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Abstract. The ice thickness of the world’s glaciers is mostly unmeasured, and physics-based models to reconstruct ice thickness

can not always deliver accurate estimates. In this study, we use deep learning paired with physical knowledge to generate ice

thickness estimates for all glaciers of Spitsbergen, Barentsøya, and Edgeøya in Svalbard. We incorporate mass conservation

and other physically derived conditions into a neural network to predict plausible ice thicknesses even for glaciers without any5

in situ ice thickness measurements. With a glacier-wise cross-validation scheme, we evaluate the performance of the physics-

informed neural network. The results of the experiments let us identify several challenges and opportunities that affect the

model’s performance in a real-world setting.

1 Introduction

Glacier ice thickness is a fundamental variable required for modelling the evolution of a glacier, as ice thickness and surface10

slope govern the ice ux at each point of the glacier (Cuffey and Paterson, 2010).

.

Ice


thickness


is


the


single


most


important


input


for


modelling


the


dynamics


of


an


ice


mass


because


surface


velocity


is


proportional


to


the


fourth


power


of


thickness


(Cuffey and Paterson, 2010).


Combined


with


surface


elevation,


it

provides


bed


topography,


also


key


for


modelling


ow. How-

ever, direct measurements of ice thickness are scarce. In situ ice thickness measurements exist for only around 4700 of

a


fraction


of


the


215000 glaciers in the world (Millan et al., 2022)


(Welty et al., 2020).15

Physics-based approaches

There


are


physics-based


and


process-based


approaches


that


aim to reconstruct glacier ice thick-

nesses from the limited in situ data

and


ice


dynamical


considerations. Farinotti et al. (2017) compared 17 models and found

that their ice thickness estimates differ considerably on the test glaciers. Following these results, Farinotti et al. (2019) created

an ensemble of ve models to develop a consensus estimate of ice thicknesses for the world’s glaciers in 2019. Later, Millan

et al. (2022) derived ice thickness estimates for the world’s glaciers using ice motion as the primary constraint. However, these20

results still differ from Farinotti et al. (2019) consensus estimate. It is evident, therefore, that signicant uncertainty remains in

ice thickness estimates.
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Machine learning approaches are exible and adapt well to complex structures and non-linear behaviour. They have already

been employed to model glacier quantities like surface-mass-balance (Bolibar et al., 2020; Anilkumar et al., 2023)

or


ice


thickness


(Haq et al., 2021), classify surge-type glaciers (Bouchayer et al., 2022), or model glacier ow (Jouvet, 2023; Min25

et al., 2019). One advantage of data-driven approaches is a signicant speed-up compared to physics-based

machine


learning


approaches


is


their


efcient


optimization


and


evaluation


compared


to


process-based models (Jouvet et al., 2022). The disad-

vantages of purely data-driven

machine


learning


models are that they do not guarantee the physical correctness of the predicted

quantities, and they often need huge amounts of training data to fully represent the system’s complexity.

Recently, a new framework of data-driven but physically constrained models was described as physics-informed neural30

networks (PINNs) by Raissi et al. (2018). They exploit that neural networks can represent solutions to partial differential

equations (PDE) if the squared residual of the governing PDE acts as the loss function of the neural network (Lagaris et al.,

1998). Partial derivatives with respect to the model inputs are easy to calculate with the automatic differentiation algorithm that

is used to train neural networks. PINNs do not require a discrete grid to be evaluated. Therefore, they are very data-efcient as

the physics-based loss can be evaluated at any point within the training domain (Xu et al., 2023). Additional ground truth data35

can be used to compute a data loss that acts as a boundary condition to solve

an


internal


condition


to


constraining


solutions


to

the PDE.

Teisberg et al. (2021) used a

PINNs


and


variations


thereof


were


also


already


used


for


predicting


ice


ow


(Jouvet and Cordonnier, 2023)


,

inferring


basal


drag


of


ice


streams


(Riel et al., 2021)


or


ice


shelf


rheology


(Wang et al., 2022; Iwasaki and Lai, 2023)


,

for


example.


40


Cheng et al. (2024)


built


a

unied


framework


involving


a

PINN


to


model


ice


sheet


ow


by


enforcing


momentum


conservation


derived


from


the


Shelfy-Stream


Approximation.


They


apply


their


framework


to


a

single


glacier


in


Greenland


to


showcase


the


ability


of


the


PINN


to

reconstruct


ice


thickness


and


basal


friction


simultaneously.


Instead


of


using


momentum


conservation,


Teisberg et al. (2021)


created


a

mass-conserving PINN to produce realistic ice

thickness and depth-averaged ice ow maps for a single glacier in Antarctica,

without


further


consideration


of


bed


properties.45

They showed that

,

for


their


case, solving for mass conservation and additional constraints or regularizing terms is possible with

a PINN

produces


a


valid


ice


thickness


estimate.

This work extends the

mass-conserving


approach to predict ice thickness for


multiple


glaciers.


As


a

proof


of


concept,


we


include all non-surging glaciers in Spitsbergen, Barentsøya, and Edgeøya in Svalbard


to


show


that


it

is


possible


to


use


a


PINN


architecture


for


an


entire


region. These regions include glaciers with various morphologies, from valley glaciers to ice caps.50

To better account for the glaciers’ multiple

variety


of


glacier geometries, sizes, and ow velocities, we include additional input

features, e.g., slope and elevation. The challenge is to nd a conguration of inputs and physical constraints that is general

enough to describe the variety of glaciers in the study region. At the same time, the constraints and inputs should be strict

enough to force the model to produce physically correct outputs.

Ice thickness measurements exist only for a fraction of the glaciers in the dataset, and there is no benchmark dataset to55

measure the model’s performance. Therefore, we need a validation method that assesses the performance, although there is

no ground truth. To this end, we estimate the expected drop in performance for glaciers without ice thickness measurements
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performing glacier-wise cross-validation. Also, we compare our ice thickness estimates to those of Millan et al. (2022), the

consensus estimate of Farinotti et al. (2019) for our study region. These estimates are no benchmark datasets but are widely

accepted in the community. Additionally, we compare to the recently published ice thickness estimate of van Pelt and Frank60

(2024) tailored to the region of Svalbard.


Finally,


we


discuss


the


challenges


and


opportunities


of


the


approach


and


pathways


to


improve


the


ice


thickness


estimate.



2 Physics-aware machine learning

2.1 Mass conservation

Assuming ice to be incompressible and integrating vertically along the depth of a glacier, we retrieve the two-dimensional form65

of the mass conservation

∂H

∂t
+ · (v̄H) = ḃ (1)

with H being the ice thickness and ḃ denotes the mass balance of the glacier. v̄ = (v̄x, v̄y) is the velocity caused by the

deformation of ice, averaged along the vertical axis. We will refer to v̄ as the depth-averaged velocity in the following. Equation

1

(1) can be reformulated as70

 · (v̄H)− ȧ= 0 (2)

with ȧ= ḃ−∂tH known as the apparent mass balance. In other words, the ux divergence on a glacier equals its apparent mass

balance.

