimated by the model, with a model error of 0.24ºC ºC−1; there are no clear indications that explain this deviation, 

so the catchment was retained for the analysis. The regression in Fig. 10 shows that 𝑇𝑆 is well predicted across all stream 

orders and all classifications of catchment permafrost disposition. A simpler model with only log10(𝐴) and mean catchment 

slope as predictor variables had slightly worse performance (𝑅2 = 0.73, standard error = 0.081ºC ºC−1), but benefits from 

parsimony and ready application to ungauged basins; it has the following form: 425 

𝑇𝑆̂ = 0.0858 ⋅ log10(𝐴) − 0.0172 ⋅ 𝐶𝑆 + 0.540  (10) 
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A multiple regression model to estimate 𝐵𝑇  performed notably worse in comparison to the model for 𝑇𝑆 . The best 

performing model, on the basis of 𝑅2 and model standard error, had herbaceous wetland and surface water land covers as 

predictor variables with model statistics of 𝑅2 = 0.49 and standard error = 1.14ºC. The model residuals, however, showed an 

increasing trend in model under-prediction through the summer and indicated the model did not fully represent the 430 

catchment properties that control 𝐵𝑇, despite the inclusion of surface water storage predictor variables that can represent 

sources of warm water to a stream network and hence influence 𝐵𝑇. 

4. Discussion 

4.1 Model performance and seasonal trends 

Numerous other studies have demonstrated improved model skill by using a non-linear regression (e.g., Mohseni et al., 1998; 435 

Kelleher et al., 2012), functional regression methods such as generalized additive models (e.g., Laanaya et al., 2017; 

Boudreault et al., 2019), or sinusoidal functions (Johnson et al., 2020) when fitting models to time series of air-stream 

temperature data. Despite the improved model skill of these other techniques, linear regression remains a robust approach to 

relate the thermal sensitivity of a stream to its environmental and atmospheric forcings, and to investigate the controls on its 

variability especially when applied to seasonal subsets of data. As this study only considered the post-freshet open water 440 

season, the thermal sensitivity and intercept coefficients in Fig. 5 represent the air-stream temperature processes active 

during a period with minimal snowmelt influence, increasing active layer thickness, and includes peak water temperatures. 

These characterizations assist in investigating what influence permafrost, as a distinct trait of northern catchments, may have 

on stream thermal regimes. 

 445 

Model performance with a simple linear model (Eq. 4) across the range of catchment areas and environmental conditions 

was good, with a mean NSE of 0.81. Catchment area (as proxied by SO) and permafrost disposition appears to influence the 

relationship between 𝑇𝑤  and 𝑇𝑎  (Fig. 4), with NSE generally increasing with SO and lower for continuous permafrost 

catchments in comparison to discontinuous or sporadic and isolated permafrost catchments. These differences in model skill 

suggest greater complexity in stream-air temperature relationships at smaller scales, and in catchments predominantly 450 

underlain by permafrost. Model performance was slightly improved through the addition of discharge as a predictor variable, 

with a mean NSE = 0.84 and a 𝛥AIC > 2, but resulted in similar estimated 𝑇𝑆 for 66% of the sites. As such, the application 

of a simple linear model relating 𝑇𝑤 and 𝑇𝑎 is likely sufficient for the purposes of investigating the environmental controls on 

𝑇𝑆. 

 455 

There is additional uncertainty in the model results due to the multi-agency origin of the observed 𝑇𝑤  and the lack of 

information regarding observed 𝑇𝑤  data accuracy. Despite this, the uncertainty assessment, which applied the maximum 
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accuracy uncertainty to all observed 𝑇𝑤 and compared it to the model outputs using the observed 𝑇𝑤, resulted in comparable 

model statistics. Perhaps more notably, the site-specific estimates of TS and BT were essentially unchanged, with the mean 

change in modelled TS = −2.2 × 10−4ºC ºC−1, and the mean change in BT = 0.01ºC. While there are additional uncertainties 460 

associated with the streamflow data, the primary use of streamflow indices that represent relative changes and temporal 

trends in streamflow at a given gauging station, e.g., RBI, are likely to realistically represent the primary hydrological 

processes influencing streamflow trends at a study site. The use of modelled air temperature also incorporates uncertainty 

into the model results, but the use of a gridded climate data product has the benefit of consistency in bias or error across the 

study domain. Given these considerations, the data are likely to provide realistic representations of the trends and patterns in 465 

the estimates of TS and BT, and the subsequent RDA and multiple regression analyses, although the exact values of modelled 

outputs may differ slightly were there greater constraints on data uncertainty.  

