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Abstract. The ice thickness of the world’s glaciers is mostly unmeasured, and physics-based models to reconstruct ice thickness

can not always deliver accurate estimates. In this study, we use deep learning paired with physical knowledge to generate ice

thickness estimates for all glaciers of Spitsbergen, Barentsøya, and Edgeøya in Svalbard. We incorporate mass conservation

and other physically derived conditions into a neural network to predict plausible ice thicknesses even for glaciers without any5

in situ ice thickness measurements. With a glacier-wise cross-validation scheme, we evaluate the performance of the physics-

informed neural network. The results of the experiments let us identify several challenges and opportunities that affect the

model’s performance in a real-world setting.

1 Introduction

Glacier ice thickness is a fundamental variable required for modelling the evolution of a glacier, as ice thickness and surface10

slope govern the ice ux at each point of the glacier (Cuffey and Paterson, 2010). However, direct measurements of ice thickness

are scarce. In situ ice thickness measurements exist for only around 4700 of 215000 glaciers in the world (Millan et al., 2022).

Physics-based approaches aim to reconstruct glacier ice thicknesses from the limited in situ data. Farinotti et al. (2017)

compared 17 models and found that their ice thickness estimates differ considerably on the test glaciers. Following these

results, Farinotti et al. (2019) created an ensemble of ve models to develop a consensus estimate of ice thicknesses for the15

world’s glaciers in 2019. Later, Millan et al. (2022) derived ice thickness estimates for the world’s glaciers using ice motion as

the primary constraint. However, these results still differ from Farinotti et al. (2019) consensus estimate. It is evident, therefore,

that signicant uncertainty remains in ice thickness estimates.

Machine learning approaches are exible and adapt well to complex structures and non-linear behaviour. They have already

been employed to model glacier quantities like surface-mass-balance (Bolibar et al., 2020; Anilkumar et al., 2023), classify20

surge-type glaciers (Bouchayer et al., 2022), or model glacier ow (Jouvet, 2023; Min et al., 2019). One advantage of data-

driven approaches is a signicant speed-up compared to physics-based models (Jouvet et al., 2022). The disadvantages of
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purely data-driven models are that they do not guarantee the physical correctness of the predicted quantities, and they often

need huge amounts of training data to fully represent the system’s complexity.

Recently, a new framework of data-driven but physically constrained models was described as physics-informed neural25

networks (PINNs) by Raissi et al. (2018). They exploit that neural networks can represent solutions to partial differential

equations (PDE) if the squared residual of the governing PDE acts as the loss function of the neural network (Lagaris et al.,

1998). Partial derivatives with respect to the model inputs are easy to calculate with the automatic differentiation algorithm that

is used to train neural networks. PINNs do not require a discrete grid to be evaluated. Therefore, they are very data-efcient as

the physics-based loss can be evaluated at any point within the training domain (Xu et al., 2023). Additional ground truth data30

can be used to compute a data loss that acts as a boundary condition to solve the PDE.

Teisberg et al. (2021) used a mass-conserving PINN to produce realistic ice thickness and depth-averaged ice ow maps for

a single glacier in Antarctica. They showed that solving for mass conservation and additional constraints or regularizing terms

is possible with a PINN.

This work extends the approach to predict ice thickness for all non-surging glaciers in Spitsbergen, Barentsøya, and Edgeøya35

in Svalbard. These regions include glaciers with various morphologies, from valley glaciers to ice caps. To better account for

the glaciers’ multiple geometries, sizes, and ow velocities, we include additional input features, e.g., slope and elevation. The

challenge is to nd a conguration of inputs and physical constraints that is general enough to describe the variety of glaciers in

the study region. At the same time, the constraints and inputs should be strict enough to force the model to produce physically

correct outputs.40

Ice thickness measurements exist only for a fraction of the glaciers in the dataset, and there is no benchmark dataset to

measure the model’s performance. Therefore, we need a validation method that assesses the performance, although there is

no ground truth. To this end, we estimate the expected drop in performance for glaciers without ice thickness measurements

performing glacier-wise cross-validation. Also, we compare our ice thickness estimates to those of Millan et al. (2022), the

consensus estimate of Farinotti et al. (2019) for our study region. These estimates are no benchmark datasets but are widely45

accepted in the community. Additionally, we compare to the recently published ice thickness estimate of van Pelt and Frank

(2024) tailored to the region of Svalbard.

