Supplemental Material to: Deployment and evaluation of an NH_4^+/H_3O^+ reagent-ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds

Cort Zang¹ and Megan Willis¹

¹Department of Chemistry, Colorado State University, Fort Collins, CO, USA **Correspondence:** Megan Willis (megan.willis@colostate.edu)

Figure S1. Contribution of the α -pinene water cluster ($C_{10}H_{16} \cdot H_2O \cdot NH_4^+$) to the sum of the water cluster and molecular ion with NH_4^+ .

Figure S2. Contribution of the α -pinene ammonia cluster ($C_{10}H_{16} \cdot NH_3 \cdot NH_4^+$) to the sum of the ammonia cluster and molecular ion with NH_4^+ .

Compound	$\rm NH_4^+$ Affinity	H ⁺ Affinity
	$[\mathrm{kJ} \ \mathrm{mol}^{-1}]$	$[{\rm kJ}~{\rm mol}^{-1}]$
Ethylene	42	681
Acetone	118	812
Methylal	122	no data
2-Methyl-propene	146	802
1,2-Dimethoxy-ethane	160	858
Benzene	81	750
Cyclohexane	40	687
1,3,5-Trimethylbenzene	91	836
Hydrogen sulfide	48	705
Water	86	691
Ammonia	107	854

Table S1. Table of NH_4^+ and H^+ affinities obtained from the NIST Chemistry WebBook (Edward P. Hunter and Sharon G. Lias; Michael M. Meot-Ner (Mautner) and Sharon G. Lias).

Analyte	Formula	Vapor Pressure $\mu g m^{-3}$	Vapor Pressure Pa	Method
dimethyl sulfide	C_2H_6S	1.60E+9	6.38E+4	Mean VP of Antoine & Grain methods
methane thiol	CH_4S	3.92E+9	2.02E+5	Mean VP of Antoine & Grain methods
dimethyl sulfoxide	C_2H_6SO	2.61E+6	82.9	Mean VP of Antoine & Grain methods
benzene	C_6H_6	3.66E+8	1.16E+4	Mean VP of Antoine & Grain methods
toluene	C_7H_8	1.17E+8	3.16E+3	Mean VP of Antoine & Grain methods
1,3,5-trimethylbenzene	C_9H_{12}	1.30E+7	268	Mean VP of Antoine & Grain methods
phenol	C_6H_6O	1.63E+6	43	Modified Grain method
isoprene	C_5H_8	2.02E+9	7.35E+4	Mean VP of Antoine & Grain methods
limonene	$C_{10}H_{16}$	1.06E+7	193	Mean VP of Antoine & Grain methods
acetone	C_3H_6O	7.78E+8	3.32E+4	Mean VP of Antoine & Grain methods
hydroxyacetone	$C_3H_6O_2$	6.93E+6	232	Mean VP of Antoine & Grain methods
methyl ethyl ketone	C_4H_8O	3.81E+8	1.31E+4	Mean VP of Antoine & Grain methods
methyl vinyl ketone	C_4H_6O	3.45E+8	1.22E+4	Mean VP of Antoine & Grain methods
3-hexanone	$C_6H_{12}O$	8.73E+7	2.16E+3	Mean VP of Antoine & Grain methods
2-octanone	$C_8H_{16}O$	1.27E+7	246	Mean VP of Antoine & Grain methods
camphor	$C_{10}H_{16}O$	8.72E+4	1.42	Modified Grain method
acetaldehyde	C_2H_4O	2.15E+9	1.21E+5	Mean VP of Antoine & Grain methods
trans-2-hexenal	$C_6H_{10}O$	2.49E+7	629	Mean VP of Antoine & Grain methods
beta-cyclocitral	$C_{10}H_{16}O$	1.48E+6	24.1	Mean VP of Antoine & Grain methods
trans-3-hexenol	$C_6H_{12}O$	5.05E+6	125	Mean VP of Antoine & Grain methods
acetonitrile	C_2H_3N	4.42E+8	2.67E+4	Mean VP of Antoine & Grain methods
propane-1,2-diol	$C_3H_8O_2$	4.54E+5	14.8	Mean VP of Antoine & Grain methods
D5-Siloxane	$\left \begin{array}{c} \mathrm{C}_{10}\mathrm{H}_{30}\mathrm{O}_{5}\mathrm{Si}_{5} \end{array} \right.$	4.35E+6	29.1	Mean VP of Antoine & Grain methods

