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Abstract: Dimethyl sulfide (DMS) is a naturally emitted trace gas that can affect the Earth's radiative budget by changing
cloud albedoMostatmospherienodelsthatrepresenaerosol processelepend on regional or global distributions of seawater
DMS concentrations and se# flux parameterizations to estimate its emissions. In this study, we analyze the differences
between three estimations of seawater DMS, one of which is an obsetvasigrninterpolation metho{Hulswar et al., 2022
(hereafter referred to as H22)0)d two are proxjpased parameterization meth@@ali et al., 2018a (G18); Wang et al., 2020
(W20)). The interpolatiorbased method depends on the distribution of observations and the methods used to fill data between
observations, while the parameterizatlmased methods rely on establishing a relationship between DMS and environmental
parameters suchs chlorophylk, mixed layer depth, nutrients, sea surface temperature, etc., which can then be used to predict
DMS concentrations. On average, the interpolatiased methods show higher DMS values compared to the parameterization
based methods. Even though the interpolation method shows higher values than the paramebaseatiorethods, it fails

to capture mesoscale variability. The regresfiased parameterization method (G18) shows the lowest values compared to
other estimabns, especiallyin the Southern Oceawhich isthehigh DMS region in Austral summefFhe parameterization

based methods suggesisitive longterm trends in seawater DMS (8.91.44% decad@ for G18 and 3.53 +0.53% decalde

for W20). Since large differences, often more than 100%, are observed between the different estimations of seawater DMS

the derived seair fluxes and hencihe impact of DMS on the radiative budgesensitive to the estimate used.
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1 Introduction

Seawater dimethyl sulfide (DMS) is a major source of sulfate aerosols in the marine atm{Batesrand Quinn, 19971t

is a byproduct of the phytoplankton life cycle and marine microbial food web intera¢fmseae and Crutzen, 1997; Simo,
2001) Theproduced DMS is either oxidized by photochemical reactions or metabolized by b@ibet@et al., 2003)and

the rest is released into the atmosphere as gaseoug®MAind Simé, 2015; Simd, 2001) the atmosphere, DMS oxidizes

to form sulfuric and methane sulfonic acid, eventually leading to aerosol formation and growth. These aerosols candact as clo
condensation nuclei (CCN), especially in environments remote from anthropogenic and cdrtifieatece (Andreae and
Barnard, 1984; Korhonen et al., 2008CN contributeto the formation of cloudsncreadg cloud albedoDue to thisDMS
emissiondhave the potential tdecreas solar radiatiorat the ocean surfageesulting innegative feedbacf/allina and Simo,

2007). This feedback cycle is referred to as the CLAW hypotli€siarison et al., 1987; Wang et al., 2018Pgststudies
haveshown thathis feedback cycle imiorecomplexthan the originaCLAW hypothesigQuinn and Bates, 201However,

it is undeniable that DMS affects the radiative budget on a global scale. For exaigés etal. (2018) showed thathe
removalor enhancement of marine DM&n changé¢he atmospheric radiativeffectat the top of the atmosphere by’ and

-1.4 W m'?, respectively (Mahajan et al., 2015howed that the difference between model simulations with and without
DMS can result in maerosol radiative forcing difference afl79 W nv, with the difference exceeding 20 W?nm the
Southern OcearHence there isa need to understantthie DMS cycle within the context of uncertainties and biasethef
climatemodels(Fossum et al., 2018; Fiddes et al., 2018)

The emission of DMS into the atmosphere is an importaraiseéateraction process and determines the impact of seawater
DMS on the global radiation budgé$tefels et al., 2007; SaiMacary et al., 2022)In most global models, this flux is
estimated as a product of the seawater Did8centration and a parameterizatafrthe seaair flux transfer velocityLiss,

1983; Johnson, 2010 Considering that seawater DMS concentration is an essential part of the flux calculation, its accurate
estimation plays a crucial role in quantifying the impact of DMS on cloud formation. Regional and global distributions of
seawater DMS concentrationsrea estimated using observatibased interpolation, procelkvel modeling, and
parameterizatiofbased approachéBelviso et al., 2004b)

In the interpolatiorbased approach, the global seawater DMS distribution is estimated by interpolating/extrapolating all
available in situ DMS observations. The first observabiaeed climatology was published Kgttle et al.(1999)and used

only about 15,000 observations globally. Observations were segregated using static biogeochemical province boundarie
defined byLonghurst et al(1995)and then interpolated across province boundaries and individual grid points. A similar
approach was followed hyana et al(2011) although the number of data points used in this study had increaseildy 3
(47,000 observationsHulswar et al.(2022) recently presented an updated version, i.e., the third climatology, using an
interpolationbased approach. This recent climatology was created with a#folel&crease in observations BB39
observations) and includechportantupdates in the filtering and data unification process. They also included dynamically

changing seasonal biogeochemical province boundéReggondeau et al., 2018) capture spatial/temporal changes in
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biogeochemistry, especially along the borders of provinces. The interpolation lengths for this climatology are based on
observed DMS variability length scales (VL&oyer et al., 2015; Manville et al., 2023yhich produce more realistic
geographical distributions.