2.2 Depth-averaged velocity and basal sliding

The surface ow velocity vs of a glacier can be measured from space but is composed of the velocity from icedeformation75

and the

Glacier


ow


is

the


result


of


gravity-induced


stresses


on


the


icesliding along the bedrock: vs = vd + vb. We are

only interested in the contributions to the glacier velocity caused by ice deformation because this is the only component

directly related to ice thickness via

.

Friction


between


the


ice


and


the


glacier


bed


or


sidewalls,


friction


between


slower


and


faster-moving


ice


within


the


glacier,


and


gradients


in


longitudinal


tension


or


compression


encounter


the


gravitational


stress


(van der Veen, 2013).


The


resulting


ice


movements


depend


on


many


factors,


such


as


the


physical


properties


of


the


ice


like80


temperature,


impurities,


or


density,


and


also


conditions


at


the


glacier


bed


(Jiskoot, 2011).




From


space,


we


can


observe


the


surface


velocity


of


glaciers.


To


infer


thickness


from


mass


conservation


we


would


need


to


know


the


depth-averaged


velocity.




There


are


models


with


different


degrees


of


approximations


to


the


full


Navier-Stokes


equations


to


describe


ice


ow.


The


simplest


one,


the


shallow


ice


approximation


(SIA)


assumes


lamellar


ow,


so


the


driving


forces


are


entirely


opposed


by


basal85


drag.


It


neglects


lateral


shear


and


longitudinal


stresses


and


the


rate


factor


A


from Glen’s ow law (Glen, 1955). Therefore, we

estimate the contribution of basal sliding by introducing a

is


taken


to


be


constant


with


depth


(van der Veen, 2013).
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From


this


model,


we


can


derive


that


the


depth-averaged


velocity


relates


to


the


surface


velocity


like


v̄ = 08vs 

assuming

the


ow


velocity


at

the


base


of


the


glacier


is

0


(see


Appendix


A


for


derivation).


However,


basal


velocity


is


unlikely


to


be


0.




The


basal


sliding


velocity


tightly


relates


to


the


properties


of


the


glacier


bed


and


complex


interactions


between


water,90


sediment,


and


ice


at


the


glacier


bed


(Cuffey and Paterson, 2010).


Millan et al. (2022)


introduced


an


empirical factor β that

is derived from the ratio of slope and observed surface velocityassuming vd = vs(1−β).

Now, the depth-averaged velocity is not equal to the surface velocity because, at its base, the glacier experiences drag from

its bed

with


vb = βvs

to

account


for


contributions


from


basal


sliding.


They


derive


the


factor


from


the


ratio


between


surface


slope


and


surface


velocity. The basal drag balances the horizontal shear stress. We95


If

the


ice


velocity


is

entirely


by


slip


along


the


glacier


bed


then


vs = vb = v̄.


Accordingly,


we


estimate the depth-averaged

velocity to be within the bounds of

(llower·vs+ (1−1− llower)·


β)·vs


< v̄<≤

vs(1− β) (3)

where llower should lie within ]0,1]. We x llower = 07 (see Appendix A for derivation).

acts


as


a


parameterization


for


the


vertical


integration


of


the


velocity


and


can


be


set


between


0

and


1.


Depending


on


the


factor


β


that


lies


between


0.1


and


1


the100


lower


boundary


is

close


to


the


dened


llower

or

closer


to


1.


For


β = 1


the


lower


boundary


for


the


depth-averaged


velocity


equals


the


surface


velocity.

Depth-averaged velocities are estimated for the x- and y-direction and the velocity magnitude. Therefore, we calculate three

separate β-values.

2.3 PINN Model105

Figure 1 shows a schematic of the model with its input features, outputs, and loss components. The model is a

As


already


mentioned,


a

PINN


consists


of


a

neural


network


that


is


able


to


approximate


the


solution


to

a

PDE


(Karniadakis et al., 2021)


.


A

neural


network,


also


sometimes


called


multi-layered


perceptron,


consists


of


layers


of


connected


nodes,


also


called


neurons,


where


the


connections


each


have


an


associated


weight.


At


each


node,


the


weighted


outputs


from


each


node


of


the


previous


layer


are


passed


through


a

non-linear


activation


function


(Goodfellow et al., 2016).


By


minimizing


a


loss


the


weights


of


the110


network


are


updated


to

make


accurate


predictions.




In


a

PINN


model


the


loss


is


given


by


the


residual


of


the


PDE


we


want


to


solve.


In


theory,


PINNs


only


require


input


features


that


are


needed


to

calculate


the


derivatives


in


the


PDE


(Raissi et al., 2018)


.

In


our


work,


we


also


provide


the


neural network

with eight fully connected layers and a preceding Fourier layer. Tancik et al. (2020) described the theory of Fourier layers.

They map the input coordinates

auxiliary


data,


that


is

related


to


glacier


ice


thickness


but


is


not


needed


to


solve


the


PDE.115


Therefore,


we


can


exploit


information


from


observable


data


as


we


would


do


it

with


a

non-physics-aware


neural


network.




Additionally,


we


use


a

Fourier


feature


encoding


layer


as


described


by


Tancik et al. (2020)


preceding


the


neural


network.


A


Fourier


feature


encoding


layer


maps


input


vector


x to a higher dimensional space, which


feature


space


using

γ(x) =


[cos(2πBx),sin(2πBx)


]⊺


(4)
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Figure 1. Physics-informed model with inputs, outputs, and components adding to the loss function.


The


embedding


of


spatial


coordinates


was


originally


developed


to

overcome


spectral


bias


in


neural


networks


and


speed120


up


convergence


in


the


reconstruction


of


images.


It

enables the network to learn high-frequency functions in low-dimensional

problem domains.


Figure


1


shows


a


schematic


of


the


PINN


model


with


its


input


features,


outputs,


and


loss


components.


The


exact


architecture


of


the


PINN


is


described


in


Appendix


B In addition to the spatial coordinate of each training point, we also feed the neural

network with

The


inputs


to


the


model


are


vectors


for


each


grid


cell


in


the


study


region.


They


contain


the


spatial


coordinates125


and


surface


velocities


in


x-


and


y-directions,


and


three


β

values


to


correct


for


basal


sliding


in


x-


and


y-direction


and


in


the


magnitude.


Additionally,


the


vectors


contain


auxiliary data like slope, elevation,


elevation,


slope,


the


grid


cell’s distance to the

border of the

its


glacier, and the area of the glacier the point


it belongs to. Also, the network receives the three β values that

were computed to estimate the contribution of basal sliding.

A non-linear activation function follows each layer of the neural network except the output layer:130

Softplus:f(x) = log(1+ exp(x))

Softplus is innitely differentiable. This is important to avert vanishing gradients during optimization (Leng and Thiyagalingam, 2023)


Only


the


spatial


coordinates


get


mapped


to


higher


dimensional


Fourier


features.

