
Dear Professor Jouvet,  

We are deeply grateful for your comprehensive review and construcƟve criƟcism of our manuscript. 
We value your insights and will address each of your comments in the following response. 

Thank you for helping us improve the manuscript! 

Best wishes,  

Viola Steidl and co-authors 

 This paper proposes a framework based on Physics-aware machine learning to esƟmate the ice 
thickness distribuƟon of grounded glaciers, applied to seven glaciers located in Svalbard. To achieve 
this, the authors incorporate mass conservaƟon and other physical constraints into the cost funcƟon 
to be minimized during the training stage. They use ice thickness change and surface mass balance as 
primary constraints for the flux divergence. The authors conduct a glacier-wise cross-validaƟon and 
discuss their results, and the cause of the rather-disappoinƟng generalizaƟon in view to broader 
applicaƟon.  

This paper aligns with a series of recent works that explore the significant potenƟal of machine 
learning techniques for ice thickness inference [e.g. Haq et al., 2021, Teisberg et al., 2021, Jouvet, 
2023], including physics-informed deep learning [e.g. Riel and Minchew, 2023, 2022, Iwasaki and Lai, 
2023, Jouvet and Cordonnier, 2023]. Among these, Physics-Informed Neural Networks (PINN) [Raissi 
et al., 2019] are parƟcularly promising and represent an acƟve research area. 

Overall I find the approach interesƟng and I acknowledge the authors for their effort in presenƟng 
their results honestly. However, the work appears to be a work-in-progress, and lacks a clear picture 
of what should be done for making the method generalizable. This is partly due to a too a quickly-
made and not very smooth wriƫng (see e.g. my comments below about SecƟon 2.3). The possible 
causes for the poor generalizaƟon results (LOGO CV) should be invesƟgated (especially their relaƟve 
importance) rather than listed, and I feel that this work could yield improvement in generalizaƟon 
already in this manuscript. I have a series of recommendaƟons (encompassing the wriƟng the paper 
and the methodology) that I hope will help the authors to improve the manuscript, which has the 
potenƟal for a larger impact. 

 In general, I find the descripƟon of the PINN rather inefficient. I focus here on SecƟon 2.3, but 
my comments may be extrapolated to the enƟre paper. Do not expect TC readers to be 
familiar with all ML machinery, even less so with Physics-Informed ones. Therefore, you 
should provide a minimal background. Currently, secƟon 2.3 is addressed solely to people 
with prior knowledge. At a minimum, briefly explain what a neural network is (a sequenƟal 
composiƟon of linear and nonlinear funcƟons with opƟmizable weights). To my knowledge, 
this term can be inƟmidaƟng, while it is not that complicated provided a minimal 
explanaƟon. The current SecƟon 2.3 mixes crucial informaƟon (I/O of the PINN) with more 
technical details (e.g. acƟvaƟon funcƟons, which are important but not essenƟal for most 
readers unfamiliar with ML). I suggest disƟnguishing these two levels when rewriƟng this part 
to smooth the reading and target a broader audience. Consider moving ML technicaliƟes to 
an appendix, and leave te ideas in the body of the paper. Another example: you menƟon 
“Fourier layers” but do not provide any raƟonale ( I would like to know the benefit of this). 
There are several ML-specific concepts (e.g., unlabeled data) that are not explained 
throughout the manuscript, which is a problem to maximize the audience of the paper to a 
general glaciological audience. 
Thank you for poinƟng out the necessity to clarify machine learning terms. We totally agree 
that we should make our manuscript understandable to anyone without machine learning 
background. Therefore, we made significant revisions to the secƟon. We added a brief 



descripƟon of neural networks to the secƟon and streamlined the explanaƟon of the  I/O 
vectors: 

“A neural network, also someƟmes called mulƟ-layered perceptron, consists of layers of 
connected nodes, also called neurons, where the connecƟons each have an associated weight. 
At each node, the weighted outputs from each node of the previous layer are passed through 
a non-linear acƟvaƟon funcƟon (Goodfellow et al., 2016). By minimizing a loss the weights of 
the network are updated to make accurate predicƟons.” 

“In a PINN model the loss is given by the residual of the PDE we want to solve. In theory, 
PINNs only require input features that are needed to calculate the derivaƟves in the PDE 
(Raissi et al., 2018). In our work, we also provide the neural network with auxiliary data, that 
is related to glacier ice thickness but is not needed to solve the PDE. Therefore, we can exploit 
informaƟon from observable data as we would do it with a non-physics-aware neural 
network.” 

