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Abstract. TS1 Dimethyl sulfide (DMS) is a naturally emit-
ted trace gas that can affect the Earth’s radiative budget by
changing cloud albedo. Most atmospheric models that rep-
resent aerosol processes depend on regional or global dis-
tributions of seawater DMS concentrations and sea–air flux5

parameterizations to estimate its emissions. In this study, we
analyse the differences between three estimations of seawa-
ter DMS, one of which is an observation-based interpola-
tion method following Hulswar et al., (2022) (hereafter re-
ferred to as H22) and two of which are proxy-based param-10

eterization methods following Galí et al. (2018) (hereafter
referred to as G18) and Wang et al. (2020) (hereafter re-
ferred to as W20). The interpolation-based method depends
on the distribution of observations and the methods used to
fill data between observations, while the parameterization-15

based methods rely on establishing a relationship between
DMS and environmental parameters such as chlorophyll a,
mixed-layer depth, nutrients, sea surface temperature, etc.,
which can then be used to predict DMS concentrations. On
average, the interpolation-based methods show higher DMS20

values compared to the parameterization-based methods.
Even though the interpolation method shows higher values
than the parameterization-based methods, it fails to capture
mesoscale variability. The regression-based parameterization
method (G18) shows the lowest values compared to other25

estimations, especially in the Southern Ocean, which is the
high-DMS region in austral summer. The parameterization-

based methods suggest positive long-term trends in seawa-
ter DMS (6.94± 1.44 %TS2 per decade for G18 and 3.53±
0.53 %TS3 per decade for W20). Since large differences, of- 30

ten more than 100 %, are observed between the different es-
timations of seawater DMS, the derived sea–air fluxes and,
hence, the impact of DMS on the radiative budget are sensi-
tive to the estimate used.

1 Introduction 35

Seawater dimethyl sulfide (DMS) is a major source of sul-
fate aerosols in the marine atmosphere (Bates and Quinn,
1997). It is a by-product of the phytoplankton life cycle
and marine microbial food web interactions (Andreae and
Crutzen, 1997; Simó, 2001). The produced DMS is either 40

oxidized by photochemical reactions or metabolized by bac-
teria (Toole et al., 2003), and the rest is released into the
atmosphere as gaseous DMS (Galí and Simó, 2015; Simó,
2001). In the atmosphere, DMS oxidizes to form sulfuric
and methane sulfonic acid, eventually leading to aerosol for- 45

mation and growth. These aerosols can act as cloud con-
densation nuclei (CCN), especially in environments removed
from anthropogenic and continental influences (Andreae and
Barnard, 1984; Korhonen et al., 2008). CCN contribute to the
formation of clouds, increasing cloud albedo. Due to this, 50

DMS emissions have the potential to decrease solar radia-

1



2 S. D. Joge et al.: Dimethyl sulfide (DMS) climatologies, fluxes, and trends

tion at the ocean surface, resulting in negative feedback (Val-
lina and Simó, 2007). This feedback cycle is referred to as
the CLAW hypothesis (Charlson et al., 1987; Wang et al.,
2018b). Past studies have shown that this feedback cycle is
more complex than the original CLAW hypothesis (Quinn5

and Bates, 2011) However, it is undeniable that DMS affects
the radiative budget on a global scale. For example, Fiddes
et al. (2018) showed that the removal or enhancement of ma-
rine DMS can change the atmospheric radiative effect at the
top of the atmosphere by 1.7 and −1.4 W m−2, respectively.10

Mahajan et al. (2015b) showed that the difference between
model simulations with and without DMS can result in an
aerosol radiative forcing difference of −1.79 W m−2, with
the difference exceeding 20 W m−2 in areas of the Southern
Ocean. Hence, there is a need to understand the DMS cy-15

cle within the context of the uncertainties and biases of the
climate models (Fossum et al., 2018; Fiddes et al., 2018).

The emission of DMS into the atmosphere is an impor-
tant sea–air interaction process and determines the impact
of seawater DMS on the global radiation budget (Stefels et20

al., 2007; Saint-Macary et al., 2022). In most global models,
this flux is estimated as a product of the seawater DMS con-
centration and a parameterization of the sea–air flux transfer
velocity (Liss, 1983; Johnson, 2010; Bell et al., 2013). Con-
sidering that seawater DMS concentration is an essential part25

of the flux calculation, its accurate estimation plays a cru-
cial role in quantifying the impact of DMS on cloud forma-
tion. Regional and global distributions of seawater DMS con-
centrations are estimated using observation-based interpo-
lation, process-level modelling, and parameterization-based30

approaches (Belviso et al., 2004b).
In the interpolation-based approach, the global seawater

DMS distribution is estimated by interpolating and/or ex-
trapolating all available in situ DMS observations. The first
observation-based climatology was published by Kettle et35

al. (1999) and used only about 15 000 observations glob-
ally. Observations were segregated using static biogeochem-
ical province boundaries defined by Longhurst et al. (1995)
and were then interpolated across province boundaries and
individual grid points. A similar approach was followed by40