The model outputs three quantities at each point of query: the ice thickness

Hand depth-averaged deformation velocity


velocity

̄
v in x- and y-direction. The predicted quantities must full the mass conservation described in Equation 2


Eq.


(2). The135
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squared deviation from this equation is the rst component of the loss function:

Lmc = ( · (v̄H)− ȧ)2 (5)

The second component of the loss function is the amount by which the depth-averaged velocity estimates in the horizontal

plane exceed the boundaries given in Eq. 3

(3):

Lvel =





(vs − v̄)2 if v̄ > vs

(vs(llower +(1− llower)β)− v̄)2 if v̄ < vs(llower +(1− llower)β)

0 else

with  {x,y,magnitude} 
with v̄

(6)140

Lvel is calculated separately for the x- and y-component and the magnitude of the depth-averaged velocity.

As


basal


drag


is

most


likely


not


the


only


drag


the


ice


experiences,


we


decided


to


x


the


lower


bound


as


llower = 07


in


order


to


give


more


exibility


in


the


estimate.



We include two more physics-aware constraints to improve the model performance: First, the ice thickness is assumed to be

smooth, so the model will penalize large spatial derivatives within the ice thickness prediction:145

Lsmooth = (H)2 (7)

Secondly, ice thickness cannot be smaller than 0. Therefore, we add a loss component that punishes negative ice thicknesses to

the loss function.

LH>0 =




H2 if H < 0

0 else
(8)

The nal loss component is the data loss. It penalizes the deviation from the in situ ice thickness measurements and acts as the150

boundary condition to solve the mass-conserving PDE. Each loss component will have a different scale, so we balance them

with individual weights λi. Summing up all the loss components, we get the complete loss function as:

L= λmcLmc +λvelLvel +λsmoothLsmooth +λH>0LH>0 +λdataLdata (9)

All the physics-aware losses are evaluated at any point in the study region. In contrast, the data loss is only evaluated wherever

ice thickness measurements are available.

We


refer


to


the


points


with


ice


thickness


measurements


as


labelled,


and


points155


without


ice


thickness


measurements


are


referred


to


as


unlabelled.



The training data is scaled to have a mean of 0 and a variance of 1. Before computing the physics-aware loss components,

we scale the quantities back to their original units for physical consistency.
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2.4 Validation

We evaluate the performance of the PINN model by calculating the root mean squared difference (RMSD) and the mean160

absolute percentage difference (MAPD) between the model prediction and the in situ ice thickness measurements. However,

in situ measurements within a glacier are highly correlated due to their proximity. Therefore, a simple random split of the data

into training and test datasets will not yield a realistic view of the model performance.

We employ a glacier-wise cross-validation (CV) approach as done by Bolibar et al. (2020) to better judge the model perfor-

mance. This also allows us to make assumptions on how well the model will perform on a glacier without any measured ice165

thicknesses.

For the Leave-One-Glacier-Out (LOGO) CV, we chose seven glaciers that serve as test glaciers. In an alternating way, we

train the model without one of those glaciers’ ice thickness measurements.

It is important to note that only data labelled with ice thickness measurements of the test glacier is left out of the dataset. All

the data needed to enforce the physical consistency for the test glacier stays in the training dataset. The mass-conserving PDE170

of Eq. 1

(1)


will still be solved at the test glacier but without enforcing boundary conditions with ice thickness measurements.

Upon validation, the RMSD and the MAPD are calculated for the test glacier. All the test glaciers are thoroughly mapped

with ice thickness measurements and differ in size, mean measured ice thickness, and location in Svalbard.

3 Data

In this study, we focus on the glaciers on the islands of Spitsbergen, Barentsøya, and Edgeøya. Glaciers in an active surge175

phase during the data acquisition period for the surface velocity are not considered. The information on active surge phases is

collected from Koch et al. (2023).

3.1 Data management

We processed all the data needed for the training of the PINN using the open global glacier model (OGGM) framework

developed by Maussion et al. (2019). OGGM is an open-source framework to simulate glacier evolution. It provides models180

for mass balance, distributed ice thickness, and ice ow, as well as downloading tools for glacier outlines, digital elevation

models (DEM), and climate data. The mass balance model is a temperature index melt model relying on climate data.

OGGM saves all the information for each glacier separately in Glacier Directories. The Randolph Glacier Inventory (RGI),

Version 6.0 contains the outlines for the glaciers (RGI Consortium, 2017).

Using the outlines, OGGM denes a spatial grid for each glacier. The grid resolution is adapted individually according to185

the size of the glacier. In our study region, the grid resolution ranges from 12 m to 200 m. OGGM provides

reprojects


and


scales the data for this study, which is projected onto


each


glacier


to the glacier grids.


We


collect


these


data


and


transform


the


coordinates


from


the


individual


grids


into


a


common


projection.
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3.2 Auxiliary data

The elevation of each point comes from the global DEM from Copernicus DEM GLO-90, which was acquired from 2010 to190

2015 (Copernicus). The slope is then computed by OGGM based on the glacier’s smoothed topography and over the length

of a grid cell on the glacier. The distance to the border of the glacier outline is computed for each point within a glacier. The

glacier area is also retrieved from the RGI.

3.2 Surface Velocity Data

Millan et al. (2022) derived the surface ow velocity of the world’s glaciers using image pairs acquired between 2017 and 2018195

by Landsat 8, Sentinel-2, and Sentinel-1. They tracked glacier motion using a cross-correlation approach. The resolution of

the velocity product is 50 m with an estimated accuracy of about 10 myr−1. Using OGGM, velocity in x- and y-direction and

velocity magnitude are projected onto the individual glacier grids and then smoothed with a two-dimensional Gaussian lter.

We introduce the aforementioned β value (see Sect. 2.2) to estimate the inuence of basal sliding on the measured surface

velocity vd = vs(1−β)

vb = βvs. Following Millan et al. (2022), we set β equal to 0.1 in areas where the ratio between slope200

and observed surface velocity is greater than 0001 yr−1 m and modulate up to 09 for areas where the ratio is less than 0001

yr−1 m.

For


each


point,


we


compute


three


β


values


from


the


surface


velocities


in


the


x-


and


y-direction


and


the


magnitude


of


the


surface


velocity.

3.3 Apparent mass balance

The apparent mass balance is the difference between the point-wise mass balance and the thickness change rate dhdt at each205

grid point. The mass balance at each point of a glacier grid is estimated using the ConstantMassBalance model from OGGM.

It calculates the average mass balance during a chosen period from given climate data, calibrated with geodetic mass balance

data from Hugonnet et al. (2021). To match the acquisition period of the surface velocity, we set the climate period for the mass

balance model to 2016-2018.

The rate of thickness change dhdt is retrieved from ASTER DEM differences between 2015 and 2019 (Hugonnet et al.,210

2021). The data is projected onto the glacier grids using OGGM and then smoothed with a two-dimensional Gaussian lter.