“The inputs to the model are vectors for each grid cell in the study region. They contain the 
spaƟal coordinates and surface velociƟes in x- and y-direcƟons, and three β values to correct 
for basal sliding in x- and y-direcƟon and in the magnitude. AddiƟonally, the vectors contain 
auxiliary data like elevaƟon, slope, the grid cell's distance to the border of its glacier, and the 
area of the glacier it belongs to.” 

To beƩer explain the Fourier embedding of the spaƟal coordinates we changed the name 
from  “Fourier layer” to “Fourier feature encoding layer” and also added a descripƟon of the 
Fourier embedding: 

“The embedding of spaƟal coordinates was originally developed to overcome spectral bias in 
neural networks and speed up convergence in the reconstrucƟon of images. It enables the 
network to learn high-frequency funcƟons in low-dimensional problem domains.” 

The raƟonale behind using the Fourier feature embedding is to speed up the convergence of 
the mass conserving loss that only relies on the derivaƟves w.r.t. the spaƟal coordinates. 
Figure 1 (not included in the manuscript) shows that the Fourier feature embedding clearly 



makes the mass conservaƟon loss drop faster, whereas it would not be improved at all 
without the Fourier feature embedding.  

The concept of labelled and unlabelled data is now also explained: 

“We refer to the points with ice thickness measurements as labelled, whereas points without 
being referred to as unlabelled.”  

 

Figure 1 Comparison of mass conservaƟon loss with and without Fourier feature embedding layer 

   

 I am not sure I understand: Do you feed your neural network with raster data grids (as 
suggested in Fig 1) or with large vectors of data at each coordinate along with the coordinate 
data? My quesƟon is whether you exploit the spaƟal structure of the data (I assume you have 
data on a raster structure grid). If not, I understand why you use a fully connected network; if 
you do, why not use a convoluƟonal neural network designed to capture spaƟal 
relaƟonships? 
Thank you for bringing up that this could be misunderstood. As menƟoned before we now 
clarified that the training data are vectors of data at each point of the grid.  

“The inputs to the model are vectors for each grid cell in the study region.” 

The spaƟal structure is not exploited with a convoluƟonal network yet, but we agree that this 
is an interesƟng follow-up.  

 

 The descripƟon of ice flow (SecƟon 2.2) seems rather simplified. There are a couple of 
assumpƟons behind that are not clearly wriƩen down. Including a true high-order model 
here would be a great added value I think. You menƟon in line 274 that adding momentum 
conservaƟon would be “technically easy,” but I am less pessimisƟc than you about the claim 
that “it would complicate the opƟmizaƟon of the model.” Instead, the funcƟonal associated 
with the BlaƩer-PaƩyn model, for example, behaves relaƟvely well with good convexity 
properƟes [Jouvet, 2016, Jouvet and Cordonnier, 2023], and could act as a physically-
consistent, welcome smoother. 



Thank you for your comment. As this also came up in the second Review leƩer we revised 
SecƟon 2.2 and included the assumpƟons to the SIA: 

“There are models with different degrees of approximaƟons to the full Navier-Stokes 
equaƟons to describe ice flow. The simplest one, the shallow ice approximaƟon (SIA) assumes 
lamellar flow, so the driving forces are enƟrely opposed by basal drag. It neglects lateral shear 
and longitudinal stresses and the rate factor A from Glen's flow law is taken to be constant 
with depth (van der Veen, 2013).”  

We agree that including a higher-order model could provide beƩer esƟmates of the velocity 
profile with depth. However, to apply these models we would need to make further 
assumpƟons, for example, about the ice viscosity and how it varies with depth or the amount 
of basal drag/drag from the sidewalls of the glaciers. Indeed, Rückamp et al. (2022) idenƟfy 
this as an issue with the BlaƩer-PaƩyn approximaƟon to full Stokes soluƟons. We want to 
emphasise here, that our study is a proof of concept rather than a definiƟve analysis. We 
idenƟfy several areas for improvement in future work and a higher order model for surface to 
depth average velocity is one possibility but, likely, not the first order issue for improving the 
results, which we believe are more sensiƟve to i) the quality of the input data, ii) the SMB 
esƟmates used and iii) esƟmaƟon of basal velociƟes. We discuss how each of these issues 
could be addressed in future work. 

Also we clarified our claim about adding momentum conservaƟon being technically easy. We 
meant to say that adding another component in the loss funcƟon is technically easy to do, as 
it is just adding another term. However, supporƟng the correct evaluaƟon of the loss requires 
detailed knowledge about parameters like the viscosity of ice. We now rewrote the sentence 
to make it less ambiguous: 

“While this is technically easy to do, it comes at the cost of introducing uncertainƟes from 
approximaƟng required parameters. We would have to make assumpƟons about ice viscosity 
and resistance from the bedrock, for example.” 

