Dear Ben,

Thank you for giving us the opportunity to improve our manuscript. This letter combines our
responses to both reviewers as well as a list of the changes to the original manuscript with line
numbers.

The reviewers’ comments are in black font and our answers are in blue font.

We are confident that the revisions we have made address the reviewers' concerns and enhance the

overall quality of the manuscript. We sincerely hope that the revised version meets your and the

reviewer’s expectations, and we look forward to your response.

Best wishes,

Viola Steidl and co-authors

Point-by-point responses to comments from Reviewer 1

In general, | find the description of the PINN rather inefficient. | focus here on Section 2.3, but
my comments may be extrapolated to the entire paper. Do not expect TC readers to be
familiar with all ML machinery, even less so with Physics-Informed ones. Therefore, you
should provide a minimal background. Currently, section 2.3 is addressed solely to people
with prior knowledge. At a minimum, briefly explain what a neural network is (a sequential
composition of linear and nonlinear functions with optimizable weights). To my knowledge,
this term can be intimidating, while it is not that complicated provided a minimal
explanation. The current Section 2.3 mixes crucial information (/O of the PINN) with more
technical details (e.g. activation functions, which are important but not essential for most
readers unfamiliar with ML). | suggest distinguishing these two levels when rewriting this part
to smooth the reading and target a broader audience. Consider moving ML technicalities to
an appendix, and leave te ideas in the body of the paper. Another example: you mention
“Fourier layers” but do not provide any rationale ( | would like to know the benefit of this).
There are several ML-specific concepts (e.g., unlabeled data) that are not explained
throughout the manuscript, which is a problem to maximize the audience of the paper to a
general glaciological audience.

Thank you for pointing out the necessity to clarify machine learning terms. We totally agree
that we should make our manuscript understandable to anyone without machine learning
background. Therefore, we made significant revisions to the section. We added a brief
description of neural networks to the section and streamlined the explanation of the 1/0
vectors:

“A neural network, also sometimes called multi-layered perceptron, consists of layers of
connected nodes, also called neurons, where the connections each have an associated weight.
At each node, the weighted outputs from each node of the previous layer are passed through
a non-linear activation function (Goodfellow et al., 2016). By minimizing a loss the weights of
the network are updated to make accurate predictions.”

“In a PINN model the loss is given by the residual of the PDE we want to solve. In theory,
PINNs only require input features that are needed to calculate the derivatives in the PDE



(Raissi et al., 2018). In our work, we also provide the neural network with auxiliary data, that
is related to glacier ice thickness but is not needed to solve the PDE. Therefore, we can exploit
information from observable data as we would do it with a non-physics-aware neural
network.”

“The inputs to the model are vectors for each grid cell in the study region. They contain the
spatial coordinates and surface velocities in x- and y-directions, and three 6 values to correct
for basal sliding in x- and y-direction and in the magnitude. Additionally, the vectors contain
auxiliary data like elevation, slope, the grid cell's distance to the border of its glacier, and the
area of the glacier it belongs to.”

To better explain the Fourier embedding of the spatial coordinates we changed the name
from “Fourier layer” to “Fourier feature encoding layer” and also added a description of the
Fourier embedding:

“The embedding of spatial coordinates was originally developed to overcome spectral bias in
neural networks and speed up convergence in the reconstruction of images. It enables the
network to learn high-frequency functions in low-dimensional problem domains.”

The rationale behind using the Fourier feature embedding is to speed up the convergence of
the mass conserving loss that only relies on the derivatives w.r.t. the spatial coordinates.
Figure 1 (not included in the manuscript) shows that the Fourier feature embedding clearly
makes the mass conservation loss drop faster, whereas it would not be improved at all
without the Fourier feature embedding.

The concept of labelled and unlabelled data is now also explained:

“We refer to the points with ice thickness measurements as labelled, whereas points without
being referred to as unlabelled.”
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Figure 1 Comparison of mass conservation loss with and without Fourier feature embedding layer

e |am notsure | understand: Do you feed your neural network with raster data grids (as
suggested in Fig 1) or with large vectors of data at each coordinate along with the coordinate
data? My question is whether you exploit the spatial structure of the data (I assume you have



data on a raster structure grid). If not, | understand why you use a fully connected network; if
you do, why not use a convolutional neural network designed to capture spatial
relationships?

Thank you for bringing up that this could be misunderstood. As mentioned before we now
clarified that the training data are vectors of data at each point of the grid.

“The inputs to the model are vectors for each grid cell in the study region.”

The spatial structure is not exploited with a convolutional network yet, but we agree that this
is an interesting follow-up.

The description of ice flow (Section 2.2) seems rather simplified. There are a couple of
assumptions behind that are not clearly written down. Including a true high-order model
here would be a great added value I think. You mention in line 274 that adding momentum
conservation would be “technically easy,” but | am less pessimistic than you about the claim
that “it would complicate the optimization of the model.” Instead, the functional associated
with the Blatter-Pattyn model, for example, behaves relatively well with good convexity
properties [Jouvet, 2016, Jouvet and Cordonnier, 2023], and could act as a physically-
consistent, welcome smoother.

Thank you for your comment. As this also came up in the second Review letter we revised
Section 2.2 and included the assumptions to the SIA:

“There are models with different degrees of approximations to the full Navier-Stokes
equations to describe ice flow. The simplest one, the shallow ice approximation (SIA) assumes
lamellar flow, so the driving forces are entirely opposed by basal drag. It neglects lateral shear
and longitudinal stresses and the rate factor A from Glen's flow law is taken to be constant
with depth (van der Veen, 2013).”

We agree that including a higher-order model could provide better estimates of the velocity
profile with depth. However, to apply these models we would need to make further
assumptions, for example, about the ice viscosity and how it varies with depth or the amount
of basal drag/drag from the sidewalls of the glaciers. Indeed, Riickamp et al. (2022) identify
this as an issue with the Blatter-Pattyn approximation to full Stokes solutions. We want to
emphasise here, that our study is a proof of concept rather than a definitive analysis. We
identify several areas for improvement in future work and a higher order model for surface to
depth average velocity is one possibility but, likely, not the first order issue for improving the
results, which we believe are more sensitive to i) the quality of the input data, ii) the SMB
estimates used and iii) estimation of basal velocities. We discuss how each of these issues
could be addressed in future work.

Also we clarified our claim about adding momentum conservation being technically easy. We

meant to say that adding another component in the loss function is technically easy to do, as

it is just adding another term. However, supporting the correct evaluation of the loss requires
detailed knowledge about parameters like the viscosity of ice. We now rewrote the sentence

to make it less ambiguous:

“While this is technically easy to do, it comes at the cost of introducing uncertainties from
approximating required parameters. We would have to make assumptions about ice viscosity
and resistance from the bedrock, for example.”



Thanks again for bringing up that the way we phrased it could be misunderstood.

In connection with my previous point, have you considered moving the surface velocity from
the input of your PINN to the data? This would make sense if you are including momentum
conservation. In the present case, can this be an option too? What is the motivation to insert
the “observational” data in input of the PINN or as data constrained in the loss?