In procesdevel models, the estimation of DMS is done using mathematical relationships at small scales between many
biogeochemical and environmental parameters to define how DMS production and destruction occurs. This method is comple;
due to the noitinear relationship between DMS, preparameters, and its main precursor, dimethfdsubpropionate
(DMSP). The biogeochemical cycle of nutrients and the spatiotemporal distribution of different plankton taxa plays an
important role, and these are modelled across the globe using a detailed biogeochemical model, which predicts the seawat
DMS concentrationfAnderson et al., 2001; Wang et al., 2018a; Belviso et al., 2004b}e estimations are inherently linked

to our understanding of the underlying processes controlling DMS production and loss and hence, can be highly biased if thes
processes are not well described in the m¢@ali et al., 2023)This method is also computationally expensive. The models
based on this approach lead to DMS climatologies of resolutions, which are dependent on their parent model but are usuall
to the order of 0.25°x0.2%hd hence can include mesoscale dynamic changes.

Finally, in the parameterizatidmased approach, a parametric equation between DMS/DMSP and single or multiple variables
(biogeochemical/environmental parameters) is defined through linearimedi regression at a larger scale. This approach

is simple to implement compared to prockssel models and can work more efficiently than observetiased interpolation

for capturing mesoscale changes and understanding t(Betigso et al., 2004a)initial attempts were made in the early
2000s, with Simé and DachS$im6 and Dachs, 2002)sing chlorophyla andmixed layer depth (MLD) as proxies for
predicting DMS. Lateyallina and Sim6 (20073dditionally used surface irradiance as a predictor due to a strong relationship
observed between DMS and the solar radiation dose over the global surfacefoosamt studyderived therelationship

between DMSP and satellibased data of chlorophydl, SST, particulate inorganic carbon (PIC), and MhDoth stratified

and mixed water column&ali et al., 2015)Later, DMS values were estimated across the oceanic biomes as a function of
estimated DMSP and the sateHiiased data of photosynthetically available radiation (PAR) using a similar regression analysis
(Gali et al., 2018)An upgrade to this method is using machine learning, such as an artificial neural network(\{}ad)et

al., 2020)r Gaussian process regression (GRRnsour et al., 2023 create the parameterization. The climatology in these
cases is created by training the machine learning algorithms miclatagions. While ANN is more expensive in computation

than regression analysis, it is less expensive than prmadsnodels. The parameterization approach used within modelling
simuations(Halloran et al., 20108hows that the method is not applicable in all conditions for estimating DMS. The biggest
disadvantage of the ANN method is that it requires a large number of observations to train thefficgzigly. ANN is
composed of layers of interconnected nodes. These nodes are organized into three layers: input layer, hidden layer and outf
layer. The hidden layer performs complex computations on the parameters obtained from the input layer atseltrains
according to the parameters given to this layer. Once it is trained, the ANN becomes capable of predicting DMS values at ¢
single node in the output layé.series of sensitivity tests between DMS and the individual parameters need to be run to check

whether a change in a single parameter gives a unidirectional response for the predicted DM®B/aalgies al., 2020)
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We selecedthelatestinterpolationbasedHulswar et al., 20223nd two parameterizatidmased DMSestimationgGali et al.,
2018; Wang et al., 2020p studythe relative differences in the absolute valoéghe estimationstheir geographical

differencesandcompare théong-termtrends

2 Methods

In this study, we compare three seawater DMS estimati@ated Figs. +3) using two methods: i.e., an interpolatibased
Hulswar et al. (2022)climatology, hereafterreferred to as H22 (https://doi.org/10.17632/hyn62spnyR.and two
parameterizatiofbased estimates, Gali et al. (2018klimatology, hereafter referred to as G18
(https://doi.org/10.5281/zenodo.2558%11and Wang et al. (202D climatology, hereafter referred to as W20
(https://doi.org/10.5281/zenodo.383328@/ang et al., 2020)Figure S1 shows in situ DM&edin G18, W20 and H22 As

only monthly climatologiesf DMS areavailablefrom G18 and W2(@ublic datathe modeldrom thesetwo papersverere-

runto get monthly estimatexf DMS from year1998 to 2010n order to calculatthetrendsof seawater DMSThe parameters
used for W20 and Gl&resea surface temperature (SST), salinity, and nutrients such as phosphate, nitrate, and silicate from
WOA 2018 fttps://www.ncei.noaa.gov/access/weddeanatlas2018) at a 1%1° monthly resolution, MLD from MIMOC