2 Physics-aware machine learning

2.1 Mass conservation

Assuming ice to be incompressible and integrating vertically along the depth of a glacier, we retrieve the two-dimensional form50

of the mass conservation

∂H

∂t
+ · (v̄H) = ḃ (1)

with H being the ice thickness and ḃ denotes the mass balance of the glacier. v̄ = (v̄x, v̄y) is the velocity caused by the

deformation of ice, averaged along the vertical axis. We will refer to v̄ as the depth-averaged velocity in the following. Equation
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1 can be reformulated as55

 · (v̄H)− ȧ= 0 (2)

with ȧ= ḃ−∂tH known as the apparent mass balance. In other words, the ux divergence on a glacier equals its apparent mass

balance.

2.2 Depth-averaged velocity and basal sliding

The surface ow velocity vs of a glacier can be measured from space but is composed of the velocity from ice deformation and60

the ice sliding along the bedrock: vs = vd+vb. We are only interested in the contributions to the glacier velocity caused by ice

deformation because this is the only component directly related to ice thickness via Glen’s ow law (Glen, 1955). Therefore,

we estimate the contribution of basal sliding by introducing a factor β that is derived from the ratio of slope and observed

surface velocity assuming vd = vs(1−β).

Now, the depth-averaged velocity is not equal to the surface velocity because, at its base, the glacier experiences drag from65

its bed. The basal drag balances the horizontal shear stress. We estimate the depth-averaged velocity to be within the bounds

of

llower · vs(1− β)< v̄ < vs(1− β) (3)

where llower should lie within ]0,1]. We x llower = 07 (see Appendix B for derivation). Depth-averaged velocities are esti-

mated for the x- and y-direction and the velocity magnitude. Therefore, we calculate three separate β-values.70

2.3 PINN Model

Figure 1 shows a schematic of the model with its input features, outputs, and loss components. The model is a neural network

with eight fully connected layers and a preceding Fourier layer. Tancik et al. (2020) described the theory of Fourier layers.

They map the input coordinates to a higher dimensional space, which enables the network to learn high-frequency functions in

low-dimensional problem domains. In addition to the spatial coordinate of each training point, we also feed the neural network75

with auxiliary data like slope, elevation, distance to the border of the glacier, and the area of the glacier the point belongs to.

Also, the network receives the three β values that were computed to estimate the contribution of basal sliding.

A non-linear activation function follows each layer of the neural network except the output layer:

Softplus:f(x) = log(1+ exp(x)) (4)

Softplus is innitely differentiable. This is important to avert vanishing gradients during optimization (Leng and Thiya-80

galingam, 2023).

The model outputs three quantities at each point of query: the ice thickness and depth-averaged deformation velocity in x-

and y-direction. The predicted quantities must full the mass conservation described in Equation 2. The squared deviation from
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Figure 1. Physics-informed model with inputs, outputs, and components adding to the loss function.

this equation is the rst component of the loss function:

Lmc = ( · (v̄H)− ȧ)2 (5)85

The second component of the loss function is the amount by which the depth-averaged velocity estimates in the horizontal

plane exceed the boundaries given in Eq. 3:

Lvel =





(vs(1− β)− v̄)2 if v̄ < vs(1− β)

(llower · vs(1− β)− v̄)2 if v̄ > llower · vs(1− β)

0 else

with v̄  {v̄x, v̄y, v̄magnitude} (6)

Lvel is calculated separately for the x- and y-component and the magnitude of the depth-averaged velocity.

We include two more physics-aware constraints to improve the model performance: First, the ice thickness is assumed to be90

smooth, so the model will penalize large spatial derivatives within the ice thickness prediction:

Lsmooth = (H)2 (7)
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Secondly, ice thickness cannot be smaller than 0. Therefore, we add a loss component that punishes negative ice thicknesses to

the loss function.

LH>0 =




H2 if H < 0

0 else
(8)95

The nal loss component is the data loss. It penalizes the deviation from the in situ ice thickness measurements and acts as the

boundary condition to solve the mass-conserving PDE. Each loss component will have a different scale, so we balance them

with individual weights λi. Summing up all the loss components, we get the complete loss function as:

L= λmcLmc +λvelLvel +λsmoothLsmooth +λH>0LH>0 +λdataLdata (9)

All the physics-aware losses are evaluated at any point in the study region. In contrast, the data loss is only evaluated wherever100

ice thickness measurements are available.