We assume with ‘moving the surface vel from input of your PINN to the data?’ you suggest
having the surface velocity in the target vector instead of the Input vector. In fact, this would
be an option, too and Teisberg et al. set up their model exactly in this way. However, as the
(surface) velocity is actually an important predictor of the ice thickness, we decided to leave it
in the input vector.

The idea behind having the apparent mass balance only in the target vector is that we are not
confident about the quality of the mass balance data as it is modelled from a simple model.
Therefore, we did not want to have it as an input that would give the mass balance data more
weight as compared to only introducing it with the soft constraint of the mass conservation
loss.

The comparison (Section 4.2) to the two other products [Millan et al., 2022, Farinotti et al.,
2019] is not a strong point. It tells us that the PINN lies within the range, which is not
surprising as the two products differ significantly. This section could be moved to an
appendix.

We agree it is not a strong point to prove the correctness of the PINN’s ice thickness estimate.
However, we think it is informative to show how the estimate compares to other ice thickness
estimates. Therefore, we would like to keep it in the Results section.

Maybe consider applying your method first to a synthetic case where you can create a
manufactured bedrock and dataset. Then, use your method to infer the ice thickness and
compare it to the ground truth. This approach would help avoid issues related to data
suspicion. In general, there are many possible causes for the lack of generalization, but there
are strategies to isolate these causes that you could further explore through synthetic
experiments.

We totally agree that applying the method to a perfect synthetic case would be the optimal
setting to test the method and research causes for bad generalization. This would be an
interesting follow-up exercise but is, by no means, a trivial exercise for the following reasons.
The design of the experiment and the design of the synthetic data are crucial in our view. For
example, do we use a Full Stokes model, Blatter-Pattyn or some other approximation. Which
kinds of glaciers should be modelled with what kind of glacier bed? How to best sample a
variety of glaciers? We would need a range of SMB profiles and, presumably, a range of
bedrock thermal regimes from fully frozen, partially frozen to temperate and so on. A
synthetic data approach would certainly allow us to explore how uncertainties and
assumptions influence the robustness of the solution but would be a substantial effort in its
own right.



Nevertheless, we agree that applying the approach to a synthetic dataset would be ideal to
better evaluate the PINN model and its strengths or weaknesses.

Section 5 provides a list of possible causes for the lack of generalization. However, it is hard to
draw any conclusions. Some causes are more important than others. It would be helpful if
you could prioritize these causes (and improvement items) by order of importance, from the
most significant (with the largest potential for improvement) to the least significant. | feel
that “Physical constraints” should be at the top of the list.

We agree that listing the potential causes for bad generalization is not ideal. However, it is
certainly not trivial to prioritize the possible causes. We would, for example, argue that input
data quality plays a huge, perhaps dominant, role. The relative weighting of data loss and the
physics-aware losses, also in close relation to the amount of noise in the measurement data,
has a significant impact on the convergence of the PINN (Iwasaki and Lai, 2023). Since in our
model the quality/label uncertainty is not yet taken into account, we believe that this could
be one way to improve the model. However, improved SMB and basal velocity estimation will
also be important, as we state. For the latter, there are several approaches that could be
adopted such as using winter-only velocities or by examining the seasonal cycle in velocities.

We agree that physical constraints play a significant role but the significance will likely vary by
glacier. To address this concern we have indicated, qualitatively, the factors that would
significantly improve the solution.

Lines 264-266: You place a lot of trust in your Mass balance reconstruction, especially if it is
not calibrated (line 264). Considering that this is a major constraint, | think this might be a
significant cause of underperformance. Also, using a model for estimating the SMB (even a
perfected one) is problematic, as your ” observations” are not observations but modelled
reconstructions. Have you considered using in-situ sparse measurements instead?

Yes, we thought about using observations but as the objective is to evaluate the mass
conservation at each point of the grid, we need to fall back to a mass balance product that is
available for the entire study area. The mass balance reconstruction that we are using is
actually calibrated on observational data (https://docs.oggm.org/en/stable/mass-balance-

monthly.html).

However, maybe in a follow-up work, it would be worthwhile to include another loss
component where the residual to mass conservation is calculated from in situ SMB
measurements wherever they are available, just like the data loss is evaluated only where ice
thickness measurements are available. Thanks for making this suggestion.

| have some additional specific comments:

In the introduction, it would be good to ellaborate the existing literature on using ML for ice
thickness inversion modeling [e.g. Haq et al., 2021, Teisberg et al., 2021, Jouvet, 2023] (line
21), as well as physics-informed deep learning applied to similar problems, such as inferring
basal conditions (bedrock location or slipperiness) [e.g. Riel and Minchew, 2023, 2022,
Iwasaki and Lai, 2023, Jouvet and Cordonnier, 2023] (lines 32-34). As this is a fast-evolving
field, it would be good to check the latest papers, and possibly to complete.



Thank you for providing further literature that should be included. We extended the
literature review to make it more complete. We hope this meets your expectations.

| 12: Not sure Millan et al. [2022] is the most appropriate reference for that.
Thanks for pointing that out, we apologize for the mistake and changed the reference to
Welty et al. 2020.

| 13: “Physics-based approaches ...” This sounds to be a very personal definition, consider a
more appropriate one.

Agreed, we changed the sentence such that it cannot be misunderstood as a definition
anymore: “There are physics-based and process-based approaches that aim to reconstruct
glacier ice thicknesses from in situ data and ice dynamical considerations.”

| 22: “One avantage of data-driven approaches is a significant speed-up compared to physics
based models”: The computation speed-up has nothing to do with whether it is data-driven
or physics-driven; it is the result of the efficiency of evaluating a neural network (especially
on GPUs), irrepective of the training strategy: based on data [Jouvet et al., 2022] or on
physics [Jouvet and Cordonnier, 2023]. Please correct.

Thank you for the correction. We changed the sentence to clarify that we are talking about
data-driven machine learning methods that are fast to optimize and evaluate: “One
advantage of machine learning approaches is their efficient optimization and evaluation
compared to process-based models (Jouvet et al., 2022).”

| 30-31: These two sentences are unclear to me : i) what means “data-efficient” in the
context? ii) “boundary condition to solve the PDE”, | think | understand what you mean (this
would be a Dirichlet BC as you can enforce the solution to be close to a certain given value
somewhere), but I’'m not sure this is clear for all.

Thank you very much for bringing up that this is not clear. With ‘data-efficient” we meant to
describe that we are less dependent on ground truth data because we are also relying on
physical constraints. We took this out to avoid misunderstanding. Also, as you rightfully
mentioned the term boundary condition might be misleading as the data loss is not exactly a
condition that we set on the boundary of the domain but rather an “internal constraint” that
helps find a solution to the PDE. We also changed this wording in the manuscript: “Additional
ground truth data can be used to compute a data loss that acts as an internal condition to
constraining solutions to the PDE.”

| 255: “the loss landscape is highly complex”, this is an unsual way to describe the lack of
convexity the loss, which is not improved - | agree - by adding the number of constraints
within the loss. | am not sure | found what optimizer you used (ADAM, SGD, RMSPROP, ?).
We apologize for not including this information in the manuscript before. We used the Adam
optimizer and added the information to the new Appendix Section on the architecture of the
model.

