

NITROUS OXIDE (N2O) in MACQUARIE HARBOUR, TASMANIA

Maxey, Johnathan Daniel^{1,2}, Neil D. Hartstein², Hermann W. Bange³, Moritz Müller¹

¹Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350,
 Malaysia
 ²ADS Environmental Services, Kota Kinabalu, Sabah, 88400, Malaysia

³GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

Correspondence to: Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller

Abstract. Fjord-like estuaries are hotspots of biogeochemical cycling due to steep physicochemical gradients.
The spatiotemporal distribution of nitrous oxide (N₂O) within many of these systems is poorly described, especially in the southern hemisphere. The goal of this study is to describe the spatiotemporal distribution of N₂O within a southern hemisphere fjord-like estuary, describe the main environmental drivers of this distribution, the air/sea flux of N₂O, and the main drivers of N₂O production. Cruises were undertaken in Macquarie Harbour, Tasmania to capture N₂O concentrations and water column physicochemical profiles in

15 winter (July 2022), spring (October 2022), summer (February 2023), and autumn (April 2023). N₂O samples were collected at one depth at system end members, and at 5 depths at 4 stations within the harbour.

Results indicate that N₂O is consistently supersaturated (reaching 170% saturation) below the system's freshwater lens where oxygen concentrations are often hypoxic, but infrequently anoxic. In the surface lens,
levels of N₂O saturation vary with estimated river flow and with proximity to the system's main freshwater endmember. The linear relationship between AOU and ΔN₂O saturation indicates that nitrification is the process generating N₂O in the system. When river flow was high (July and October 2022), surface water N₂O was undersaturated (as low as 70%) throughout most of the harbour.

- 25 When river flow was low (February and April 2023) N₂O was observed to be supersaturated at most stations. Calculated air/sea fluxes of N₂O indicated that the system is generally a source of N₂O to the atmosphere under weak river flow conditions and a sink during strong river flow conditions. The diapycnal flux was a minor contributor to surface water N₂O concentrations, and subhalocline N₂O is intercepted by the riverine surface lens and transported out of the system to the ocean during strong river flow conditions. In a changing climate,
- 30 Western Tasmania is expected to receive higher winter rainfall and lower summer rainfall which may augment the source and sink dynamics of this system by enhancing the summer / autumn efflux of N₂O to the atmosphere.

This study is the first to report observations of N_2O distribution, generation processes, and estimated diapycnal / surface N_2O fluxes from this system.

35 1. Introduction

Despite the fact that fjords and fjord-like estuaries represent only a small portion of the coastal area worldwide they are responsible for sequestering 11% of the global organic carbon (C) burial along terrestrial margins (Smith *et al.*, 2015; Bianchi *et al.*, 2018, 2020). These systems are significant sources of greenhouse gasses (GHG) to the atmosphere (Wilson *et al.*, 2020; Rosentreter *et al.*, 2023; Bange *et al.*, 2024). Many are heavily

40 stratified with strong water column physicochemical gradients (Acuña-González et al., 2006; Inall and Gillibrand, 2010; Hartstein et al. 2019; Salamena et al., 2021, 2022; Maxey et al. 2022). These gradients can be influenced by mesoscale climate drivers like NAO and SAM (see Austin and Inall 2002; Gillibrand et al., 2005; Maxey et al., 2022) and local scale drivers like fresh water input and marine intrusions (Inall and Gillibrand 2010; Hartstein et al., 2019; Maxey et al., 2020; Salamena et al., 2022).

45

Nitrous oxide (N₂O) is a potent GHG whose increased presence in the atmosphere is primarily driven by emissions from agricultural soils with an increased presence in poorly oxygenated marine systems (Laffoley and Baxter 2019; Ji *et al.*, 2020; Wilson *et al.*, 2020; Wan *et al.*, 2022; Orif *et al.*, 2023). With a global warming potential nearly 300 times that of CO₂ (Myhre *et al.*, 2013; Etminan *et al.*, 2016; Eyring *et al.*, 2021; Forster

et al., 2021) N₂O is a key focus of climate studies especially regarding ozone layer depletion. N₂O is a precursor to NO, and a major ozone depleting substance in the atmosphere (Nevison and Holland, 1997; Ravishankara *et al.*, 2009; Portmann *et al.*, 2012). N₂O production occurs through the microbially mediated processes of ammonia oxidation, nitrite (NO₂⁻) reduction, and nitrate (NO₃⁻) reduction (Kuypers *et al.*, 2018). N₂O production in marine systems is governed by environmental conditions such as dissolved oxygen (DO) availability, ammonium (NH₄⁺) availability, light availability, temperature (*e.g.* Raes *et al.*, 2016), pH (*e.g.*

Breider et al., 2019), and microbial community composition (e.g. Wu et al. 2020).

Estuarine systems have disproportionately high biological productivity relative to other marine systems (Walinsky *et al.*, 2009; Gilbert *et al.*, 2010; Bianchi *et al.*, 2018, 2020). This also applies to N₂O dynamics

- 60 with approx. 33% of marine N₂O emissions coming from estuaries (Bange et al., 1996; Seitzinger et al., 2000; Murry et al., 2015; Reading, 2022; Rosentreter et al., 2023). Estuaries can act as net sinks (Maher et al., 2016; Wells et al., 2018) and sources (De Bie et al., 2002; Zhang et al., 2010; Sánchez-Rodríguez et al., 2022) of N₂O depending on factors controlling air/sea fluxes, waterbody/atmospheric concentrations (Wells et al., 2018; Bange et al. 2019), land use modification (Reading et al., 2020; Chen et al., 2022), and even the presence
- of microplastics (Chen et al, 2022). Despite the advancements made thus far, our understanding of marine N₂O distribution and atmospheric emissions needs improvement (Bange et al., 2024), especially in southern hemisphere fjord-like systems (Yevenes et al., 2017). Much of the current uncertainty lies with a lack of in-situ data describing seasonal N₂O dynamics to constrain global emissions models (Bange et al., 2019).
- The purpose of this study was (1) to investigate the distribution and seasonal variability of N₂O concentrations and emissions in a southern hemisphere fjord-like estuary and (2) to decipher the major physical and biological drivers of the N₂O emissions.

2. Methods

80

75 **2.1 Study Area**

Macquarie Harbour is a southern hemisphere fjord-like estuary located on Tasmania's west coast (**Figure 1**). The harbour is oriented NW by SE, and is approximately 33 km long, 9 km wide, with a surface area of 276 km². The mouth of the harbour is constricted by a shallow (4-8m), long (14km) sill known as "Hells Gates". Hells Gates muffles tidal forcing resulting in harbour water levels primarily determined by river flow and wind set up (**Hartstein** *et al.*, **2019**). The morphology of this system results in sharp gradients of DO, salinity, and

- temperature which are seasonally dependant (Creswell *et al.*, 1989; Hartstein *et al.*, 2019; Maxey *et al.*, 2022). In surface waters DO concentrations are nearly always in equilibrium with the air but decrease sharply through the halocline (~8m to 15m). Subhalocline layers (~15m to a few meters from the bottom) are observed to be below 62.5 μ M more than 50% of the time (*see* Maxey *et al.*, 2022). Near the seabed, episodic marine intrusions
- 85 (deep water renewal) refresh the supply of DO. In the upper reaches of the harbour marine intrusions are much less common (*see* Hartstein *et al.*, 2019; Maxey *et al.*, 2022). In these areas the DO concentration falls below 31 μM nearly a third of the time (Maxey *et al.*, 2022).

Like many fjord-like estuaries, the distribution of DO is driven by multiple physical and biological processes whose relative importance depends on position along the estuarine axis as well as water column depth (Hartstein *et al.*, 2019 and Maxey *et al.*, 2017, 2020, 2022). There is almost no DO produced below the halocline (8m to 12m deep) as the overlying freshwater lens is high in chromophoric dissolved organic matter (CDOM) limiting light available to primary producers in the surface water layers (within 3m) (Maxey *et al.*, 2017, 2020). Basin water oxygen concentrations and salinity are largely influenced by advection of marine water

- 95 over Hells Gates (Andrewartha and Wild-Allen 2017; Hartstein et al., 2019; Maxey et al., 2022). This process is driven by low atmospheric pressure, sustained NW winds, and low catchment rainfall which itself is influenced by Southern Annular Mode (SAM) (Hartstein et al., 2019; Maxey et al., 2022). Hydrodynamic and oxygen tracer numerical simulations of the harbour by Andrewartha and Wild-Allen (2017) support measurements by Maxey et al. (2022) which show that basin water residence times and basin water oxygen to concentrations are tied to the flow conditions of the freshwater endmembers. In their model basin water tracer
- concentrations are needed by half in approximately 65 days during low river flow conditions (approximately 70 days at the surface) and in approximately 110 days during normal flow conditions (approximately 40 days at the surface).
- 105 The main source of freshwater to the harbour is located on its southeast end (the Gordon River) and drains a nearly pristine catchment (including the Franklin River) of approximately 5,682 km² (Macquarie Harbour Dissolved Oxygen Working Group, 2014; Fig 1). The Gordon River discharges an estimated 180,000 tons organic carbon (OC) per year (Maxey *et al.*, 2020, 2022) into the estuary. It should be noted that this area receives the some of the highest rainfall (more than 2,500 mm year⁻¹) volume in Australia (Dey *et al.*, 2019). The
- 110 King River, located on the harbour's northern end, is the second largest contributor of fresh water to the estuary and drains a catchment area of 802 km². Unlike the Gordon River, the King River has a history of receiving treated mining (*e.g.* copper) effluent and transporting this to the harbour (**Carpenter** *et al.*, **1991; Teasdale** *et al.*, **2003**).

Figure 1: Macquarie Harbour, Tasmania. Water sampling stations shown with red circles; Cape Grim Air Pollution monitoring station shown as a green star (see inset map). Cape Sorell Weather Station shown as an orange star. Gordon Above Denison stream gauge shown as a red star (see inset map). Aquaculture lease boundaries are shown as hollow rectangles. Lease locations are sourced from Land Information Systems Tasmania (LISTmap - https://maps.thelist.tas.gov.au/). Station names reflect general harbour locations where KR1 indicates King River 1;
 C10 and C08 indicate Central Harbour 10 and 08 respectively; WH2 indicates World Heritage Area 2; and GR1 indicates Gordon River station 1. Coordinates are displayed in GDA_1994_MGA_Zone_55. Bathymetry through the system shown as a dashed line, note that this track excludes stations KR4 and KR1.

2.2 Experimental Design

N₂O distribution was assessed by collecting water samples across 7 stations, including the harbour's endmembers (mouths of the Gordon and King Rivers as well as the harbour mouth at Hells Gates Inlet; *see* Figure 1 and Table 1) and stations along the longitudinal axis of the harbour where the deepest basins are located (named KR1, C10, C08, and WH2). Samples collected at endmember stations were collected from a single depth as these stations are shallow. Samples in the harbour body were collected at 5 depths from the surface (2m) to approx. 1m from the seabed. Collection campaigns were conducted in July 2022, October 2022, February 2023, and April 2023. At each station and depth three replicate vials (n = 3) were collected for the

determination of N_2O concentration.