(https://www.pmel.noaa.gov/mimqd.5°%0.5°andmonthly resolution), and satelliteased variables from NASA SeaWiFS

(https://oceancolor.gsfc.nasa.govy/I9 km and monthly resolution) for chlorophyd| PAR, euphotic depth, and PICus,

DMS datafor W20 and G18 weree-created at a oréegree resolution, similao resolution ofH22. For this input data was
alsoregridedto one degrebefore running both the modelsshouldbe noted thatthere isa limitation for usingsatellite data
as proxy dataFor exampleif we considetthe SouthernOcean satellite data does nptoviderobust PARvalueswhere sea
ice is present, and the general availability of satellite data is restricted southSfrb8arly spring and late autupahich
may biasheDMS climatology. In the case of G18, the DMSRlues were calculated based on the equations givEalet

al. (2015) and then DMS monthly values were calculated using globally optimized coefficients for the parametric equation
for DMSR to DMS conversiorfGali et al., 2018)For W20, we used the best combination that was determinéthhy et al.
(2020)to train the modekesulting in an R= 0.66.

Thedecadal trenébr G18 and W2Gs calculated usinthebootstragesampling methofGeiger et al., 2002Beforeapplying

the bootstrap methqdhe seasonal variation is removed from DS time-seriesdatasetFor this, the mean values of each
montharecalculatedor theyear19982010(due to availability of satellite dgtand then subtracted from the corresponding
month ofeachyear This resultsin anomales used forcalculating thetrend using the bootstrapresampling methodThe
bootstrap method randomly selects samfiied 00)with replacemenfrom theentireanomalydatawhichis present fronyear
1998 to 2010These samples afitted over &irst-orderpolynomial andthe correspondingyradient(trend) andnterceptare
obtainedor each samplset After this, mean tren(B) and correspondingtandard deviatiofis), as well athemean intercept
and its corresponding standard deviamacalculated Thet, value isobtainedby taking the ratio othe mean trendB) and

its corresponding standard deviati@gi), i.e. 0 Dj, s lfthet,value is greater thantBenthe significance level dfend


https://doi.org/10.5281/zenodo.2558511
https://doi.org/10.5281/zenodo.3833233
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://www.pmel.noaa.gov/mimoc/
https://oceancolor.gsfc.nasa.gov/l3/

130

135

140

145

150

155

andits interceptareconsidered to beetter than 95 %N eatherhead et al., 1998his method has been used to calculatedong

term trends in the pa@tlahajan et al., 2015a)

3 Results anddiscussions

3.1 Differenceshetween the DMS climatologies

The seasonal and geographical variation in the three seawater DMS climatologies is shown in Figure 1a. Broadly, the season
variation is dominated by the available solar radiation, with peaks MdhbernHemisphere during Juniuly-August(JJA)

and peaks in thBouthernHemisphere during Decemb&anuaryFebruary(DJF). The maximum DMS values observed in the

polar regions during their respective summers have been attributed to the melting of ice that releases nutrients @it the time
maximal light availability(Hawkings et al., 2020; Becagli et al., 2016; Zhang et al., 2021; Park et al., 2019; Gourdal et al.,
2018; Sgrensen et al., 201Which causes phytoplankton blooms in the Arctic and Antarctic coastal refignse 1b shows

the histogram of DMS concentrations. For all the climatologies, most pixels show DMS concentrations < 3 nM in the
oligotrophic regions and higher concentrations along the coastal regions and regions with higher nutrient availability.

During the austral summer season (DJF), H22 shows a unif@nease in the Antarctic circle and the Southern Ocean. By
comparison, G18 does not show a peak in coastal Antarctica or the Southenrpf@bedlybecause of %k 1° re-gridding.

This isbecausee-gridding pixelsresults in lowering the peak valu@$ereis poor agreement between all three climatologies

in the SoutherrHemisphereA band of elevated DMS in th®outhAtlantic and Indian Oceans centered around theSi5°
latitudeis seenn G18(Figure 1a) This isbecausehlorophylla satellite datenay be biased towards colored dissolved organic
matter (CDOM)and detritusn the Argentiniarbasin(Astoreca et al., 2009; Hayashida et al., 2020; Bock et al., 20843,
makingchlorophyll g apoor predictor by itselfThis region is the transition between subtropical and subpolar waters and is
alsoknown for high abundances of DMS produces likecolithophoresanddinoflagellategBalch et al., 2016)However

H22 and W20 shova broader meridional spreagig. 1a). G18 which usesregressiorbasedparametrization, and has
coefficients sensitive to thRAR, and hence light absorbing fractions suctC&0M and etritusthus is most likely biased