Lana et al. (2011), although the number of data points used
in this study had increased 3-fold (47 000 observations). Hul-
swar et al. (2022) recently presented an updated version, i.e.
the third climatology, using an interpolation-based approach.
This recent climatology was created with a ∼ 18-fold in-45

crease in observations (873 539 observations) and included
important updates in the filtering and data unification pro-
cess. They also included dynamically changing seasonal bio-
geochemical province boundaries (Reygondeau et al., 2013)
to capture spatial and temporal changes in biogeochemistry,50

especially along the borders of provinces. The interpolation
lengths for this climatology are based on observed DMS vari-
ability length scales (VLSs) (Royer et al., 2015; Manville et
al., 2023), which produce more realistic geographical distri-
butions.55

In process-level models, the estimation of DMS is done us-
ing mathematical relationships at small scales between many
biogeochemical and environmental parameters to define how
DMS production and destruction occur. This method is com-
plex due to the non-linear relationship between DMS; proxy 60

parameters; and DMS’s main precursor, dimethylsulfonio-
propionate (DMSP). The biogeochemical cycle of nutrients
and the spatiotemporal distribution of different plankton taxa
play an important role, and these are modelled across the
globe using a detailed biogeochemical model, which predicts 65

the seawater DMS concentrations (Anderson et al., 2001;
Wang et al., 2018a; Belviso et al., 2004b). These estimations
are inherently linked to our understanding of the underlying
processes controlling DMS production and loss and, hence,
can be highly biased if these processes are not well described 70

in the model (Galí et al., 2023). This method is also com-
putationally expensive. The models based on this approach
lead to DMS climatologies with resolutions which are de-
pendent on their parent model but are usually of the order
of 0.25◦× 0.25◦ and hence can include mesoscale dynamic 75

changes.
Finally, in the parameterization-based approach, a para-

metric equation between DMS and/or DMSP and single or
multiple variables (biogeochemical and/or environmental pa-
rameters) is defined through linear and/or multi-linear regres- 80

sion at a larger scale. This approach is simple to implement
compared to process-level models and can work more ef-
ficiently than observation-based interpolation for capturing
mesoscale changes and understanding trends (Belviso et al.,
2004a). Initial attempts were made in the early 2000s, with 85

Simó and Dachs (2002) using chlorophyll a and mixed-layer
depth (MLD) as proxies for predicting DMS. Later, Val-
lina and Simó (2007) additionally used surface irradiance
as a predictor due to a strong relationship having been ob-
served between DMS and the solar-radiation dose over the 90

global surface ocean. A recent study derived the relationship
between DMSP and satellite-based data of chlorophyll a,
sea surface temperature (SST), particulate inorganic carbon
(PIC), and MLD in both stratified and mixed water columns
(Galí et al., 2015). Later, DMS values were estimated across 95

the oceanic biomes as a function of estimated DMSP and
the satellite-based data of photosynthetically available radi-
ation (PAR) using a similar regression analysis (Galí et al.,
2018). An upgrade to this method is using machine learn-
ing, such as an artificial neural network (ANN) (Wang et 100

al., 2020) or Gaussian process regression (GPR) (Mansour
et al., 2023) to create the parameterization. The climatology
in these cases is created by training the machine learning al-
gorithms in data-rich regions. While ANN is more expensive
in terms of computation than regression analysis, it is less 105

expensive than process-level models. The parameterization
approach used within modelling simulations (Halloran et al.,
2010) shows that the method is not applicable under all con-
ditions for estimating DMS. The biggest disadvantage of the
ANN method is that it requires a large number of observa- 110
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tions to train the model efficiently. ANN is composed of lay-
ers of interconnected nodes. These nodes are organized into
three layers: input layer, hidden layer, and output layer. The
hidden layer performs complex computations on the param-
eters obtained from the input layer and trains itself according5

to the parameters given to this layer. Once it is trained, the
ANN becomes capable of predicting DMS values at a single
node in the output layer. A series of sensitivity tests between
DMS and the individual parameters need to be run to check
whether a change in a single parameter gives a unidirectional10

response for the predicted DMS values (Wang et al., 2020).
We selected the latest interpolation-based estimation (Hul-

swar et al., 2022) and two parameterization-based DMS es-
timations (Galí et al., 2018; Wang et al., 2020) to study the
relative differences in the absolute values of the estimations,15

as well as their geographical differences, and to compare the
long-term trends.

2 Methods

In this study, we compare three seawater DMS es-
timations created (Figs. 1–3) using two methods:20

i.e. an interpolation-based climatology estimate fol-
lowing Hulswar et al. (2022), hereafter referred to
as H22 (https://doi.org/10.17632/hyn62spny2.1), and
two parameterization-based climatology estimates fol-
lowing Galí et al. (2018), hereafter referred to as25