2.3 Field Sampling

135 At each station, water quality sonde profiles were collected from the surface to the seabed at 1 meter intervals using a YSI EXO-1 equipped with optical DO (accuracy from 0 to 625 μ M \pm 3 μ M or 1% of reading whichever is greater; precision is 0.03 μ M), salinity (accuracy \pm 0.1 or 1% of reading whichever is greater; precision is 0.01), temperature (accuracy is \pm 0.15 °C; precision is 0.01 °C), and depth sensors. Sonde calibration was checked and corrected (when needed) each sampling period.

140

Water samples were collected at various depths (see **Table 1**) using a 5 L Niskin bottle sampler. Water sample parameters include dissolved Total Ammoniacal N ($NH_3 + NH_4^+$) (TAN), NO_3^- , and N_2O . N_2O samples were collected in triplicate immediately after retrieval of the Niskin bottle by transferring water from the bottle through silicone tubing into a 20 mL borosilicate vial. Sample water was added to the vial by placing the tubing at the bottom and allowing the vial to overflow several volumes before sealing with a butyl rubber stopper and aluminium crimp. After ensuring the sample vial is bubble free, 50 μ L of saturated mercury chloride (HgCl₂) solution was injected into the sample to arrest biological activity. All N₂O samples were shipped to GEOMAR in Kiel, Germany for analysis. Samples were measured in July/August 2023 within 4 to 12 months after sampling

150

155

145

Water collected for dissolved inorganic nitrogen (N) was filtered immediately using 0.45 µm polyethersulfone syringe filters (Whatman Puradisc). Samples were stored in a chilled dark container until being transported to Analytical Services Tasmania in Hobart, Australia for analysis. Dissolved Total TAN and NO₃⁻ were analysed using a Lachat Flow Injection Analyser. TAN and NO₃⁻ analyses used methods based on APHA Standard methods (2005) 4500-NH₃ H (reporting limit 0.005 mg L⁻¹) and 4500 - NO₃⁻ L⁻¹ (reporting limit 0.002 mg L⁻¹).

Table 1: Sampling stations showing coordinates, parameters, and sampling depth (in meters).

and were not affected by the storage time (Wilson et al., 2018).

Station	Station Depth (m) (MSL)	Dissolved Oxygen Salinity Temperature	N ₂ O	$\begin{array}{c} TAN \\ (NH_3 + NH_4^+) \end{array}$	NO ₃ -
HG3 352484, 5325594	8	Every Meter	5m	5m	5m

165

170

KR4 365018, 5327550	3	1m	1m	1m	1m
KR1 361316, 5325972	36	Every Meter	2, 12, 20, 30, 35m	2, 12, 20, 30, 35m	2, 12, 20, 30, 35m
C10 363708, 5320464	44	Every Meter	2, 12, 20, 30, 42m	2, 12, 20, 30, 42m	2, 12, 20, 30, 42m
C08 365489, 5317238	47	Every Meter	2, 15, 25, 35, 45m	2, 15, 25, 35, 45m	2, 15, 25, 35, 45m
WH2 370218, 5309894	32	Every Meter	2, 12, 20, 25, 30m	2, 12, 20, 25, 30m	2, 12, 20, 25, 30m
GR1 377784, 5300603	12	Every Meter	10m	10m	10m

160 2.4 Analysis of Rainfall and River Loading Estimation

River loading and rainfall were analysed using methods presented in **Maxey** *et al.* (2022) where rainfall and stream gauge data were collected from the Gordon River catchment, Strathgordon rainfall gauge station and the Gordon Above Denison (GAD) stream gauge (**Figure 1**). The rainfall and flow metrics computed include the average daily rainfall over a 20-day period prior to sampling; total accumulated rainfall 20,10, 5, and 3 days prior to sampling; estimated Gordon River flow into the estuary; and measured flow at the GAD stream gauge.

Gordon River flow was estimated by scaling daily rainfall to the size of the catchment and assuming a rainfall and runoff coefficient of 0.70 adopted from a neighbouring catchment with similar land cover, geology, and slope (**Willis, 2008**). Additional streamflow from Gordon River dam releases was estimated by subtracting scaled rainfall contributions to river flow measured at the GAD stream gauge. This flow was added to the estimated runoff entering the harbour. Rainfall and flow data were provided by the Australian Bureau of

Meteorology (BOM).

NO₃⁻ and TAN loading was estimated my multiplying the measured concentration of each parameter at station
GR1 (*see* Figure 1 and Table 1) by the estimated Gordon River flow.

2.5 Analysis of Water Column N₂O Concentrations, Air/Sea Flux, and Diapycnal Flux

2.5.1 Determination of N₂O Concentrations

Water samples were analysed for N₂O using the static-headspace equilibration method followed by gas
 chromatographic separation (HP Agilent 5890) and detection with an electron capture detector (ECD) as described in Bange *et al*, (2019), Bastian (2017), and Kallert (2017). The concentrations of N₂O in the samples was calculated with the following equation (Equation 1; *see* Bange *et al*, 2006):

Equation 1

$$C_{obs} = \frac{x' P V_{hs}}{RTPV_{wp}} + X' \beta F$$

185 C_{obs} is the concentration (nmol L⁻¹) of N₂O in the water sample; **x'** is the measured dry mole fraction of N₂O in the sample vial's headspace; *P* is the ambient pressure set to 1 atm; V_{hs} and V_{wp} are the volumes of the headspace in the vial and water in the vial; *R* is the gas constant; *T* is the temperature during equilibrium; and β is the solubility of N₂O (Weiss and Price, 1980). The mean relative error of the concentration values obtained was 2.4% (± 0.16).

190

2.5.2 Estimation of N₂O Air/Sea Fluxes and N₂O Saturations

N₂O air/sea fluxes (F in µmol m⁻² d⁻¹) were estimated using equations from Zhang *et al.*, (2010) and Bange *et al.*, (2019) (Equation 2) *Where*:

195 Equation 2

$$\mathbf{F} = \mathbf{K} * (\mathbf{C}_{obs} - \mathbf{C}_{eq})$$

 C_{obs} is the measured concentration (nmol L⁻¹) of N₂O in the water sample; C_{eq} is the air-equilibrated seawater N₂O concentration, calculated for in situ temperature and salinity using the solubility data of Weiss and Price (1980). *K* is the gas transfer velocity, which in the absence of direct measurements can be expressed as a

- 200 function of the wind speed and the Schmidt Number (*Sc*). For this study we sourced daily average wind speed from the Cape Sorrel Weather Station at the northern end of Macquarie Harbour (http://www.bom.gov.au/climate/data/index.shtml station ID 097000; see **Figure 1** for station location). *K* was estimated using relationships in **Raymond and Cole** (2001). Fluxes at Macquarie Harbour's endmember stations used *K* values that account for additional forcings like bottom sheer (*see* **Raymond and Cole 2001**; **Zappa et**
- 205 al., 2003; Abril and Borges 2004, Beaulieu et al., 2012; Rosentreter et al., 2021). Deeper stations in the harbour's main body (*i.e.* KR1, C10, C08, WH2) have surface layers which are separated from the seabed by more than 10 meters. A wind-based K₆₀₀ estimator was used to estimate air-sea flux in those locations (*see* Raymond and Cole 2001). Atmospheric N₂O for this estimation was sourced from monthly mean baseline greenhouse gas mole fractions measured at the Kennaook / Cape Grim Baseline Air Pollution Station, located in
- 210 north west Tasmania. This station measures atmospheric N₂O using a gas chromatograph (GC) equipped with an ECD (https://www.csiro.au/en/research/natural-environment/atmosphere/latest-greenhouse-gas-data). N₂O saturation (in %) were computed as N₂O saturation = $100 * C_{obs} * C_{eq}^{-1}$.

2.5.3 Estimation of Diapycnal N₂O Flux

215 N₂O diapycnal fluxes (*F_{dia}*; Equation 3) from basin waters (sample depths of 20m or 25m) to the harbour's surface lens (sample depths of 2m) were estimated as:

Equation 3

$$F_{dia} = K\rho \frac{d[N_2 O]}{dz}$$

Where *z* is depth. Diapycnal diffusivity (*K_ρ*; **Equation 4**) was computed with the local buoyancy frequency (*N*²), 220 *Γ* set to 0.2 (Osborn 1980), and ε the dissipation rate of turbulent kinetic energy assumed to be on the upper end of values for the mixing zone of stratified systems 1 x 10⁻⁵ (**Arneborg** *et al.*, 2004; Mickett *et al.*, 2004; Fer *et al.*, 2006).

Equation 4

225

230

$$K_{\rho} = \Gamma \frac{\epsilon}{N^2}$$

2.6 Data Analysis

The relationships between N₂O saturation and water quality parameters such as DO concentration, salinity, temperature, nitrate, and ammonium concentrations were analysed using Pearson correlation. The effects of season and depth on N₂O saturation at each sampling station was tested using a 2-way ANOVA. The relationship between rainfall / river flow metrics from the Gordon River and surface water N₂O saturation / N₂O air/sea flux at each station was analysed using Pearson correlation.

3. Results

3.1 Rainfall and River Loading

- Twenty-day rainfall accumulation ranged from a low of 117 mm in July 2022 to a high of 139 mm in April 2023 with no detectable seasonal differences (*see* Figure 2A). Average daily rainfall was similar across all months and ranged from 5.12 (\pm 2.57) mm in July 2022 to 5.79 (\pm 3.03) mm in October 2022 (*see* Figure 2B). As observed with accumulation metrics no seasonal differences were detected.
- Estimated flow at the Gordon River mouth and GAD stream gauge were greater in July and October 2022 than February and April 2023 (**Figure 2C**). At the GAD stream gauge, average flows were observed to decrease during the study period. Greatest flow was observed in winter (July 2022) at 107.6 (\pm 15.9) m³ s⁻¹ and lowest in autumn (April 2023) at 30.5 (\pm 2.2) m³ s⁻¹ (**Figure 2D**).
- Estimated NO₃⁻ and TAN loading varied with NO₃⁻ loads of 1.69 tonnes day⁻¹ observed in July 2022, dipping to 0.31 tonnes day⁻¹ in October 2022, and then rising again to 1.77 and 2.77 tonnes day⁻¹ in February and April 2023 (Figure 2E). TAN loading mirrored this pattern with peaks occurring in October 2022 and February 2023 and lows occurring in July 2022 and April 2023. Patterns in N₂O loading from the Gordon River were similar to those observed for NO₃⁻ (Figure 2F).

250

3.2 Water Column Physicochemical Profiles

DO profiles at the stations located within the main body of the harbour show a well oxygenated surface layer that rapidly attenuates with depth (**Figure 3A**) through the halocline (**Figure 3B**). There is a prominent riverine surface lens in the main harbour extending to depths of up to 8m depending on sampling period and location within the estuary. Salinity in the surface waters was lower in July and October 2022 (6 to 13) than February and April 2023 (greater than 20). Below the halocline salinity ranged from approx. 28 to 32.

The DO gradient between the surface and subhalocline waters was steeper in October relative to July 2022 with October 2022 DO concentrations approaching single digits (3.1 μM) at station WH2, nearest the Gordon River mouth (*see* Figure 1). In general, the subhalocline concentrations of DO were lower with proximity to the Gordon River mouth. The temperature of the freshwater surface layer ranged from about 9 °C to 19 °C, but showed little variation below the halocline where temperature ranged between 13 °C to 16 °C (Figure 3C).