Appendix B: | feel | have seen this exercise numerous times in textbooks, deriving a 0.8 ratio
between vertically-averaged and surface velocity in the non-sliding SIA parallel slab case. |
suggest you replace it a reference and use the space in the paper to better explain the ML
part.



We agree that this is often described in textbooks, but we would like to keep the derivation
as an explanation of where our lower bound to the depth-averaged velocity estimation
comes from and also which assumptions have been made.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, 2016.

Iwasaki, Y. and Lai, C.-Y.: One-dimensional ice shelf hardness inversion: Clustering behavior and
collocation resampling in physics-informed neural networks, J. Comput. Phys., 492, 112435,
https://doi.org/10.1016/j.jcp.2023.112435, 2023.

Jouvet, G., Cordonnier, G., Kim, B., Lithi, M., Vieli, A., and Aschwanden, A.: Deep learning speeds up
ice flow modelling by several orders of magnitude, J. Glaciol., 68, 651-664,
https://doi.org/10.1017/jog.2021.120, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations,
J. Comput. Phys., 378, 686—707, https://doi.org/10.1016/].jcp.2018.10.045, 2018.

Rickamp, M., Kleiner, T., and Humbert, A.: Comparison of ice dynamics using full-Stokes and Blatter—
Pattyn approximation: application to the Northeast Greenland Ice Stream, The Cryosphere, 16, 1675—
1696, https://doi.org/10.5194/tc-16-1675-2022, 2022.

van der Veen, C. J.: Fundamentals of Glacier Dynamics, Second edition., CRC Press, 2013.

Point-by-point response to comments from Reviewer 2

Two related challenges complicate the evaluation of results in this work. First, as with almost all ice-
covered regions, direct measurements of ice thickness are sparse. Second, the dynamics of the
glaciers are complex and poorly understood. In Svalbard, a number of complicating factors are at
play:

1. Many glaciers are topographically constrained, making lateral drag important and complicating
simplified models of ice dynamics.

2. Many glaciers are thought to be polythermal, often with a significant layer of temperate ice at the
base overlain by cold ice (Sevestre et al., 2015)

3. Cold surface temperatures allow for the accumulation of thick firn layers with poorly constrained
density (Palli et al., 2017)

These complications are not unique to Svalbard, of course, but aspects of Svalbard’s topography and
geographic location make them especially notable here. The authors frame the cross validation
results in a way that seems somewhat disappointing. | am perhaps more optimistic than the authors
about the results. In particular, | think the evaluation of a physically-based model on a glacier where
no ice thickness data was provided is an unfair assessment of the model. The PINN proposed in this
work is something of a hybrid between a data-driven estimator and a PDE solver. These two types of
tools would be accessed in different ways. Additional consideration of appropriate evaluation
mechanisms is probably needed.



Architecturally, | think this work is very interesting. There is a novel fusion of physics-based, physics-
inspired, and non-physical relationships at work here. Unfortunately, the lack of explainability and the
lack of a good ground-truth data source make it difficult to see a path to the results presented here
significantly updating our thinking about Svalbard’s glaciers. Given this combination, | would
encourage the authors to consider leaning into exploring the design of the PINN by, for example,
exploring the importance of the various input fields or designing an experiment to consider the use of
different ice physics approximations within this framework.

Thank you for your assessment of our work. We agree that there is a lot of potential that can be
explored in follow-up studies and you make a number of useful suggestions

However, we want to reiterate that this is a proof-of-concept (PoC) study to assess the viability of a
PINN approach for a long-standing challenge in glaciology, and we use Svalbard as a test case, partly
for the reasons you mention above related to the range of flow conditions and glacier geometries and
partly because it is one of few areas with relatively good coverage from observations and other
estimates. Indeed, we compare our solution with three others and show that it is not so easy to infer
that one of those four is “preferable”. Our intention is not to shed new light on Svalbard ice thickness
but on the potential of physics-informed ML for this problem. We have made this more explicit and
clearer in the Introduction to avoid any ambiguity about our aims and focus:

“As a proof of concept, we include all non-surging glaciers in Spitsbergen, Barentsgya, and Edgegya in
Svalbard to show that it is possible to use a PINN architecture for an entire region.”

We also repeat the statement in the Conclusion:

“This serves as a proof of concept that physics-informed models can not only be applied to one single
closed system but, together with auxiliary data, can make meaningful predictions for entire regions.”

Specific comments below:
PINN

e Itis not clear to me what the coordinate system is used to feed the network. Is it a standard
projection? Are the coordinates consistent across all of Spitsbergen or are glaciers each on
their own local coordinate system in some way?

We apologize that this was not clear in the manuscript. The coordinates are consistent across
the entire study region (now mentioned in the manuscript: “The coordinates of the individual
grids are all transformed to the same projection.”), we used the EPSG:25832 projection
(which is mentioned in the model configuration file in the linked github repository).

e  Why the current set of inputs to the neural network? It is not obvious to me, for example,
why the area of the glacier should be included. In general, it would be interesting to know
how including each input impacts the results.

In general, the features are added because they have some relation to the glacier ice
thickness and are available through OGGM. It is left to the neural network to find relations
between the input and the target.

The area of the glacier is added to the input vector as area/volume scaling is a well
established approach that has been used in the past to estimate thickness (e.g. Bahr et al.,
1997).

We agree that a detailed analysis of feature importance would be interesting for
explainability of the results. Therefore, we conducted a quantitative analysis of the feature



importance through SHAP (SHapley Additive exPlanations) using Captum’s (Kokhlikyan et al.,
2020) implementation of the DeepLIFT SHAP algorithm (Lundberg and Lee, 2017) and
included this in the Appendix.

The framework explains feature contributions to the model prediction, usually for purely
data-driven machine learning. It comes with some limitations: all features should ideally be
independent of each other. This is clearly not the case for our features. Nevertheless, we
used this framework as it is a standard approach often used in machine learning.

We conducted the SHAP analysis on all of the seven LOGO CV models. Figure 1 shows the
mean absolute SHAP values: high SHAP values signify a high impact on the output of the
model; low absolute values signify a low impact. For our PINN, the spatial coordinates are by
far the most important. This is expected as they define the domain of our solution to the
mass conservation PDE.

Mean SHAP Values with Standard Deviation
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Figure 2 Mean of the approximated SHAP values for all seven LOGO CV models.



Besides the spatial coordinates the slope has the biggest impact on the prediction. Figure 2
provides a more detailed view of the impact of features. For every point in the dataset it
shows how it impacts the predicted thickness.

The colour signifies the feature value of the individual data points: red signifies a relatively
high value (within the range of the feature values), and blue signifies a relatively low value.
For example, datapoints with low values for slope are more likely to lead to high values for
the predicted ice thickness, while high values are less likely to impact the thickness
prediction or rather decrease it.

This is what we would expect given that ice thickness and slope are indirectly proportionally
related in the SIA: flat slopes lead to thicker ice.

The SHAP values for the distance-to-border feature tell us that the model thinks that at the
border the ice thickness should be smaller than within the glacier.