G18 (https://doi.org/10.5281/zenodo.2558511), and
Wang et al. (2020), hereafter referred to as W20
(https://doi.org/10.5281/zenodo.3833233). Figure S1 in
the Supplement shows the in situ DMS used in G18, W20,
and H22. As only monthly climatologies of DMS are avail-30

able from G18 and W20 public data, the models from these
two papers were re-run to get monthly estimates of DMS
from the years 1998 to 2010 in order to calculate the trends
of seawater DMS. The parameters used for W20 and G18 are
sea surface temperature (SST), salinity, and nutrients (such35

as phosphate, nitrate, and silicate) from WOA 2018 (https:
//www.ncei.noaa.gov/access/world-ocean-atlas-2018/, last
access: 9 January 2024) at a 1◦× 1◦ monthly resolution;
MLD from MIMOC (https://www.pmel.noaa.gov/mimoc/,
last access: 9 January 2024; 0.5◦× 0.5◦ and monthly reso-40

lution); and satellite-based variables from NASA SeaWiFS
(https://oceancolor.gsfc.nasa.gov/l3/, last access: 9 January
2024; 9× 9 km and monthly resolution) for chlorophyll a,
PAR, euphotic depth, and PIC. Thus, DMS data for W20
and G18 were re-created at a 1 ◦ resolution, similarly to the45

resolution of H22. For this, input data were also regridded to
1 ◦ before running both the models. It should be noted that
there is a limitation in using satellite data as proxy data. For
example, if we consider the Southern Ocean, satellite data
do not provide robust PAR values where sea ice is present,50

and the general availability of satellite data is restricted
south of 50◦ S in early spring and late autumn, which may

bias the DMS climatology. In the case of G18, the DMSPt
values were calculated based on the equations given by Galí
et al. (2015), and then DMS monthly values were calculated 55

using globally optimized coefficients for the parametric
equation for DMSPt-to-DMS conversion (Galí et al., 2018).
For W20, we used the best combination that was determined
by Wang et al. (2020) to train the model, resulting in an
R2
= 0.66. 60

The decadal trend for G18 and W20 is calculated using the
bootstrap-resampling method (Geiger et al., 2002). Before
applying the bootstrap method, the seasonal variation is re-
moved from the DMS time series dataset. For this, the mean
values of each month are calculated for the years 1998–2010 65

(due to availability of satellite data) and are then subtracted
from the corresponding month of each year. This results in
anomalies used for calculating the trend using the bootstrap-
resampling method. The bootstrap method randomly selects
samples (n= 100) with replacements from the entirety of 70

the anomaly data, which are present from the year 1998 to
2010. These samples are fitted over a first-order polynomial,
and the corresponding gradient (trend) and intercept are ob-
tained for each sample set. After this, the mean trend (B) and
corresponding standard deviation (σB ), as well as the mean 75

intercept and its corresponding standard deviation, are calcu-
lated. The tB value is obtained by taking the ratio of the mean
trend (B) and its corresponding standard deviation (σB ); i.e.
tB = |B/σB |. If the tB value is greater than 2 then the signifi-
cance level of the trend and its intercept are considered to be 80

better than 95 % (Weatherhead et al., 1998). This method has
been used to calculate long-term trends in the past (Mahajan
et al., 2015a).

3 Results and discussions

3.1 Differences between the DMS climatologies 85

The seasonal and geographical variation in the three sea-
water DMS climatologies is shown in Fig. 1a. Broadly, the
seasonal variation is dominated by the available solar radia-
tion, with peaks in the Northern Hemisphere during June–
July–August (JJA) and peaks in the Southern Hemisphere 90

during December–January–February (DJF). The maximum
DMS values observed in the polar regions during their re-
spective summers have been attributed to the melting of ice
that releases nutrients at the time of maximal light availabil-
ity (Hawkings et al., 2020; Becagli et al., 2016; Zhang et 95

al., 2021; Park et al., 2019; Gourdal et al., 2018; Sørensen et
al., 2017), which causes phytoplankton blooms in the Arctic
and Antarctic coastal regions. Figure 1b shows the histogram
of DMS concentrations. For all the climatologies, most pix-
els show DMS concentrations < 3 nM in the oligotrophic re- 100

gions and higher concentrations along the coastal regions and
regions with higher nutrient availability.

https://doi.org/10.17632/hyn62spny2.1
https://doi.org/10.5281/zenodo.2558511
https://doi.org/10.5281/zenodo.3833233
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.pmel.noaa.gov/mimoc/
https://oceancolor.gsfc.nasa.gov/l3/


4 S. D. Joge et al.: Dimethyl sulfide (DMS) climatologies, fluxes, and trends

Figure 1. (a) Global seasonal climatologies of H22, G18, and W20 for austral summer (December–January–February (DJF)), spring (March–
April–May (MAM)), boreal summer (June–July–August (JJA)), and autumn (September–October–November (SON)) seasons. For all the
climatologies, most of the pixels show DMS concentrations of less than 3 nM in oligotrophic regions and higher concentration along coastal
regions. (b) G18 and W20 captured DMS values of more than 8 nM, while H22 did not (except for the DJF season). H22 shows the highest
number of pixels in the 3–4 nM range and more than 2000 pixels in total above 6 nM in the DJF season.