The training data is scaled to have a mean of 0 and a variance of 1. Before computing the physics-aware loss components,

we scale the quantities back to their original units for physical consistency.

2.4 Validation

We evaluate the performance of the PINN model by calculating the root mean squared difference (RMSD) and the mean105

absolute percentage difference (MAPD) between the model prediction and the in situ ice thickness measurements. However,

in situ measurements within a glacier are highly correlated due to their proximity. Therefore, a simple random split of the data

into training and test datasets will not yield a realistic view of the model performance.

We employ a glacier-wise cross-validation (CV) approach as done by Bolibar et al. (2020) to better judge the model perfor-

mance. This also allows us to make assumptions on how well the model will perform on a glacier without any measured ice110

thicknesses.

For the Leave-One-Glacier-Out (LOGO) CV, we chose seven glaciers that serve as test glaciers. In an alternating way, we

train the model without one of those glaciers’ ice thickness measurements.

It is important to note that only data labelled with ice thickness measurements of the test glacier is left out of the dataset. All

the data needed to enforce the physical consistency for the test glacier stays in the training dataset. The mass-conserving PDE115

of Eq. 1 will still be solved at the test glacier but without enforcing boundary conditions with ice thickness measurements.

Upon validation, the RMSD and the MAPD are calculated for the test glacier. All the test glaciers are thoroughly mapped

with ice thickness measurements and differ in size, mean measured ice thickness, and location in Svalbard.

3 Data

In this study, we focus on the glaciers on the islands of Spitsbergen, Barentsøya, and Edgeøya. Glaciers in an active surge120

phase during the data acquisition period for the surface velocity are not considered. The information on active surge phases is

collected from Koch et al. (2023).
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3.1 Data management

We processed all the data needed for the training of the PINN using the open global glacier model (OGGM) framework

developed by Maussion et al. (2019). OGGM is an open-source framework to simulate glacier evolution. It provides models125

for mass balance, distributed ice thickness, and ice ow, as well as downloading tools for glacier outlines, digital elevation

models (DEM), and climate data. The mass balance model is a temperature index melt model relying on climate data.

OGGM saves all the information for each glacier separately in Glacier Directories. The Randolph Glacier Inventory (RGI),

Version 6.0 contains the outlines for the glaciers (RGI Consortium, 2017).

Using the outlines, OGGM denes a spatial grid for each glacier. The grid resolution is adapted individually according to130

the size of the glacier. In our study region, the grid resolution ranges from 12 m to 200 m. OGGM provides the data for this

study, which is projected onto the glacier grids.

3.2 Auxiliary data

The elevation of each point comes from the global DEM from Copernicus DEM GLO-90, which was acquired from 2010 to

2015 (Copernicus). The slope is then computed by OGGM based on the glacier’s smoothed topography and over the length135

of a grid cell on the glacier. The distance to the border of the glacier outline is computed for each point within a glacier. The

glacier area is also retrieved from the RGI.

3.3 Surface Velocity Data

Millan et al. (2022) derived the surface ow velocity of the world’s glaciers using image pairs acquired between 2017 and 2018

by Landsat 8, Sentinel-2, and Sentinel-1. They tracked glacier motion using a cross-correlation approach. The resolution of140

the velocity product is 50 m with an estimated accuracy of about 10 myr−1. Using OGGM, velocity in x- and y-direction and

velocity magnitude are projected onto the individual glacier grids and then smoothed with a two-dimensional Gaussian lter.

We introduce the aforementioned β value (see Sect. 2.2) to estimate the inuence of basal sliding on the measured surface

velocity vd = vs(1−β). Following Millan et al. (2022), we set β equal to 0.1 in areas where the ratio between slope and

observed surface velocity is greater than 0001 yr−1 m and modulate up to 09 for areas where the ratio is less than 0001145

yr−1 m.

3.4 Apparent mass balance

The apparent mass balance is the difference between the point-wise mass balance and the thickness change rate dhdt at each

grid point. The mass balance at each point of a glacier grid is estimated using the ConstantMassBalance model from OGGM.