W20 shows a distribution similar to H22, albeit with lower DMS values in most regions and higher values in the Ross Sea and
Weddell Sea regions compared to the Indian sector of the Southern Ocean. The histogram distriputibhglBo shows

that H22 predicts higher values than the other two climatologies, with the highest number of pixelsdmiier&ge and

more than 2000 pixels showing concentrations above 6 nM, while G18 has le88@hmxels with concentrations above 6

nM (Fig. 1b). For G18, the pixels with higher concentrations are irsthehernMid-latitude region or coastal regions (Fig

1a), while for the dter climatologies, most of these values are in the Southern Ocean and coastal Antarctica. G18 and W20
show fewer pixels with concentrations larger than 6 nM as compared to H22l§kig

A similar variation can be observed during the boreal summer season (JJA) Northern Hemisphere, where high
concentrations of DMS are present in the Arctic circle in all climatologies {lalg The geographical distribution in the

NorthernHemisphere during summer is similar for H22 and W20, with peaks observed east of Greenland, off the coast of
5
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Alaska, and high values in the Arc{eark et al., 2018)V/20 shows peak valsalong the Northern coastal regions of Russia

in Kara sealaptev sea region compared to H&A.8 shows peak valu@s Chornesea Celtic sea regiorBoth G18 and W20
showhigh local peaks of DMS concentration compared to HA2erms of histograndistribution G18 showsapproxmately

600 pixels with DMS concentration less than 6 nihile W20 showsup to 800 pixels.For H22, this pixel count is
approximately 800it can also be observékatG18 and W20 also captur@&MS values more than 8 nM while H22 there

were novalues that high(Fig. 1b). The peak values observed during the boreal summer are lower than during the austral
summer, with fewer pixels showing values above 6 nM for all the climatologies.

During boreal spring (MarchApril-May (MAM)) and autumn (&tembeiOctoberNovemberGON)), there is a gradual
increase in DMS concentrations in tRerthern andSouthernHemispheres, as seen in Figure Tlae number of pixels with
concentrations larger than 6 nM is low for all the climatologies. Yy The H22 climatology shows higher values along the
coastal upwelling regionsuch as South America's west coast and Africa's southwest coadtajFighich wasobservedn
previous studiedor examplethe DMS concentratiorin the waters oPeru upwelling regiofAndreae, 1985; Riseman and
DiTullio, 2004), the highest DMS concentratioim coastal upwelling areas tie west coast of Indi@dShenoy and Kumar,

2007) North Africa, Angola, Peru and Equatorial Pacific Oceaalso observefKettle et al., 1999)Mauritanianupwelling

is a hotspot for DMSP and thus DM#@ich underlinegoastal upwelling region adecal source for seawater DM&indler

et al., 2012)During SON, a peak is also seen in the Indian Ocean by all the climatologies due to the physical forcing generated
by monsoon wind in the form of upwelling, whichsults inhigh biological productior{Shenoy et al., 2002; Shenoy and
Kumar, 2007) although G18 shows higher values in the Atlantic and Pacific too, which is missing in the other estimations.
The area weighted global DMS me#or the climatologies ar2.28nM for H22,1.69nM for G18, andl.75nM for W20.

Thus, the two parameterizatitrased estimations show lower globaightedmean concentrations than the interpolation
based estimations. However, the parameterizdiased estimations show higher peak values; for example, the maximum
value during DJF is 18.67 nM in the Weddell Sea for H22 but is hight8 @4 nM off the coast of Chilén South Pacific
oceanfor G18 and 23.64 nM in the Gulf of Mexico for W20. The maximum DMS during JJA for H22 is 7.29 nM in the
Norwegian Sea, while for G18, the peakl&84nM in theChorneseaand 46.23 nM in th&ara Sea for W20. This shows

that although globally averaged concentrations are higher in the interpddased method, the concentrations drdividual

pixels can be much larger for the parameterizaltiased approach. The main reason for this is thd&sed averaging of
observations done in the interpolatibased approach to remove very localized high values that would have a disproportionate
weight on regional and global averagBse to this no pixek higherthan 8 nMare observeth H22in MAM, JJA and SON

(Fig. 1b). Also, a sampling bias is inherent to the interpolatiased method, as discussed@sli et al. (2018)Thus, the
parameterizatiofbased approach has an advantage, where they can capture large point emissions during periods of higl
productivity. These high point emissions are likely to affect localragbnal new particle formation on shorter timescales.
Figure 2a shows thebsolutedifference between H22 and the otheo climatologiesvhile FigureS2 showsthe proportional
differences. In the Southern Ocear{22 predictsa higher valueof DMS concentratiorwith larger positive differencesith