During the austral summer season (DJF), H22 shows a uni-
form increase in the Antarctic Circle and the Southern Ocean.
By comparison, G18 does not show a peak in coastal Antarc-
tica or the Southern Ocean, probably because of 1◦× 1◦ re-
gridding. This is because re-gridding pixels results in low-5

ering the peak values. There is poor agreement between all
three climatologies in the Southern Hemisphere. A band of
elevated DMS in the South Atlantic and Indian oceans cen-
tred around the 45◦ S latitude is seen in G18 (Fig. 1a). This is
because chlorophyll-a satellite data may be biased towards10

coloured dissolved organic matter (CDOM) and detritus in
the Argentinian basin (Astoreca et al., 2009; Hayashida et

al., 2020; Bock et al., 2021). Thus, chlorophyll a is con-
sidered to be a poor predictor by itself. This region is the
transition between subtropical and subpolar waters and is 15

also known for high abundances of DMS and the produc-
tion of coccolithophores and dinoflagellates (Balch et al.,
2016). However, H22 and W20 show a broader meridional
spread (Fig. 1a). G18, which uses a regression-based param-
eterization and has coefficients that are sensitive to the PAR 20

and, hence, to light-absorbing fractions such as CDOM and
detritus, is most likely to be biased. W20 shows a distribu-
tion similar to that of H22, albeit with lower DMS values in
most regions and higher values in the Ross Sea and Weddell
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Figure 2. (a) Differences between the H22 climatology compared with G18 and W20. From all the seasons, the maximum difference between
H22 and G18 is −14.74 nM during December–January–February (DJF) in the Argentinian basin and −29.03 nM for W20 during March–
April–May (MAM) in the North Sea. (b) A histogram represents the total number of pixels for each difference bin. The differences between
H22 and G18 or W20 are not exactly centred around zero, but the highest number of pixels show high values in the H22 estimation.

Sea regions compared to the Indian sector of the Southern
Ocean. The histogram distribution (Fig. 1b) also shows that
H22 predicts higher values than the other two climatologies,
with the highest number of pixels in the 3–4 nM range and
more than 2000 pixels showing concentrations above 6 nM,5

while G18 has less than 300 pixels with concentrations above
6 nM (Fig. 1b). For G18, the pixels with higher concentra-
tions are in the southern mid-latitude region or in coastal re-
gions (Fig. 1a), while, for the other climatologies, most of
these values are in the Southern Ocean and coastal Antarc-10

tica. G18 and W20 show fewer pixels with concentrations
larger than 6 nM as compared to H22 (Fig. 1b).

A similar variation can be observed during the boreal sum-
mer season (JJA) in the Northern Hemisphere, where high
concentrations of DMS are present in the Arctic Circle in all15

climatologies (Fig. 1a). The geographical distribution in the
Northern Hemisphere during summer is similar for H22 and
W20, with peaks being observed east of Greenland and off
the coast of Alaska and with high values in the Arctic (Park et
al., 2018). W20 shows peak values along the northern coastal20

regions of Russia in the Kara Sea and Laptev Sea regions
compared to H22. G18 shows peak values in the Chorne Sea
and Celtic Sea regions. Both G18 and W20 show high lo-
cal peaks in terms of DMS concentration compared to H22.
In terms of histogram distribution, G18 shows approximately25

600 pixels with DMS concentrations of less than 6 nM, while
W20 shows up to 800 pixels. For H22, this pixel count is ap-
proximately 800. It can also be observed that G18 and W20
captured DMS values of more than 8 nM, while, in H22, there
were no values that high (Fig. 1b). The peak values observed 30

during the boreal summer are lower than during the austral
summer, with fewer pixels showing values above 6 nM for
all the climatologies.

During boreal spring (March–April–May (MAM)) and
autumn (September–October–November (SON)), there is a 35

gradual increase in DMS concentrations in both the North-
ern Hemisphere and the Southern Hemisphere, as seen in
Fig. 1a. The number of pixels with concentrations larger than
6 nM is low for all the climatologies (Fig. 1b). The H22 cli-
matology shows higher values along the coastal-upwelling 40

regions, such as South America’s west coast and Africa’s
southwest coast (Fig. 1a), which was observed in previous
studies. For example, the DMS concentration in the waters of
the Peru upwelling region (Andreae, 1985; Riseman and Di-
Tullio, 2004), the highest DMS concentration in the coastal- 45

upwelling areas of the west coast of India (Shenoy and Ku-
mar, 2007), North Africa, Angola, Peru, and the equatorial
Pacific Ocean, is also observed (Kettle et al., 1999); Mau-
ritanian upwelling is a hotspot for DMSP and thus DMS,
which underlines coastal-upwelling regions as a local source 50
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Figure 3. Latitudinal means for each month for all climatologies used in this study. Large differences are observed in the southern polar
region between the interpolation-based and parameterization-based climatologies. G18 has the lowest values of the three in the southern
polar region, while the estimates are close to those of W20 in the northern equatorial band.

for seawater DMS (Zindler et al., 2012). During SON, a peak
is also seen in the Indian Ocean by all the climatologies
due to the physical forcing generated by monsoon wind in
the form of upwelling, which results in high biological pro-
duction (Shenoy et al., 2002; Shenoy and Kumar, 2007), al-5

though G18 shows higher values in the Atlantic and Pacific
too, which is missing in the other estimations.

