
S1 Expansion to empirical and modelled results
Intensity values are not directly comparable between plots as data is un-calibrated. Drops to zero intensity represent regions
where impurity content was below what is detectable.

Plots for EDC LGP

Figure S1. Measured LA-ICP-MS signals resulting from line profiles taken across the surface of the EDC LGP. All profiles run down the
central core axis. Panel (a) shows two signals resulting from two parallel laser tracks. Panel (b) shows the spatially averaged signal resulting
from combining all measured parallel profiles, including the two signals in (a), with a range of separations between adjacent profiles. Panel
(c) shows this spatially averaged signal after smoothing to CFA-resolution of 1 cm.
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Figure S2. The intensity, (a), and structural, (b), representations of one modelled face of the EDC LGP sample. The structural representation
shows grains as different colours, separated by grain boundaries represented in black. Each of the 500 rows in the intensity representation
can be taken as a separate laser profile. The red and blue lines in both panels show the track of the profiles plotted in Fig. S3.

Figure S3. Line profile signals for the modelled EDC Holocene ice normalised by dividing by the volume average intensity. Panel (a) shows
signals acquired from 40 µm spot size profiles taken from the tracks indicated in Fig. S2. Signals resulting from simulating a 120 µm spot size
along these profiles are shown in (b). The resulting signal from combining all possible profiles from the face in Fig. S2 is shown unsmoothed
in (c) and smoothed to CFA resolution in (d). The simulated CFA signal is plotted in (e). Note the different y-axis scales for each panel.
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Figure S4. Plots of calculated MAD values against the number of LA-ICP-MS profiles used to construct a spatially averaged signal for the
modelled EDC LGP face shown in Fig.S2. As there are multiple ways to choose profiles for combination into a spatially averaged signal, the
solid line of each colour shows the mean result and the shaded region shows the range of MADs acquired for different possible combined
profiles. Panels (a) and (c) show results from simulating a 40 µm laser spot and (b) and (d) a 280 µm laser spot. Different coloured regions
show MAD values resulting from smoothing with different width Gaussian kernels. An arbitrary threshold of 20 % is also shown (red line).
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Plots for RECAP Holocene

Figure S5. Plots equivalent to Fig. S1 showing the modelled data for RECAP Holocene

Figure S6. Plots equivalent to Fig. S3 for modelled RECAP Holocene
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Plots for RECAP LGP

Figure S7. Plots equivalent to Fig. S1 showing the modelled data for RECAP LGP
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Figure S8. Plots equivalent to Fig. S2 showing the modelled data for RECAP LGP
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Figure S9. Plots equivalent to Fig. S3 showing the two profiles plotted in Fig. S8 for modelled RECAP LGP

Figure S10. Plots equivalent to Fig. S4 for modelled RECAP LGM
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S2 Grain volumes
The three-dimensional Poisson Voronoi tessellations used for this analysis are parameterised by the grain number density that
matches the ice samples they represent. This number density, n, is calculated for ice samples as

n=
1

4
3πr̄

3
(S1)

for a sample with grains of mean radius r̄, assuming spherical grain volume. The grain number density from equation S1 can
be multiplied by the total volume of a modelled space, V ,

N = V n (S2)

to get the total number of seed points, N, required to produce grains with mean size matching the target ice samples. Generating
a Poisson Voronoi tessellation with a number of seeds set by equation S2 results in a modelled space that contains grains of
varying volumes, vi, with a mean grain volume v̄,

v̄ =
1

N

N∑
i=1

vi. (S3)

From this mean grain volume, a normalised grain volume y can be defined as

y =
v

v̄
(S4)

in which grains vary in size around conforming to a gamma distribution (Ferenc and Néda, 2007)

f(y) =
3125

24
(y)4 exp(−5y) (S5)

which is plotted in figures S11, S13, and S14 alongside modelled grain size distributions.

Fig. S11 shows that modelled systems’ grain volumes match the theoretical distribution, except for a shift to slightly smaller
grain volumes than targeted and a large number of grains with very small volumes. This change in distribution can be explained
by considering that, for all modelled ice samples, the ratio of the mean grain radius to the modelled volume size results in grains
that only exist partially within the modelled space and that grain size measurements often discard very small grains. Typically,
grain size analysis will be carried out only considering the Voronoi cells (grains) that are wholly contained in the modelled
volume (Quey et al., 2011). Therefore, to truly extract the grain volume distribution, a sufficient number of grains must exist
wholly within the simulated volume, which is not the case for samples modelled in this study.
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Figure S11. Grain volume distribution for all modelled samples. Bin widths differ due to the different total numbers of grains.

To explore the statistics of grain volumes generated by the Voronoi tessellation used in this study, a model which has a large
number of grains wholly within its volume was produced. This modelled volume, shown partially in Fig. S12, has a relatively
large cubic volume, with voxel dimension 40 µm, volume side length 12000 µm, and a relatively small target grain radius of
400 µm. This modelled volume does not represent any specific real ice sample. Fig. S13 shows the grain volume distribution
for all grains in this space, calculated by counting the number of voxels in each grain. Fig. S14 shows the subset of grains, only
15% of the total, in this volume that are wholly contained. The grains contained wholly in the volume have an average grain
volume of 410 µm and conform well to the expected grain volume distribution reported in equation S5.
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Figure S12. Two-dimensional representation of a face of a cube, dimension 12000 µm, with grains resulting from a Poisson Voronoi tessel-
lation shown in different colours and the boundaries between these grains shown in grey.
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Figure S13. Grain volume distribution for all grains generated in Fig. S12.
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Figure S14. Grain volume distribution for the subset of grains fully contained within the same space as data plotted in Fig. S13.

Verification that modelled ice samples have a suitable grain volume distribution therefore can come from comparison with fig-
ures S13 and S14. To further verify these distributions, techniques such as that used for analysing high-resolution microstructure
data (Binder et al., 2013) could also be applied to estimate grain volumes.
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