Figure 2: Rainfall and estimated Gordon River loading estimates for each sampling event. A) accumulated rainfall (mm) 10, 5, and 3 days prior to each sampling event; B) average (mean) daily rainfall over a 20 day period prior to each sampling event; C) estimated Gordon River Flow into the harbour in millions of m³ day⁻¹; D) daily mean flow (m³ sec⁻¹) over previous 20 days prior to sampling (± standard error) at the Gordon Above Denison Stream Gauge; E) estimated nitrate and annonium loads entering the harbour from the Gordon River; F) estimated N₂O load (tonnes day⁻¹) entering the harbour from the Gordon River.

270

Figure 3: Dissolved oxygen (μ M) (Row A), salinity (Row B), and temperature (°C) (Row C) profiles (referencing height from seabed) collected at stations KR1, C10, C08, and WH2 in July 2022 (red dots), October 2022 (yellow dots), February 2023 (blue dots), and April 2023 (purple dots). Measurements were made every 1 meter.

275 3.3 N₂O Distribution

At each harbour station, depth and season (and their interaction) significantly impacted N₂O saturation (two-way ANOVA, $\alpha = 0.05$, *degree of freedom* (*d.f.*) = 59). At 2 m, N₂O saturation was observed to be below 100% at all stations in July 2022 (**Figure 4**) and at stations KR1, C10, and C08 in October 2022. In February and April 2023 N₂O saturation in the harbour was above 100% through the water column except in KR1 surface waters. The

 $280 \quad maximum \ N_2O \ concentrations \ were \ observed \ in \ the \ subhalocline. \ Among \ the \ subhalocline \ observations \ the maximum \ N_2O \ concentrations \ (reaching \ over \ 170\%) \ were \ observed \ at \ the \ base \ of \ the \ Hells \ Gates \ sill \ at \ station \ C10 \ in \ October \ 2022.$

All endmember N₂O concentrations were undersaturated in July 2022. In October, stations KR1 and HG3 were observed to be approx. 100% saturated but N₂O at station GR1 was undersaturated. In February and April 2023 N₂O concentrations were supersaturated at all endmember stations. There were statistically significant linear correlations between N₂O saturation and salinity (r = 0.494; p = 5.5 x 10⁻⁷, n = 92), temperature (r = 0.391; p = 1.2 x 10⁻⁴, *d.f.* = 90), DO concentration (r = -0.563; p = 5.2 x 10⁻⁹, *d.f.* = 90), and nitrate concentration (r = 0.559; p = 6.9 x 10⁻⁹, *d.f.* = 90) in the harbour stations (Figure 5). The correlation between N₂O saturation and the TAN concentration however was not statistically significant (r = 0.174; p = 0.31, *d.f.* = 34).

Figure 4: Mean (\pm standard error) N₂O % saturation observed at each sampling station, with depth, and across seasons. Note that a red dashed line indicating 100% at the time of sampling has been placed on each panel for reference.

295

Figure 5: Correlation between N₂O % Saturation observed across the harbour and A) Salinity, B) Temperature, C) Total Ammoniacal Nitrogen (TAN) concentration, D) Nitrate concentration. The correlation between AOU [μ M] and Δ N₂O [nM] is shown in panel E. Pearson correlation coefficients (r) and their associated p value are shown in each panel.

300

310

3.4 N₂O Air/Sea and Diapycnal Fluxes

Atmospheric N₂O mole fractions measured at Kinnaook / Cape Grim Air Pollution Station (*see* Figure 1) were observed to increase from 334.7 ppb in July 2022 to 335.9 ppb in February 2023 (*see* Error! Reference source not found.). The April 2023 atmospheric N₂O mole fraction was slightly lower than that observed in February 2023 at 335.6 ppb.

Estimated N₂O air/sea flux in the main harbour stations (KR1, C10, C08, WH2) was observed to range from - 12.88 (\pm 0.88) µmol N₂O m⁻² day⁻¹ at C10 in July 2022 (negative sign indicates absorption of N₂O into the surface waters from the atmosphere) to 7.31 (\pm 0.88) µmol N₂O m⁻² day⁻¹ at the same station in February 2023 (using the "High" K₆₀₀ estimator from **Raymond and Cole (2001**); *see* **Table 2**).

Station KR1 was always observed to be a net sink for atmospheric N_2O , and every non-endmember station was an estimated sink in July 2022. Near the head of the system, station WH2 was observed to be a net source of

315 N₂O to the atmosphere in October 2022, February 2023, and April 2023, as were stations C10 and C08 (positioned above the deepest basins) in February 2023 and April 2023.

Estimated diapycnal fluxes using local buoyancy frequencies showed a consistent upwards movement of N_2O from the subhalocline to surface layers with the smallest fluxes observed in July 2022 (49 nmol N_2O m⁻² day⁻¹ at

320 C08) and largest fluxes observed in October 2022 (up to 1308 nmol $N_2O m^{-2} day^{-1}$ at WH2) and February 2023 (up to 1200 nmol $N_2O m^{-2} day^{-1}$ at C10) (**Table 3**). Patterns in the size of the diapycnal flux generally reflected the patterns of N_2O % saturation with the largest fluxes occurring in October 2022 during the periods of greatest N_2O % saturation. Overall the magnitude of the estimated diapycnal fluxes was smaller than estimated air/sea fluxes (smaller) however in February the fluxes were of similar magnitudes.

325

Table 2: Estimated sea-to-air N₂O flux (mean µMol N₂O m⁻² day⁻¹ ± standard error) of the main harbour stations 327 328 using calculations presented in Bange et al. (2019) and Zhang et al. (2020) and a range of k600 estimators from 329 Raymond and Cole (2001). Low, Mid, and High represent different estimators of k600 presented in Raymond and Cole 330 (2001). Positive values indicate the flux of N₂O from the harbour water to the atmosphere. Negative values (shown in 331 332 with bold text) indicate flux of N2O from the atmosphere into the harbour water. Estimated Gordon River Flow and Mean (20 day) Gordon Above Dennison (GAD)Stream Gauge are also shown for each month as well as the Pearson 333 Correlation and associated p-values between flow metrics, rainfall, and sea-to-air flux (and surface water % ation).

334	satura

Station	K ₆₀₀ Est.	Jul 2022 µmol N2O m ⁻² day ⁻¹	Oct 2022 µmol N2O m ⁻² day ⁻¹	Feb 2023 µmol N2O m ⁻² day ⁻¹	Apr 2023 µmol N ₂ O m ⁻² day ⁻¹	Gordon Flow vs Surface Flux	GAD Flow vs Surface Flux	GAD Flow vs % N2O Sat.	Rainfall vs Surface Flux
	Mid:	$\begin{array}{c} -11.07 \pm 1.84 \\ -08.45 \pm 1.41 \\ -04.69 \pm 0.78 \end{array}$	$\begin{array}{c} -04.01 \pm 0.86 \\ -03.19 \pm 0.69 \\ -01.93 \pm 0.42 \end{array}$	-03.30 ± 0.49 -02.55 ± 0.38 -01.46 ± 0.22	$\begin{array}{c} -03.17 \pm 0.16 \\ -02.44 \pm 0.12 \\ -01.38 \pm 0.07 \end{array}$	r = -0.8316 p = 7.5 x 10 ⁻⁴	r = -0.8624 p = 3.1 x 10 ⁻⁴		r = 0.5577 p = 0.060
	Mid:	$\begin{array}{c} -12.88 \pm 0.88 \\ -09.83 \pm 0.67 \\ -05.46 \pm 0.37 \end{array}$	$\begin{array}{c} -01.21 \pm 1.07 \\ -00.96 \pm 0.85 \\ -00.58 \pm 0.51 \end{array}$	$\begin{array}{c} 07.31 \pm 1.57 \\ 05.65 \pm 1.22 \\ 03.22 \pm 0.69 \end{array}$	$\begin{array}{c} 02.60 \pm 0.85 \\ 02.00 \pm 0.66 \\ 01.13 \pm 0.37 \end{array}$	r = -0.8298 p = 8.4 x 10 ⁻⁴	r = -0.9091 p = 4.2 x 10 ⁻⁵	r = -0.8795 p = 1.6 x 10 ⁻⁴	r = 0.2751 p = 0.387
	Mid:		$\begin{array}{c} -01.69 \pm 0.38 \\ -01.34 \pm 0.29 \\ - \ 0.81 \pm 0.18 \end{array}$	$\begin{array}{c} 04.08 \pm 1.07 \\ 03.15 \pm 0.83 \\ 01.80 \pm 0.47 \end{array}$	$\begin{array}{c} 04.57 \pm 1.79 \\ 03.52 \pm 1.38 \\ 01.98 \pm 0.78 \end{array}$	r = -0.8547 $p = 3.97 \times 10^{-4}$	r = -0.8804 $p = 1.6 \text{ x } 10^{-4}$		r = 0.1846 p = 0.566
	Mid:	$\begin{array}{c} -10.88 \pm 0.68 \\ -08.30 \pm 0.52 \\ -04.61 \pm 0.29 \end{array}$	$\begin{array}{c} 02.63 \pm 0.17 \\ 02.09 \pm 0.14 \\ 01.26 \pm 0.08 \end{array}$	$\begin{array}{c} 02.40 \pm 1.56 \\ 01.85 \pm 1.20 \\ 01.06 \pm 0.69 \end{array}$	$\begin{array}{c} 03.50 \pm 1.72 \\ 02.69 \pm 1.33 \\ 01.52 \pm 0.75 \end{array}$	r = -0.8071 $p = 1.51 \times 10^{-3}$	r = -0.8269 $p = 9.1 \times 10^{-4}$		r = 0.6316 p = 0.028
Gord River (m ³ se	Flow	383.6 ± 38.9	360.3 ± 54.1	342.6 ± 74.6	324.3 ± 26.6	-	-	-	-
GAD (m ³ so		107.6 ± 15.9	73.7 ± 12.1	$38.8\pm~5.1$	30.5 ± 2.2	-	-	-	-

335

336

337 Table 3: Estimated diapycnal N₂O flux (nmol N₂O m^{-2} day⁻¹) from 20 m to 2 m within the main harbour stations 338 Positive values indicate the flux of N₂O from the basin water (20 m) to the surface lens (2m).

Station	July 2022 nmol N ₂ O m ⁻² day ⁻¹	October 2022 nmol N ₂ O m ⁻² day ⁻¹	February 2023 nmol N ₂ O m ⁻² day ⁻¹	April 2023 nmol N ₂ O m ⁻² day ⁻¹
KR1	80	282	992	395
C10	140	1200	1040	454
C08	49	782	778	348
WH2	117	125	1308	240

339

341 4. Discussion

342 Our study is the first to report on N₂O distribution and air/sea flux from an Australasian fjord-like estuary. We 343 set out to investigate how N₂O concentrations varied along horizontal and depth gradients; how N₂O 344 concentrations and estimated surface water emissions vary seasonally; how N₂O concentrations vary with 345 freshwater inputs; and whether the relationship between AOU and ΔN_2O could help clarify the primary 346 mechanism for N₂O generation in this system.

347

We used surface water observations, local wind speed (from Cape Sorell weather station) and atmospheric N₂O 348 349 mole fractions (from Cape Grimm; Figure 1) to estimate N₂O air/sea flux (based on Zhang et al., (2010) and 350 **Bange** et al., (2019)) and found that Macquarie Harbour functions as both a sink and a source of N_2O . Most 351 harbour stations were estimated to be a sink for N₂O in July and October 2022 (when river flow was greater) and 352 a source in February and April 2023 (during low river flow periods; see Figure 6 and Table 2). Pearson 353 correlations show that when freshwater flow is high N₂O air/sea flux is negative (indicating uptake from the 354 atmosphere) and when freshwater flow is low N_2O air/sea flux is positive (Table 2). Our observations highlight 355 that freshwater flow is a key driver of N₂O emissions in this estuary. In addition, Gordon River flow is heavily 356 influenced by hydroelectric dam release (up to ~28% of the flow in July 2023). Rainfall in the catchment area 357 may offset the effects of dam release, but our observations did not capture this as rainfall itself was not 358 significantly correlated with N2O concentrations or air/sea flux.