For the surface velocity values the interpretation is less clear, also because we only see the
component-wise features. High surface velocities do not seem to have much impact on the
ice thickness prediction, although, following glacier physics, they should have a strong
influence on ice thickness.

Overall, the SHAP analysis is a good tool for deeper insights into the correlations between
feature values and model prediction. However, we should be careful not to overestimate the
explanatory power, especially when dealing with correlated features.

The analysis depends very much on the dataset (we chose the validation datasets to conduct
the analysis). Therefore, the results can only show the impact of the features on the ice
thickness prediction for our specific dataset and model setup. We can not derive universal
feature importance from the analysis, let alone find causal relationships.
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Figure 3 SHAP values for each datapoint by feature. The colour shows the relative value the feature takes for each datapoint.
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Physical Model

The way that deformation velocity, sliding velocity, depth-averaged velocity, and surface
velocity are explained is somewhat confusing to me. My interpretation is that the authors are
using a simplified physical model (Appendix B) to set a relationship between surface and
depth averaged velocity, which you then qualitatively decide to loosen. Separately, they
assume that sliding velocity and surface velocity are related by a pre-determined field. The
network predicts deformation velocity only and evaluation of the mass conservation loss
term is done by adding in sliding velocity according to the defined constant and the surface
velocity.

Thank you very much for your comment on this section. Reviewing the section we found that
there was some confusion in it. Therefore, we rewrote the whole Section 2.2. The amount of
basal sliding is introduced in the equation with the factor B that is estimated from the ratio of
surface slope and surface velocity, following Millan et al., (2022).

If there is no basal sliding at all we estimate the depth-averaged velocity to be smaller than
the surface velocity. We set a lower boundary assuming that depth-averaged velocity won’t
be any smaller than 70% of the surface velocity.

If the entire surface velocity would be due to basal sliding then the depth-averaged velocity is
equal to the surface velocity. The estimate should reflect that the more basal sliding we have
the closer the depth-averaged velocity will be to the surface velocity.

o What is the significance of the network outputting deformation velocity rather than
directly depth-averaged velocity? Lines 61-62 seem to imply this is important,
however it is not clear to me why. It seems to me that it is simply a choice between
an extra calculation to compute mass balance and an extra calculation to compute
the depth-averaged velocity bounds loss.

We apologize for the confusion in this subsection. In the revised model we directly
estimate depth-averaged velocity and updated the description of the calculation of
the depth-averaged loss:

(vs— )2 if o> v
Loyer = ("s(lluwu =+ (l - lluwa)ﬁ) - ”)2 ifv < 1)s(lluwc1 * (l = [Iwu)ﬁ)

0 else

with v € {vz, 0y, Unag}

and ﬂ € {ﬂxvﬂyvﬂm:g}

o Lines 69-70 state that depth-averaged velocities are calculated for the x direction, y
direction, and magnitude separately using different values of beta. Beta relates
surface velocity to sliding velocity. In the simplified model of Appendix B, the sliding
velocity must be in the same direction as the surface velocity, but different values of
beta for x and y implies that the sliding velocity is in a different direction.

We have 3 different B values, that are used separately in the component-
wise/magnitude estimate of depth-averaged velocity. The B values are derived from
the velocity in x- and y-direction and the magnitude separately, so it is ensured that
the estimate of the amount of sliding is along the same direction as the surface
velocity. To clarify this we added it to the description in Section 3.2:

“For each point, we compute three 8 values from the surface velocities in the x- and y-
direction and the magnitude of the surface velocity.”



Apart from stating that ice is assumed to be incompressible (Line 50), | saw no mention of
the effects of unknown density of snow and firn. To my understanding, glaciers in Svalbard
may have significant firn layers (Pélli et al., 2017). This contributes to uncertainty in the radar
measurements (as the dielectric permittivity is dependent on density) and impacts the
implied mass flux. This source of uncertainty should at least be discussed.
Thank you for mentioning that, we added it as a source of uncertainty in the discussion part.
“Ice thickness measurements from ice-penetrating radar, for example, are subject to errors
due to varying density of glacier ice but also due to unknown thickness of snow and firn layers
(Lindbdck et al., 2018).”

In general, we think that the uncertainties of the measurement data play a big role in the
model performance and we emphasize that throughout the manuscript. Some of the in situ
data points are also with a given uncertainty that in a follow-up would be interesting to
include.

In my view, the simplified ice dynamics of Appendix B may be insufficient for glaciers in
Svalbard. | believe that the model selected ignores stresses from drag against the sidewalls,
which seem significant for the topographically constrained glaciers on Svalbard. Additionally,
assuming A to be constant with depth seems like a stretch. Many glaciers are suspected to be
polythermal and this has been proposed as a mechanism for the surge behavior seen in
Svalbard (Sevestre et al., 2015). While the authors have excluded currently surging glaciers,
the presence of this phenomenon implies to me that depth-dependent temperature may be
an important part of glacier dynamics in this region. At a minimum, further discussion of this
point is needed.

We agree that our model neglects a lot of physical processes and uses very simplified physical
descriptions. You are right that our model does not specifically account for drag against the
sidewalls. The estimate of the ice flow and velocities is not very restricted in the sense that
we only set an upper and a lower limit for the depth-averaged velocity. Within those
boundaries, the model can freely estimate the depth-averaged velocity.

This is a design choice that we explicitly made to avoid choosing a physical model with
parameters like the viscosity of ice that we cannot be certain about and would introduce new
uncertainties.

We added this to the Discussion section to better emphasize this point. Also, we included
your point that A is actually temperature-dependent in the Discussion and not only in the
derivation of the lower bound for the velocity estimate.

“This approximation does not account for lateral drag and assumes the creep coefficient A to
be temperature-independent. However, many glaciers in Svalbard are believed to be
polythermal (Glasser, 2011). Therefore, the estimate of the depth-averaged velocity might
have another source of uncertainty that is challenging to quantify.”

OGGM-Processed Inputs

Are any of the input fields that are processed with OGGM interpolated by OGGM in any way? If
they are interpolated following a similar physical model to yours, does this introduce a
circularity?

Yes, the input collected through OGGM are interpolated to the grids of the glaciers. To our best
knowledge, the source code of OGGM uses transformations that reproject and scale the data to
the glacier grids but do not use a physical model. Mostly the data is reprojected using methods
from rasterio or salem libraries. (Example for reprojection of the dh/dt data from Hugonnet et al.,
2021: https://github.com/OGGM/oggm/blob/master/oggm/shop/hugonnet maps.py#L12).

We clarified that in the manuscript:




“OGGM reprojects and scales the data for each glacier to the glacier grids. We collect these data
and transform the coordinates from the individual grids into a common projection.”

I think it would be helpful to discuss how the surface mass balance input is derived. It sounds like
a model-derived value? There are quite a few weather stations in Svalbard. Has the model been
validated? How does it perform?