 

The stream-air temperature relationship is dynamic over the study period (Fig. 6) across catchments of all permafrost 

classification, with increasing model over-prediction through August to October corresponding with decreasing stream 470 

temperatures through this period (Fig. 3). However, the estimated coefficients fitted to the pooled data set produced a distinct 

response for continuous permafrost catchments, with an earlier onset of model over-prediction beginning in early August, 

and a clear negative bias present by September. This contrasts the relatively synchronized timing and distribution of 

prediction errors for the other permafrost classes. These temporal trends suggest that sites with catchment soil storage and 

subsurface runoff processes controlled by seasonal active layer thaw have greater intra-annual TS variability. The presence of 475 

temporal trends in time trend analysis residuals is consistent with previous research reporting on seasonal variability in 𝑇𝑆 

across the continental USA, but Segura et al. (2015) found the distribution of 𝑇𝑆 for fall to be slightly less than summer, with 

greater differences in spring 𝑇𝑆, and with greater regression intercepts from summer to fall (v. Fig. 12, Segura et al., 2015). 

While the residual time trend seen in Fig. 6 is consistent with literature, the relatively greater deviation by continuous 

permafrost catchments suggests they are subject to different controls on the stream-air temperature relationship in 480 

comparison to catchments with less permafrost presence. 

 

4.2 Environmental controls of thermal sensitivity and baseline temperature 

The thermal sensitivities reported here, with a range of 0.16 to 0.84ºC ºC−1, and median of 0.56, are slightly lower than the 

ranges reported by studies focused on more temperate regions but are comparable if not greater than studies investigating 485 

summer 𝑇𝑆  in southern Alaska (Lisi et al., 2015; Winfree et al., 2018), or in high elevation mountain catchments in 

northwestern North America (e.g., Wissler et al., 2022; McGill et al., 2024). Directly comparing stream thermal regime 

studies is complicated by the lack of standard approaches and methods (e.g., time periods considered, regression models 

applied, catchment areas included, etc.) among studies. However, when considering the underlying controls on thermal 
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sensitivity, such as catchment area and slope, land cover, and groundwater contributions to discharge, the results presented 490 

here are consistent with the literature. 

 

The primary influences on thermal sensitivity were related to catchment properties affecting stream water residence time, 

surface water storage, and subsurface runoff processes. The results indicating the dampening of 𝑇𝑆 by steeper catchments, 

through greater flow velocity, and of increasing 𝑇𝑆 with greater catchment area, due to greater flow volumes and longer 495 

exposure times between the stream and the atmosphere, are well supported by previous research (e.g., Donato, 2002; Isaak et 

al., 2012; Lisi et al., 2015; Ducharne, 2008; Kelleher et al., 2012; Segura et al., 2015). These catchment physiographical 

controls appear to have consistent influence regardless of study region. 

 

Greater surface water storage, as represented through the land cover classes of ‘water’ and ‘herbaceous wetland’, had a 500 

positive effect on 𝑇𝑆. In the context of northern summers with long daylight hours and with greater residence time compared 

to streams, surface water bodies may act as stores contributing relatively warm water to a stream network, increasing its 𝑇𝑆. 

While this relationship has also been observed elsewhere (e.g., Mellina et al., 2002), greater lake coverage in southwest 

Alaska was found to have a dampening effect on 𝑇𝑆 by Lisi and Schindler (2015), or to be a non-significant influence in 

southeast Alaska (Winfree et al., 2018). The effect of surface water bodies on 𝑇𝑆 is likely influenced by local or regional 505 

conditions that govern the thermal regimes of the surface waters; elevation, volume, sources of inflows, and topology may 

all influence whether lakes and surface waters buffer or bolster 𝑇𝑆 in a given study region. 