359

360 The river endmember concentrations of N₂O were often observed to be undersaturated, as observed in the South Platte River Basin, USA, McMahon and Dennehy 1999; Neuse River Estuary, USA, Stow et al., 2005; 361 362 headwater streams, Ontario, Canada, Baulch et al., 2011; Upper Mara River Basin, Kenya, Mwanke et al., 363 **2019.** Our observations of endmember N_2O concentrations were similar to the lower end of the concentrations 364 reported in McMahon and Dennehy (1999) (approx. 80% saturation), but not as low as those reported Jackson 365 Creek, Ontario, Canada in Baulch et al., (2011) were some observations reached <20% saturation. N₂O 366 undersaturation in those systems was attributed to complete denitrification (use of N₂O as a terminal electron acceptor by denitrifies) in streams with high DOC loads, low DO, low NO3⁻ concentrations. It should also be 367 noted that up to 28% of the estimated Gordon River flow was found to be associated with flow through the 368 369 Gordon Above Dennison stream gauge (a proxy for hydroelectric dam/reservoir release to the Gordon River). 370 Boreal reservoirs have been shown to be net sinks of atmospheric N_2O (Hendzel et al., 2005) which was 371 attributed to increased N_2O demand to drive complete denitrification. There is good reason to believe that N_2O 372 may be scavenged in the Gordon and King Rivers as well because they do often have high DOC concentrations, 373 high water column DO demand (Maxey et al., 2020), and low DO concentrations in near the stream bed (Maxey 374 et al., 2022).

375

Below the estuary's predominately freshwater surface lens, the fjord-like morphology drives suboxic conditions
like those observed in the subhalocline waters at station WH2 in October 2022 (*see* Figure 3; Hartstein *et al.*,
2019; Maxey *et al.*, 2020, 2022). While these conditions do not always persist, DO concentrations below 31 μM
have been observed to occur more than 30% of the time up estuary, specifically at station WH2 (Maxey *et al.*,
2022). In layers of the harbour where DO concentrations were lowest (subhalocline layers) we observed the

- 381 maximum N₂O concentrations (Figure 4). Subhalocline N₂O saturation was observed to generally range from
- 382 approx. 110% to 170% with the highest values observed within the deeper basins near the foot of the sill
- 383 (stations C10 and C08).

Figure 6: Mean Air/Sea Flux (μM m-2 day-1) versus A) Gordon above Dennison River flow (m3 day-1), B) estimated
 Gordon River flow (m3 day-1), C) daily rainfall (mm) (20 day mean), and D) % of estimated Gordon River flow this is
 accounted for by the Gordon above Dennison River gauge (proxy for hydroelectric dam release). Error bars indicate
 ± 1 standard error.

389 In the harbour's subhalocline layer there is not enough light to support photosynthesis (Hartstein et al., 2019; 390 Maxey et al., 2017, 2020, and 2022) and thus the main source of oxygen is advection from marine intrusions. 391 N₂O producing microbes have been observed to populate this layer of the harbour (see Da Silva et al., 2021 and 392 2022) and our observations of supersaturated N₂O in these layers show that those microbes are active. The linear relationship between AOU and ΔN_2O (slope = 0.0154; r = 0.596; p = 2.4 x 10⁻²³; Figure 5C) indicates that N₂O 393 394 production occurs primarily through the ammonia oxidation (nitrification) pathway (Yoshinari, 1976; Walter et 395 al., 2004; Brase et al., 2017). Our observations are on the lower end of the range reported nitrification slopes 396 (see Suntharalingam and Sarmiento, 2000; Brase et al., 2017) indicating a low yield of N₂O per mole O₂ 397 consumed. These more modest yields are likely an artefact of mixing and loss dynamics such as basin water DO 398 recharges from marine intrusions, and loss to aerobic respiration and loss to the atmosphere. This suggests that 399 some portion of subhalocline pelagic oxygen demand in the harbour can be attributed to nitrifying microbes (albeit at a much lower rate compared to aerobic respiration). Ji et al., (2020) also observed similar relationships 400 401 in the Saanich Inlet, a seasonally anoxic fjord-like estuary in British Columbia, but in that system anoxic 402 conditions are more persistent (Bourbonnais et al., 2013; Manning et al., 2010) compared to Macquarie 403 Harbour (Maxey et al., 2022). Deep-water renewal / marine intrusions have been hypothesized to stimulate N₂O production in the Saanich Inlet (Capelle et al., 2018; Michiles et al., 2019; Ji et al., 2020), and Baltic Sea 404 405 (Walter et al., 2006) and may also be stimulating it in Macquarie Harbour as well. In the Baltic Sea, Walter et 406 al. (2006) and Myllykangas et al. (2017) observed enhanced N₂O production in areas receiving significant 407 marine intrusions. Positive correlations between AOU and ΔN_2O observed in western Baltic Sea waters (Walter 408 et al., 2006) along with mean (11-year; 2006-2017) seasonal variations in DO and N_2O observed through the 409 water column at the Boknis Eck Time-Series Station (Eckernförde Bay, Southwest Baltic Sea) indicate a tight 410 coupling between DO supply and N₂O production (presumably by nitrification) / consumption (presumably by 411 denitrification) pathways in that area (Ma et al., 2019). The reintroduction of marine water on the upstream side 412 of a dam in the Nakong River, South Korea was found to affect bottom water trapping (stagnation), DO 413 conditions, N process rates, process specific gene abundances, and subsequently the fate of N in that system 414 (Huang et al., 2024). Marine intrusions primarily refresh the DO supply adjacent to the sill in Macquarie 415 Harbour (near station C10) and since we also observed a positive correlation between AOU and ΔN_2O they offer 416 a possible explanation for the higher subhalocline N2O concentrations observed there.

417

418 We conceptualize that during periods of high river flow, the surface water lens thickens and transports water 419 undersaturated with N₂O quickly across the harbour surface and out of Hells Gates inlet. Some N₂O from the 420 oversaturated subhalocline water is entrained in the surface lens (diapycnal flux) and transported out of the 421 system in its dissolved form. During periods of low river flow, the surface lens is thinner and residence times 422 longer (Andrewartha and Wild-Allen 2017; Maxey et al., 2022). N₂O from the oversaturated subhalocline 423 water then diffuses through the surface layer and escapes into the atmosphere in its gaseous form (Figure 7). Our 424 estimates of diapycnal flux indicate that the mass transport from subhalocline waters is smaller (~2x smaller) 425 than the air/sea flux supporting this idea. This conceptual model suggests that the harbour surface lens functions 426 as a sink for both atmospheric N₂O and N₂O generated in the subhalocline layer during high flow periods 427 (Figure 7).

429 Previous work in Australian estuaries with pristine catchments (like Macquarie Harbour) has shown that many 430 tend to function as a sink for atmospheric N₂O (Maher et al., 2016; Wells et al., 2018). Our study adds the caveat that source sink dynamics may also depend on factors controlling river flow in deeper stratified systems. 431 432 Despite the advancements made to date, many of the deeper estuaries in Chile, Australia and New Zealand are 433 lacking descriptions of N₂O source sink dynamics (e.g. Bathurst Harbour, Tasmania; fjords of South Island New 434 Zealand; estuaries on Stewart Island New Zealand). Given that these systems have relatively pristine catchments 435 they offer an opportunity to better understand natural fjord-like estuarine responses to the climate drivers of N2O 436 dynamics. Mesoscale climate oscillations (i.e. the Southern Annular Mode; SAM; North Atlantic Oscillation; 437 NAO) have been shown to affect rainfall, river flow, and dissolved oxygen concentrations in this and other fjord-438 like estuaries (Maxey et al., 2022; Austin and Inall, 2002). In Western Tasmania, SAM in its positive phase 439 results in increased orographic rainfall and a greater propensity for higher river flow, possibly tilting the source 440 and sink balance to net N2O uptake during these periods.

441

442 Climate change predictions for Tasmania's West Coast (which includes the Macquarie Harbour catchment) indicate that the region will experience a more extreme precipitation regime with increased winter precipitation 443 and decreased summer precipitation (Grose et al., 2010; Bennett et al., 2010). If these future predictions result 444 445 in more extreme seasonality in Gordon River flow, then the harbour may respond in kind with a larger variation 446 in N2O source and sink dynamics i.e. larger N2O sink in winter and N2O source in summer. However, given that 447 the river flow is somewhat regulated by the hydroelectric dam, our study suggests that flow regulation has the 448 potential to augment harbour N2O emissions. Releasing water during extreme low rainfall periods might allow 449 N_2O slowly accumulating in subhalocline waters to be released in the exported surface lens.

450

It is well established that fjord and fjord-like estuaries are important sites of C burial (Smith *et al.*, 2015; Bianchi *et al.*, 2018, 2020). This study supports the idea that they can also be important sites of N₂O sequestration. Macquarie Harbour air/sea flux estimates are similar in magnitude to observations made in other stratified estuaries and enclosed seas such as the Reloncaví Estuary, Chile (Yevenes *et al.*, 2017) and Eckernförde Bay, Germany (Ma *et al.*, 2019) (Table A1). Macquarie Harbour, however, was observed to have lower fluxes of N₂O into the atmosphere than other river dominated, but not fjord-like, estuaries (Elbe River, Germany; Schulz *et al.*, 2023) including those on the Australian mainland's east coast (Wells *et al.*, 2018).

458

Fjord and fjord-like estuaries are defined by their strong stratification and sensitivity to freshwater inputs. With climate change, rainfall patterns are expected to become more extreme and thus alter the river flow, and subsequently N_2O source sink dynamics in these systems on a global scale. In systems that are expected to experience increasingly drier conditions they may shift from net sinks of N_2O to sources, and further perpetuate the accumulation of N_2O in the atmosphere.

464 5. Conclusions

465 In summary, river flow, and specifically river flow driven by hydroelectric dam release, significantly affects both 466 surface water N₂O concentrations and air/sea flux in Macquarie Harbour. Importantly, when river flow is low

- 467 most of the harbour emits N₂O to the atmosphere. When river flow is high most of the harbour removes N₂O
- 468 from the atmosphere and intercepts the diapycnal flux exporting N₂O to the ocean in its dissolved form.
- 469
- 470 N_2O is continually supersaturated below the halocline and the relationship between AOU and ΔN_2O indicate that
- 471 the main N₂O generation process is nitrification. Climate change is predicted to result in wetter winter / drier
- 472 summers for the Tasmanian West Coast, which may result in augmented N2O air/sea fluxes.
- 473
- 474 These represent the first descriptions of N₂O spatiotemporal distribution, estimated air/sea flux, estimated
- diapycnal flux, and N₂O production pathways in this system. 475
- 476

Weak River Flow Conditions / Harbour is a N₂O Source

478 Figure 7: Conceptual model of Macquarie Harbour's N2O dynamics. The top diagram depicts the capture of N2O 479 generated in the subhalocline during strong river flow conditions. Here N2O is exported from the harbour in its 480 dissolved form via undersaturated surface flows from the harbour to the ocean. The bottom diagram depicts the efflux of N2O from the harbour surface during low flow conditions. Note that during these conditions the surface 481 482 flows are weak and generally supersaturated with N2O permitting its escape in gaseous form to the atmosphere.