The area-weighted global DMS means for the clima-
tologies are 2.28 nM for H22, 1.69 nM for G18, and
1.75 nM for W20. Thus, the two parameterization-based10

estimations show lower global weighted-mean concentra-
tions than the interpolation-based estimations. However, the
parameterization-based estimations show higher peak values;
for example, the maximum value during DJF is 18.67 nM in
the Weddell Sea for H22, but this is higher at 18.94 nM off15

the coast of Chile in the South Pacific Ocean for G18 and
at 23.64 nM in the Gulf of Mexico for W20. The maximum
DMS during JJA for H22 is 7.29 nM in the Norwegian Sea,
while, for G18, the peak is 15.84 nM in the Chorne Sea, and
it is 46.23 nM in the Kara Sea for W20. This shows that,20

although globally averaged concentrations are higher in the
interpolation-based method, the concentrations over individ-
ual pixels can be much larger for the parameterization-based
approaches. The main reason for this is the bin-based averag-
ing of observations done in the interpolation-based approach25

to remove very localized high values that would have a dis-
proportionate weight in terms of regional and global aver-
ages. Due to this, no pixels higher than 8 nM are observed in
H22 in MAM, JJA, and SON (Fig. 1b). Also, a sampling bias
is inherent to the interpolation-based method, as discussed30

by Galí et al. (2018). Thus, the parameterization-based ap-
proaches have an advantage where they can capture large
point emissions during periods of high productivity. These

high point emissions are likely to affect local and regional
new particle formation on shorter timescales. 35

Figure 2a shows the absolute difference between H22 and
the other two climatologies, while Fig. S2 shows the pro-
portional differences. In the Southern Ocean, H22 predicts a
higher value of DMS concentration, with larger positive dif-
ferences compared to G18 and W20. In DJF, large negative 40

differences can also be observed with G18 in the Argentinian
Shelf region and in the coastal areas of Peru and Chile. Simi-
larly, positive differences can also be seen in the JJA season,
with some negative differences in the case of W20 in the Arc-
tic Circle and with negative differences in the case of G18 45

along some coastal areas of the continents. The histogram of
differences is centred around zero, showing that most pixels
show a minor change, although large differences of > 10 nM
are also seen in some pixels, especially during DJF. The dif-
ferences between H22 and G18 or W20 (Fig. 2b) are not cen- 50

tred around zero, with most pixels showing higher values in
the H22 estimation. Some pixels show a negative difference
in the Arctic Ocean, southern Atlantic, and South Australian
basin, mostly along high-productivity coastal regions. From
all the seasons, the maximum difference between H22 and 55

G18 is −14.74 nM during DJF in the Argentinian basin re-
gion and−29.03 nM for W20 during MAM in the Arctic Sea.
Overall, G18 and W20 show a lower estimation than H22 in
the Antarctic coastal area, but G18 shows higher values in the
coastal regions of other continents, such as in South America 60

in the coastal areas of Peru and Chile and in the Argentinian
basin, as well as in the northern coastal regions of Russia.

The difference in the methods is driven by various fac-
tors. The sensitivity of the methods to certain parameters (or
observation bias in the case of H22) is the primary driver. 65

However, the main reason for this is the availability of high-
resolution observations across different regions and seasons
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and also the quality of the observations. In the future, more
observations will help resolve some of these differences.

3.2 Latitudinal variations

The latitudinal variations of globally averaged seawater DMS
climatologies for each month are shown in Fig. 3. We5

checked the variations according to six latitudinal regions,
i.e. the northern polar region (> 60◦ N) and the southern po-
lar region (> 60◦ S), the northern mid-latitude region (30 to
60◦ N) and the southern mid-latitude region (30 to 60◦ S),
and the northern equatorial region (0 to 30◦ N) and the south-10

ern equatorial region (0 to 30◦ S). All the climatologies show
a similar annual trend in all the regions, although consider-
able differences are observed in the polar regions.

In the northern polar region, H22 surprisingly shows a
lower mean DMS value (1.73 nM) in April compared to in15

February and May (Fig. 3a). This is most likely due to faulty
interpolation in H22, which indicates that observation-based
interpolation methods can become biased if incorrect map-
ping is done. In the same region, a maximum mean value
of 4.20 nM is observed in June, which is closer to that of20

G18 (4.04 nM) but higher than that of H22 (3.41 nM). H22
estimates high mean values in January, February, March,
November, and December compared to G18 and W20. The
W20 estimations closely match the interpolation-based es-
timations in the boreal summer months, and although both25

G18 and W20 follow the same pattern, lower values are ob-
served in the winter months of DJF compared to H22. Con-
sidering the low sunlight during this period, the means sug-
gest that the interpolation-based methods overestimate the
DMS concentrations during winter, while W20 estimations30

seem to be more likely. This bias is most likely due to inter-
polation rather than a sampling bias.