 

The 𝛼 coefficient, representing subsurface runoff processes as a metric of streamflow flashiness, was positively related to 

𝑇𝑆. The influence of flashiness as represented by 𝛼, or 𝑅𝐵𝐼 for that matter, has not been directly reported previously to the 510 

best of our knowledge. Some analogous comparisons may be made, however, as McGill et al. (2024) reported that upland 

catchments with thin soils overlying impermeable bedrock had greater 𝑇𝑆 in comparison to catchments with greater soil 

depth. Segura et al. (2015) investigated the influence of subsurface flow contact time as a predictor of thermal sensitivity as 

well as the intercept. While Segura et al. (2015) did not find subsurface contact time to be a significant predictor of 𝑇𝑆, it 

was negatively correlated with the intercept (i.e., 𝐵𝑇). The suggestion of McGill et al. (2024) that thin soils which rapidly 515 

transmit infiltrated water to the channel, and have limited groundwater contributions, result in greater thermal sensitivity is 

consistent with this study and with the conceptual representation of 𝛼 both as a metric of flashiness and a variable related to 

active layer thickness (Brutsaert, 2005; Sergeant et al., 2023). In systems with flashy flow regimes, a lack of thermal 

buffering from cold (relative to air temperature) groundwater contributions may be compounded by the greater thermal 

sensitivity associated with decreased flow volumes. While the variables representing flashy runoff generation most likely 520 

represent the absence of groundwater contributions to baseflow as a thermal sensitivity moderator, this study cannot 

conclusively describe the influence that rapid runoff generation in concert with subsurface heat exchange processes between 

infiltrated water and the soil has on thermal sensitivity, particularly in a permafrost context. 
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The regression intercepts, while less commonly reported in stream temperature studies, are relevant in the cold-regions as: 1) 525 

permafrost presence creates a cold interface, at maximum 0ºC, which has implications for the heat exchange processes 

between runoff-generating soil water and the frost table; and 2) catchments with near-continuous and continuous permafrost 

are commonly understood to have limited hydraulic connection to deep or regional groundwater and have streamflow 

regimes dominated by near-surface runoff generation processes. Greater permafrost presence appears to suppress the 

regression intercept, when considering the distribution of fitted intercept values (Fig. 5), and is consistent with the negative 530 

relationship seen between 𝐵𝑇  and 𝑃𝐹  in the RDA (Panel (d), Fig. 7). Streamflow indicators associated with greater 

permafrost presence, such as a low 𝐵𝐹𝐼, high 𝑅𝐵𝐼, or greater 𝛼, all relate negatively with the regression intercept (Panel (d), 

Fig. 7 and Fig. 8) and provide further support for the presence of this process. When considered alongside the regression 

intercepts from other studies in the continental USA (e.g., Pilgrim et al., 1998; Wissler et al., 2022), the intercepts reported 

here are relatively low for the summer period, with a median value of 1.88ºC across all catchments. 535 

 

The RDA results (Figs. 7 and 9) illustrate the complex relationship between 𝑇𝑆 and 𝐵𝑇 and their environmental controls. 

While there is redundancy among catchment physiographical variables, they are strong predictors of 𝑇𝑆 . Likewise, as 

permafrost presence strongly influences flow regimes and groundwater contributions, there is redundancy between those 

predictors as well, but with greater importance for 𝐵𝑇  than 𝑇𝑆 . Stream thermal sensitivity appears to be an emergent 540 

property of multiple aspects of the surrounding environment; the only variable class significantly explaining variance alone 

are topographical variables (9%, Panel (b) in Fig. 9), but can account for 63% of the variance in 𝑇𝑆 together with the 

variable classes of land cover and permafrost indicators. This contrasts 𝐵𝑇, where each variable class alone can significantly 

explain variance (Panel (c), Fig. 9), but with less predictive power, as has been reported in other studies investigating 

environmental controls on 𝐵𝑇 (Segura et al., 2015; McGill et al., 2024). The inter-relatedness of the controls of thermal 545 

sensitivity suggest that environmental changes may result in a non-linear response of thermal sensitivity in northern 

catchments. 