3.4 Thickness Data

The data-driven machine learning model needs ice thickness data as ground truth for its supervised training. The Glacier

Thickness Database (GlaThiDa) is a comprehensive public database of in situ glacier thickness measurements collected from

various studies (GlaThiDa Consortium, 2020). Version 3.1.0 was released in 2020 with nearly one million measurements from215

ice penetrating radar (IPR) on 207 glaciers or ice caps in Svalbard.

In situ ice thickness measurements are not error-free. GlaThiDa lists reported uncertainties of almost 80% of the mea-

surements in Svalbard. The mean and standard deviation of the thickness uncertainty are 6.2 m and 4.4 m with a maximum

uncertainty of 21 m.
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Figure 2. Glaciers in the training dataset. (a) The locations of in situ measurements are marked in red. (b) The locations of the test glaciers.

The coastline is retrieved from Moholdt, G. et al. (2021).

During the preprocessing, the measurements are projected onto the OGGM glacier grids by aggregating and averaging them220

at their nearest point on the glacier grid. We only consider aggregated ice thicknesses where the average acquisition year is

after 2000. That leaves us with 27554 points labelled with ice thickness on 65 glaciers.

3.5

Auxiliary


data


Adding


to


the


data


that


we


need


to


impose


the


physics-aware


losses,


we


also


feed


the


network


with


extra


information


from


auxiliary


data


as


input


features.


We


chose


the


features


because


they


were


easily


available


through


OGGM


and


are


related


to


the225


glacier’s


ice


thicknesses.


In


Appendix


E

we


analyze


how


each


of


the


features


impact


the


model


output.


The


elevation


of


each


point


comes


from


the


global


DEM


from


Copernicus


DEM


GLO-90,


which


was


acquired


from


2010


to


2015


(Copernicus).


The


slope


is


then


computed


by


OGGM


based


on


the


glacier’s


smoothed


topography


and


over


the


length


of


a

grid


cell


on


the


glacier.


The


distance


to


the


border


of


the


glacier


outline


is

computed


for


each


point


within


a


glacier.


The


glacier


area


is

also


retrieved


from


the


RGI.


230

The full dataset of points with and without ice thickness labels consists of over 3 million data points from the grids of 1465

glaciers. Figure 2 (a) displays the considered glaciers in light blue and the acquisition lines of the IPR measurements in red.

3.6 Test glaciers

Seven glaciers with the most in situ measurements are chosen as test glaciers for the LOGO CV. They differ in size and mean

thickness and are located in different areas of Spitsbergen. No glaciers on Barentsøya and Edgeøya are mapped well enough to235

use them as test glaciers.
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RGI ID Area [km2] IPR Mean [m] IPR StD [m]

Survey


year


Mean

 
Num


of


Measurements

RGI60-07.00240 64.211 216.5 94.3

2008


1200

RGI60-07.00344 36.087 161.3 70.1

2002


667

RGI60-07.00496 5.016 82.1 39.5

2010


1069

RGI60-07.00497 6.249 87.6 43.8

2010


884

RGI60-07.01100 50.408 146.3 61.1

2012


1684

RGI60-07.01481 108.297 240.6 97.1

2015


695

RGI60-07.01482 378.765 317.9 171.8

2015


2202

Table 1. Area of each test glacier together with the mean and standard deviation of the IPR ice thickness measurements

,

mean


acquisition


year,


and


number


of

IPR


measurements.

Figure 3. Mean (left) and coefcient of variation (right) of the ice thickness predictions from all seven models from CV.

Figure 2 (b) shows the location of the test glaciers. Table 1 lists the area, mean thickness, and standard deviation of the

thickness measurements on

measured


ice


thicknesses,


and


mean


of


the


survey


year


for those glaciers.


Measurements


on


glaciers


RGI60-07.00496


and


RGI60-07.00497


are


all


from


one


survey,


while


the


others


are


from


multiple


surveys


carried


out


in


different


years.


240
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Test glacier In-sample validation LOGO validation

ID RMSD [m] MAPD RMSD [m] MAPD

RGI60-07.00240 29

30


0.32


0.36 82


77


0.31


0.30

RGI60-07.00344 30

31


0.37


0.38 54


55


0.40

RGI60-07.00496 32

33


0.35 40


38


0.51


0.49

RGI60-07.00497 29

30


0.32


0.36 49


46


0.82


0.94

RGI60-07.01100 30

31


0.35


0.34 42


40


0.70


0.65

RGI60-07.01481 29

30


0.35


0.36 79


83


0.75


0.77

RGI60-07.01482 28

29


0.33


0.34 121


124 0.58


0.54

Mean 30 0.34

0.36 67


66


0.58

Table 2. Results of the LOGO CV.

The


in-sample


validation


scores


are


measured


from


the


validation


set


that


contains


in


situ


data


from


every


glacier


but


the


test


glacier


that


was


left


out


during


training.


The


LOGO


validation


scores


are


measured


from


the


in


situ


data


for


the


left


out


test


glacier.

4 Results

The LOGO CV produces seven models with the same architecture but different model weights. Each model was trained on

all the unlabelled data to enforce the physical constraints at every point. After putting aside the test glacier’s labelled data, the

remaining glaciers’ labelled data was randomly split into 60% training and 40% validation data.

The in-sample performance is measured based on the validation data the model did not see during the training. Table 2245

lists the RMSD and MAPD for the in-sample validation data. The PINNs predict glacier ice thickness with a mean in-sample

RMSD of 30 m corresponding to a MAPD of 34

36%.


The


training


and


validation


data


are


spatially


correlated.


Therefore,


the


in-sample


evaluation


of


the


model


probably


overestimates


its


performance.

Figure 3 shows the mean ice thickness prediction and the coefcient of variation over all seven LOGO models for the study250

region. The coefcient of variation measures the variability in relation to the mean ice thickness at each point of the grid. 90%

of the points have a variability below 0.25. This is low compared to the variation between the three physics-based models

(Farinotti et al., 2019; Millan et al., 2022; van Pelt and Frank, 2024), with more than 0.70 variability for 90% of the points.


0.16.


As


the


in-sample


validation


scores


of


each


model


are


also


similar,


we


are


condent


that


the


method


is

robust


to


varying


labelled


data. The PINN models agree with their predictions, although they were trained with different sets of ice thickness255

measurements as boundary conditions

target


data.
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Figure 4. Difference between the predicted ice thickness and the IPR ice thickness measurements for the seven LOGO test glaciers.

4.1 LOGO results

The model performance for the test glaciers delivers insights on the performance we can expect for glaciers where we do not

have any in situ measurements. Table 2 shows the results of the LOGO validation for each of the test glaciers. As expected, the

RMSD and MAPD are signicantly higher than for the in-sample validation data. Figure 4 shows the difference between the260

model’s ice thickness estimate and the in situ measurements along the IPR acquisition lines for the seven LOGO test glaciers

that were excluded from the dataset during training. Overall, the models underestimated the ice thickness. However, the model

trained without thickness data of glacier RGI60-07.01482 overestimates its ice thickness. The ice thickness estimates for the

entire grids of the glaciers are displayed in Fig. C1.