You are right; the surface mass balance is modelled with OGGM'’s ConstantMassBalance model.
The model is calibrated from geodetic mass balance measurements and computes mass balance
according to the elevation of the data point (https://docs.oggm.org/en/stable/mass-balance-
monthly.html). We have not validated the model on in situ data but already the OGGM
documentation states that "more physical approaches are possible". Therefore, in the Discussion
we mention that improving the estimate of the apparent mass balance calculation is one of the
more important tasks to improve the performance of our PINN model.

Training and Evaluation

The authors point out that data is highly correlated in space and thus they have used a cross-
validation scheme based on leaving out an entire glacier at a time. | think that’s a good approach
to a challenging issue.

Thank you.

With the above said, however, | do wonder if this is an overly harsh method of evaluation. The
effect is that, in looking at Table 2, we're looking at glaciers where no ice thickness data was
available, greatly diminishing the value of the mass conservation approach. Another approach
might be to leave in only the highest (elevation) 20% of the ice thickness data and explore how
well the PINN can use mass conservation to extrapolate this downstream.

We agree on the fact that it might be a harsh method to evaluate the model, but given that we
are also predicting ice thicknesses for glaciers where no in situ thickness measurements are
available it is crucial to know what the expected accuracy is on those glaciers. The LOGO cross
validation, therefore, tells us that we should not be too certain about the predictions the PINN
makes on any glacier without any given in situ measurements.

Training on only ice thickness measurements above a certain altitude is an interesting approach
to evaluating performance additionally. For generalizability, we think the LOGO CV is the most
important.

On Line 201, the authors state that the results suggest the model is overfitting. While this would
be the conventional interpretation for a neural network, | think this is an overly critical
interpretation for a PINN. Evaluating a PINN with no training data for the data loss function is sort
of like evaluating a PDE solver with no boundary conditions. The analogy does not fully hold as
the authors have also introduced some other inputs which can perhaps be used to guess at the
ice thickness, but, in general, | think the authors may be too critical of their own results here.
We agree that the task is challenging if there are no boundary conditions or measurements to
constrain the model predictions more. However, we want to be clear that the model cannot yet
predict ice thickness for glaciers without in situ measurements with the same accuracy as for
glaciers where we provide ice thickness measurements.

As you correctly mentioned, the model actually has other input features that it can use to learn
the distribution of ice thicknesses. To us this seems very much like an overfitting problem where
the model fits very well to the training data and does not generalize well to regions where the
labels have not been in the training data.



In theory the physics-aware loss components should take over in these areas. Therefore,
improving this overfitting problem is a bit trickier than in purely-data driven machine learning
models. On top of all the machine learning reasons that could lead to overfitting, there are also a
couple of issues related to the physics-aware part of the model, like finding the optimal balance
between loss components to enforce physical consistency that the noisy training data probably
cannot even provide. Apart from that, we think ‘overfitting” describes the situation quite well.

Later (Line 177), the authors mention a random split between training and validation data. Given
the aforementioned spatial correlation problem, how is this validation dataset used? Is it
meaningfully independent of the training data?

The random split is not meaningfully independent of the training data because of their spatial
closeness to the training data. We clarified this in the manuscript by adding

“The training and validation data are spatially correlated. Therefore, the in-sample evaluation of
the model probably overestimates its performance.”

However, the split is useful to compare the results from the LOGO CV against each other and to
the performance on the test glaciers. Since the in-sample performances do not significantly differ
from model to model, we can be sure that the method is at least robust to leaving out thickness
data of entire glaciers.

Interpretation and Applications

It would be good to discuss the importance of ice thickness on Svalbard. This might depend on
what you think your model is good at. For example, an improved estimate of total ice volume
would be impactful for sea level rise projects. Improved fine-scale ice-free topography might have
more relevance to projecting the evolution of specific glaciers that are relevant to local
communities.

We think that, since our work is more on the methodological side of estimating ice thickness,
discussing the importance of ice thickness on Svalbard’s glaciers would shift the focus too much
away from the core of the work. Please see our response to your first comment above. In
addition, our paper has been submitted to TC where we believe readers will understand why ice
thickness is important. Nonetheless, we have added the following sentences to the intro which
we believe is a strong justification:

“Ice thickness is the single most important input for modelling the dynamics of an ice mass
because surface velocity is proportional to the fourth power of thickness. Combined with surface
elevation, it provides bed topography, also key for modelling flow.”

Once the method produces robust and reliable results for unseen glaciers, it could help both in
improving the estimate of total ice volume and also the fine-scale ice-free topography (as we can
choose the grid resolution as fine as we need them).

I would like to see discussion of what components of the inputs and loss function are most
important. Many applications of PINNs largely use them as tools for solving PDEs where
constraints, regularizations, or boundary conditions do not easily fit in conventional solvers. This
work goes beyond that, feeding in multiple layers of data that is not directly incorporated into a
physics-based loss term. This, of course, raises the question of which parts are most informative.
A careful set of experiments exploring this would be very interesting.

We agree that the importance of the individual loss components is also interesting to quantify,
just as the importance of the loss components (already discussed earlier). However, it is tricky to



evaluate, as we are dealing with unevenly distributed, correlated, noisy in situ measurements as
labels to evaluate the PINN performance.

Despite this, we ran experiments in which we set the weight of each of the loss components to
zero one after another. We then compared the scores to the scores of the reported model. To do
so we calculated a relative RMSD as relative RMSD = RMSD eportea-RMSD/RMSDreported- The relative
RMSD will be positive if the score improves, and negative if the score gets worse by setting the
weight of a loss component to 0.

The relative differences vary among the scores for the test glaciers but are below 5% on average,
as shown in Table 1. However, it is interesting to see that, while the scores on the in-sample
validation data improve on average when switching off the physics-aware loss components (see
Table 2), the scores on the out-of-sample test glaciers get worse on average.

This matches our intuition that the model is overfitting on the in situ ice thickness data that we
provide it with during training. The physics-aware loss components act like a regularization while
demanding physical consistency. From this experiment, it looks like the loss to bound the
estimate of the depth-averaged velocity is the most important component.

This intuitively makes sense as a wrong estimate of depth-averaged velocity directly influences
the mass conservation loss as well. With corrupted depth-averaged velocities, the mass
conservation loss will not be able to enforce physical consistency.

Nevertheless, we want to emphasize again that the configuration of the loss weights is certainly
not optimal, as we discussed in Section 5.3, so there might be another distribution of importance
if all the loss components are better balanced. Also, as already mentioned, this experiment
depends a lot on the dataset, so the importance of loss components also only applies to this
specific study.

We added this Discussion to the Appendix.

For the Discussion of the importance of input features, please refer to our answer to your earlier
question in the Section “PINN".