Large differences are observed in the Southern Ocean
between the interpolation-based and parameterization-based
climatologies. With much increased data availability in35

the Southern Ocean owing to the high-frequency obser-
vations obtained using membrane inlet mass spectroscopy
(MIMS), the updated DMS climatology in Jarníková and
Tortell (2016), which was created using new high-frequency
observation data in the Southern Ocean, shows higher con-40

centrations in high latitudinal regions. The differences may
reach over +10 nM in some regions, like in the Weddell Sea
and in the waters around the Balleny Islands, while large
underestimations of over −10 nM may appear in other re-
gions, such as those of the Ross and the Bellingshausen seas.45

Although all the climatologies show higher values during
the austral summer months, H22 (peak: 12.3 nM in January)
shows higher values as compared to G18 (peak: 1.81 nM
in December) and W20 (peak: 4.69 nM in December). G18
struggles to simulate accurate concentrations, suggesting that50

this method fails in southern polar regions (Fig. 3b). W20
shows an increase, although this is driven by higher concen-
trations in particular regions, such as in the Ross Sea, as com-

pared to more generalized larger concentrations along the en-
tire Antarctic coastline, as seen in H22 (Fig. 1a). 55

For the northern mid-latitude region, H22 shows values
peaking at 4.57 nM (in May). W20 also shows an increase in
the summer with values in the range of 2.75 nM (in May)
to 3.73 nM (in August). G18 shows values ranging from
2.61 nM (in August) to 3.76 nM (in May) and peaking at 60

4.11 nM in June (Fig. 3c). In the southern mid-latitude re-
gion, which covers the Southern Pacific, Atlantic, and Indian
oceans, H22 estimates a range from 2.96 nM in November
to 3.88 nM in January. Estimates for G18 and W20 are simi-
lar, with peaks appearing in the austral summer months (be- 65

tween ∼ 2–3 nM; Fig. 3d). Although the means are similar
for these two estimates, the geographical distribution is dif-
ferent; while G18 shows a band of increased DMS along the
45◦ S latitude, W20 shows increases along Africa and the Pa-
cific. 70

The equatorial regions show the lowest mean concentra-
tions of all the latitudinal regions. In the northern equatorial
region, all the climatologies show a similar estimation, with
values ranging between 1–2.5 nM. G18 shows lower values,
especially from August to December. For the southern equa- 75

torial region, H22 peaks at 3.04 nM in December, while W20
and G18 show lower values; although, similarly to other re-
gions, G18 gives the lowest values of the three from February
to July for these latitudes.

3.3 Long-term trend 80

The long-term trends in DMS for G18 and W20 are shown
in Fig. 4. High-temporal-resolution data are important for
time series analysis to observe variations. For G18 and
W20, the trend is calculated after removing the seasonal sig-
nal from the time series for data between the years 1998 85

and 2010. G18 (Fig. 4a) and W20 (Fig. 4b) show increas-
ing trends of 6.94± 1.44 %TS4 per decade (tB = 4.82) and
3.53± 0.53 %TS5 per decade (tB = 6.71), respectively. This
suggests an increase in globally averaged seawater DMS con-
centrations across the world’s oceans. In the case of G18, 90

the calculations are done using the globally optimized coef-
ficients (Galí et al., 2018). If the same calculations are done
using coefficients optimized for > 45◦ N (Fig. S4) then the
calculated trend is 7.20± 1.90 %TS6 per decade (tB = 3.80).
Thus, the trend in the W20 climatology is nearly 50 %TS7 95

lower than the trend observed by G18, probably due to the
differences in the parameterization scheme and the sensitiv-
ity of coefficient values in relation to the different predic-
tors in both methods. It should be noted that the radiative
forcing of past and future DMS-driven aerosol formation is 100

uncertain. The IPCC AR5 concluded that a negative feed-
back of −0.02 W m−2 ◦C−1 is expected (IPCC, 2014), with
DMS emissions expected to increase with global warming.
The AR6, in contrast, suggests that DMS emissions are ex-
pected to decrease, resulting in a positive feedback of 0.005 105

(0.0 to 0.01) W m−2 ◦C−1 (IPCC, 2021) due to a decrease in
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Figure 4. Interannual trends in all the seawater DMS concentra-
tions for (a) G18 and (b) W20. The interannual trend is significant
and positive. The trend is calculated using the bootstrap-resampling
method.TS8

ocean productivity. The results presented here show an in-
creasing trend in the seawater DMS concentrations from the
year 1998 to 2010 and suggest that more research is needed
to understand the drivers of seawater DMS before an accurate
estimation of its impacts in the future can be made. SeaWiFS5

satellite data are available only from the year 1998 to 2010,
and the same limitation can be seen with other satellite prod-
ucts, which start from 2002 onwards. Hence, there is a limi-
tation in the past and future projection of DMS values due to
the availability of satellite-based predictors for limited years.10

Even though an increasing trend is obtained in G18 and W20,
this period is not sufficient to understand the long-term vari-
ability of the Earth system and the DMS response to it. In
theory, this could be addressed using the machine learning
code and proxies from climate model projections, although15

this has large uncertainties too.