4.3 The role of permafrost and implications for stream temperature in a changing environment 

The results of this study suggest that permafrost presence does not have a dominant control on the stream-air temperature 

relationship, but rather sets conditions for other catchment properties and processes that influence 𝑇𝑆, some of which are 550 

counteracting. Extensive permafrost clearly suppresses groundwater contributions to baseflow, resulting in lower baseflow 

volumes which would be more responsive to atmospheric forcings and greater 𝑇𝑆 (Panel (d), Fig. 7; Fig. 8; 𝛼 coefficient in 

Eq. 8). Ice wedge polygon ponds, wetlands, and fens provide surface water storage in landscapes with extensive permafrost 

(Woo, 2012), and may increase both 𝑇𝑆 and 𝐵𝑇 through their contributions, at a greater relative temperature, to streamflow, 

as observed by Docherty et al. (2019) in their study of five headwater streams in north-eastern Greenland. Similarly, the 555 
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presence of beaded streams in continuous permafrost stream networks has been reported to have a warming influence on 

stream temperatures in comparison to networks with non-beaded streams (King et al., 2016). However, the variable 

correlations (𝑟 ranged from -0.56 to 0.55) and negative estimated regression coefficient (Eq. 9) between permafrost and TS 

suggest there are also moderating influences on 𝑇𝑆 due to permafrost presence. Permafrost underlying stream channels acts 

as a significant heat sink through hyporheic exchange (King and Neilson, 2019), and is a process likely to moderate 𝑇𝑆. 560 

Melting ground ice released through seasonal active layer expansion, contributing cool water to streamflow, or the heat sink 

of the frost table interacting with soil water (Woo, 2012), may also moderate 𝑇𝑆. Aufeis, commonly found in northern 

regions with permafrost presence, although not inherently caused by permafrost (Turcotte et al., 2024), can act akin to in-

stream snow banks in moderating summer stream temperatures as a source of cold melt water to the stream (Bolduc et al., 

2018). 565 

 

The relative contributions of these processes are likely variable and dependent on catchment-specific characteristics and 

properties and, together with the counteracting nature of permafrost’s influence on 𝑇𝑆, leads to uncertainty in response of 𝑇𝑆 

to permafrost degradation in response to climate change. Processes that presently increase 𝑇𝑆 may shift to moderate 𝑇𝑆 

(e.g. greater groundwater contributions to streams as permafrost degrades, Walvoord et al., 2012), and vice versa (e.g., less 570 

ground ice forming annually under warmer conditions). It is important to note a key assumption in this analysis was the 

stationarity of environmental conditions on the surface and in the subsurface, and did not consider long-term or annual 

variability in environmental conditions such as snow depth and snow covered area, permafrost disposition and extent, and 

active layer thickness. The dynamic subsurface conditions related to permafrost could not be accounted for with the available 

data mapping permafrost coverage and ALT across the study domain, despite knowledge that permafrost extent and annual 575 

active layer thaw is dynamic and responsive to long-term climate warming and the meteorological conditions of the current 

and preceding year. If permafrost disposition does influence stream thermal sensitivity, as the results of this study suggest, 

the signal in response to this subsurface non-stationarity would be present in the observed stream temperatures. As 

permafrost-influenced processes do not act in isolation from other processes known to influence 𝑇𝑆 and which are also 

expected to continue changing in the coming decades (e.g., precipitation timing and phase, riparian shrubification, air 580 

temperature), resolving the complexities of their interactions in response to climate change is not trivial. There is substantial 

uncertainty in how northern stream thermal sensitivity, as an integrated catchment signal, will respond to climate change and 

further research into the individual controls on thermal sensitivity, their responses to climate change, and the presence of 

non-stationarity influencing interannual variability in thermal sensitivity is needed. 