Relative RMSD for the scores from the out-of-sample test glaciers of the seven models (no in
situ ice thicknesses for those glaciers were in the training dataset)

Relative RMSD No MC Vel_loss Smoothness Negative thickness
For test glaciers

RG160-07.00240 -0,091 -0,195 0,013 -0,013
RG160-07.00344 -0,018 -0,036 0,000 0,018
RG160-07.00496 0,132 -0,184 0,105 -0,053
RG160-07.00497 0,000 -0,087 0,000 -0,022
RG160-07.01100 0,025 -0,125 -0,150 0,000
RG160-07.01481 0,000 0,072 -0,157 -0,024
RG160-07.01482 0,008 0,032 -0,048 -0,048

Relative RMSD Mean -0,030 -0,075 -0,038 -0,020

Table 1 Test glacier relative RMSD

Relative RMSD for the scores from the in-sample validation data for the seven models
Relative RMSD No MC Vel_loss Smoothness Negative thickness
In-sample Val

RG160-07.00240 -0,033 0,000 -0,033 -0,033



RG160-07.00344
RGI60-07.00496
RGI60-07.00497
RG160-07.01100
RGI60-07.01481

RGI60-07.01482
Relative RMSD Mean

0,032
0,000
0,033
0,032
0,000
0,034
0,014

Table 2 In-sample validation relative RMSD

Typos and minor corrections

0,032
0,030
0,000
0,032
0,033
0,034
0,023

0,065
0,061
0,033
0,032
0,033
0,034
0,032

0,000
0,000
0,000
0,000
-0,033
0,000
-0,010

Line 10-11 - Ice flux is determined by more than simply ice thickness and surface slope under real
world conditions. This should be clarified to not suggest that those two variables alone are

sufficient.

Thanks for the remark, we meant to emphasize that ice thickness is most important to reliably
model ice dynamics. Therefore, we changed the sentence to
“Glacier ice thickness is a fundamental variable required for modelling the evolution of a glacier.”

Line 69 - bracket is the wrong way around
The bracket opening to the left should signal that O is outside the interval as it is not a possible

value for the parameter. The section was rewritten without the bracket now.

Figure 4 - Are the color scales saturating? If so, it would be good to show the clipping in a
different color so we can see where the error exceeds +/- 100 m.
Thanks for the remark; we updated the figure:

(a)

(b)

RGI60-07.00240

RGI60-07.00344

(c)

(d)
RGI60-07.00497

RGI60-07.00496
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e InTable 2, comparing the first glacier’s performance in-sample versus LOGO, the RMSD more
than doubles while the MAPD decreases. Is this correct?
Yes, this is correct. This is because the glacier is one of the thicker glaciers. Therefore, a high
RMSD might not directly lead to a high MAPD as the MAPD is the error relative to the value of the
true ice thickness.

| enjoyed reading this work and believe it to be a promising avenue. | hope that these comments can
help improve this manuscript.

Thank you again for all your comments, we think it greatly helped to improve the manuscript.
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List of all relevant changes

This list includes the changes that were already mentioned in the responses to the reviewers’
comments.

L10: changed the sentence to “Glacier ice thickness is a fundamental variable required for modelling
the evolution of a glacier.”

L10-13: added “Ice thickness is the single most important input for modelling the dynamics of an ice
mass because surface velocity is proportional to the fourth power of thickness (Cuffey and Paterson,
2010). Combined with surface elevation, it provides bed topography, also key for modelling flow.”

L 13-14: Corrected citation: “In situ ice thickness measurements exist for only a fraction of the 215
000 glaciers in the world (Welty et al., 2020)”

L 15: change sentence to “There are physics-based and process-based approaches that aim to
reconstruct glacier ice thicknesses from in situ data and ice dynamical considerations.”

L24: added further reference to literature: “or ice thickness (Haq et al., 2021).”

L 35-39: elaborated on literature “PINNs and variations thereof were also already used for predicting
ice flow (Jouvet and Cordonnier, 2023), inferring basal drag of ice streams (Riel et al., 2021) or ice
shelf rheology (Wang et al., 2022; Iwasaki and Lai, 2023), for example. Cheng et al. (2024) built a
unified framework involving a PINN to model ice sheet flow by enforcing momentum conservation



derived from the Shelfy-Stream Approximation. They apply their framework to a single glacier in
Greenland to showcase the ability of the PINN to reconstruct ice thickness and basal friction
simultaneously.”

L 24: corrected sentence to “One advantage of machine learning approaches is their efficient
optimization and evaluation compared to process-based models (Jouvet et al., 2022).”

L25: added “machine learning” to specify that we are talking about machine learning models that are
purely data-driven

L34-35: changed wording from “boundary condition” to “internal condition”: “Additional ground
truth data can be used to compute a data loss that acts as an internal condition to constraining
solutions to the PDE.”

L 32: deleted “they [PINNs] are very data efficient” as data efficient could be misunderstood

L 44: added “As a proof of concept, we include all non-surging glaciers in Spitsbergen, Barentsgya,
and Edgegya in Svalbard to show that it is possible to use a PINN architecture for an entire region.”

L71-94: rewrote Section 2.2:

“Glacier flow is the result of gravity-induced stresses on the ice. Friction between the ice and the
glacier bed or sidewalls, friction between slower and faster-moving ice within the glacier, and
gradients in longitudinal tension or compression encounter the gravitational stress (van der Veen,
2013).

The resulting ice movements depend on many factors, such as the physical properties of the ice like
temperature, impurities, or density, and also conditions at the glacier bed (Jiskoot, 2011). From
space, we can observe the surface velocity of glaciers. To infer thickness from mass conservation we
would need to know the depth-averaged velocity.

There are models with different degrees of approximations to the full Navier-Stokes equations to
describe ice flow. The simplest one, the shallow ice approximation (SIA) assumes lamellar flow, so the
driving forces are entirely opposed by basal drag. It neglects lateral shear and longitudinal stresses
and the rate factor A from Glen's flow law is taken to be constant with depth (van der Veen, 2013).

From this model, we can derive that the depth-averaged velocity relates to the surface velocity like v
= 0.8v; assuming the flow velocity at the base of the glacier is 0 (see Appendix A for derivation).
However, basal velocity is unlikely to be 0.

The basal sliding velocity tightly relates to the properties of the glacier bed and complex interactions
between water, sediment, and ice at the glacier bed (Cuffey and Paterson, 2010). Millan et al. (2022)
introduced an empirical factor B with vy, = Bvs to account for contributions from basal sliding. They
derive the factor from the ratio between surface slope and surface velocity.

If the ice velocity is entirely by slip along the glacier bed then v = v, = v. Accordingly, we estimate the
depth-averaged velocity to be within the bounds of

(llower + (1 - IIower) . B) Vs <V < Vs

where liower acts as a parameterization for the vertical integration of the velocity and can be set
between 0 and 1. Depending on the factor B that lies between 0.1 and 1 the lower boundary is close
to the defined liower Or closer to 1. For B the lower boundary for the depth-averaged velocity equals
the surface velocity.”



L95-115: rewrote Section 2.3. Technical details can be found in the new Appendix B: PINN
architecture and training.

“As already mentioned, a PINN consists of a neural network that is able to approximate the solution
to a PDE (Karniadakis et al., 2021). A neural network, also sometimes called multi-layered perceptron,
consists of layers of connected nodes, also called neurons, where the connections each have an
associated weight. At each node, the weighted outputs from each node of the previous layer are
passed through a non-linear activation function (Goodfellow et al., 2016). By minimizing a loss the
weights of the network are updated to make accurate predictions.