Thanks again for bringing up that the way we phrased it could be misunderstood. 

 

 In connecƟon with my previous point, have you considered moving the surface velocity from 
the input of your PINN to the data? This would make sense if you are including momentum 
conservaƟon. In the present case, can this be an opƟon too? What is the moƟvaƟon to insert 
the “observaƟonal” data in input of the PINN or as data constrained in the loss? 

We assume with ‘moving the surface vel from input of your PINN to the data?’ you suggest 
having the surface velocity in the target vector instead of the Input vector. In fact, this would 
be an opƟon, too and Teisberg et al. set up their model exactly in this way. However, as the 
(surface) velocity is actually an important predictor of the ice thickness, we decided to leave it 
in the input vector.  

The idea behind having the apparent mass balance only in the target vector is that we are not 
confident about the quality of the mass balance data as it is modelled from a simple model. 
Therefore, we did not want to have it as an input that would give the mass balance data more 
weight as compared to only introducing it with the soŌ constraint of the mass conservaƟon 
loss. 

 



 The comparison (SecƟon 4.2) to the two other products [Millan et al., 2022, Farinoƫ et al., 
2019] is not a strong point. It tells us that the PINN lies within the range, which is not 
surprising as the two products differ significantly. This secƟon could be moved to an 
appendix. 

We agree it is not a strong point to prove the correctness of the PINN’s ice thickness esƟmate. 
However, we think it is informaƟve to show how the esƟmate compares to other ice thickness 
esƟmates. Therefore, we would like to keep it in the Results secƟon.  

 

 Maybe consider applying your method first to a syntheƟc case where you can create a 
manufactured bedrock and dataset. Then, use your method to infer the ice thickness and 
compare it to the ground truth. This approach would help avoid issues related to data 
suspicion. In general, there are many possible causes for the lack of generalizaƟon, but there 
are strategies to isolate these causes that you could further explore through syntheƟc 
experiments. 

We totally agree that applying the method to a perfect syntheƟc case would be the opƟmal 
seƫng to test the method and research causes for bad generalizaƟon. This would be an 
interesƟng follow-up exercise but is, by no means, a trivial exercise for the following reasons. 
The design of the experiment and the design of the syntheƟc data are crucial in our view. For 
example, do we use a Full Stokes model, BlaƩer-PaƩyn or some other approximaƟon. Which 
kinds of glaciers should be modelled with what kind of glacier bed? How to best sample a 
variety of glaciers? We would need a range of SMB profiles and, presumably, a range of 
bedrock thermal regimes from fully frozen, parƟally frozen to temperate and so on. A 
syntheƟc data approach would certainly allow us to explore how uncertainƟes and 
assumpƟons influence the robustness of the soluƟon but would be a substanƟal effort in its 
own right. 

Nevertheless, we agree that applying the approach to a syntheƟc dataset would be ideal to 
beƩer evaluate the PINN model and its strengths or weaknesses. 

 

 SecƟon 5 provides a list of possible causes for the lack of generalizaƟon. However, it is hard to 
draw any conclusions. Some causes are more important than others. It would be helpful if 
you could prioriƟze these causes (and improvement items) by order of importance, from the 
most significant (with the largest potenƟal for improvement) to the least significant. I feel 
that “Physical constraints” should be at the top of the list. 

We agree that lisƟng the potenƟal causes for bad generalizaƟon is not ideal. However, it is 
certainly not trivial to prioriƟze the possible causes. We would, for example, argue that input 
data quality plays a huge, perhaps dominant, role. The relaƟve weighƟng of data loss and the 
physics-aware losses, also in close relaƟon to the amount of noise in the measurement data, 
has a significant impact on the convergence of the PINN (Iwasaki and Lai, 2023). Since in our 
model the quality/label uncertainty is not yet taken into account, we believe that this could 
be one way to improve the model. However, improved SMB and basal velocity esƟmaƟon will 
also be important, as we state. For the laƩer, there are several approaches that could be 
adopted such as using winter-only velociƟes or by examining the seasonal cycle in velociƟes. 



We agree that physical constraints play a significant role but the significance will likely vary by 
glacier. To address this concern we have indicated, qualitaƟvely, the factors that would 
significantly improve the soluƟon. 

 

 Lines 264-266: You place a lot of trust in your Mass balance reconstrucƟon, especially if it is 
not calibrated (line 264). Considering that this is a major constraint, I think this might be a 
significant cause of underperformance. Also, using a model for esƟmaƟng the SMB (even a 
perfected one) is problemaƟc, as your ”observaƟons” are not observaƟons but modelled 
reconstrucƟons. Have you considered using in-situ sparse measurements instead? 