5. Conclusion 585 

The range and variability of summer stream thermal sensitivity observed in Yukon was comparable to values reported in 

temperate regions, although with lower maximum values across catchments of all permafrost classifications. The influence 
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of cold, northern region hydrology on thermal sensitivity is apparent, with a median thermal sensitivity = 0.56ºC ºC−1 across 

all catchments. The baseline temperatures (i.e., regression intercepts) were moderated by greater permafrost extent, although 

catchments of all permafrost disposition had numerous instances of low (< 2ºC) baseline temperature. 590 

 

Thermal sensitivity was suppressed by greater catchment slope, and was positively related to catchment area or stream order, 

surface water storage as represented by land cover classification, and streamflow ‘flashiness’. These results suggest that 

catchment physiography, influencing in-stream residence time and stream network heat accumulation, has a consistent 

influence on stream thermal sensitivity in both northern and temperate environments. Surface water bodies connected to 595 

stream networks may supply relatively warm water through the summer season, bolstering thermal sensitivity and baseline 

temperature. Groundwater contributions represented by a baseflow index is commonly identified in temperate regions as a 

moderating control on thermal sensitivity, but flashy streamflow regimes are characteristic of continuous permafrost 

environments and indicate limited deep groundwater discharge to streams. 

 600 

Permafrost appears to have offsetting influences on thermal sensitivity. The limiting influence of greater permafrost extent 

on baseflow contributions increases thermal sensitivity, but there is a simultaneous moderating influence of permafrost, 

possibly attributable to melting ground ice, lateral advection of hillslope runoff cooled by the frost table interface, in-stream 

aufeis, or heat loss to streambeds underlain by permafrost through hyporheic exchange processes and/or heat conduction. As 

permafrost degrades in response to climate change, we expect a dynamic response in the thermal regimes and thermal 605 

sensitivity of streams in environments with continuous and discontinuous permafrost. The net effect of these changes is 

uncertain due to the complex interactions between permafrost disposition, seasonal snow cover, precipitation timing, and 

subsurface hydrology. However, identifying current thermal sensitivities across catchment scales and permafrost conditions 

may help provide insight into the thermal evolution of streams in northern regions. 
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Tables 

Table 1: Environmental properties extracted for each catchment, or calculated at the catchment hydrometric station for 

streamflow-derived variables (𝐵𝐹𝐼, 𝑅𝐵𝐼, 𝛼). The variable groupings were used to conduct the redundancy analysis and 

variance partitioning. 
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Variable grouping Variable Symbol Range Unit 

Catchment 

physiography 

Log of catchment area log10(𝐴) 0.74 - 4.11 - 

 Shreve stream magnitude Shreve 2 - 4724 - 

 Mean catchment slope Ca slope 4.5 - 25.2 ° 

 Mean catchment Terrain Ruggedness Index Ca TRI 1.96 - 12.2 m 

 Mean stream network Topographic Position 

Index 

SN TPI -3.41 - -

0.48 

m 

Climatology Mean annual temperature MAT -7.0 - 0.8 °C 

 Annual precipitation Total ppt 418 - 894 mm 

 Summer precipitation Summer ppt 166 - 391 mm 

 First snow-free day 1st snow-free 

day 

156 - 211 day of year 

Land cover Tree tree 0.0 - 95.5 % 

 Shrubland shrubs 0.0 - 35.6 % 

 Grassland grass 2.1 - 72.9 % 

 Cropland crops 0.0 - 0.03 % 

 Built up built up 0.0 - 0.13 % 

 Bare bare 0.0 - 27.1 % 

 Snow and ice snow and ice 0.0 - 10.0 % 

 Water water 0.0 - 5.5 % 

 Herbaceous wetland herbs 0.0 - 0.26 % 

 Mangroves mangroves 0.0 - 0.01 % 

 Moss moss 0.2 - 24.9 % 

Permafrost indicators Intercept of the recession curve α 0.02 - 0.35 mm d−2 

 Baseflow Index BFI 0.15 - 0.96 - 

 Richards-Baker Index RBI 0.03 - 0.45 - 

 Catchment mean permafrost probability PF 0.00 - 0.99 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 
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Variable grouping Variable Symbol Range Unit 

 Catchment median active layer thickness ALT 67.4 - 176 cm 
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Table 2: The range of estimated thermal sensitivity (TS) and baseline temperature (BT) coefficients for the two linear 

regressions (Eqs. 4 and 5). The root-mean-square error (RMSE) and Nash-Sutcliffe efficiency (NSE) are the associated 

model goodness-of-fit statistics. 
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Model TS Range BT Range RMSE Range RMSE Mean NSE Range NSE Mean 