Table S2. Vapor pressure estimates of certified gas standard analytes at 25°C.^{*a*}

^a Estimated using EPI Suite (US EPA).

Analyte	This Study	Xu et al. (2022)
	counts s ⁻¹ ppt _v ⁻¹	counts s ⁻¹ ppt _v ⁻¹
Acetonitrile	0.85	0.55
Acetaldehyde	<0.1	0.021
Acetone	0.98	1.2
Isoprene	< 0.1	0.028
Methyl vinyl ketone	1.5	1.5
Methyl ethyl ketone	1.3	1.6
Hydroxyacetone	1.6	2.1
Benzene	<0.1	< 0.001
Phenol	<0.1	0.19
Hexanone ^b	3.4	3.8
Trimethylbenzene ^c	<0.1	< 0.001

Table S3. Comparison of sensitivities calculated in this study with those reported by Xu et al. (2022).^a

 a We are using a Vocus-S and Xu et al. (2022) report using a Vocus-2R which have different time-of-flight region lengths. The instruments also differ in extraction frequency (i.e., 25 kHz here, and 17.5 kHz for Xu et al. (2022)).

^b This study used 3-Hexanone and Xu et al. (2022) used 2-Hexanone.

^c This study used 1,2,5-Trimethylbenzene and Xu et al. (2022) used

1,3,5-Trimethylbenzene.

Analyte	Formula	Vapor Pressure	Vapor Pressure	Method
MCM name		$\mu { m g~m^{-3}}$	Ра	
LIMCOOH	$\mathrm{C_{10}H_{18}O_3}$	4.40E+2	0.00586	Modified Grain method
LIMAOH	$\mathrm{C_{10}H_{18}O_2}$	3.55E+3	0.0517	Modified Grain method
LIMBCO	$\mathrm{C_{10}H_{16}O_2}$	7.47E+3	0.11	Modified Grain method
LIMONONIC	$\mathrm{C_{10}H_{16}O_3}$	8.77E+3	0.118	Modified Grain method
APINBCO	$\mathrm{C_{10}H_{16}O_2}$	1.76E+4	0.26	Modified Grain method
PINAL	$\mathrm{C_{10}H_{16}O_2}$	3.62E+5	5.34	Modified Grain method
PINONIC	$\mathrm{C_{10}H_{16}O_3}$	6.15E+3	0.0828	Modified Grain method
C109OH	$\mathrm{C_{10}H_{16}O_3}$	4.66E+2	0.00627	Modified Grain method
C107OH	$\mathrm{C_{10}H_{16}O_3}$	1.99E+3	0.0268	Modified Grain method
HCOC5	$C_5H_8O_2$	2.07E+6	51.2	Mean VP of Antoine & Grain methods
LIMALNO3	$\mathrm{C_{10}H_{17}NO_6}$	1.16E+1	0.000116	Modified Grain method
NLIMALOH	$C_{10}H_{17}NO_6$	2.32E+1	0.000233	Modified Grain method
MBOANO3	$C_5H_{11}NO_5$	7.79E+3	0.117	Modified Grain method

Table S4. Vapor pressure estimates of potential biogenic ROC analytes at 25°C.^{*a*}

^a Estimated using EPI Suite (US EPA).

Figure S3. 2D-histograms of ion signals for a selection of ions detected by NH_4^+ (orange/yellow, left) and H_3O^+ (blue/purple, right). Color bars show frequency per bin for the 100 x100 bin grid. Signals for the ions are in counts extraction⁻¹ at 25 kHz extraction frequency.