In a PINN model the loss is given by the residual of the PDE we want to solve. In theory, PINNs only
require input features that are needed to calculate the derivatives in the PDE (Raissi et al., 2018). In
our work, we also provide the neural network with auxiliary data, that is related to glacier ice
thickness but is not needed to solve the PDE. Therefore, we can exploit information from observable
data as we would do it with a non-physics-aware neural network.

Additionally, we use a Fourier feature encoding layer as described by Tancik et al. (2020) preceding
the neural network. A Fourier feature encoding layer maps input vector x to a higher dimensional
feature space using y(x) = [cos(2mBx), sin(2rBx)]". (4)

The embedding of spatial coordinates was originally developed to overcome spectral bias in neural
networks and speed up convergence in the reconstruction of images. It enables the network to learn
high-frequency functions in low-dimensional problem domains.

Figure 1 shows a schematic of the PINN model with its input features, outputs, and loss components.
The exact architecture of the PINN is described in Appendix B The inputs to the model are vectors for
each grid cell in the study region. They contain the spatial coordinates and surface velocities in x- and
y-directions, and three B values to correct for basal sliding in x- and y-direction and in the magnitude.
Additionally, the vectors contain auxiliary data like elevation, slope, the grid cell’s distance to the
border of its glacier, and the area of the glacier it belongs to. Only the spatial coordinates get mapped
to higher dimensional Fourier features.”

L122: updated the loss function for the depth-averaged velocity loss to:

(vs — )2 if 7> v
with v € {":-’”y/w Umag}

C"" = ("".\(lluwcv + (I = lltmcr)ﬁ) o ")2 ifo < "‘s(lluwer + (l = Iluwcr)"‘j) and B € {'3 3 )3 )
b Py PysPmag

0 else

L123: added: “As basal drag is most likely not the only drag the ice experiences, we decided to fix the
lower bound as liower = 0.7 in order to give more flexibility in the estimate.”

L137: added explanation of labelled/unlabelled data: “We refer to the points with ice thickness
measurements as labelled, whereas points without being referred to as unlabelled.”

L168: added explanation of how OGGM provides the data we use: “OGGM reprojects and scales the
data for each glacier to the glacier grids. We collect these data and transform the coordinates from
the individual grids into a common projection.”

L178: added “For each point, we compute three B values from the surface velocities in the x- and y-
direction and the magnitude of the surface velocity.”



L201: added more information on auxiliary data: “Adding to the data that we need to impose the
physics-aware losses, we also feed the network with extra information from auxiliary data as input
features. We chose the features because they were easily available through OGGM and are related to
the glacier’s ice thicknesses. In Appendix E we analyze how each of the features impact the model
output.”

Table 1: added mean survey year for each of the test glaciers and the number of measurement points
that were taken in total.

L215-217: added “Measurements on glaciers RGI60-07.00496 and RGI60-07.00497 are all from one
survey, while the others are from multiple surveys carried out in different years.”

Table 2: updated the results that changed after updating the calculation of the depth-averaged loss
component

L225: to clarify we added: “The training and validation data are spatially correlated. Therefore, the in-
sample evaluation of the model probably overestimates its performance.”

L230: deleted comparison of variability to other ice thickness estimates as it does not add value:
“This is low compared to the variation between the three physics-based models (Farinotti et al., 2019;
Millan et al., 2022; van Pelt and Frank, 2024), with more than 0.70 variability for 90% of the points.”

And added a conclusion of what the measurement of variability between the 7 LOGO CV models
actually tells us: “As the in-sample validation scores of each model are also similar, we are confident
that the method is robust to varying labelled data.”

L231: exchanged “boundary conditions” for “target data” as we chose another wording in the
beginning with “internal conditions”

Figure 4: adjusted the colour bar to better depict errors that exceed the min/max values

L232: Deleted “However, the model trained without thickness data of glacier RGI60-07.01482
overestimates its ice thickness.” as this is not true for all points.

L242: added “Another example of that would be the comparison of performances on glaciers RGI60-
07.00240 and RGI60-07.01481. They have similar measured ice thicknesses and RMSD scores but
their MAPDs differ greatly.” To underline that we need multiple metrics to measure performance

L280: added citation (Iwasaki and Lai, 2023)

L291: added example for measurement errors: “Ice thickness measurements from ice-penetrating
radar, for example, are subject to errors due to varying density of glacier ice but also due to unknown
thickness of snow and firn layers (Lindback et al., 2018).”

L297-298: added justification for statement: “which is also reported in other studies using multiple
loss components in their PINNs (Iwasaki and Lai, 2023; Cheng et al., 2024)"

L299-200: added description of findings from our experiment: “In an experiment to test the
importance of the loss components, we found that the relative importance is not very pronounced
(see Appendix D). Therefore, we assume that the individual loss components are not optimally
weighted in the reported model”

L207: changed the wording to clarify “Development of new optimization strategies”

L310-317: Rewrote the sentences to improve conciseness and readability



L318-321: added considerations about using in situ SMB data:

“Another option could be to use in situ mass balance data. This way, we circumvent the need for a
mass balance model. The mass conservation loss would only be evaluated where data is available.
This, however, would come with two restrictions. First, we would not be able to train the model in the
entire study region. Secondly, also in situ mass balance data is not error-free. We would have to make
a careful selection of the data to not introduce even more uncertainty.”

L330-337: Mentioned other sources of uncertainty/simplifications in the model physics connecting to
the estimate of depth-averaged velocity:

“We also want to mention that there are several processes affecting ice dynamics, especially in
Svalbard, that are not very simplified or neglected in the model. One example is that our model
assumes ice to be incompressible, when Svalbard glaciers actually have thick firn layers (Palli et al.,
2003). The varying density could introduce a non-negligible densification term in the mass balance
Eq. (1).

Another example is the assumption of a temperature-independent creep coefficient A. Many glaciers
in Svalbard are believed to be polythermal (Glasser, 2011). So the creep coefficient may vary within
the ice, affecting the validity of our lower boundary for the estimate of depth-averaged velocity.
However, the influence of these effects should carefully be weighed against the possibility of
introducing errors if we decide to include better representations of these processes.”

L338-340: added explanation of what we mean by “underconstrained problem”:

“We only provide the model with the ice thickness measurements as a sort of internal condition, but
we do not provide boundary conditions. Also, the depth-averaged velocity is only loosely constrained
by a set of inequalities.”

L345: changed wording for clarification “While this is technically easy to do, it comes at the cost of
introducing uncertainties from approximating required parameters. We would need to assume ice
viscosity and resistance from the bedrock, for example.”

L346: added “In our view, the two elements that are most promising to improve the model
performance, if revised, are the modelling of mass balance for Svalbard and the choice of surface
velocity data for the estimation of depth-averaged velocities”

L353: added “Moreover, we have varying numbers of IPR measurements for the evaluation of each of
the test glaciers as already mentioned in Sec. 4.1.”

L365-367: added statement of what we judge as the most promising way to improve the model
“Without changing the dataset we believe that optimizing the loss weights A would have the biggest
positive benefit, as the optimal configuration depends on the noise in the data lwasaki and Lai
(2023).”

L375: added “This serves as a proof of concept that physics-informed models can not only be applied
to one single closed system but, together with auxiliary data, can make meaningful predictions for
entire regions.”

