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Abstract. Measuring aerosol-related impurities in ice cores gives insight into Earth’s past climate conditions. In order to re-

solve highly thinned layers and to investigate post-depositional processes, such measurements require high-resolution analysis,

especially in deep ice. Micron-resolution impurity data can be collected using laser ablation inductively coupled plasma mass

spectrometry (LA-ICP-MS) but this requires careful assessment to avoid misinterpretation. 2D imaging with LA-ICP-MS

has provided significant new insight, often showing an association between soluble impurities and the ice crystal matrix, but5

interpreting 1D signals collected with LA-ICP-MS remains challenging partially due to this impurity-boundary association

manifesting strongly in measured signals. In this work, a computational framework has been developed integrating insights

from 2D imaging to aid the interpretation of 1D signals. The framework utilises a simulated model of a macroscopic ice vol-

ume with a representative microstructure and soluble impurity localisation that statistically represents distributions seen in 2D

maps, allowing quantitative assessment of the imprint of the ice matrix on 1D signals collected from the volume. Input data10

were collected from four ice core samples from Greenland and Antarctica. For the samples measured, quantifying the vari-

ability of 1D signals due to the impurity-matrix imprint shows that modelled continuous bulk signal intensity at the centimetre

scale varies below 2 % away from an idealised measurement that captures all variability. In contrast, modelled single-profile

micron-resolution LA-ICP-MS signals can vary by more than an average of 100 %. Combining individual LA-ICP-MS signals

into smoothed and spatially averaged signals can reduce this variation to between 1.5 and 5.9 %. This approach guides collect-15

ing layer-representative signals from LA-ICP-MS line profiles and may help to bridge the scale gap between LA-ICP-MS data

and data collected from meltwater analysis.
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1 Introduction

Ice cores collected from Earth’s polar regions contain invaluable information relating to its climate system, with continuous

records reaching back as far as 800,000 years (Loulergue et al., 2008; Brook and Buizert, 2018). Analysis of well-preserved20

old ice, such as that targeted in the Beyond EPICA drilling on the Antarctic Plateau, aims to extend this record back to

approximately 1.5 million years (Chung et al., 2023). Ice sections originating from near the bottom of ice sheets, including

that targeted for the Beyond EPICA core, contain very thinned layers, with many thousands of years of climate information

compressed into small vertical sections. Such ice will have undergone significant post-depositional changes.

A subject of interest within these cores are the aerosol-related impurities in the ice (e.g. Legrand and Mayewski, 1997), which25

can be used as a proxy to reconstruct past climate conditions over timescales ranging from seasonal to millennial. A widely

employed technique for collecting such signals is continuous flow analysis (CFA), which outputs a one-dimensional (1D)

impurity signal along the down-core axis at centimetre depth resolution (Kaufmann et al., 2008). An example target impurity

is sodium, for which potential links to sea ice extent are discussed (Abram et al., 2013). As there is likely more than 14 ka of

ice per metre in the deep ice of the Beyond EPICA core, high-resolution analysis is key to deciphering climate signals in these30

highly thinned sections. Such analysis will require resolutions beyond that delivered by CFA and also careful assessment of

the impact of post-depositional changes of impurity localisation.

To measure impurity signals at micron-resolution, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

has been applied to ice core analysis (Reinhardt et al., 2001). Ablating ice in its solid form, LA-ICP-MS preserves information

on impurity location in the ice matrix while analysing the surface of the sample (Müller et al., 2011). Two-dimensional (2D)35

state-of-the-art imaging of impurities using LA-ICP-MS has shown that the location of (mostly soluble) impurities, such as

sodium and magnesium, can significantly correlate with the location of boundaries between crystals in the ice matrix (Stoll

et al., 2023; Bohleber et al., 2020). This impurity-boundary association imprints onto 1D line profile signals collected along the

down-core axis of samples, changing the resultant signal depending on the lateral position on the ice the signal is collected from

(Bohleber et al., 2021). It is now clear that this imprint obscures the interpretation of such profiles in the context of extracting40

a climate signal, but the extent to which this occurs will depend on factors such as the degree of impurity localisation, which

can vary between elemental species, and grain size.

The micron-resolution 2D data sampled from the surface with LA-ICP-MS greatly differs in nature from the centimetre-

resolution 1D bulk impurity data obtained with CFA, producing a scale and dimensional gap between their outputs. It remains

unclear how LA-ICP-MS signals collected from ice core samples containing a stratigraphy that encodes climate variability45

should be interpreted, partially due to the impurity-boundary association showing up in these micron-resolution measurements.

Despite methodological differences in LA-ICP-MS and CFA, a phenomenological link has been made between 1D down-

core signals collected using LA-ICP-MS and CFA (Della Lunga et al., 2017; Spaulding et al., 2017), after applying heavy

smoothing to LA-ICP-MS signals. A deeper explanation of this link between the two techniques must come from an improved

understanding of the chemical signals in ice across different length scales.50
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To allow exploration of how impurity localisation, and therefore factors such as climate period and grain size, impacts mea-

sured signals, a computational framework that allows extensive analysis of LA-ICP-MS and CFA data has been developed.

This open-source framework1 developed in Python is designed to guide experimental data collection, especially when attempt-

ing to capture layer signals with 1D LA-ICP-MS profiles. Generating a computational model of a macroscopic ice volume,

comparable to the dimensions of a sample melted during CFA, that is statistically representative of grain and impurity proper-55

ties revealed by 2D LA-ICP-MS imaging allows us to contrast modelled and empirical LA-ICP-MS data. This delivers insight

into how the spatial distribution of soluble impurities impacts signal collection, assists in bridging the scale and dimension gap

between LA-ICP-MS and CFA measurements, and allows studies that are not easily possible with empirical measurements.