483

484 6. Appendix

485Table A1: N2O fluxes and observed ranges of mean (± standard deviation) N2O concentration / saturation from both486fjord-like / river dominated estuaries around the globe and estuaries in Australia.

Location	System Type	Measurement Depth Range	Mean Sea-to-Air N2O flux uMol N2O m ⁻² day ⁻¹	Min and Max Sea-to-Air N ₂ O flux uMol N ₂ O m ⁻² day ⁻¹	Mean N ₂ O Concentration (and Saturation) nM N ₂ O (and %)	Min and Max N ₂ O Concentration (and Saturation) nM N ₂ O (and %)	Reference
Macquarie Harbour, Western Tasmania, Australia	Fjord-like Estuary	2m to 45m	$\begin{array}{c} -09.83 \pm 0.67 \text{ to} \\ 05.65 \pm 1.22 \end{array}$	-10.82 to 7.73	11.7 ± 1.6 (121.8 ± 17.8)	7.87 to 17.12 (81 to 174)	This Study
Reloncaví Estuary, Chile	Fjord-like Estuary	0m to 5m	0.86 ± 2.28	-1.58 to 5.60	$\begin{array}{c} 11.8 \pm 1.70 \\ (111 \pm 18.3) \end{array}$	8.34 to 14.5 (80 to 140)	Yevenes et al., 2017
Reloncaví Estuary, Chile	Fjord-like Estuary	10m to 200m	-	-	$\begin{array}{c} 14.5 \pm 1.73 \\ (145 \pm 17.7) \end{array}$	10.5 to 17.0 (11 to 170)	Yevenes et al., 2017
Chiloé Interior Sea, Chile	Fjord-like Estuary	0m to 200m	1.08 ± 1.41	-0.18 to 3.19	$\begin{array}{c} 12.6 \pm 2.36 \\ (121 \pm 17.5) \end{array}$	8.81 to 21.1 (87 to 160)	Yevenes et al., 2017
Europa Sound, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	-15.22 to -0.81	-	$\begin{array}{c} 11.9 \pm 5.7 \text{ to} \\ 12.7 \pm 1.0 \end{array}$	-	Farías et al., 2018
Concepción Channel, Magellanic Region, Chile	Fjord-like Estuary	1m to 150m	0.69 to 7.70	-	$\begin{array}{c} 13.6 \pm 1.1 \ to \\ 17.0 \pm 0.02 \end{array}$	-	Farías et al., 2018
Sarmiento Channel, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	2.07 to 12.53	-	$\begin{array}{c} 13.1 \pm 0.1 \text{ to} \\ 16.5 \pm 0.3 \end{array}$	-	Farías et al., 2018
Estero Peel, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	0.11 to 2.01	-	$\begin{array}{c} 13.1 \pm 0.2 \text{ to} \\ 13.5 \pm 0.5 \end{array}$	-	Farías et al., 2018
Estero Calvo, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	0.04	-	13.9 ± 0.8	-	Farías et al., 2018
Estero Amalia, Magellanic Region, Chile	Fjord-like Estuary	1m to 100m	-0.08	-	14.2 ± 1.7	-	Farías et al., 2018
Estero las Montañas, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	-2.95	-	9.69 ± 1.6	-	Farías et al., 2018
Smyth Channel, Magellanic Region, Chile	Fjord-like Estuary	1m to 300m	1.07 to 11.2		$\begin{array}{c} 14.3 \pm 0.4 \text{ to} \\ 16.0 \pm 0.5 \end{array}$	-	Farías et al., 2018
Última Esperanza Sound, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	-3.7 to 10.4		$\begin{array}{c} 12.1 \pm 1.1 \text{ to} \\ 13.7 \pm 0.07 \end{array}$		Farías et al., 2018
Almirante Montt Gulf, Magellanic Region, Chile	Fjord-like Estuary	1m to 150m	15.6		21.0 ± 5.7		Farías et al., 2018
Kirke Channel, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	0.12 to 8.19		$\begin{array}{c} 13.3 \pm 0.1 \text{ to} \\ 15.4 \pm 0.4 \end{array}$	-	Farías et al., 2018
Union Channel, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	22.1		16.7 ± 0.8		Farías et al., 2018
Union Sound, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	2.86		14.8 ± 0.8		Farías et al., 2018
Western Magellan Strait, Magellanic Region, Chile	Fjord-like Estuary	1m to 10m	143	-	15.71	-	Farías et al., 2018
Eastern Magellan Strait, Magellanic Region, Chile	Fjord-like Estuary	1m	36.3		16.4	-	Farías et al., 2018
San Gregorio Cape, Magellanic Region, Chile	Fjord-like Estuary	1m	24.8	-	12.07	-	Farías et al., 2018
Otway Center Sound, Magellanic Region, Chile	Fjord-like Estuary	1m	35.5	-	11.4	-	Farías et al., 2018
Magdalena North Channel, Magellanic Region, Chile	Fjord-like Estuary	1m	-0.22		11.4		Farías et al., 2018
Chasco Sound, Magellanic Region, Chile	Fjord-like Estuary	1m	6.81	-	16.01	-	Farías et al., 2018
Cockburn West Channel, Magellanic Region, Chile	Fjord-like Estuary	1m	6.18	-	14.47	-	Farías et al., 2018
Saanich Inlet, British Columbia, Canada	Fjord-like Estuary	10m to 200m	2.3 ± 2.5 to 3.9 ± 2.9	-	14.7	<0.5 to 37.4	Capelle et al., 2018
Saanich Inlet, British Columbia, Canada	Fjord-like Estuary	Surface to 110m	11.3 to 20.4	-	-	-	Cohen 1978
Elbe River Estuary, Germany	Well-Mixed River Dominated Estuary	1.2m		$\begin{array}{c} 26.0 \pm 23.5 \ to \\ 100.7 \pm 101.2 \end{array}$		(161 ± 53.6) to (243 ± 141.6)	Schulz et al. 2023
Eckernförde Bay, Boknis Eck Time Series Station, Baltic Sea, Germany	Enclosed Sea	1m to 25m	3.5 ± 12.4	-19.0 to 105.7	(111±30)	(56 to 314)	Ma et al., 2019
Eckernförde Bay, Boknis Eck Time Series Station, Baltic Sea, Germany	Enclosed Sea	1m to 25m			10 to 17		Walter et al., 2006
Baltic Sea, Germany	Enclosed Sea	110m	5 -11		14 to 1523		Rönner 1983

Gotland Basin, Baltic Sea, Germany	Enclosed Sea	90m	-	-	13	0 to 126 (0 to 450)	Brettar and Rheinheimer 1991
Northwest Shelf, Black Sea	Enclosed Sea	-	1.6 to 4.4	-	6.5 to 8	-	Amouroux et al., 2002
Deep Basin, Black Sea	Enclosed Sea	70m	3.1 to 5.2	-	7.5 to 10.2	-	Amouroux et al., 2002
Cariaco Basin, Venezuela	Coastal Basin	Surface to 400m	-	-	4.4 to 5.5	-	Hashimoto et al., 1983
Guadalquivir Estuary, Gulf of Cadiz, Spain	River Dominated Estuary	2m	18.7 ± 33.6	-	20.6 ± 24.3	-	Sierra et al., 2020
Guadalquivir Estuary, Gulf of Cadiz, Spain	River Dominated Estuary	2m	0.3 ± 0.5	-	6.7 ± 0.4	-	Sierra et al., 2020
Guadalquivir Estuary, Gulf of Cadiz, Spain	River Dominated Estuary	2m	0.9 ± 21.6	-	7.3 ± 15.4	-	Sierra et al., 2020
Noosa River Estuary, Eastern Australia	River Dominated Estuary	0.5m to 9.6m	$\textbf{-14.24} \pm \textbf{14.02}$	-57.72 to 22.20	6.99 ± 0.43 (97 ± 2.2)	5.92 to 7.95 (90 to 103)	Wells et al., 2018
Mooloolah River Estuary, Eastern Australia	River Dominated Estuary River	0.5m to 6.8m	-7.33 ± 7.25	-48.76 to 16.31	$\begin{array}{c} 6.74 \pm 0.64 \\ (97 \pm 3.8) \end{array}$	5.19 to 7.71 (82 to 112)	Wells et al., 2018
Maroochy River Estuary, Eastern Australia	Dominated Estuary	0.5m to 8.2m	51.33 ± 55.3	-34.94 to 179.64	8.4 ± 1.50 (113 ± 16.7)	6.07 to 12.93 (92 to 163)	Wells et al., 2018
Pine River Estuary, Eastern Australia	River Dominated Estuary	0.5m to 10.1m	17.10 ± 39.44	-33.22 to 145.50	$\begin{array}{c} 7.1 \pm 0.76 \\ (102 \pm 6.24) \end{array}$	6.05 to 8.57 (93 to 117)	Wells et al., 2018
Brisbane River Estuary, Eastern Australia	River Dominated Estuary	0.5m to 23.9m	209.54 ± 143.59	15.42 to 662.62	$\begin{array}{c} 9.8 \pm 1.36 \\ (133 \pm 9.9) \end{array}$	6.75 to 12.75 (105 to 158)	Wells et al., 2018
Middle Reach, Brisbane River Estuary, Eastern Australia	River Dominated Estuary	Surface	14.5 ± 1.19	$\begin{array}{c} 5.4 \pm 0.34 \text{ to} \\ 25.2 \pm 1.87 \end{array}$	-	13.1 to 17.9 (160 to 250)	Sturm et al., 2017
Lower Reach, Brisbane River Estuary, Eastern Australia	River Dominated Estuary	Surface	$\boldsymbol{6.\pm0.51}$	$\begin{array}{c} 3.7 \pm 0.85 \ to \\ 9.1 \pm 1.19 \end{array}$	-	9.2 to 12.7 (125 to 410)	Sturm et al., 2017
Oxley Creek, Eastern Australia	River Dominated Estuary	2.1m to 13.1m	210.59 ± 60.23	91.54 to 280.16	$\begin{array}{c} 11.7 \pm 1.34 \\ (156 \pm 19.7) \end{array}$	9.65 to 14.89 (139 to 199.7)	Wells et al., 2017
Nerang River Estuary, Eastern Australia	River Dominated Estuary	0.5m to 6.8m	$\textbf{-0.62} \pm 20.87$	-67.98 to 45.92	$\begin{array}{c} 6.73 \pm 0.43 \\ (100 \pm 4.3) \end{array}$	5.99 to 7.79 (88 to 109)	Wells et al., 2018
Logan River Estuary, Eastern Australia	-	0.5m to 14.4m	110.00 ± 153.55	-54.48 to 796.00	$\begin{array}{c} 9.3 \pm 2.36 \\ (127 \pm 27.5) \end{array}$	5.54 to 14.8 (81 to 191)	Wells et al., 2018
Albert River Estuary, Eastern Australia	-	1.1m to 15.7m	90.05 ± 73.32	-9.50 to 264.25	$\begin{array}{c} 10.10 \pm 2.24 \\ (131 \pm 29.8) \end{array}$	7.32 to 15.1 (98 to 205)	Wells et al., 2018
Darwin Creek, Australia	Mangrove Creek	~1m	-0.12	-	6.3 (98.9)	6.0 to 6.8 (95 to 104)	Maher et al., 2016
Hinchinbrook Creek, Australia	Mangrove Creek	~1m	-3.43	-	6.1 (83.3)	5.6 to 6.8 (75 to 91)	Maher et al., 2016
Melbourne Creek, Australia	Mangrove Creek	~1m	-1.33	-	7.9 (96.6)	6.9 to 9.1 (86 to 115)	Maher et al., 2016
Morton Bay Creek, Australia	Mangrove Creek	~1m	-3.19	-	5.1 (77.4)	3.4 to 6.6 (50 to 105)	Maher et al., 2016
Seventeen Seventy Creek, Australia	Mangrove Creek	~1m	-1.75	-	7.7 (94.3)	7.1 to 8.9 (88 to 106)	Maher et al., 2016
Brisbane River, Australia	-	-	-	-	(285)	(135 to 435)	Musenze et al., 2014
Coffs Creek, Australia		-	-	-	(219 ± 37)	(53 to 386)	Reading et al., 2017
Coffs Creek, Australia	-	-	-	-	(266.5 ± 128)	(86 to 678)	Reading et al., 2020
Boambee Creek, Australia	-	-	-	-	(197.1 ± 75)	(87 to 329)	Reading et al., 2020
Bonville Creek, Australia	-	-	-	-	(183.7 ± 65)	(78 to 310)	Reading et al., 2020
Pine Creek, Australia	-	-	-	-	(194.1 ± 65)	(79 to 382)	Reading et al., 2020
Yarra River, Australia	Salt Wedge Estuary	-	-	-	(135.9 ± 31)	-	Tait et al., 2017