G18 and W20ln DJF, large negative differences adso beobservedvith G18in Argentinian Shelf region and coastal areas
6



of Peru and Chd. Similarly, positive differencescan also be seen the JJA seasorwith some negative differences tine
195 case of W20 intheArctic Circle and negative differences with Gafng some coastal areas of continehle histogram of
differenceds centered arourzkrg showing that most pixels show a minor change, althtargie differencesf >10 nMare
also seenn some pixelsespecially during DJFThe differences between H22 aGd 8 or W20 (Fig 2b) are not centered
aroundzerg with most pixels showingigher values in the H22 estimatid®Bome pixelsshowa negative difference ithe
Arctic Ocean south Atlantic andSouthAustralian basimostly alonghigh-productivity coastategions From all the seasons,
200 the maximum difference between H22 and G18.#74nM during DJFin the Argentinianbasinregionand-29.03 nM for
W20 during MAM in the Arctic Sea Overall,G18 and W2Ghow a lower estimatiotihan H22in Antarctic coastal aredut
G18shows higlervalues in coastal regiois$ other continents suaks in South America in the coastal areaBeriu and Chile,
Argenina basin andNortherncoastal regions of Russia
The difference in the methods is driven by various factors. The sensitivity of methods to certain parameters (or observatior
205 bias in the case of H22) is the primary driver. However, the main reason for this is the availability-céshigtion
observations across different regions and seasons and also the quality of the observations. In the future, more ofidlervations

help resolve some of these differences.

3.2 Latitudinal Variations

Thelatitudinalvariatiors of globally averagedeawateDMS climatologies for each month are shoiwifrigure3. We checked
210 the variations according to satitudinal regions i.e., NorthernPolar region(> 60°N) and SouthernPolar region(> 60°S),
NorthernMid-latitude region(30°N to 60°N) and SouthernMid-latitude region30°S to 60°S), NorthernEquatorial region
(0° to 30MN) andSouthernEquatorial region(0° to 30%). All the climatologies show a similar annual trend in all the regions,
although considerable differences are obseivede polar regions.
In theNorthernPolar region, H22 surprisingly shows a lower mean DMS value (1.73 nM) in April compared to February and
215 May (Fig 3a). This is most likely due to faulty interpolation in H22, which indicates that obsersts®@u interpolation
methods can become biased if incorrect mapping is diorlee same regiora maximummeanvalue 0f4.20 nM is observed
in Jungewhich is closer t€&18(4.04nM) but higher thati22(3.41 nM). H22 estimates high mean valuedamuary, Felyuary,
March, Novemberand Deembercompared to G18 and W2The W20 estimationslosely match the interpolatiechased
estimations in the boreal sumnmaonthsalthoughboth G18 and W20 fallw the same pattertower values are observed in
220  the winter months of DJEompared to H22Considering the low sunlight during this period, the means suggest that the
interpolationbased methods overestimate the DMS concentrations during winter, while W20 estimations seem more likely.
This biasis most likelydue to interpolatiomather than a sampling bias
Large differences are observed in the Southern Ocean between the interyii@iagdnandparameterizatiofbased
climatologies. With mucincreased data availability in the Southern Ocean owing to theft@ghency observations obtained
225  using membrane inlet mass spectroscopy (MIMS), the updated DMS climatology in Jarnikova andJeonigbva and

Tortell, 2016) which was created using new hiffequency observation data in the Southern Ocean shows higher
7
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concentration in high latitudinal regions. The differences may reach over +10 nM in some regions, like the Weddell Sea and
the waters around the Balleny Islands, while largéerestimabns of over-10 nM may appear in other regions of the Ross

and the Bellingshausen Seas. Although all the climatologies show higher values duasingtridlesummer months, H22 (peak:

12.3 nM in January) shanhigher values as compared to G18 (pebR1 nM in December) and W20 (peak: 4.69 nM in
December). @8 struggleso simulate accurate concentrations, suggesting that this method SalsernPolar regions (Fig

3b). W20 shows an increase, although this is driven by higher concentrations in particular regions, such as the Ross Sea, .
compared to more generalized larger concentrations along the entire Antarctic coastline, as seen in122 (Fig

For theNorthernMid-latitude region H22 showsvaluespeaking a#4.57 nM (in May). W20 also shows an increase in the
summer with values in the range2#75nM (in May) to 3.73nM (in August).G18 shows valuesangingfrom 2.61nM (in

Augus) to 3.76nM (in May) and peaking a4.11 nM in JunéFig. 3¢). In the SouthernMid-latitude regionwhich coverghe
SouthernPacific, Atlantic, and Indian Oceand$i22 estimatesa rangefrom 2.96 nM in Novemberto 3.88 nMin January
Estimatesfor G18 and W20 are similarwith peaksappearing irthe austral summer montlisetween ~2 nM; Fig. 3d).
Althoughthe meansaresimilar for these two estimates, the geographical distribution is differéile G18 showsaband of
increasedMS along the 45°S latitud®/20 shows increases along Africa and the Pacific.