3.4 Comparison with other climatologies

Over the last 2 decades, diagnostic or prognostic models – or
models that are prognostic but use empirical modules to pre-
dict DMS – have been used to quantify the impact of DMS20

(Collins et al., 2011; Kloster et al., 2006; Six and Maier-
Reimer, 2006; Vogt et al., 2010; Elliott, 2009). Hence, to
compare the results from the observation-based interpolation
method (H22), the regression-based parameterization (G18),
and the machine-learning-based parameterization (W20), we25

choose only models that are either prognostic or diagnostic.
These models are described as follows:

– Aumont et al. (2002) were the first to apply a process
model parameterization for global DMS using chloro-
phyll and community structure indices derived from a30

global biogeochemical model with a variable horizontal
grid from 0.5 to 2◦. This method estimated a weighted
annual mean DMS of 1.70 nM.

– Chu et al. (2003) simulated the production and destruc-
tion of DMS by producing DMSPd through planktonic 35

excretion of DMSP, which yields DMS through lysis.
The DMS sinks included photolysis, bacterial consump-
tion, and gas exchange at the air–sea interface, giving a
high-resolution (0.28◦× 0.28◦) estimate of DMS across
the world’s oceans. This prognostic model resulted in a 40

weighted annual global mean DMS of 1.51 nM.

– The Centre National de Recherches Meteorologiques
Earth System Model version 2 (CNRM-ESM2-1)
(Séférian et al., 2019) computes DMS concentrations
using the biogeochemical Pelagic Interactions Scheme 45

for Carbon and Ecosystem Studies (PISCES) model
(Aumont and Bopp, 2006). This includes the processing
of DMSP to DMS and phytoplankton functional groups
with the destruction of DMS via bacterial decomposi-
tion, photolysis, and ventilation. The model computes a 50

weighted annual global mean DMS of 1.98 nM.

– The Norwegian Earth System Model, version 2,
with Low-resolution atmosphere–land and Medium-
resolution ocean sea ice (NorESM2-LM) (Seland et
al., 2020) does not describe the conversion of DMSP 55

to DMS, like in PISCES; instead, it directly com-
putes DMS as a function of temperature, resulting in
a weighted annual global mean DMS of 1.98 nM.

– The Model for Interdisciplinary Research On Climate,
Earth System version 2 for Long-term simulations 60

(MIROC-ES2L) (Hajima et al., 2020) computes the sea-
water DMS concentrations using a modified parameter-
ization of Simó and Dachs (2002) that uses MLD and
chlorophyll in two regimes (open ocean and shallow
mixed water), depending on the chlorophyll-to-MLD 65

ratio. This results in a weighted annual global mean
DMS of 1.77 nM.

– The United Kingdom Earth System Model, version
1, with Low resolution for both atmosphere–land and
ocean sea ice (UKESM1-0-LL) (Sellar et al., 2019) 70

is used to compute the DMS concentration within
the biogeochemical Model of Ecosystem Dynamics,
nutrient Utilization, Sequestration and Acidification
(MEDUSA) (Yool et al., 2013) based on the parameter-
ization given by Anderson (2001), in which DMS con- 75

centrations depend on a logarithmic function of light,
chlorophyll, and nutrients. The parameterization used
in this model results in a weighted annual global mean
DMS of 1.78 nM.

CNRM-ESM2-1 and NorESM2-LM are prognostic models 80

that include marine biota that include sinks and sources of
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Table 1. Summary of the different methods and the respective area-weighted global annual mean DMS values.

Area-weighted
Climatology/ global DMS Characteristics
model mean (nM) of DMS scheme Reference

H22 2.28 Interpolation Hulswar et al. (2022)
W20 1.75 Machine learning-based parameterization Wang et al. (2020)
G18 1.69 Simple regression-based parameterization Galí et al. (2018)
Au02 1.70 Process model parameterization Aumont (2002)
Chu03 1.51 Prognostic model Chu et al. (2003)
CNRM-ESM2-1 1.98 Prognostic model Séférian et al. (2019)
NorESM2-LM 1.98 Prognostic model Seland et al. (2020)
MIROC-ES2L 1.77 Diagnostic model Hajima et al. (2020)
UKESM1-0-LL 1.78 Diagnostic model Sellar et al. (2019)

DMS and/or DMSP, while MIROC-ES2L and UKESM1-0-
LL are diagnostic models that use empirical parameteriza-
tions based on chlorophyll and other parameters (Bock et
al., 2021). From Table 1, it can be observed that the global
area-weighted annual mean DMS range (1.51–1.98 nM) of5

all these models is close to the weighted annual mean DMS
of W20 (1.75 nM) and G18 (1.69 nM). The area-weighted
global annual means computed by the interpolation-based
approach (H22) is higher (2.28 nM) than those of these mod-
els. Most models follow the parameterization approach in10

order to define the production and destruction processes
of DMS with environmental or biogeochemical parameters,
which depend on our understanding of the underlying pro-
cesses. If not defined or initiated properly, this can lead to
large differences in the estimations. Hence, it should be noted15

that, although most of these models predict the annual global
mean in a similar range, the geographic breakdown distribu-
tion of DMS (Fig. S3) can show large differences (Hulswar
et al., 2022; Belviso et al., 2004b; Bock et al., 2021; Wang
et al., 2020). The largest differences are seen in the Southern20