487 **7.** Acknowledgments

We would like to thank GEOMAR for providing the facilities and training (thank you Lea, Florian, and
Chukwudi) required to analyse N_2O samples. We want to thank Torsten and Leonie Schwoch for their sampling
assistance and tireless vessel operation on the Harbour. We want to thank the ADS Environmental Services Sdn.
Bhd. technical staff for helping to collect portions of this dataset (Grace, Shukry, Atika, Chance, Gene, and
Azza). We would also like to thank our families for supporting our long days away from home.
This research has been supported by internal funding from ADS Environmental Services, Swinburne University
of Technology student travel grant, and GEOMAR.
We have used some of the data available in the MEMENTO database. The MEMENTO database is administered
by the Kiel Data Management Team at GEOMAR Helmholtz Centre for Ocean Research Kiel. The database is

499 accessible through the MEMENTO webpage: https://memento.geomar.de.

500 8. Data Availability

501 This data set is available upon request

502 9. Author Contributions

503	Johnathan Daniel Maxey - Conceptualization, Field Collection, Analytical Methodology, Data
504	Analysis, Writing – Original Draft, Writing – Review & Editing
505	
506	Neil David Hartstein – Conceptualization, Field Collection, Analytical Guidance, Writing – Review &
507	Editing, Funding
508	
509	Hermann W. Bange – Conceptualization, Analytical Methodology, Data Analysis, Writing – Review
510	& Editing
511	
512	Moritz Müller - Conceptualization, Field Collection, Analytical Guidance, Writing - Review &
513	Editing
514	

515 10. Competing Interests

HWB serves on the editorial board for Biogeosciences. The authors declare that they have no other conflicts of
interest.

519 11. References

Borges, A. V., Delille, B., Schiettecatte, L. S., Gazeau, F., Abril, G., and Frankignoulle, M.: Gas transfer
velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and
Oceanography, 49(5), 1630-1641, 2004. DOI: 10.4319/lo.2004.49.5.1630
Acuña-González, J. A., Vargas-Zamora, J. A., and Córdoba-Muñoz, R.: A snapshot view of some vertical

Acuna-Gonzalez, J. A., Vargas-Zamora, J. A., and Cordoba-Munoz, K.: A snapshot view of some vertical
 distributions of water parameters at a deep (200 m) station in the fjord-like Golfo Dulce, embayment, Costa Rica.
 Revista de Biología Tropical, 54(1), 193-200, 2006. ISSN: 0034-7744

527

528 Amouroux, D., Roberts, G., Rapsomanikis, S., and Andreae, M. O.: Biogenic gas (CH₄, N₂O, DMS) emission to

529 the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuarine, Coastal and Shelf

530 Science, 54(3), 575-587, 2002. DOI: 10.1006/ecss.2000.0666

532	Andrewartha, J. and Wild-Allen, K.: CSIRO Macquarie Harbour Hydrodynamic and Oxygen Tracer Modelling.
533	Progress report to FRDC 2016/067 Project Steering Committee, 2017.
534	
535	Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T. P., Simpson, J. H., and Stigebrandt, A.: Spatial variability of
536	diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin. Journal of Physical Oceanography,
537	34(7), 1679-1691, 2004. DOI: 10.1175/1520-0485(2004)034<1679:SVODMA>2.0.CO;2
538	
539	Austin, W. E., and Inall, M. E.: Deep-water renewal in a Scottish fjord: temperature, salinity and oxygen
540	isotopes. Polar Research, 21(2), 251-257, 2002. DOI: 10.3402/polar.v21i2.6485
541	
542	Bange, H. W., Rapsomanikis, S., and Andreae, M. O.: Nitrous oxide in coastal waters. Global Biogeochemical
543	Cycles, 10(1), 197-207, 1996. DOI: 10.1029/95GB03834.
544	
545	Bange, H. W.: Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science,
546	70(3), 361-374, 2006. DOI: 10.1016/j.ecss.2006.05.042
547	
548	Bange, H. W., Bell, T. G., Cornejo, M., Freing, A., Uher, G., Upstill-Goddard, R. C., and Zhang, G. L.:
549	MEMENTO: A proposal to develop a database of marine nitrous oxide and methane measurements.
550	Environmental Chemistry, 6, 195-197, 2009. DOI: 10.1071/en09033.
551	
552	Bange, H. W., Sim, C. H., Bastian, D., Kallert, J., Kock, A., Mujahid, A., and Müller, M.: Nitrous oxide (N ₂ O)
553	and methane (CH ₄) in rivers and estuaries of northwestern Borneo. Biogeosciences, 16(22), 4321-4335, 2019.
554	DOI: 10.5194/bg-16-4321-2019
555	
556	Bange, H. W., Mongwe, P., Shutler, J. D., Arévalo-Martínez, D. L., Bianchi, D., Lauvset, S. K., Liu, C., Löscher,
557	C. R., Martins, H., Rosentreter, J. A., Schmale, O., Steinhoff, T., Upstill-Goddard, R. C., Wanninkhof, R.,
558	Wilson, S. T., and Xie, H.: Advances in understanding of air-sea exchange and cycling of greenhouse gases in
559	the upper ocean, Elementa: Science of the Anthropocene, 12, 2024. DOI: 10.1525/elementa.2023.00044
560	
561	Bastian, D.: N ₂ O und CH ₄ Verteilung in Ästuaren und Flüssen im Nordwesten von Borneo, 2017. BSc thesis,
562	Kiel University, Kiel, 50 pp., 2017.
563	
564	Baulch, H. M., Schiff, S. L., Maranger, R., and Dillon, P. J.: Nitrogen enrichment and the emission of nitrous
565	oxide from streams. Global Biogeochemical Cycles, 25(4), 2011. DOI: 10.1029/2011GB004047
566	
567	Beaulieu, J. J., Shuster, W. D., and Rebholz, J. A.: Controls on gas transfer velocities in a large river. Journal of
568	Geophysical Research: Biogeosciences, 117(G2), 2012. DOI: 10.1029/2011JG001794
569	
570	Bennett, J. C., Ling, F. L. N., Graham, B., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Post, D. A.,

572	Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, 2010. ISBN: 978-1-921197-
573	06-8
574	
575	Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V.: Centers of organic carbon burial
576	and oxidation at the land-ocean interface. Organic Geochemistry, 115, 138-155, 2018. DOI:
577	10.1016/j.orggeochem.2017.09.008
578	
579	Bianchi, T. S., Arndt, S., Austin, W. E., Benn, D. I., Bertrand, S., Cui, X., Faust, J., Koziorowska-Makuch, K.,
580	Moy, C., Savage, C., Smeaton, C., Smith, R., and Syvitski, J.: Fjords as aquatic critical zones (ACZs). Earth-
581	Science Reviews, 203(103145), 2020. DOI: 10.1016/j.earscirev.2020.103145
582	
583	Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High resolution measurements of nitrous oxide
584	(N ₂ O) in the Elbe estuary. Frontiers in Marine Science, 4(162), 2017. DOI: 10.3389/fmars.2017.00162
585	
586	Breider, F., Yoshikawa, C., Makabe, A., Toyoda, S., Wakita, M., Matsui, Y., Kawagucci, S., Fujiki, T., Harada,
587	N. and Yoshida, N.: Response of N_2O production rate to ocean acidification in the western North Pacific. Nature
588	Climate Change, 9(12), 954-958, 2019. DOI: 10.1038/s41558-019-0605-7
589	
590	Breitburg, D., Grégoire, M., and Isensee, K. (eds): Global Ocean Oxygen Network 2018. The ocean is losing its
591	breath: Declining oxygen in the world's ocean and coastal waters. OC-UNESCO, IOC Technical Series, No. 137,
592	2018.
593	
594	Brettar, I., and Rheinheimer, G.: Denitrification in the Central Baltic: evidence for H ₂ S-oxidation as motor of
595	denitrification at the oxic-anoxic interface. Marine Ecology Progress Series, 77(2-3), 157-169, 1991.
596	http://www.jstor.org/stable/24826569
597	
598	Bourbonnais, A., Lehmann, M. F., Hamme, R. C., Manning, C. C., and Juniper, S. K.: Nitrate elimination and
599	regeneration as evidenced by dissolved inorganic nitrogen isotopes in Saanich Inlet, a seasonally anoxic fjord.
600	Marine Chemistry, 157, 194–207, 2013. DOI: 10.1016/j.marchem.2013.09.006
601	
602	Capelle, D. W., Hawley, A. K., Hallam, S. J., and Tortell, P. D.: A multi-year time-series of N ₂ O dynamics in a
603	seasonally anoxic fjord: Saanich Inlet, British Columbia. Limnology and Oceanography, 63(2), 524-539, 2018.
604	DOI: 10.1002/lno.10645
605	
606	Carpenter, P. D., Butler, E. C. V., Higgins, H. W., Mackey, D. J., and Nichols, P. D.: Chemistry of trace
607	elements, humic substances and sedimentary organic matter in Macquarie Harbour, Tasmania. Marine and
608	Freshwater Research, 42(6), 625-654, 1991. DOI: 10.1071/MF9910625