The equatorial regions show the lowest meancentration®f all thelatitudinalregions. Inthe NorthernEquatorial region

all the climatologiesshow a similar estimation with values ranging betweén51nM. G18 shows lower valuesespecially

from Augustto December. &r the SouthernEquatorial regionH22 peaks aB.04nM in Decembewhile W20and G18 show

lower values, althouglsimilarly to other regions(318 givesthe lowest values of thiareefrom February to Julyor these

latitudes fegion

3.3Long-term trend

Thelongterm trends in DMS for G18 and W20 are shown in Figure 4. ldigiporalresolution data is important for time

series analysis to observe variations. For G18 and W20, the trend is calculated after removing the seasonal signal from th
time series for data betwegerar1998 and 2010. G18 (§i4a) and W20 (Figdb) show increasing trends of 8.9 1.44 %

decadé (t,=4.82) and 3.53 + 0.53 % decatl@, = 6.71), respectively. This suggests an increase in globally averaged seawater
DMS concentrations across the world's oceans. In the case of G18, the calculations are done using the globally optimize
coefficients(Gali et al., 2018)If the same calculations are done using coefficients optimized for N 45/). S4), then the
calculated trend is 20 + 1.90% decad®@ (t, = 3.80). Thus, the trend in the W20 climatology is nearly9%@ower than the

trend observed by G18robably due to the differences in the parameterization scheme and its sensitivity of coefficient values
for the different predictors in both methods. It should be noted that the radiative forcing of past and futudvBiM&erosol
formation is uncertain. The IPCC AR5 concluded that a negative feedba&@R®MW m? °Clis expectedIPCC, 2014)with

DMS emissions expected to increase with global warming. The ARG, in contrast, suggests that DMS emissions are expecte
to decrease, resulting in a positive feedback of 0.005 [0.0 to 0.01JAROm (IPCC, 2021)due to adecrease in ocean

productivity. The results presented here show an increasing trend in the seawater DMS concérdratyeas1998 to 2010
8



260 and suggest that more research is needed to understand the drivers of seawater DMS before an accurate estimation of
impacts in the future can Imeade SeaWiFS satellite data is availablely fromyear1998 to 2010 and sanlimitation iswith
other satellite products which starts from 2@0&vards. Hence, there is limitatiéor the past and future projection of DMS
valuesdue toavailability of satellitebasedpredictorsfor limited years Even thoughan increamg trendis obtainedin G18
and W20 this period is not sufficierto understand thieong-termvariability of the Earthsystemand the DMS response to it

265 In theory, this coulde addressedsing the machine learning code and proxies from climate model projedtitimsigh this

has large uncertainties too

3.4 Comparison with other climatologies

Over the last two decadgliagnostic or prognostic models, or models that are prognostic but use empirical modules to predict
DMS, have been used to quantify the impact of D{@8llins et al., 2011; Kloster et al., 2006; Six and Mdkeimer, 2006;

270 Vogt et al., 2010; Elliott, 2009Hence, tocomparethe results fromthe observatiorbasedinterpolationmethod (H22),
regressiorbasedparametrization (G18), andmachine learning basethrametrization (W20), we choose onlynodelsthat
are eitheprognostic or diagnostid.hese models are described as follows:

1 Aumont et al(2002)were the first to apply a process mopetamegrizationfor global DMS using chlorophyll and
community structure index derived from a global biogeochemical model with a variable horizontal grid from 0.5° to

275 2°. This method estimatedveightedannual mean DMS of 1.70 nM.

1 Chu et al.(Chu et al.,, 2003simulated the production and destruction of DMS by producing DiMB®ugh
planktonic excretion of DMSP, which yields DMS through lysis. The DMS sinks included photolysis, bacterial
consumption, and gas exchangthair-sea interface, giving a high resolution (028289 estimate of DMS across
the world's oceans. This prognostic model resultevirightedannual global mean DMS of 1.51 nM.

280 1 The Centre National de Recherches Meteorologiques Earth System Model version 2-EENRM) (Séférian et
al., 2019)computes DMS concentrations using the biogeochemical Pelagic Interactions Scheme for Carbon and
Ecosystem Studies (PISCES) mo@&imont and Bopp, 2006 his includes the processing of DMSP to DMS and
phytoplankton functional groups with the destruction of DMS via bacterial decomposition, photolysis, and ventilation.
The model computesweightedannual global mean DMS of BaM.

285 1 The Norwegian Earth System Model, version 2 with Low resolution atmosfdreteand Medium resolution ocean
seaice (NorESM2LM) (Seland et al., 202@oes not describe the conversion of DMSP to DMS like in PISCES, but
instead, it directly computes DMS as a function of temperature resultingnrightedannual global mean DMS of
1.98 nM.