The test glaciers differ signicantly in mean ice thicknesses (see Table 1). For thinner glaciers like RGI60-07.00496 and265

RGI60-07.00497, the MAPD is very high, although their RMSD is comparable to the in-sample scores. The RMSD of glacier

RGI60-07.01482 is four times as high as the mean RMSD score of the in-sample glaciers, but as, on average, in situ measure-

ments are very thick, the MAPD is closer to the in-sample MAPD than the MAPD for a

an


on


average


thinner test glacier.

This makes it clear that considering both validation scores is necessary to view the model performance accurately.

Another


example


of


that


would


be


the


comparison


of


performances


on


glaciers


RGI60-07.00240


and


RGI60-07.01481.


They


have270


similar


measured


ice


thicknesses


and


RMSD


scores


but


their


MAPDs


differ


greatly.
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Over all seven test glaciers, the mean RMSD and the mean MAPD are about 67

66


m and 0.58%, respectively, i.e. signi-

cantly worse than the in-sample metric. This indicates that the PINN is overtting on glaciers with thickness measurements.

4.2 Comparison to other estimates

As we do not have full coverage with in situ measurements, the model scores only represent the model’s performance at the275

acquisition lines of the IPR measurements. Therefore, we compare the ice thickness predictions to the estimates of Millan et al.

(2022), Farinotti et al. (2019), and van Pelt and Frank (2024) to see how much the estimates differ. All of those ice-thickness

products are derived from physics-based models. Farinotti et al. (2019) estimated ice thickness using an ensemble of up to

ve models; therefore, the name consensus estimate. Millan et al. (2022) rely on a single model that uses the shallow-ice

approximation and surface motion to compute ice thickness. van Pelt and Frank (2024) use two inverse methods, one for small280

and one for larger and surging glaciers, to create their ice thickness product.

The plots in Fig. 5 show the scatter plot of the ice thicknesses of the PINN ensemble estimates versus the three other estimates

for each point in the study region. The solid red line shows the linear t between the two ice thickness products, while the black

dashed line is the 1:1 line. The values of slope and intersect for the linear ts indicate that the PINN estimates agree slightly

less on the ice thickness at each grid point than the three physics-based models. Comparing the mean ice thickness estimate285

from the ensemble of PINNs to the estimates of physics-based models shows that the deviations from the other estimates are

within the range of the differences between the physics-based models. Mean absolute differences (MAD) between the PINN

and physics-based predictions are all close, with a mean of 33.7

34 m. The MAD between the physics-based models is in the

same order of magnitude, and their mean MAD is at 34.3 m.

Since physics-based models also work with simplications of ice dynamics, their ice thickness products can not be taken as290

denitive truth. Comparing the predictions of the PINN ensemble to those only serves to estimate the qualitative validity of the

ice thickness predicted by the PINN ensemble. The overall correlation between the ice thickness estimates leads us to believe

that the PINN ensemble produces valid ice thickness estimates.

4.3 Depth-averaged velocity

The models estimate the depth-averaged velocities in x- and y-direction. There is no ground truth data for the depth-averaged295

velocities, so we can not evaluate the models’s accuracy. However, during training, the loss of the predicted velocities is reduced

signicantly, showing that the constraints of Eq. (3) are enforced.

5 Discussion

Evaluating the PINN performance with the in-sample validation set and comparing predicted ice thicknesses to other prod-

ucts suggests that the PINN produces reasonable ice thickness estimates. However, testing the model with a glacier-wise CV300

scheme unveils the lack of generalizability to glaciers without any measurement data. The differences between the predicted

ice thicknesses and the measurements are much higher for the test glaciers of the LOGO CV than for the in-sample validation.
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Figure 5. Comparisons of ice thickness estimates: a) Ice thickness prediction from the ensemble of PINNs versus ice thickness estimates

of Millan et al. (2022), Farinotti et al. (2019), and van Pelt and Frank (2024). b) Ice thickness estimates from physics-based models against

each other. The color indicates the point density (the brighter the denser). The solid red line shows the linear t between the two ice thickness

products. The black dashed line is the 1:1 line.

We identied several factors that may improve generalizability but are also challenging to address. The schematic of Fig. 6

shows an overview of the domains and the particular issues we judge as the most pressing to address.

5.1 Data305

Although PINNs are generally relatively less dependent on training data than purely data-driven methods, their performance

relies on the quantity and quality of input data

(Iwasaki and Lai, 2023). This study collected the thickness measurements from

65 glaciers. The individual measurements lie close together along the acquisition lines. As a result, most of the measurements

have high spatial correlations with each other. The amount of independent training data to learn the physics of glaciers is,

therefore, far less than the actual number of measurements. On the other hand, redundant data introduces a bias. To reduce the310

overtting, we could reduce the correlations in the training dataset by averaging or sub-sampling the observations, for example.

This should improve the performance on glaciers without any labelled training data.

Secondly, the training data is not aligned temporally. In situ ice thickness measurements were collected between 2000 and

2017, while the surface velocity was derived from satellite data acquired between 2017 and 2018. Using surface velocity for

the same year as ice thickness was measured would result in a better estimate of the ice ux for the labelled data and therefore315
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Figure 6. Challenges for PINNs in a real-world setting.

improve physical consistency within the model. However, this is only important if either ice thickness or velocity changes

signicantly with time.

Lastly, we do not consider measurement errors in our dataset. Future work could

Ice


thickness


measurements


from


ice-penetrating


radar,


for


example,


are


subject


to


errors


due


to


varying


density


of


glacier


ice


but


also


due


to


unknown


thickness


of

snow


and


rn


layers


(Lindbäck et al., 2018).


Future


work


should


account for measurement errors with standard uncertainty quantication320

methods or even introduce error margins to the loss components as Morlighem et al. (2011) did.

5.2 Model training

Training PINNs is difcult (Xu et al., 2023). One major challenge is to nd the optimal balance between the multi-scale

contributions of each loss component

,

which


is


also


reported


in


other


studies


using


multiple


loss


components


in

their


PINNs


(Iwasaki and Lai, 2023; Cheng et al., 2024). We empirically set the loss weights to a xed value for the entire training process.325


In


an


experiment


to

test


the


importance


of


the


loss


components,


we


found


that


the


relative


importance


is


not


very


pronounced


(see


Appendix


D).


Therefore,


we


assume


that


the


individual


loss


components


are


not


optimally


weighted


in


the


reported


model.

A more sophisticated approach would be to automatically update the weights of the loss components during the training.

This introduces a minimal

some


computational overhead but prevents the model from minimizing certain loss components330

faster than others (Wang et al., 2023).