It calculates the average mass balance during a chosen period from given climate data, calibrated with geodetic mass balance150

data from Hugonnet et al. (2021). To match the acquisition period of the surface velocity, we set the climate period for the mass

balance model to 2016-2018.
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Figure 2. Glaciers in the training dataset. (a) The locations of in situ measurements are marked in red. (b) The locations of the test glaciers.

The coastline is retrieved from Moholdt, G. et al. (2021).

The rate of thickness change dhdt is retrieved from ASTER DEM differences between 2015 and 2019 (Hugonnet et al.,

2021). The data is projected onto the glacier grids using OGGM and then smoothed with a two-dimensional Gaussian lter.

3.5 Thickness Data155

The data-driven machine learning model needs ice thickness data as ground truth for its supervised training. The Glacier

Thickness Database (GlaThiDa) is a comprehensive public database of in situ glacier thickness measurements collected from

various studies (GlaThiDa Consortium, 2020). Version 3.1.0 was released in 2020 with nearly one million measurements from

ice penetrating radar (IPR) on 207 glaciers or ice caps in Svalbard.

In situ ice thickness measurements are not error-free. GlaThiDa lists reported uncertainties of almost 80% of the mea-160

surements in Svalbard. The mean and standard deviation of the thickness uncertainty are 6.2 m and 4.4 m with a maximum

uncertainty of 21 m.

During the preprocessing, the measurements are projected onto the OGGM glacier grids by aggregating and averaging them

at their nearest point on the glacier grid. We only consider aggregated ice thicknesses where the average acquisition year is

after 2000. That leaves us with 27554 points labelled with ice thickness on 65 glaciers.165

The full dataset of points with and without ice thickness labels consists of over 3 million data points from the grids of 1465

glaciers. Figure 2 (a) displays the considered glaciers in light blue and the acquisition lines of the IPR measurements in red.
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RGI ID Area [km2] IPR Mean [m] IPR StD [m]

RGI60-07.00240 64.211 216.5 94.3

RGI60-07.00344 36.087 161.3 70.1

RGI60-07.00496 5.016 82.1 39.5

RGI60-07.00497 6.249 87.6 43.8

RGI60-07.01100 50.408 146.3 61.1

RGI60-07.01481 108.297 240.6 97.1

RGI60-07.01482 378.765 317.9 171.8

Table 1. Area of each test glacier together with the mean and standard deviation of the IPR ice thickness measurements.

Figure 3. Mean (left) and coefcient of variation (right) of the ice thickness predictions from all seven models from CV.

3.6 Test glaciers

Seven glaciers with the most in situ measurements are chosen as test glaciers for the LOGO CV. They differ in size and mean

thickness and are located in different areas of Spitsbergen. No glaciers on Barentsøya and Edgeøya are mapped well enough to170

use them as test glaciers.

Figure 2 (b) shows the location of the test glaciers. Table 1 lists the area, mean thickness, and standard deviation of the

thickness measurements on those glaciers.
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Test glacier In-sample validation LOGO validation

ID RMSD [m] MAPD RMSD [m] MAPD

RGI60-07.00240 29 0.32 82 0.31

RGI60-07.00344 30 0.37 54 0.40

RGI60-07.00496 32 0.35 40 0.51

RGI60-07.00497 29 0.32 49 0.82

RGI60-07.01100 30 0.35 42 0.70

RGI60-07.01481 29 0.35 79 0.75

RGI60-07.01482 28 0.33 121 0.58

Mean 30 0.34 67 0.58

Table 2. Results of the LOGO CV.

4 Results

The LOGO CV produces seven models with the same architecture but different model weights. Each model was trained on175

all the unlabelled data to enforce the physical constraints at every point. After putting aside the test glacier’s labelled data, the

remaining glaciers’ labelled data was randomly split into 60% training and 40% validation data.

The in-sample performance is measured based on the validation data the model did not see during the training. Table 2

lists the RMSD and MAPD for the in-sample validation data. The PINNs predict glacier ice thickness with a mean in-sample

RMSD of 30 m corresponding to a MAPD of 34%.180

Figure 3 shows the mean ice thickness prediction and the coefcient of variation over all seven LOGO models for the study

region. The coefcient of variation measures the variability in relation to the mean ice thickness at each point of the grid. 90%

of the points have a variability below 0.25. This is low compared to the variation between the three physics-based models

(Farinotti et al., 2019; Millan et al., 2022; van Pelt and Frank, 2024), with more than 0.70 variability for 90% of the points.