1 The Model for Interdisciplinary Research On Climate, Earth System version 2 fotéongimulations (MIROE

290 ES2L) (Hajima et al., 2020yomputes the seawater DMS concentrations using modgifieimetrization of Simé
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and DachgSim6 and Dachs, 200#)at use MLD and chlorophyll in two regimes (open ocean and shallow mixed
water), depending on the chlorophyll to MLD ratio. This resulta imeightedannual global mean DMS of7Z nM.
1 The United Kingdom Earth System Model, version 1, with Low resolution for both atmodphdrand oceasea
ice (UKESMZLO0-LL) (Sellar et al., 2019 used to compute DMS concentration within the biogeochemical Model
of Ecosystem Dynamics, nutrient Utilization, Sequestration and Acidification (MEDB#9! et al., 2013)based
on theparametrization given by Andersor{Anderson et al., 2001lijp which DMS concentrations depend on a
logarithmic function of light, chlorophyll and nutrients. The parameterization used in this model reawhsghted
annual global mean DMS of 1.78 nM.
CNRM-ESM2-1 and NorESMZM are prognostic models that include marine biota that include sinks and sources of
DMS/DMSP, while MIROCGES2L and UKESMA0-LL are diagnostic models that use empiripatamegrization based on
chlorophyll and other parametgiBock et al., 2021)From Table 1, it can be observed thatghebal area weightednnual
mean DMS range (1.51.98 nM) of all these models is close to tireightedannual mean DMS of W20 (5AM) andG18
(1.69 nM). Thearea weighteglobalannualmeans computed by the interpolatioased approach (H22) is high@r28 nM)
than these models. Masiodels follow theoarametrizationapproach in order to define the production and destruction process
of DMS with environmental/biogeochemical parameters, which depend on our understanding of the underlying processes. I
not defined or initiated properly, it can lead to large differences in the estimations. Hence, it should be notedutjlat altho
most of these models predict the annual global mean in a similar targesographibreakdowrdistributionof DMS (Fig.
S3)can show large differencéeblulswar et al., 2022; Belviso et al., 2004b; Bock et al., 2021; Wang et al.,. Z020qrgest
differences are seen in ttf®uthernOcean(Fig.3 and SR There is alsaa high spatialheterogeneityin the Southern
HemisphergFig.1 and 2) This regionhashigh productivty and highDMS emissions, which can have a larggact on

aerosol formatioras compared tthe NortherrHemisphere

4 Summary and @nclusions

In this study, we compared the latest interpolabased and two parameterizatibased seawater DMS estimations, which

are used for calculating the sai fluxes of DMS in conjunction with a seér exchange parameterizatidrne interpolation

based method is easy to implementibrgsults irhigherarea weightedlobalannuaimeanDMS (228nM for H22)compared

to other methods The parameterizatichased methods define a nlimear relationship between DMS and
environmental/biogeochemical parameters through regression analysis and estimatedighieed annual mean DMS
compared to the interpolatidrased methodl(69nM for G18 and 1.3 nM for W20).W20 estimates-3.4 %higherweighted
globalmean DMSwvhencompared with G18but alsoshowsa lot of geographical heterogeneily the case of interpolatien

based climatology (H22), the DMS estimate is biased towards regions where observations are frequently taken or towards th

region of blooms. The method may give low/high DMS depending on the sampling bias. For example, low DMS values are