Eqn. 4: 

𝑇𝑤 = 𝑇𝑆 ⋅ 𝑇𝑎 + 𝐵𝑇 + 𝜖 

0.14 to 0.84 -0.07 to 7.60 0.46 to 2.65 1.21 0.35 to 0.92 0.81 

Eqn. 5: 

𝑇𝑤 = 𝑇𝑆 ⋅ 𝑇𝑎 + 𝑙 ⋅ 𝑄 + 𝐵𝑇 + 𝜖 

0.08 to 0.86 0.25 to 7.58 0.33 to 2.48 1.14 0.54 to 0.93 0.84 
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Figures 

 

Figure 1: The 57 study catchments located across Yukon Territory, Canada. Each catchment is filled with the gridded estimated 

permafrost probability (Obu et al., 2019), at 1 km resolution. 
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Figure 2: Distribution of mean daily stream and air temperature, and streamflow by Strahler stream order. The data cover the 

period years 1997 through 2023 and the days from 1 July through 15 October. The crosses indicate the median and 25th to 75th 

quantile values range. There is no streamflow data available for the study stream with Strahler order 8. 
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Figure 3: Thermograph of long-term mean daily stream temperatures for the study streams, with panels arranged by Strahler 

stream order. The data cover the period from 1997 through 2023, although individual study streams will typically have data 

records shorter than the full period. The model period considered for the analysis for this study is from 1 July to 15 October and is 

indicated by grey shading. 
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Figure 4: Distributions of the Nash-Sutcliffe efficiencies of the linear models relating stream and air temperature per site. The 

points are coloured according to catchment permafrost classification and are grouped by Strahler stream order. 
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Figure 5: The distribution of estimated coefficients for a linear relationship between stream and air temperature. The slope is 

defined as the thermal sensitivity, and the regression intercept is defined as the baseline temperature. The distributions are 

grouped according to catchment permafrost classification; continuous, discontinuous, and sporadic and isolated. 
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Figure 6: The weekly residual error distribution as estimated by applying a linear regression fitted to the first two weeks of July. 

The residuals displayed correspond to dates on or after 15 July, and the distributions are grouped by permafrost classification. 

  



39 

 

 

Figure 7: Redundancy analysis between thermal sensitivity (TS) and regression intercept (BT) and four groups of characteristics 

and variables corresponding to: (a) catchment physiography, (b) climate, (c) land cover, and (d) permafrost presence indicators. 

Definitions of abbreviated variable names can be found in Table 1. The angle between the explanatory variables (blue text) and the 

response variables (TS and BT, red text) represents the strength of their correlations, with angles of 0° or 180° indicating the 

strongest positive and negative correlations, respectively, and the length of the arrows indicates the magnitude of influence. The 

ellipses are akin to a convex hull for each permafrost class, and the relative position of the ellipses with respect to the explanatory 

variables indicates the strength of influence of the explanatory variables on the permafrost classes.  
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Figure 8: Pearson correlation coefficients between thermal sensitivity (TS) and baseline temperature (BT), and the catchment and 

environmental variables. The correlations were computed per catchment permafrost classification (i.e., continuous, discontinuous, 

and sporadic and isolated permafrost). Definitions of abbreviated variable names can be found in Table 1. 
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Figure 9: Variance partitioning of the redundancy analysis (RDA) models fit to four groups of catchment and environmental 

predictor variables. The values represent the proportion of variance explained by an individual group of variables (e.g., Land 

cover), or combinations thereof (e.g., Land cover and Area & Topo.), relative to a global RDA model including all explanatory 

variables. The panels are labelled according to the response variables included in the RDA models on which variance partitioning 

was conducted. Panel (a) represents thermal sensitivity (TS) and baseline temperature (BT), panel (b) represents TS, and panel (c) 

represents BT. Statistical significance of the individual components are indicated with asterisks as follows: * p < 0.05; ** p < 0.01, 

and negative values are omitted. 
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Figure 10: Catchment thermal sensitivity from the linear regression compared to thermal sensitivity as predicted by catchment 

properties (𝑻𝑺̂) through multiple regression. 
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