The multiple loss components create another challenge: the loss landscape is highly complex, and nding its global mini-

mum is difcult. Recently, Rathore et al. (2024) investigated different optimizers for PINNs and showed that combined rst-

and second-order optimizers lead to faster convergence. Implementing their newly introduced second-order optimizer could

15



improve the PINN convergence. Optimizing the loss function

Development


of


new


optimization


strategies


is a rapidly evolving335

area of research, and we expect signicant advances to be achieved soon.

5.3 Physical constraints

Ultimately, we want to achieve the physical consistencyof our predictions.

Our


model


uses


physics-aware


loss


components


to


enforce


physical


consistency.


However, the physics-aware losses are based on simplifying assumptions


simplications to make

the problem tractable. In our case, the two elements that should be revised are modelling the mass balance and estimating the340

basal sliding velocity.

We


identied


several


challenges


that


are


tied


to


the


incorporation


of


physical


constraints.

In this study

Firstly, we use the ConstantMassBalance


a

simple model from OGGM out of the box without further calibration

.

to


derive


the


mass


balance


at

every


point


in


the


study


region.


The


mass


balance


data


appears


in

the


computation


of


the


mass


conservation


loss,


but


if


it

is


erroneous,


the


model


will


never


be


able


achieve


perfect


mass


conservation.


Using


Therefore,345


using


a more sophisticated mass balance model to precisely calibrate


and


calibrating


it for our purpose could enhance physical

consistency, leading to better results.

.

The estimate of basal sliding is

Another


option


could


be


to


use


in


situ


mass


balance


data.


This


way,


we


circumvent


the


need


for


a

mass


balance


model.


The


mass


conservation


loss


would


only


be


evaluated


where


data


is


available.


This,


however,


would


come


with


two


restrictions.


First,


we


would


not


be


able


to


train


the


model


in


the


entire


study


region.


Secondly,


also


in


situ


mass350


balance


data


is


not


error-free.


We


would


have


to


make


a


careful


selection


of


the


data


to


not


introduce


even


more


uncertainty.


A

different


way


to

improve


the


physical


consistency


is


through


a

better


estimate


of


the


depth-averaged


velocity.


In


the


current


model


the


estimate


of


depth-averaged


velocity


is


coupled


to


estimating


the


amount


of


basal


sliding


and


using


a


parameter


as


a


lower


bound


for


the


vertical


integration


of


the


velocity.


For


now,


the


estimate


of


the


sliding


velocity


is


based


on a simplied355

approach using a threshold calibrated by Millan et al. (2022). We could, in principle, circumvent the need to estimate basal

sliding contributions

for


this


parameter


by using surface velocity data acquired during winter months. In winter, due to the

absence of extensive meltwater,

the


winter


months,


when


basal sliding is inhibited. Therefore, the


The


measurable surface

velocity will have less contribution from basal sliding . In this way,

and


we could avoid estimating the β-parameter and still

have

β-parameters.


This


would


eliminate


one


source


of


uncertainty.


360


We


also


want


to


mention


that


there


are


several


processes


affecting


ice


dynamics,


especially


in

Svalbard,


that


are


not


very


simplied


or


neglected


in


the


model.


One


example


is


that


our


model


assumes


ice


to


be


incompressible,


when


Svalbard


glaciers


actually


have


thick


rn


layers


(Pälli et al., 2003)


.

The


varying


density


could


introduce


a

non-negligible


densication


term


in


the


mass


balance


Eq.


(1).




Another


example


is

the


assumption


of


a reasonable approximation of the


temperature-independent


creep


coefcient


A.365


Many


glaciers


in


Svalbard


are


believed


to


be


polythermal


(Glasser, 2011).


So


the


creep


coefcient


may


vary


within


the


ice,


affecting


the


validity


of


our


lower


boundary


for


the


estimate


of


depth-averaged deformation velocity.


velocity.


However,


the

16




inuence


of


these


effects


should


carefully


be


weighed


against


the


possibility


of

introducing


errors


if


we


decide


to

include


better


representations


of


these


processes.

Simplifying the physics also means we pick physical constraints that are easy to incorporate. In return, we have370


Lastly,


one


major


challenge


is


that


we


deal


with a highly under-constrained system. This may cause a lack of generalizability

for glaciers without any ice thickness data. It would surely

problem.


We


only


provide


the


model


with


the


ice


thickness


measurements


as


a

sort


of


internal


condition,


but


we


do


not


provide


boundary


conditions.


Also,


the


depth-averaged


velocity


is

only


loosely


constrained


by


a


set


of


inequalities.


Therefore,


it

would be benecial to incorporate additional constraints like

momentum conservation

to


actually


derive


depth-averaged


velocity


instead


of


estimating


it. While this is technically easy to375

do, it further complicates the optimization of the model. Therefore, high-quality data is required to support the additional

constraint

comes


at

the


cost


of


introducing


uncertainties


from


approximating


required


parameters.


To


enforce


momentum


conservation,


we


would


to


need


make


assumptions


about


ice


viscosity


and


resistance


from


the


bedrock,


for


example. De-

pending on the data quality, we risk introducing more uncertainty than

instead


of improving the physical consistency.

380


In


our


view,


the


two


elements


that


are


most


promising


to


improve


the


model


performance,


if


revised,


are


the


modelling


of


mass


balance


for


Svalbard


and


the


choice


of


surface


velocity


data


for


the


estimation


of


depth-averaged


velocities.



5.4 Evaluation

In geospatial machine learning, evaluation is generally challenging (Rolf, 2023). As mentioned in Sect. 2.4, the in situ measure-

ments are heavily correlated since they are clustered on only a fraction of the glaciers. Therefore, we employ a spatially-aware385

evaluation method to estimate the true model performance. However, the CV procedure only includes seven of 65 glaciers with

measurements.

Moreover,


we


have


varying


numbers


of


IPR


measurements


for


the


evaluation


of


each


of


the


test


glaciers


as


already


mentioned


in


Sec.


4.1.


There is no guarantee that we will fully capture the model performance


with


our


approach.

As mentioned

Additionally, in situ ice thicknesses are subject to measurement errors, and some measurements might have

higher errors than others. To be as precise as possible when evaluating the model performance, we should consider the trust-390

worthiness of every ice thickness label.

Ultimately, our problem has no benchmark dataset, so it is impossible to know the model performance exactly. Although

we compare our ice thickness estimates with others, these also have errors that are not well constrained and are, in no respect,

benchmarks that can be used for uncertainty quantication. It is, therefore, difcult to state which estimation method consid-

ered here produces the most reliable ice thickness estimate.395

Despite the above-mentioned limitations, we show that a relatively simple PINN can produce reasonable ice thickness

estimates while treating an entire area and not only a single glacier at once. Although the lack of high quality data is an overar-

ching challenge that can hardly be overcome, we expect that by implementing the proposed adjustments in data curation, model

training, and physical constraints, the physical consistency and accuracy of the model will be improved.

Without


changing


the400


dataset


we


believe


that


optimizing


the


loss


weights


λ


would


have


the


biggest


positive


benet,


as


the


optimal


conguration
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depends


on


the


noise


in

the


data


Iwasaki and Lai (2023).