610 Chen, C., Pan, J., Xiao, S., Wang, J., Gong, X., Yin, G., Hou, L., Liu, M., and Zheng, Y.: Microplastics alter 611 nitrous oxide production and pathways through affecting microbiome in estuarine sediments. Water Research 221(118733), 2022. DOI: 10.1016/j.watres.2022.118733 612 613 614 Chen, J., Wells, N. S., Erler, D. V., and Eyre, B. D.: Land-use intensity increases benthic N₂O emissions across 615 three sub-tropical estuaries. Journal of Geophysical Research: Biogeosciences 127, 2022. DOI: 616 10.1029/2022JG006899 617 Cresswell, G. R., Edwards, R. J., Barker, B. A.: Macquarie Harbour, Tasmania-seasonal oceanographic 618 surveys in 1985. University of Tasmania Journal contribution. 1989. DOI: 10.26749/rstpp.123.63 619 620 621 de Bie, M. J. M.: Factors controlling nitrification and nitrous oxide production in the Schelde estuary. Doctoral 622 dissertation, Yerseke: Netherlands Institute of Ecology (NIOO-CEMO). 2002. 623 624 Dey, R., Lewis, S. C., Arblaster, J. M., and Abram, N. J.: A review of past and projected changes in Australia's rainfall. Wiley Interdisciplinary Reviews: Climate Change, 10(3), e577, 2019. DOI: 10.1002/wcc.577 625 626 627 Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide, methane, and 628 nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12-614, 2016. DOI: 10.1002/2016GL071930 629 630 631 Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., 632 Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., Sun, Y.: Human Influence on the Climate 633 System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 634 Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, 635 K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (eds.): 636 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423-552, 2021. DOI: 637 638 10.1017/9781009157896.005. 639 640 Farías, L., Bello, E., Arancibia, G., Fernandez, J.: Distribution of dissolved methane and nitrous oxide in Chilean 641 coastal systems of the Magellanic Sub-Antarctic region (50°- 55°S). Estuarine, Coastal and Shelf Science, 215, 642 225-240, 2018. DOI: 10.1016/j.ecss.2018.10.020. 643 644 Fer, I.: Scaling turbulent dissipation in an Arctic fjord. Deep Sea Research Part II: Topical Studies in 645 Oceanography, 53(1-2), 77-95, 2006. DOI: 10.1016/j.dsr2.2006.01.003 646 647 Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt, D., Mauritsen, T., Palmer, M., 648 Watanabe, M., Wild, M.: The earth's energy budget, climate feedbacks, and climate sensitivity In Climate

650	the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
651	Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
652	Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (eds.): Cambridge
653	University Press, Cambridge, United Kingdom and New York, NY, USA, 423-552, 2021. DOI:
654	10.1017/9781009157896.009
655	
656	Gilbert, D., Rabalais, N. N., Diaz, R. J., & Zhang, J.: Evidence for greater oxygen decline rates in the coastal
657	ocean than in the open ocean. Biogeosciences, 7(7), 2283-2296, 2010. DOI: 10.5194/bg-7-2283-2010
658	
659	Gillibrand, P. A., Cage, A. G., and Austin, W. E. N.: A preliminary investigation of basin water response to
660	climate forcing in a Scottish fjord: evaluating the influence of the NAO. Continental Shelf Research, 25(5-6),
661	571-587, 2005. DOI: 10.1016/j.csr.2004.10.011
662	
663	Grose, M. R., Barnes-Keoghan, I., Corney S. P., White C. J., Holz, G.K., Bennett, J. B., Gaynor, S.M. and
664	Bindof, N.L.: Climate Futures for Tasmania: general climate impacts technical report, Antarctic Climate &
665	Ecosystems Cooperative Research Centre, Hobart, Tasmania, 2010. ISBN: 978-1-921197-05-5
666	
667	Hartstein, N. D., Maxey, J. D., Loo, J. C. H., and Then, A. Y. H.: Drivers of deep water renewal in Macquarie
668	Harbour, Tasmania. Journal of Marine Systems, 199(103226), 2019. DOI: 10.1016/j.jmarsys.2019.103226
669	
670	Hashimoto, L. K., Kaplan, W. A., Wofsy, S. C., and McElroy, M. B.: Transformations of fixed nitrogen and
671	N2O in the Cariaco Trench. Deep Sea Research Part A. Oceanographic Research Papers, 30(6), 575-590, 1983.
672	DOI: 10.1016/0198-0149(83)90037-7
673	
674	Hendzel, L. L., Matthews, C. J. D., Venkiteswaran, J. J., St. Louis, V. L., Burton, D., Joyce, E. M., and Bodaly,
675	R. A.: Nitrous oxide fluxes in three experimental boreal forest reservoirs. Environmental Science & Technology,
676	39(12), 4353-4360, 2005. DOI: 10.1021/es049443j
677	
678	Huang, Y., Song, B., Zhang, Q., Park, Y., Wilson, S. J., Tobias, C. R., and An, S.: Seawater intrusion effects on
679	nitrogen cycling in the regulated Nakdong River Estuary, South Korea. Frontiers in Marine Science.
680	11(1369421), 2024. DOI: 10.3389/fmars.2024.1369421
681	
682	Inall, M. E., & Gillibrand, P. A.: The physics of mid-latitude fjords: a review. Geological Society, London,
683	Special Publications. 344(1), 17-33, 2010. DOI: 10.1144/SP344.3
684	
685	Ji, Q., Jameson, B. D., Juniper, S. K., and Grundle, D. S.: Temporal and vertical oxygen gradients modulate
686	nitrous oxide production in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Journal of Geophysical
687	Research: Biogeosciences, 125(9), 2020. DOI: 10.1029/2020JG005631
688	

689	Kallert, J.: Verteilung von Lachgas (N2O) und Methan (CH4) im Fluss Rajang (Malaysia). Bachelor thesis,
690	Christian-Albrecht-University, Kiel, 2017. URI: https://oceanrep.geomar.de/id/eprint/40913/
691	
692	Kock, A. and Bange, H. W.: Counting the ocean's greenhouse gas emissions, Eos: Earth & Space Science News,
693	96(3), 10–13, 2015. DOI:10.1029/2015EO023665
694	
695	Kuypers, M. M. M., Marchant, H. K., and Kartal, B.: The microbial nitrogen-cycling network, Nature Reviews
696	Microbiology, 16, 263-276, 2018. DOI: 10.1038/nrmicro.2018.9
697	
698	Laffoley, D., and Baxter, J. M.: Ocean deoxygenation: Everyone's problem: Causes, impacts, consequences and
699	solutions: Summary for Policy Makers. International Union for Conservation of Nature (IUCN), 2019. DOI:
700	10.2305/IUCN.CH.2019.13.en
701	
702	Lucieer, V.: SeaMap Tasmania Bathymetric Data [data set], Institute for Marine and Antarctic Studies,
703	University of Tasmania, 2007. ISBN: 0-7246-8011-X
704	
705	Ma, X., Lennartz, S. T., and Bange, H. W. : A multi-year observation of nitrous oxide at the Boknis Eck Time
706	Series Station in the Eckernförde Bay (southwestern Baltic Sea). Biogeosciences, 16(20), 4097-4111, 2019.
707	DOI: 10.5194/bg-16-4097-2019
708	
709	Macquarie Harbour Dissolved Oxygen Working Group (October 2014), Final Report to the Tasmanian Salmonid
710	Growers Association, 2014.
711	
712	Maher, D. T., J. Z. Sippo, D. R. Tait, C. Holloway, and Santos, I. R.: Pristine mangrove creek waters are a sink
713	of nitrous oxide. Scientific Reports, 6(25701), 2016. DOI: 10.1038/srep25701
714	
715	Manning, C. C., Hamme, R. C., & Bourbonnais, A.: Impact of deep-water renewal events on fixed nitrogen loss
716	from seasonally-anoxic Saanich Inlet. Marine Chemistry, 122(1), 1-10, 2010. DOI:
717	10.1016/j.marchem.2010.08.002
718	
719	Maxey, J. D., Hartstein, N. D., Penjinus, D., & Kerroux, A.: Simple quality control technique to identify
720	dissolved oxygen diffusion issues with biochemical oxygen demand bottle incubations. Borneo Journal of
721	Marine Science and Aquaculture (BJoMSA), 1, 2017. DOI: 10.51200/bjomsa.v1i.995
722	
723	Maxey, J. D., Hartstein, N. D., Then, A. Y. H., and Barrenger, M.: Dissolved oxygen consumption in a fjord-like
724	estuary, Macquarie Harbour, Tasmania. Estuarine, Coastal and Shelf Science, 246(107016), 2020. DOI:
725	10.1016/j.ecss.2020.107016

727

728

729

730 731 McMahon, P. B., and Dennehy, K. F.: N₂O emissions from a nitrogen-enriched river. Environmental Science & Technology, 33(1), 21-25, 1999. DOI: 10.1021/es980645n 732 733 734 Michiels, C. C., Huggins, J. A., Giesbrecht, K. E., Spence, J. S., Simister, R. L., Varela, D. E., Hallam, S. J., 735 Crowe, S. A.: Rates and pathways of N₂ production in a persistently anoxic fjord: Saanich Inlet, British Columbia. Frontiers in Marine Science, 6(27), 2019. DOI: 10.3389/fmars.2019.00027 736 737 738 Mickett, J. B., Gregg, M. C., and Seim, H. E.: Direct measurements of diapycnal mixing in a fjord reach-Puget 739 Sound's Main Basin. Estuarine, Coastal and Shelf Science, 59(4), 539-558, 2004. DOI: 740 10.1016/j.ecss.2003.10.009 741 Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments: response to global 742 change. Global Change Biology, 21(9), 3219-3245, 2015. DOI: 10.1111/gcb.12923 743 744 745 Musenze, R. S., U. Werner, A. Grinham, J. Udy, and Z. Yuan.: Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Science of the Total Environment, 472, 719-729, 746 747 2014. DOI: 10.1016/j.scitotenv.2013.11.085 748 749 Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, 750 D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and 751 Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working 752 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, 753 D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J, Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.

Maxey, J. D., Hartstein, N. D., Mujahid, A., & Müller, M.: The influence of mesoscale climate drivers on

hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a

decade of water quality data. Biogeosciences, 19(13), 3131-3150, 2022. DOI: 10.5194/bg-19-3131-2022

- (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. DOI:
 10.1017/CB09781107415324.018
- 756

Myllykangas, J. P., Jilbert, T., Jakobs, G., Rehder, G., Werner, J., and Hietanen, S.: Effects of the 2014 major
Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea. Earth System
Dynamics, 8(3), 817-826, 2017. DOI: 10.5194/esd-8-817-2017

760

```
    Nevison, C., and Holland, E.: A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric
    N<sub>2</sub>O and the stratospheric O<sub>3</sub> layer. Journal of Geophysical Research: Atmospheres, 102(D21), 25519-25536,
    1997. DOI: 10.1029/97JD02391
```

764

765 Orif, M. I., Yasar N. K., Radwan K. A., and Sudheesh, V.: Deoxygenation turns the coastal Red Sea lagoons into

sources of nitrous oxide. Marine Pollution Bulletin 189(114806), 2023. DOI: 10.1016/j.marpolbul.2023.114806