Appendices:
Changed the order of the first two Appendices so they fit with the main text

L389: added “A is, in general, dependent on the temperature of the ice, so A= A(T).”



L392: added “We further assume constant temperature within the ice so A does not depend on z”
L410-416: added Appendix B
“PINN architecture and training

The PINN employed in this work consists of a fully-connected neural network with 8 layers and 256
neurons each. We chose Softplus as an activation function after each layer as it is infinitely
differentiable.

Softplus:f (x) = log(1 + exp(x)) (B1)

The loss weights Aiare set to keep all the loss components roughly in the same order of magnitude.
We chose the Adam optimizer with default settings from PyTorch and a learning rate of 0.0001. In the
LOGO cross-validation, each model is trained for 100 epochs.”

L420-435: Added Appendix D
“Importance of physics-aware loss components

The importance of the individual loss components is tricky to evaluate, as we are dealing with
unevenly distributed, correlated, noisy in situ measurements as labels to evaluate the PINN
performance. Despite this, we ran the LOGO experiments in which we set the weight of each of the
loss components to zero one after another. We then compared the performance to the scores of the
models reported in Sec. 4.1 by calculating a relative RMSD as

R'\/ISDreI = (RMSDreported - RMSD)/RMSDreported-

The relative RMSD will be positive if the score improves, and negative if the score gets worse by
setting the weight of a loss component to 0. The relative differences are below 5% on average. It is
interesting to see that, while the scores on the in-sample validation data improve on average when
switching off the physics-aware loss components (Table D1), the scores on the out-of-sample test
glaciers get worse on average (see Table D2). This fits with our intuition that the model is overfitting
on the in situ ice thickness data that we provide it with during training. The physics-aware loss
components act like a regularization while demanding physical consistency.

Nevertheless, we want to emphasize again that the configuration of the loss weights is certainly not
optimal, as we discussed in Sec. 5.2, so there might be another distribution of importance if all the
loss components are better balanced. Also, as already mentioned, this experiment depends a lot on
the dataset, so the importance of loss components also only applies to this specific study.”



Test glacier Mass conservation loss  Velocity loss Smoothness loss  Negative thickness loss

RGIID RMSD:a RMSDxei RMSDya RMSD:a
RGI60-07.00240 -0.033 0.000 -0.033 -0.033
RGI60-07.00344 0.032 0.032 0.065 0.000
RGI60-07.00496 0.000 0.030 0.061 0.000
RGI60-07.00497 0.033 0.000 0.033 0.000
RGI60-07.01100 0.032 0.032 0.032 0.000
RGI60-07.01481 0.000 0.033 0.033 -0.033
RGI60-07.01482 0.034 0.034 0.034 0.000

Mean 0.014 0.023 0.032 -0.010

Table D1. Relative RMSD scores for in-sample validation for each LOGO CV model.

Test glacier Mass conservation loss  Velocity loss Smoothness loss  Negative thickness loss

RGIID RMSD,y RMSD, RMSD, RMSD,
RGI60-07.00240 -0.091 -0.195 -0.013 -0.013
RGI60-07.00344 -0.018 -0.036 0.000 0.018
RGI60-07.00496 -0.132 -0.184 0.105 -0.053
RGI60-07.00497 0.000 -0.087 0.000 -0.022
RGI60-07.01100 0.025 -0.125 -0.150 0.000
RGI60-07.01481 0.000 0.072 -0.157 -0.024
RGI60-07.01482 0.008 0.032 -0.048 -0.048

Mean -0.030 -0.075 -0.038 -0.020

Table D2. Relative RMSD scores for each LOGO CV test glacier.

L434-474: Added Appendix E
“Importance of input features

The physics-aware model does not only take features that it would need to evaluate the physics-
aware losses but also auxiliary data. To gain insights into the model’s inner workings and evaluate
how it handles the auxiliary data, we estimated the feature importance on the ice thickness
predictions.

One way to approximate feature importance is by calculating Shapley values. This concept is rooted in
game theory and estimates a player’s contribution to a cooperative game (Shapley, 1953). Shapely
values represent the contribution of each feature to the model prediction.

However, analytically deriving Shapley values for deep neural networks is very costly (Hoéhl et al.,
2024). Therefore, Shapely values are approximated using techniques like the SHapley Additive
exPlanations (SHAP) framework introduced by Lundberg and Lee (2017). Within the framework, they
describe a method with improved computational performance to estimate SHAP values for deep
networks: Deep SHAP.

We used the implementation in the Captum library (DeepLIFTShap) (Kokhlikyan et al., 2020) to
calculate SHAP values for our network. The validation data served as a representative subset of the
entire dataset to save computational resources. We calculated the SHAP values for each of the seven
models from the LOGO CV.



The framework explains feature contributions to the model prediction, usually for purely data-driven
machine learning. In Fig. E1 (a) high values signify a high impact on the output of the model; low
values signify a low impact. For our PINN, the spatial coordinates are by far the most important
features. This is expected as they define the domain in which we want to find a solution for the mass
conservation PDE. Figure E1 (a) shows the mean absolute SHAP values for the features over all seven
models from the LOGO CV.

Besides the spatial coordinates the slope has the biggest impact on the prediction. Figure E1 (b)
shows the impact of the features on the output of the model for each data point separately. For
better readability, the plot shows the result of the SHAP analysis for only one of the models from the
LOGO CV, as they are all similar.

The colour indicates the feature values: red signifies a relatively high value (within the range of the
feature), and blue signifies a relatively low value. For example, the plot in Fig. E1 (b) shows that high
slope values lead to rather small values for the predicted ice thickness, while low values increase the
predicted ice thickness. This is what we would expect given that ice thickness and slope are indirectly
proportionally related in the SIA; steep slopes lead to thinner ice.

The SHAP values for the distance-to-border feature tell us that the model thinks that at the border
the ice thickness should be smaller than within the glacier. For the surface velocity values the
interpretation is less clear, also because we only see the component-wise features. High surface
velocities do not seem to have much impact on the ice thickness prediction, although, following
glacier physics, they should have a strong influence on ice thickness.

We want to emphasize that the SHAP analysis has several limitations. First of all, it expects features to
be independent of each other, which clearly is not the case here. The three B values are derived from
slope and velocity values for example. Also, the analysis depends very much on the dataset. SHAP
tries to replicate the model behaviour, and the model is trained with our specific dataset. Therefore,
the results can only show the impact of the features on the ice thickness prediction for our specific
dataset and model setup. Additionally, machine learning models can only learn correlations from the
data. Causal relationships can not be extracted. Hence, we can not derive universal feature
importance from the analysis.

However, the results from the analysis are what we would expect from physical considerations.
Therefore, it serves as a sanity check if the model is retrieving sensible correlations.
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Figure E1. SHAP analysis: (a) Mean and standard deviation of the absolute SHAP values over all seven LOGO CV models. The values were
first averaged for each model separately and then averaged for all seven models. (b) SHAP values for each datapoint by feature. The colour
shows the relative value the feature takes for each datapoint. The SHAP values are calculated for the model trained without data from glacier

RGI60-07.00240.