The PINN models agree with their predictions, although they were trained with different sets of ice thickness measurements as185

boundary conditions.

4.1 LOGO results

The model performance for the test glaciers delivers insights on the performance we can expect for glaciers where we do not

have any in situ measurements. Table 2 shows the results of the LOGO validation for each of the test glaciers. As expected, the

RMSD and MAPD are signicantly higher than for the in-sample validation data. Figure 4 shows the difference between the190

model’s ice thickness estimate and the in situ measurements along the IPR acquisition lines for the seven LOGO test glaciers

that were excluded from the dataset during training. Overall, the models underestimated the ice thickness. However, the model
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Figure 4. Difference between the predicted ice thickness and the IPR ice thickness measurements for the seven LOGO test glaciers.

trained without thickness data of glacier RGI60-07.01482 overestimates its ice thickness. The ice thickness estimates for the

entire grids of the glaciers are displayed in Fig. A1.

The test glaciers differ signicantly in mean ice thicknesses (see Table 1). For thinner glaciers like RGI60-07.00496 and195

RGI60-07.00497, the MAPD is very high, although their RMSD is comparable to the in-sample scores. The RMSD of glacier

RGI60-07.01482 is four times as high as the mean RMSD score of the in-sample glaciers, but as, on average, in situ measure-

ments are very thick, the MAPD is closer to the in-sample MAPD than the MAPD for a thinner test glacier. This makes it clear

that considering both validation scores is necessary to view the model performance accurately.

Over all seven test glaciers, the mean RMSD and the mean MAPD are about 67m and 0.58%, respectively, i.e. signicantly200

worse than the in-sample metric. This indicates that the PINN is overtting on glaciers with thickness measurements.

4.2 Comparison to other estimates

As we do not have full coverage with in situ measurements, the model scores only represent the model’s performance at the

acquisition lines of the IPR measurements. Therefore, we compare the ice thickness predictions to the estimates of Millan et al.

(2022), Farinotti et al. (2019), and van Pelt and Frank (2024) to see how much the estimates differ. All of those ice-thickness205

products are derived from physics-based models. Farinotti et al. (2019) estimated ice thickness using an ensemble of up to

ve models; therefore, the name consensus estimate. Millan et al. (2022) rely on a single model that uses the shallow-ice
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Figure 5. Comparisons of ice thickness estimates: a) Ice thickness prediction from the ensemble of PINNs versus ice thickness estimates

of Millan et al. (2022), Farinotti et al. (2019), and van Pelt and Frank (2024). b) Ice thickness estimates from physics-based models against

each other. The color indicates the point density (the brighter the denser). The solid red line shows the linear t between the two ice thickness

products. The black dashed line is the 1:1 line.

approximation and surface motion to compute ice thickness. van Pelt and Frank (2024) use two inverse methods, one for small

and one for larger and surging glaciers, to create their ice thickness product.

The plots in Fig. 5 show the scatter plot of the ice thicknesses of the PINN ensemble estimates versus the three other estimates210

for each point in the study region. The solid red line shows the linear t between the two ice thickness products, while the black

dashed line is the 1:1 line. The values of slope and intersect for the linear ts indicate that the PINN estimates agree slightly

less on the ice thickness at each grid point than the three physics-based models. Comparing the mean ice thickness estimate

from the ensemble of PINNs to the estimates of physics-based models shows that the deviations from the other estimates are

within the range of the differences between the physics-based models. Mean absolute differences (MAD) between the PINN215

and physics-based predictions are all close, with a mean of 33.7m. The MAD between the physics-based models is in the same

order of magnitude, and their mean MAD is at 34.3 m.

Since physics-based models also work with simplications of ice dynamics, their ice thickness products can not be taken as

denitive truth. Comparing the predictions of the PINN ensemble to those only serves to estimate the qualitative validity of the

ice thickness predicted by the PINN ensemble. The overall correlation between the ice thickness estimates leads us to believe220

that the PINN ensemble produces valid ice thickness estimates.
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Figure 6. Challenges for PINNs in a real-world setting.