Yes, we thought about using observaƟons but as the objecƟve is to evaluate the mass 
conservaƟon at each point of the grid, we need to fall back to a mass balance product that is 
available for the enƟre study area. The mass balance reconstrucƟon that we are using is 
actually calibrated on observaƟonal data (hƩps://docs.oggm.org/en/stable/mass-balance-
monthly.html).  

However, maybe in a follow-up work, it would be worthwhile to include another loss 
component where the residual to mass conservaƟon is calculated from in situ SMB 
measurements wherever they are available, just like the data loss is evaluated only where ice 
thickness measurements are available. Thanks for making this suggesƟon.  

 

I have some addiƟonal specific comments: 

 In the introducƟon, it would be good to ellaborate the exisƟng literature on using ML for ice 
thickness inversion modeling [e.g. Haq et al., 2021, Teisberg et al., 2021, Jouvet, 2023] (line 
21), as well as physics-informed deep learning applied to similar problems, such as inferring 
basal condiƟons (bedrock locaƟon or slipperiness) [e.g. Riel and Minchew, 2023, 2022, 
Iwasaki and Lai, 2023, Jouvet and Cordonnier, 2023] (lines 32-34). As this is a fast-evolving 
field, it would be good to check the latest papers, and possibly to complete. 
Thank you for providing further literature that should be included. We extended the 
literature review to make it more complete. We hope this meets your expectaƟons. 
 

 l 12: Not sure Millan et al. [2022] is the most appropriate reference for that. 
Thanks for poinƟng that out, we apologize for the mistake and changed the reference to 
Welty et al. 2020. 
 

 l 13: “Physics-based approaches ...” This sounds to be a very personal definiƟon, consider a 
more appropriate one. 
Agreed, we changed the sentence such that it cannot be misunderstood as a definiƟon 
anymore: “There are physics-based and process-based approaches that aim to reconstruct 
glacier ice thicknesses from in situ data and ice dynamical consideraƟons.” 
 

 l 22: “One avantage of data-driven approaches is a significant speed-up compared to physics 
based models”: The computaƟon speed-up has nothing to do with whether it is data-driven 
or physics-driven; it is the result of the efficiency of evaluaƟng a neural network (especially 
on GPUs), irrepecƟve of the training strategy: based on data [Jouvet et al., 2022] or on 
physics [Jouvet and Cordonnier, 2023]. Please correct. 



Thank you for the correcƟon. We changed the sentence to clarify that we are talking about 
data-driven machine learning methods that are fast to opƟmize and evaluate: “One 
advantage of machine learning approaches is their efficient opƟmizaƟon and evaluaƟon 
compared to process-based models (Jouvet et al., 2022).”  

 

 l 30-31: These two sentences are unclear to me : i) what means “data-efficient” in the 
context? ii) “boundary condiƟon to solve the PDE”, I think I understand what you mean (this 
would be a Dirichlet BC as you can enforce the soluƟon to be close to a certain given value 
somewhere), but I’m not sure this is clear for all. 
Thank you very much for bringing up that this is not clear. With ‘data-efficient’ we meant to 
describe that we are less dependent on ground truth data because we are also relying on 
physical constraints. We took this out to avoid misunderstanding. Also, as you righƞully 
menƟoned the term boundary condiƟon might be misleading as the data loss is not exactly a 
condiƟon that we set on the boundary of the domain but rather an “internal constraint” that 
helps find a soluƟon to the PDE. We also changed this wording in the manuscript: “AddiƟonal 
ground truth data can be used to compute a data loss that acts as an internal condiƟon to 
constraining soluƟons to the PDE.” 
 

 l 255: “the loss landscape is highly complex”, this is an unsual way to describe the lack of 
convexity the loss, which is not improved – I agree – by adding the number of constraints 
within the loss. I am not sure I found what opƟmizer you used (ADAM, SGD, RMSPROP, ?). 
We apologize for not including this informaƟon in the manuscript before. We used the Adam 
opƟmizer and added the informaƟon to the new Appendix SecƟon on the architecture of the 
model.  
 

 Appendix B: I feel I have seen this exercise numerous Ɵmes in textbooks, deriving a 0.8 raƟo 
between verƟcally-averaged and surface velocity in the non-sliding SIA parallel slab case. I 
suggest you replace it a reference and use the space in the paper to beƩer explain the ML 
part. 
We agree that this is oŌen described in textbooks, but we would like to keep the derivaƟon 
as an explanaƟon of where our lower bound to the depth-averaged velocity esƟmaƟon 
comes from and also which assumpƟons have been made. 
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