This may especially be the case for glaciers without measured ice

thicknesses.

6 Conclusions

We have demonstrated that it is possible to train a physics-aware machine learning model to produce ice thickness estimates for405

multiple glaciers, including glaciers without any ground truth ice thickness: in other words, out of sample targets. We deploy

a relatively simple physical constraint by imposing mass conservation in the loss function of the PINN.

This


serves


as


a

proof


of


concept


that


physics-informed


models


can


not


only


be


applied


to


one


single


closed


system


but,


together


with


auxiliary


data,


can


make


meaningful


predictions


for


entire


regions.



More complex approaches and physical constraints could be employed (Karniadakis et al., 2021) and would, we anticipate,410

improve the results further. Nonetheless, we demonstrate that physics-aware machine learning is a promising approach for

tackling a geophysical problem where a physical law or condition provides a strong constraint for the solution. There are

many other geophysical problems where, for example,

including


conservation of mass, energy


, or momentum would provide

a similarly effective constraint and would lead to a more scientically meaningful result, as breaching such constraints is

non-physical.415

Code and data availability. The code and data that was used to train and evaluate the model as well as generating the gures are available at

https://doi.org/10.5281/zenodo.13834016. Additionally, the code can be viewed at https://github.com/viola1593/glacier_pinn.

Appendix A: PINN ice thickness prediction on LOGO test glaciers

The ice thicknesses of the seven test glaciers were estimated by the model that was trained without the in situ measurements of

the respective glaciers as ground truth data. The results are displayed in Fig. C1 Ice thickness prediction for the seven LOGO420

test glaciers.

Appendix A: Relation between surface and depth-averaged velocity to set llower

To derive a relation between the surface velocity and the depth-averaged velocity, we follow the analysis in Cuffey and Paterson

(2010). Let u be the x-component of velocity andH be the ice thickness. Assuming parallel ow, the glacier deforms in simple

shear, so the only nonzero deviatoric stress is τxz , and the z-component of the velocity is also zero. Therefore, the creep relation425

derived by Glen (1955) simplies to

1

2

du

dz
= Aτnxz (A1)
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where A is the creep parameter and n the creep exponent.

A

is,


in


general,


dependent


on


the


temperature


of


the


ice,


so


A= A(T ). We assume a linear increase of shear stress along the glacier depth

τxz = τb


1− z

H


(A2)430

with τb being the shear stress at the bed of the glacier. If we now

We


further


assume


constant


temperature


within


the


ice


so


A


does


not


depend


on


z.

If

we


integrate A1 along the vertical direction up to z we get

u(z) = ub +
2A

n+1
τnb H


1−


1− z

H

n+1

 (A3)

Accordingly, the velocity at the surface is given by

us = ub +
2A

n+1
τnb H (A4)435

and integrating A3 along the vertical axis to derive the depth-averaged velocity we get

ū= ub +
2A

n+2
τnb H (A5)

A is assumed to be constant although

it

depends on temperature and other variables that change within a glacier prole.

Temperate glaciers are nearly isothermal, whereas in cold-based glaciers, the temperature increases with a smaller distance to

the bed. The highest values of A are found near the glacier bed. Therefore, the shear deformation is concentrated closer to440

the base than in a temperate glacier. The velocities within the bottom half of the glacier are sensitive to the value of A as it

multiplies stress to the power of n. As stress decreases in the upper half of the glacier, the velocity is insensitive to the values

of A there.

From A4 and A5, we can derive the relation between the surface velocity and the depth-averaged velocity in the case of

parallel ow and if there is no basal sliding:445

ū

u
=

n+1

n+2
= 08 (A6)

for n= 3. After all, parallel ow in a glacier is a strong assumption and n= 3 is not always the case. Therefore, we set llower

to 0.7 to allow more exibility in estimating the depth-averaged velocity.

Appendix B:

PINN


architecture


and


training


The


PINN


employed


in


this


work


consists


of


a

fully-connected


neural


network


with


8


layers


and


256


neurons


each.


We


chose450


Softplus


as


an


activation


function


after


each


layer


as


it

is


innitely


differentiable.

Softplus:f(x) = log(1+ exp(x))


(B1)


The


loss


weights


λi

are

set


to


keep


all


the


loss


components


roughly


in

the


same


order


of


magnitude.


We


chose


the


Adam


optimizer


with


default


settings


from


PyTorch


and


a

learning


rate


of


0.0001.


In


the


LOGO


cross-validation,


each


model


is


trained


for


100


epochs.


455
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Figure C1.

Ice


thickness


prediction


for


the


seven


LOGO


test


glaciers.

Appendix C:

PINN


ice


thickness


prediction


on


LOGO


test


glaciers


The


ice


thicknesses


of


the


seven


test


glaciers


were


estimated


by


the


model


that


was


trained


without


the


in


situ


measurements


of


the


respective


glaciers


as


ground


truth


data.


The


results


are


displayed


in


Fig.


C1

Appendix D:

Importance


of


physics-aware


loss


components


The


importance


of


the


individual


loss


components


is


tricky


to


evaluate,


as


we


are


dealing


with


unevenly


distributed,


correlated,460


noisy


in

situ


measurements


as


labels


to


evaluate


the


PINN


performance.


Despite


this,


we


ran


the


LOGO


experiments


in


which


we


set


the


weight


of


each


of


the


loss


components


to


zero


one


after


another.


We


then


compared


the


performance


to


the


scores


of


the


models


reported


in


Sec.


4.1


by


calculating


a

relative


RMSD


as


RMSDrel = (RMSDreported −RMSD)RMSDreported.

The


relative


RMSD


will


be


positive


if


the


score


improves,


and


negative


if

the


score


gets


worse


by


setting


the


weight


of


a

loss


component


to


0.465


The


relative


differences


are


below


5%


on


average.


It

is

interesting


to


see


that,


while


the


scores


on


the


in-sample


validation


data


improve


on


average


when


switching


off


the


physics-aware


loss


components


(Table


D1),


the


scores


on


the


out-of-sample


test


glaciers


get


worse


on


average


(see


Table


D2).


This


ts


with


our


intuition


that


the


model


is

overtting


on


the


in


situ


ice

20




Test


glacier


Mass


conservation


loss


Velocity


loss


Smoothness


loss


Negative


thickness


loss


RGI


ID


RMSDrel 

RMSDrel 
RMSDrel 

RMSDrel


RGI60-07.00240

 
-0.033


0.000


-0.033

 
-0.033


RGI60-07.00344

 
0.032


0.032


0.065

 
0.000


RGI60-07.00496

 
0.000


0.030


0.061

 
0.000


RGI60-07.00497

 
0.033


0.000


0.033

 
0.000


RGI60-07.01100

 
0.032


0.032


0.032

 
0.000


RGI60-07.01481

 
0.000


0.033


0.033

 
-0.033


RGI60-07.01482

 
0.034


0.034


0.034

 
0.000


Mean


0.014


0.023


0.032


-0.010

Table D1.