767	
768	Portmann, R. W., Daniel, J. S., and Ravishankara, A. R.: Stratospheric ozone depletion due to nitrous oxide:
769	influences of other gases. Philosophical Transactions of the Royal Society B, 367, 1256-1264, 2012. DOI:
770	10.1098/rstb.2011.0377
771	
772	Raes, E. J., Bodrossy, L., Van de Kamp, J., Holmes, B., Hardman-Mountford, N., Thompson, P. A., McInnes, A.
773	S., Waite, A. M.: Reduction of the powerful greenhouse gas N2O in the South-Eastern Indian Ocean. PLoS One,
774	11(1), 2016. DOI: 10.1371/journal.pone.0145996
775	
776	Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N2O): the dominant ozone-depleting
777	substance emitted in the 21st century. Science, 326(5949), 123-125, 2009. DOI: 10.1126/science.1176985
778	
779	Raymond, P. A., and Cole, J. J.: Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.
780	Estuaries, 24(2), 312-317, 2001. DOI: 10.2307/1352954
781	
782	Reading, M. J., Santos, I. R., Maher, D. T., Jeffrey, L. C., and Tait, D. R.: 2017. Shifting nitrous oxide
783	source/sink behaviour in a subtropical estuary revealed by automated time series observations. Estuarine, Coastal
784	and Shelf Science, 194: 66-76, 2017. DOI: 10.1016/j.ecss.2017.05.017
785	
786	Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Looman, A., Holloway, C., Shishaye, H. A., Barron, S.
787	and Santos, I. R.: Land use drives nitrous oxide dynamics in estuaries on regional and global scales. Limnology
788	and Oceanography, 65(8), 1903-1920, 2020. DOI: 10.1002/lno.11426
789	
790	Reading, M.J.: Aquatic nitrous oxide dynamics from rivers to reefs. Doctoral dissertation, Southern Cross
791	University, 2022. DOI: 10.25918/thesis.197
792	
793	Rönner, U.: Distribution, production and consumption of nitrous oxide in the Baltic Sea. Geochimica et
794	Cosmochimica Acta, 47(12), 2179-2188, 1983. DOI: 10.1016/0016-7037(83)90041-8
795	
796	Rosentreter, J. A., Wells, N. S., Ulseth, A. J., and Eyre, B. D.: Divergent gas transfer velocities of CO ₂ , CH ₄ , and
797	N2O over spatial and temporal gradients in a subtropical estuary. Journal of Geophysical Research:
798	Biogeosciences, 126(10), 2021. DOI: 10.1029/2021JG006270
799	
800	Rosentreter, J.A., Laruelle, G.G., Bange, H.W., Bianchi, T.S., Busecke, J.J., Cai, W.J., Eyre, B.D., Forbrich, I.,
801	Kwon, E.Y., Maavara, T. and Moosdorf, N.: Coastal vegetation and estuaries are collectively a greenhouse gas
802	sink. Nature Climate Change, 13(6), 579-587, 2023. DOI: 10.1038/s41558-023-01682-9
803	
804	Sánchez-Rodríguez, J., Sierra, A., Jiménez-López, D., Ortega, T., Gómez-Parra, A., and Forja, J.: Dynamic of
805	CO_2 , CH_4 and N_2O in the Guadalquivir estuary. Science of The Total Environment, 805, 2022. DOI:
806	10.1016/j.scitotenv.2021.150193

807	
808	Schulz, G., Sanders, T., Voynova, Y. G., Bange, H. W., and Dähnke, K.: Seasonal variability of nitrous oxide
809	concentrations and emissions in a temperate estuary. Biogeosciences, 20(15), 3229-3247, 2023. DOI:
810	10.5194/bg-20-3229-2023
811	
812	Schweiger, B.: Messung von NH2OH in ausgewachlten Seegebieten. Master thesis, Leibniz Institute of Marine
813	Science, Kiel (IFM-GEOMAR), 2006.
814	
815	Seitzinger, S. P., Kroeze, C., and Styles, R. V.: Global distribution of N ₂ O emissions from aquatic systems:
816	natural emissions and anthropogenic effects. Chemosphere-Global Change Science, 2(3-4), 267-279, 2000. DOI:
817	10.1016/\$1465-9972(00)00015-5
818	
819	Sierra, A., Jiménez-López, D., Ortega, T., Gómez-Parra, A., and Forja, J.: Factors controlling the variability and
820	emissions of greenhouse gases (CO ₂ , CH ₄ and N ₂ O) in three estuaries of the Southern Iberian Atlantic Basin
821	during July 2017. Marine Chemistry, 226(103867), 2020. DOI: 10.1016/j.marchem.2020.103867
822	
823	Salamena, G. G., Whinney, J. C., Heron, S. F., and Ridd, P. V.: Internal tidal waves and deep-water renewal in a
824	tropical fjord: Lessons from Ambon Bay, eastern Indonesia. Estuarine, Coastal and Shelf Science, 253(107291),
825	2021. DOI: 10.1016/j.ecss.2021.107291
826	
827	Salamena, G. G., Whinney, J. C., Heron, S. F., and Ridd, P. V.: Frontogenesis and estuarine circulation at the
828	shallow sill of a tropical fjord: Insights from Ambon Bay, eastern Indonesia. Regional Studies in Marine Science,
829	56(102696), 2022. DOI: 10.1016/j.rsma.2022.102696
830	
831	Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High rates of organic carbon burial in fjord
832	sediments globally, Nature Geoscience, 8(6), 450-453, 2015. DOI: 10.1038/ngeo2421
833	
834	Stow, C. A., Walker, J. T., Cardoch, L., Spence, P., and Geron, C.: N ₂ O emissions from streams in the Neuse
835	River watershed, North Carolina. Environmental Science & Technology, 39(18), 6999-7004, 2005. DOI:
836	10.1021/es0500355
837	
838	Sturm, K., Werner, U., Grinham, A., and Yuan, Z.: Tidal variability in methane and nitrous oxide emissions
839	along a subtropical estuarine gradient. Estuarine, Coastal and Shelf Science, 192, 159-169, 2017. DOI:
840	10.1016/j.ecss.2017.04.027
841	
842	Suntharalingam, P., and Sarmiento, J. L.: Factors governing the oceanic nitrous oxide distribution: Simulations
843	with an ocean general circulation model. Global Biogeochemical Cycles, 14(1), 429-454, 2000. DOI:
844	10.1029/1999GB900032
845	

846 847 848	Tait, D. R., Maher, D. T., Wong, W., Santos, I. R., Sadat-Noori, M., Holloway, C., and Cook, P. L. M.: Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ringdown spectroscopy observations. Environmental Science & Technology, 51: 13771–13778, 2017. DOI: 10.1021/acs.est.7b04627
849	
850	Teasdale, P. R., Apte, S. C., Ford, P. W., Batley, G. E., and Koehnken, L.: Geochemical cycling and speciation
851	of copper in waters and sediments of Macquarie Harbour, Western Tasmania. Estuarine, Coastal and Shelf
852	Science, 57(3), 475-487, 2003. DOI: 10.1016/S0272-7714(02)00381-5
853	
854	Walinsky, S. E., Prahl, F. G., Mix, A. C., Finney, B. P., Jaeger, J. M., and Rosen, G. P.: Distribution and
855	composition of organic matter in surface sediments of coastal Southeast Alaska, Continental Shelf Research,
856	29(13), 1565-1579, 2009. DOI: 10.1016/j.csr.2009.04.006
857	
858	Walter, S., Bange, H. W., and Wallace, D. W.: Nitrous oxide in the surface layer of the tropical North Atlantic
859	Ocean along a west to east transect. Geophysical Research Letters, 31(23), 2004. DOI: 10.1029/2004GL019937
860	
861	Walter, S., Breitenbach, U., Bange, H. W., Naucsh, G., and Wallace, D. W. R.: Distribution of N ₂ O in the Baltic
862	Sea during transition from anoxic to oxic conditions. Biogeosciences, 3, 557-570, 2006. DOI: 10.5194/bg-3-557-
863	2006
864	
865	Wan, X. S., Lin, H., Ward, B. B., Kao, S., and Dai M.: Significant seasonal N ₂ O dynamics revealed by multi-
866	year observations in the Northern South China Sea. Global Biogeochemical Cycles, 36(10), 2022. DOI:
867	10.1029/2022GB007333
868	
869	Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Marine Chemistry, 8, 347-359,
870	1980. DOI: 10.1016/0304-4203(80)90024-9
871	
872	Wells, N. S., Maher, D. T., Erler, D. V., Hipsey, M., Rosentreter, J. A., and Eyre, B. D.: Estuaries as sources and
873	sinks of N2O across a land use gradient in subtropical Australia. Global Biogeochemical Cycles, 32, 877–894,
874	2918. DOI: 10. 1029/2017GB005826
875	
876	Willis, M.: Tascatch Variation 2 - Surface Water Models (Document ID Number WR 2008/005). Department of
877	Primary Industries and Water. Hydro Tasmania Consulting, https://nre.tas.gov.au /water/water-monitoring-and-
878	assessment/hydrological assessment/tasmanian-catchmentsmodelling /surface-water-models. 2008.
879	
880	Wilson, S. T., Bange, H. W., Arévalo-Martínez, D. L., Barnes, J., Borges, A. V., Brown, I., Bullister, J. L.,
881	Burgos, M., Capelle, D. W., Casso, M., de la Paz, M., Farías, L., Fenwick, L., Ferrón, S., Garcia, G., Glockzin,
882	M., Karl, D. M., Kock, A., Laperriere, S., Law, C. S., Manning, C. C., Marriner, A., Myllykangas, J. P., Pohlman,
883	J. W., Rees, A. P., Santoro, A. E., Tortell, P. D., Upstill-Goddard, R. C., Wisegarver, D. P., Zhang, G. L., and
884	Rehder, G.: An intercomparison of oceanic methane and nitrous oxide measurements, Biogeosciences, 15, 5891-
885	5907, 2018. DOI: 10.5194/bg-15-5891-2018

887	Wilson, S. T., Al-Haj, A. N., Bourbonnais, A., Frey, C., Fulweiler, R. W., Kessler, J. D., Marchant, H. K.,
888	Milucka, J., Ray, N. E., Suntharalingham, P., Thornton, B. F., Upstill-Goddard, R. C., Weber, T. S., Arévalo-
889	Martínez, D. L., Bange, H. W., Benway, H. M., Bianchi, D., Borges, A. V., Chang, B. X., Crill, P. M., del Valle,
890	D. A., Farías, L., Joye, S. B., Kock, A., Labidi, J., Manning, C. C., Pohlman, J. W., Rehder, G., Sparrow, K. J.,
891	Tortell, P. D., Treude, T., Valentine, D. L., Ward B. B., Yang, S., and Yurganov, L. N.: Ideas and perspectives:
892	A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences,
893	17, 5809-5828, 2020. DOI: 10.5194/bg-17-5809-2020
894	
895	Wu, L., Chen X., Wei, W., Liu, Y., Wang, D., and Ni, B.: A critical review on nitrous oxide production by
896	ammonia-oxidizing archaea. Environmental Science & Technology 54(15), 9175-9190, 2020. DOI:
897	10.1021/acs.est.0c03948
898	
899	Yevenes, M. A., Bello, E., Sanhueza-Guevara, S., and Farías, L.: Spatial distribution of nitrous oxide (N ₂ O) in
900	the Reloncaví estuary-sound and adjacent sea (41-43 S), Chilean Patagonia. Estuaries and Coasts, 40, 807-821,
901	2017. DOI: 10.1007/s12237-016-0184-z
902	
903	Yoshinari, T.: Nitrous oxide in the sea. Marine Chemistry 2(4), 189-202, 1976. DOI: 10.1016/0304-
904	4203(76)90007-4.
905	
906	Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. R.: Variation in surface turbulence and the gas
907	transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries, 26, 1401-1415, 2003. DOI:
908	10.1007/BF02803649
909	
910	Zhang, G. L., Zhang, J., Liu, S. M., Ren, J. L., and Zhao. Y. C.: Nitrous oxide in the Changjiang (Yangtze
911	River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes.
912	Biogeosciences 7(11), 3505-3516, 2010. DOI: 10.5194/bg-7-3505-2010