Ocean (Figs. 3 and S3). There is also a high spatial hetero-
geneity in the Southern Hemisphere (Figs. 1 and 2). This re-
gion has high productivity and high DMS emissions, which
can have a large impact on aerosol formation, as compared
to the Northern Hemisphere.25

4 Summary and conclusions

In this study, we compared the latest interpolation-based
and two parameterization-based seawater DMS estimations,
which are used for calculating the sea–air fluxes of DMS
in conjunction with a sea–air exchange parameterization.30

The interpolation-based method is easy to implement, but
it results in a higher area-weighted global annual mean
DMS (2.28 nM for H22) compared to other methods. The
parameterization-based methods define a non-linear rela-
tionship between DMS and environmental and/or biogeo-35

chemical parameters through regression analysis and esti-

mate lower weighted annual mean DMS compared to the
interpolation-based method (1.69 nM for G18 and 1.75 nM
for W20). W20 estimates a ∼ 3.4 % higher weighted global
mean DMS when compared with G18, but it also shows 40

a lot of geographical heterogeneity. In the case of the
interpolation-based climatology (H22), the DMS estimate
is biased towards regions where observations are frequently
taken or towards the region of blooms. The method may give
low or high DMS values depending on the sampling bias. For 45

example, low DMS values are estimated in April in the north-
ern polar region as compared to in March and May (> 60◦ N)
(Fig. 3a). Thus, the interpolation method is not free from re-
gional biases, particularly in the Arctic region.

The parameterization-based approaches depend heavily on 50

the resolution of the proxy parameters, but there is a limi-
tation regarding the satellite-data-based proxy parameteriza-
tion. For example, in the Southern Ocean environment, due
to presence of sea ice, satellite data do not generate robust
PAR and thus are more restricted to the south of 50◦ S in 55

early spring and late autumn, due to which the DMS clima-
tology generated gets biased. G18 does not show peak values
in the Southern Ocean during austral summer at a coarse res-
olution of 1◦× 1◦, but there is coastal enhancement at higher
latitudes, and the method explains 50 %–57 % of the DMS 60

variability compared to the observations, while W20 explains
66 % of the DMS variability. G18 shows lower values in the
Southern Ocean compared to in the Northern Hemisphere.
This low DMS in the Southern Ocean is one of the limita-
tions of the G18 method. 65

Comparatively, W20 performs better than G18 in the
Southern Hemisphere. However, not all blooms are resolved,
which could be due to the global filtering (where in situ DMS
> 100 nM is removed) before training the ANN model. The
filtering of the response variable (DMS) and the predictors is 70

probably done as the ANN model is sensitive to outlier points
that could lead to overfitting of the model. McNabb and
Tortell (2023) trained an ensemble ANN model in the South-
ern Ocean with DMS concentration values of more than
100 nM at a high resolution (20 km× 20 km), which is able 75
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to capture DMS hotspots in the Southern Ocean. Our obser-
vation from machine learning models suggest that machine-
learning-based estimations have the potential to predict DMS
accurately but need reliable high-resolution input data. These
can also capture mesoscale variability, which is not pos-5

sible with interpolation methods based on in situ observa-
tions directly. However, machine learning estimations need
a large dataset across different biogeochemical provinces to
train the models. Another machine learning model known as
Gaussian process regression (GPR) was recently applied by10

Mansour et al. (2023); this was able to address ∼ 71 % of
the DMS variability at high temporal (daily data) and spa-
tial (0.25◦× 0.25◦) resolutions in the North Atlantic Ocean
for the prediction of DMS concentration. With fewer DMS
points (∼ 2236), the model results show that this can be an15

efficient tool for obtaining seawater DMS concentration and
that it may be successful in other oceanic regions or in the
entire global ocean as well.

Finally, the interannual trends are calculated for the
parameterization-based methods (G18 and W20), and a pos-20

itive and significant trend (tB > 2) in both G18 (6.94±
1.44 %TS9 per decade) and W20 (3.53± 0.53 %TS10 per
decade) is obtained. This analysis using SeaWiFS data shows
that there is an increase in DMS concentration over the pe-
riod from 1998 to 2010. It is not possible to obtain past and25

future DMS projections from the satellite-based products as
these products are available for a limited number of years;
this could be solved through the parameters obtained from
CMIP6 models, which are subject to quality-controlling and
proper validation.30

It should be noted that there is considerable uncertainty
in the estimated DMS concentration and in the global dis-
tributions due to biases in the observations, unsuitable global
filtering for all regions, incorrect interpolation, and the sensi-
tivity of coefficients in parameterization methods. The area-35

weighted global annual means of G18 and W20 are within
the range of biogeochemical models (1.51–1.98 nM), but the
CMIP6 models do not necessarily show the same geograph-
ical breakdown distribution (Fig. S3) compared to H22. It
should be noted that the climatologies show poor agreement40

in the Southern Hemisphere. This region is important due to
its high productivity and, hence, high DMS concentrations
and can have a large impact on aerosol formation compared
to the Northern Hemisphere. The uncertainties in calculating
seawater DMS concentrations can lead to large uncertainties45

in total DMS fluxes (please see Part B).
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