4.3 Depth-averaged velocity

The models estimate the depth-averaged velocities in x- and y-direction. There is no ground truth data for the depth-averaged

velocities, so we can not evaluate the models’s accuracy. However, during training, the loss of the predicted velocities is reduced

signicantly, showing that the constraints of Eq. (3) are enforced.225

5 Discussion

Evaluating the PINN performance with the in-sample validation set and comparing predicted ice thicknesses to other prod-

ucts suggests that the PINN produces reasonable ice thickness estimates. However, testing the model with a glacier-wise CV

scheme unveils the lack of generalizability to glaciers without any measurement data. The differences between the predicted

ice thicknesses and the measurements are much higher for the test glaciers of the LOGO CV than for the in-sample validation.230

We identied several factors that may improve generalizability but are also challenging to address. The schematic of Fig. 6

shows an overview of the domains and the particular issues we judge as the most pressing to address.

5.1 Data

Although PINNs are generally relatively less dependent on training data than purely data-driven methods, their performance

relies on the quantity and quality of input data. This study collected the thickness measurements from 65 glaciers. The indi-235

vidual measurements lie close together along the acquisition lines. As a result, most of the measurements have high spatial

correlations with each other. The amount of independent training data to learn the physics of glaciers is, therefore, far less than

the actual number of measurements. On the other hand, redundant data introduces a bias. To reduce the overtting, we could
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reduce the correlations in the training dataset by averaging or sub-sampling the observations, for example. This should improve

the performance on glaciers without any labelled training data.240

Secondly, the training data is not aligned temporally. In situ ice thickness measurements were collected between 2000 and

2017, while the surface velocity was derived from satellite data acquired between 2017 and 2018. Using surface velocity for

the same year as ice thickness was measured would result in a better estimate of the ice ux for the labelled data and therefore

improve physical consistency within the model. However, this is only important if either ice thickness or velocity changes

signicantly with time.245

Lastly, we do not consider measurement errors in our dataset. Future work could account for measurement errors with

standard uncertainty quantication methods or even introduce error margins to the loss components as Morlighem et al. (2011)

did.

5.2 Model training

Training PINNs is difcult (Xu et al., 2023). One major challenge is to nd the optimal balance between the multi-scale250

contributions of each loss component. We empirically set the loss weights to a xed value for the entire training process. A

more sophisticated approach would be to automatically update the weights of the loss components during the training. This

introduces a minimal computational overhead but prevents the model from minimizing certain loss components faster than

others (Wang et al., 2023).

The multiple loss components create another challenge: the loss landscape is highly complex, and nding its global mini-255

mum is difcult. Recently, Rathore et al. (2024) investigated different optimizers for PINNs and showed that combined rst-

and second-order optimizers lead to faster convergence. Implementing their newly introduced second-order optimizer could

improve the PINN convergence. Optimizing the loss function is a rapidly evolving area of research, and we expect signicant

advances to be achieved soon.

5.3 Physical constraints260

Ultimately, we want to achieve the physical consistency of our predictions. However, the physics-aware losses are based on

simplifying assumptions to make the problem tractable. In our case, the two elements that should be revised are modelling the

mass balance and estimating the basal sliding velocity.

In this study, we use the ConstantMassBalance model from OGGM out of the box without further calibration. Using a more

sophisticated mass balance model to precisely calibrate it for our purpose could enhance physical consistency, leading to better265

results.

The estimate of basal sliding is a simplied approach using a threshold calibrated by Millan et al. (2022). We could, in

principle, circumvent the need to estimate basal sliding contributions using surface velocity data acquired during winter months.

In winter, due to the absence of extensive meltwater, basal sliding is inhibited. Therefore, the measurable surface velocity will

have less contribution from basal sliding. In this way, we could avoid estimating the β-parameter and still have a reasonable270

approximation of the depth-averaged deformation velocity.
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Simplifying the physics also means we pick physical constraints that are easy to incorporate. In return, we have a highly

under-constrained system. This may cause a lack of generalizability for glaciers without any ice thickness data. It would

surely be benecial to incorporate additional constraints like momentum conservation. While this is technically easy to do, it

further complicates the optimization of the model. Therefore, high-quality data is required to support the additional constraint.275

Depending on the data quality, we risk introducing more uncertainty than improving the physical consistency.

5.4 Evaluation

In geospatial machine learning, evaluation is generally challenging (Rolf, 2023). As mentioned in Sect. 2.4, the in situ measure-

ments are heavily correlated since they are clustered on only a fraction of the glaciers. Therefore, we employ a spatially-aware

evaluation method to estimate the true model performance. However, the CV procedure only includes seven of 65 glaciers with280

measurements. There is no guarantee that we will fully capture the model performance.