Figure S4. 2D-histograms of campaign zero periods for the C_5H_8 ion detected with NH_4^+ (orange, top) and H_3O^+ (blue, bottom). Solid horizontal lines represent mean signal during zero periods and dashed lines represent 3 σ deviation from the mean.

Chemical Formula	Name in MCM ^a	Reported in Fry et al. (2013)?	Potential Assignment
$C_5H_9NO_5$	NMBOBCO C4MCONO3OH	no	232-MBO nitrate/ Isoprene nitrate
$C_5H_{11}NO_5$	MBOANO3	no	232-MBO nitrate
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{NO}_{3}$		no	Dehydration fragment of $C_{10}H_{17}NO_4$
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{NO}_{4}$	NC101CO NC91CHO	yes (night)	Terpene nitrate (carbonyl)
$C_{10}H_{15}NO_5$	PINALNO3	no	Fragment from LIMALNO3? Faxon et al. (2018) speculate that is could be a fragment of dimers. Oxidation of primary emissions of terpenoid oxygenates.
$C_{10}H_{15}NO_{6}$	C10PAN2 C923PAN C918PAN C108NO3	no	Terpene nitrate (PAN/carbonyl nitrate)
C ₁₀ H ₁₇ NO ₄	APINCNO3 BPINBNO3 LIMANO3 LIMCNO3 APINANO3 BPINANO3	yes (day and night)	Terpene nitrate (alcohol)
$C_{10}H_{17}NO_5$	NBPINAOOH NAPINBOOH NLIMOOH	yes (night)	Terpene nitrate (hydroperoxy)
$C_{10}H_{17}NO_{6}$	LIMALNO3 NLIMALOH	no	Limonene nitrate
$C_{10}H_{16}N_2O_6$		no	Proposed as α -pinene oxidation product (Bates et al., 2022)

Table S5. Potential structures and literature precedent for organic nitrate peaks.

^aExploration of the MCM is non-exhaustive (Saunders et al., 2003; Jenkin et al., 2015).

References

- Bates, K. H., Burke, G. J. P., Cope, J. D., and Nguyen, T. B.: Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO3) oxidation of alpha-pinene from various RO2 fates, Atmospheric Chemistry and Physics, 22, 1467–1482, https://doi.org/10.5194/acp-22-1467-2022, 2022.
- 5 Edward P. Hunter and Sharon G. Lias: Proton Affinity Evaluation, in: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institude of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/https://doi.org/10.18434/T4D303.
 - Faxon, C., Hammes, J., Le Breton, M., Pathak, R. K., and Hallquist, M.: Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry,
- 10 Atmospheric Chemistry and Physics, 18, 5467–5481, https://doi.org/10.5194/acp-18-5467-2018, 2018.
 - Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N.: Observations of gas- and aerosolphase organic nitrates at BEACHON-RoMBAS 2011, Atmospheric Chemistry and Physics, 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, 2013.
- 15 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry and Physics, 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
 - Michael M. Meot-Ner (Mautner) and Sharon G. Lias: Binding Energies Between Ions and Molecules, and The Thermochemistry of Cluster Ions, in: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institude of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/https://doi.org/10.18434/T4D303.
- 20 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
 - US EPA: Estimations Programs Interface Suite for Microsoft Windows, https://www.epa.gov/tsca-screening-tools/ epi-suitetm-estimation-program-interface.
- 25 Xu, L., Coggon, M. M., Stockwell, C. E., Gilman, J. B., Robinson, M. A., Breitenlechner, M., Lamplugh, A., Crounse, J. D., Wennberg, P. O., Neuman, J. A., Novak, G. A., Veres, P. R., Brown, S. S., and Warneke, C.: Chemical ionization mass spectrometry utilizing ammonium ions (NH₄ ⁺ CIMS) for measurements of organic compounds in the atmosphere, Atmospheric Measurement Techniques, 15, 7353–7373, https://doi.org/10.5194/amt-15-7353-2022, 2022.