10



estimated in April in théNorthernPolar region as compared to March and May (> EP{Fig. 3a). Thus,the interpolation
methodis not free from regional biasesarticularly inArctic region
The parameterizatiechased approaches depend heavily on the resolution of the proxy pardmeteese is a limitation on
325 satellitedatabasedproxy parameterization. For example the SouthernOcean environmentjue to presence of sea ice
satellite data does not generate robust PARtaisds more restricted to tls®uth of 50 S in early spring and late auturdoe
to which DMS climatology generated gets bias&ll8 does not show peak values in tBeuthern Oceaduring Austral
summerat course resolutionf 1°x1° but there is coastal enhancement at highgtudesandthe methodexplains 5857 %
DMS variability compared to observationshile W20 explains 66 % DMS variability. Glshows lower value# the
330 Southern Oceanompared tdhe NorthernHemisphereThis low DMS inSouthernOcean is one of thémitations of G18
method.
ComparativelyW20 performs better #m G18 inthe SouthernHemisphereHowever notall bloomsareresolved whiclcould
be due to the global filteringwhere,in situ DMS > 100 nM is removeddeforetraining the ANN model The filtering of
responsevariable (DMS) and the predictors gsobably done a&\ANN model is sensitive to outlier pointkat could lead
335 overfitting ofthemodel McNabb and TortefMcNabb and Tortell, 2023)ainedan exsemble ANNmodelin SouthernOcean
with DMS concentration values more th&80 nMat highresolution 20 knx20 km) whichis able to capture DMS hotspots
in Southern Ocean.Our observation from machine learningpdels suggeshatmachine learnindpased estimations have the
potential to predict DMS accurately but need reliable tn@golution input data. It can also capture mesoscale variability,
where it is notpossible with interpolation methods based on in situ observations direldyever, machine learning
340 estimations need a large dataset across different biogeochemical provinces to train theAnottels.machine learning
modelknown asGaussian Process Regression (GRByrecentlyapplied byMansour et a{(Mansour et al., 2023yhichwas
able to address71 % DMSvariability at Hgh temporalDaily datg and spatia(0.25 x 0.2%) resolutionin North Atlantic
Oceanfor the prediction of DMS concentratiowith fewer DMS points(~ 223§ the model resubk showthat this can ban
efficient tool for obtaining seawater DMS concentratéond it may be successful in othareanic regions oentire global
345  ocean as well.
Finally, the interannual trendsire calculated for the parameterizatibased method&18 and W20rnd a positiveand
significanttrend (t,> 2) in both G18 (6.9 + 1.44 % decad®g) and W20 (3.53 + 0.53 % decatjés obtained This analysis
using SeaWiFS dathows that there Bnincrease irDMS concentration over the perifrdm year1998 to 2010. In order to
obtainpast and future DMS projectionisjs not possible to obtained frothe satellitebasedproductsasthese products are
350 availablefor limited number of yearsvhich could be solved through therametersbtained fromCMIP6 modelssubject to
quality controlledand proper validation of this dataset
It should be noted thdlere is considerable uncertainty in #mimateddMS concentratiorand global distributiondue to
biases in observations, unsuitable global filtering for all regions, incorrect interpolation, and sensitivity of coelfficients
parameterizatiomethods. Therea weightedjlobal annuaimeanof G18 andW20 is within the range of biogeochemical

355 models (1.511.98 nM) but the CMIP6 models does not necessarily show the same geographical breakdown distribution

11
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380

(Fig.S3) with H22.1t should be noted that the climatologies show poor agreement in the Sadémeisphere. This region is
important in terms of high productivity and, hence, high DMS concentrations and can have a large impact on aerosol formatior
compared to the Northektemisphere region. The uncertainties in calculating seawater DMS concentrations can lead to large

uncertainties in total DMS fluxes (please see Joge: Part B).
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Table:

Table 1L Summary of different methods and respectivea weighted globannual meaDMS.

Climatology/Model

Area Weighted Global DMS Mean (nM)

Characteristics of DMS Scheme

Reference

H22

2.28

Interpolation

(Hulswar et al., 2022

W20 1.75 Machine LearningbasedParametrization | (Wang et al., 2020)
G18 1.69 SimpleRegressiofbasedParameterization| (Gali et al., 2018)
Au02 1.70 Process ModédParamedrization (Aumont, 2002)
Chu03 1.51 Prognostic Model (Chu et al., 2003)
CNRM-ESM2-1 1.98 Prognostic Model (Séférian et al., 2019
NorESM2-LM 1.98 Prognostic Model (Seland et al., 2020)
MIROC -ES2L 1.77 Diagnostic Model (Hajima et al., 2020)
UKESM1-0-LL 1.78 Diagnostic Model (Sellar et al., 2019)
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Figure 1: (a) Global seasonal climatologies of H22, G18, and W20 for austral su(bmezmbeiJanuaryFebruary DJF), spring(March-
April-May (MAM)), boreal summefJuneJuly-August §JA)), and autumn(SeptembeiOctoberNovember (SON)seasons. For all the
climatologies, most of the pixels show DMS concentration less than 3 nM in oligotrophic regions and higher concentrgttomstin
590 regions.(b) G18 and W20 captured DMS values more than 8 nM while ¢i@ 2ot (except DJF season). H2Rowshighest number of
pixels in the 34 nM range and more than 2000 pixielsotal above 6 nM in DJF season.
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Figure 2: (a) Differences between the H22 climatology compared with G18, W20. From all the seasons, the maximum difference between
595 H22 and G18 is14.74 nM durinddecembeiJanuaryrebruary DJF) in the Argentinian basin anr@9.03 nM for W20 during/larch-April -

May (MAM) in the North Sealb) A histogram represents the total number of pixels for each difference bin. The differences between H22

and G18 or W20 are not exactly centered around betohe mostnumber ofpixelsareshowing high values in the HZtimation.
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Figure 3: Latitudinal means for each month for all climatologies used in this study. Large differences are observ&duthémePolar
region between the interpolatidrased and parameterizatibased climatologies. G18 has the lowest values of the three in Southern Polar
region while the estimates are close to W2BarthernEquatorial band.
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Figure 4: Interannual trends in all the seawater DMS concentration&jo618 and(b) W20. The interannual trend is significant and
positive. The trend is calculated using the bootstrap resampling method.
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