As mentioned, in situ ice thicknesses are subject to measurement errors, and some measurements might have higher errors

than others. To be as precise as possible when evaluating the model performance, we should consider the trustworthiness of

every ice thickness label.

Ultimately, our problem has no benchmark dataset, so it is impossible to know the model performance exactly. Although285

we compare our ice thickness estimates with others, these also have errors that are not well constrained and are, in no respect,

benchmarks that can be used for uncertainty quantication. It is, therefore, difcult to state which estimation method consid-

ered here produces the most reliable ice thickness estimate.

Despite the above-mentioned limitations, we show that a relatively simple PINN can produce reasonable ice thickness290

estimates while treating an entire area and not only a single glacier at once. Although the lack of high quality data is an

overarching challenge that can hardly be overcome, we expect that by implementing the proposed adjustments in data curation,

model training, and physical constraints, the physical consistency and accuracy of the model will be improved. This may

especially be the case for glaciers without measured ice thicknesses.

6 Conclusions295

We have demonstrated that it is possible to train a physics-aware machine learning model to produce ice thickness estimates

for multiple glaciers, including glaciers without any ground truth ice thickness: in other words, out of sample targets. We

deploy a relatively simple physical constraint by imposing mass conservation in the loss function of the PINN. More complex

approaches and physical constraints could be employed (Karniadakis et al., 2021) and would, we anticipate, improve the results

further. Nonetheless, we demonstrate that physics-aware machine learning is a promising approach for tackling a geophysical300

problem where a physical law or condition provides a strong constraint for the solution. There are many other geophysical

problems where, for example, conservation of mass, energy or momentum would provide a similarly effective constraint and

would lead to a more scientically meaningful result, as breaching such constraints is non-physical.
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Figure A1. Ice thickness prediction for the seven LOGO test glaciers.

Code and data availability. The code and data that was used to train and evaluate the model as well as generating the gures are available at

https://doi.org/10.5281/zenodo.11474955. Additionally, the code can be viewed at https://github.com/viola1593/glacier_pinn.305

Appendix A: PINN ice thickness prediction on LOGO test glaciers

The ice thicknesses of the seven test glaciers were estimated by the model that was trained without the in situ measurements of

the respective glaciers as ground truth data. The results are displayed in Fig. A1

Appendix B: Relation between surface and depth-averaged velocity to set llower

To derive a relation between the surface velocity and the depth-averaged velocity, we follow the analysis in Cuffey and Paterson310

(2010). Let u be the x-component of velocity andH be the ice thickness. Assuming parallel ow, the glacier deforms in simple

shear, so the only nonzero deviatoric stress is τxz , and the z-component of the velocity is also zero. Therefore, the creep relation

derived by Glen (1955) simplies to

1

2

du

dz
= Aτnxz (B1)
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where A is the creep parameter and n the creep exponent. We assume a linear increase of shear stress along the glacier depth315

τxz = τb


1− z

H


(B2)

with τb being the shear stress at the bed of the glacier. If we now integrate B1 along the vertical direction up to z we get

u(z) = ub +
2A

n+1
τnb H


1−


1− z

H

n+1

 (B3)

Accordingly, the velocity at the surface is given by

us = ub +
2A

n+1
τnb H (B4)320

and integrating B3 along the vertical axis to derive the depth-averaged velocity we get

ū= ub +
2A

n+2
τnb H (B5)

A is assumed to be constant although depends on temperature and other variables that change within a glacier prole. Temperate

glaciers are nearly isothermal, whereas in cold-based glaciers, the temperature increases with a smaller distance to the bed. The

highest values of A are found near the glacier bed. Therefore, the shear deformation is concentrated closer to the base than in325

a temperate glacier. The velocities within the bottom half of the glacier are sensitive to the value of A as it multiplies stress to

the power of n. As stress decreases in the upper half of the glacier, the velocity is insensitive to the values of A there.

From B4 and B5, we can derive the relation between the surface velocity and the depth-averaged velocity in the case of

parallel ow and if there is no basal sliding:

ū

u
=

n+1

n+2
= 08 (B6)330

for n= 3. After all, parallel ow in a glacier is a strong assumption and n= 3 is not always the case. Therefore, we set llower

to 0.7 to allow more exibility in estimating the depth-averaged velocity.
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