Relative


RMSD


scores


for


in-sample


validation


for


each


LOGO


CV


model.


Test


glacier


Mass


conservation


loss


Velocity


loss


Smoothness


loss


Negative


thickness


loss


RGI


ID


RMSDrel 

RMSDrel 
RMSDrel 

RMSDrel


RGI60-07.00240

 
-0.091


-0.195


-0.013

 
-0.013


RGI60-07.00344

 
-0.018


-0.036


0.000

 
0.018


RGI60-07.00496

 
-0.132


-0.184


0.105

 
-0.053


RGI60-07.00497

 
0.000


-0.087


0.000

 
-0.022


RGI60-07.01100

 
0.025


-0.125


-0.150

 
0.000


RGI60-07.01481

 
0.000


0.072


-0.157

 
-0.024


RGI60-07.01482

 
0.008


0.032


-0.048

 
-0.048


Mean


-0.030


-0.075


-0.038


-0.020

Table D2.

Relative


RMSD


scores


for


each


LOGO


CV


test


glacier.


thickness


data


that


we


provide


it

with


during


training.


The


physics-aware


loss


components


act


like


a


regularization


while


demanding


physical


consistency.


470


Nevertheless,


we


want


to


emphasize


again


that


the


conguration


of


the


loss


weights


is


certainly


not


optimal,


as


we


discussed


in


Sec.


5.2,


so


there


might


be


another


distribution


of


importance


if

all


the


loss


components


are


better


balanced.


Also,


as


already


mentioned,


this


experiment


depends


a

lot


on


the


dataset,


so


the


importance


of


loss


components


also


only


applies


to


this


specic


study.

Appendix E:

Importance


of


input


features475
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The


physics-aware


model


does


not


only


take


features


that


it

would


need


to


evaluate


the


physics-aware


losses


but


also


auxiliary


data.


To


gain


insights


into


the


model’s


inner


workings


and


evaluate


how


it

handles


the


auxiliary


data,


we


estimated


the


feature


importance


on


the


ice


thickness


predictions.




One


way


to


approximate


feature


importance


is


by


calculating


Shapley


values.


This


concept


is

rooted


in

game


theory


and


estimates


a

player’s


contribution


to


a

cooperative


game


(Shapley, 1953).


Shapely


values


represent


the


contribution


of


each480


feature


to


the


model


prediction.




However,


analytically


deriving


Shapley


values


for


deep


neural


networks


is

very


costly


(Höhl et al., 2024).


Therefore,


Shapely


values


are


approximated


using


techniques


like


the


SHapley


Additive


exPlanations


(SHAP)


framework


introduced


by


Lundberg and Lee (201


.


Within


the


framework,


they


describe


a

method


with


improved


computational


performance


to

estimate


SHAP


values


for


deep485


networks:


Deep


SHAP.




We


used


the


implementation


in


the


Captum


library


(

DeepLIFTShap


)

(Kokhlikyan et al., 2020)


to


calculate


SHAP


values


for


our


network.


The


validation


data


served


as


a

representative


subset


of


the


entire


dataset


to


save


computational


resources.


We


calculated


the


SHAP


values


for


each


of


the


seven


models


from


the


LOGO


CV.




The


framework


explains


feature


contributions


to


the


model


prediction,


usually


for


purely


data-driven


machine


learning.


In490


Fig.


E1


(a)


high


values


signify


a

high


impact


on


the


output


of


the


model;


low


values


signify


a

low


impact.


For


our


PINN,


the


spatial


coordinates


are


by


far


the


most


important


features.


This


is


expected


as


they


dene


the


domain


in

which


we


want


to


nd


a

solution


for


the


mass


conservation


PDE.


Figure


E1


(a)


shows


the


mean


absolute


SHAP


values


for


the


features


over


all


seven


models


from


the


LOGO


CV.


Besides


the


spatial


coordinates


the


slope


has


the


biggest


impact


on


the


prediction.


Figure


E1


(b)


shows


the


impact


of


the495


features


on


the


output


of


the


model


for


each


data


point


separately.


For


better


readability,


the


plot


shows


the


result


of


the


SHAP


analysis


for


only


one


of


the


models


from


the


LOGO


CV,


as


they


are


all


similar.


The


colour


indicates


the


feature


values:


red


signies


a

relatively


high


value


(within


the


range


of


the


feature),


and


blue


signies


a

relatively


low


value.


For


example,


the


plot


in


Fig.


E1


(b)


shows


that


high


slope


values


lead


to

rather


small


values


for


the


predicted


ice


thickness,


while


low


values


increase


the


predicted


ice


thickness.


This


is


what


we


would


expect


given


that


ice500


thickness


and


slope


are


indirectly


proportionally


related


in


the


SIA;


steep


slopes


lead


to


thinner


ice.




The


SHAP


values


for


the


distance-to-border


feature


tell


us


that


the


model


thinks


that


at


the


border


the


ice


thickness


should


be


smaller


than


within


the


glacier.


For


the


surface


velocity


values


the


interpretation


is


less


clear,


also


because


we


only


see


the


component-wise


features.


High


surface


velocities


do


not


seem


to


have


much


impact


on


the


ice


thickness


prediction,


although,


following


glacier


physics,


they


should


have


a

strong


inuence


on


ice


thickness.


505


We


want


to


emphasize


that


the


SHAP


analysis


has


several


limitations.


First


of


all,


it

expects


features


to


be


independent


of


each


other,


which


clearly


is


not


the


case


here.


The


three


β


values


are


derived


from


slope


and


velocity


values


for


example.


Also,


the


analysis


depends


very


much


on


the


dataset.


SHAP


tries


to


replicate


the


model


behaviour,


and


the


model


is

trained


with


our


specic


dataset.


Therefore,


the


results


can


only


show


the


impact


of


the


features


on


the


ice


thickness


prediction


for


our


specic
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Figure E1.

SHAP


analysis:


(a)


Mean


and


standard


deviation


of


the


absolute


SHAP


values


over


all


seven


LOGO


CV


models.


The


values


were


rst


averaged


for


each


model


separately


and


then


averaged


for


all


seven


models.


(b)


SHAP


values


for


each


datapoint


by


feature.


The


colour


shows


the


relative


value


the


feature


takes


for


each


datapoint.


The


SHAP


values


are


calculated


for


the


model


trained


without


data


from


glacier


RGI60-07.00240.


dataset


and


model


setup.


Additionally,


machine


learning


models


can


only


learn


correlations


from


the


data.


Causal


relationships510


can


not


be


extracted.


Hence,


we


can


not


derive


universal


feature


importance


from


the


analysis.




However,


the


results


from


the


analysis


are


what


we


would


expect


from


physical


considerations.


Therefore,


it

serves


as


a


sanity


check


if


the


model


is


retrieving


sensible


correlations.
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