Presenting this new conceptual approach, this paper aims to:

– Present 1D profiles and 2D intensity maps collected using LA-ICP-MS from sections of Antarctic and Greenland ice60

cores. Focusing on the mostly soluble impurities we take sodium as an archetypal species.

– Outline the theoretical foundation, computational implementation, and validation of a framework based on a three-

dimensional (3D) model that captures the localisation of soluble impurities in ice at the microscale while being statisti-

cally representative at the macroscale.

– Establish an initial application of this framework, analysing sodium as an archetypal soluble impurity mainly distributed65

at grain boundaries, to investigate how the spatial distribution of soluble impurities impacts the representativeness of

high-resolution centimetre length 1D signals taken along the down-core axis.

Data are measured and analysed from Holocene and Last Glacial Period (LGP) sections of the Antarctic EPICA dome C

(EDC) (Stauffer et al., 2004) and Greenland Renland Ice Cap Project (RECAP) (Simonsen et al., 2019) ice cores. The dis-

cussion of these data demonstrates the framework in relatively shallow ice sections, targetting soluble impurities, from which70

developments can be made to investigate deep ice sections and insoluble impurities.

2 Methods

2.1 Overview

The developed framework’s inputs, operation, and outputs are visualised in Fig. 1. Optical and chemical data are collected

experimentally from ice samples using an LA-ICP-MS system to form an empirical input for the framework. These data reveal75

the spatial distribution of soluble impurities, which are referred to interchangeably with ‘impurities’ throughout this study,

i.e., their localisation at the grain boundaries. The impurity distribution is combined with mean grain size measurements to

parameterise the generation of a 3D model representing a macroscopic volume of an ice sample.

This 3D model captures the structure and impurity distribution of measured ice samples. The imprinted impurity distribution

is unchanging with depth, which, if a climate signal is considered to be present in an ice sample as a sequence of discrete80

1Code available at https://github.com/Piers-Larkman/Ice_Impurities
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constant values, represents a simple manifestation of a climate signal. The conditions under which this signal can be reliably

extracted are investigated, and the conclusions are extended to guide and interpret empirical analysis. More complex climate

signals can be constructed within the modelled ice, although the mode of this climate signal should not alter the interpretation

of the present discussion.

The framework utilises a 3D model to allow both 1D signals representing LA-ICP-MS and bulk CFA measurements to be85

simulated along the down-core axis of the modelled volume by recording, combining, and processing the intensity at each

point in a vertical pro�le. Utilising the fact that the climate signal present in the modelled volume is an un-changing mean

intensity, these signals are then analysed to understand how well they capture this underlying signal.

Figure 1.Flow chart detailing the framework operation. The mean grain size data for EDC and RECAP are from EPICA community members

(2004) and Weikusat et al. (2024), respectively.

2.2 Sample selection

Samples were selected to cover a broad range of conditions, including both Greenland and Antarctica as well as glacial and90

interglacial periods. Four ice samples were analysed and modelled, two from the EDC ice core (Stauffer et al., 2004) and two

from the RECAP ice core (Simonsen et al., 2019) (Table 1). Ages for EDC samples are from the AICC2023 timescale for the

EDC ice core (Bouchet et al., 2023) and from the RECAP time scale for RECAP samples (Simonsen et al., 2019) and show

samples originate from either the Holocene or LGP. Grain radius data are taken from published values (EPICA community

members, 2004; Weikusat et al., 2024).95

2.3 Experimental

2.3.1 Data collection

The LA-ICP-MS setup at the University of Venice was used adhering to current best practice for analysis on ice (Bohleber

et al., 2024). The setup utilises an Analyte Excite ArF excimer 193 nm laser with a HelEx II two-volume ablation chamber

(Teledyne CETAC Photon Machines) connected to an iCAP-RQ quadrupole ICP-MS (Thermo Scienti�c) using a rapid aerosol100
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Table 1. Information on all analysed samples. Sample depth is the top of the sample, all relative depths discussed in the paper are reported

with reference to this top depth. Grain radius is the mean effective spherical grain radius at the reported depth. The lateral separation of

pro�les is their separation measured perpendicular to the down-core axis and is illustrated in Fig. 6 (c).

Ice core EDC EDC RECAP RECAP

Climate period Holocene LGP Holocene LGP

Top depth (m) 282.23 1096.45 495.18 536.70

Age (yr b1950) 9000 75000 5800 35000

Sample length (mm) 80 79 80 59

Mean grain radius (mm) 1.3 2.3 4.2 1.7

Number of LA-ICP-MS pro�les measured 10 10 4 6

Pro�le lateral separation (� m) 80 to 6000 80 to 12000 1000 to 5000 1000 to 5000

yr b1950: years before 1950 CE

transfer line. Samples were prepared with a thickness of approximately1 cm, a width of2 cm and lengths reported in Table

1. During analysis, samples were held at a stable temperature of approximately� 23 � C. An optical mosaic of the surface of

each sample was taken using an integrated optical camera. Impurity data, including sodium, were recorded as 1D lines and

2D maps using the laser with spot size40µm, �ring rate 300Hz, and a �uence of 3.5J=cm2. After collection, uncalibrated

intensity data from the ICP-MS were corrected for background effects and drift using the software HDIP (Teledyne CETAC105

Photon Machines), which was also used to create impurity maps.

2.4 Computational framework

The computational framework does not aim to replicate the physical processes involved in grain growth and impurity local-

isation but to create a statistically representative microstructure and associated soluble impurity distribution. Its construction

breaks down into the following steps.110

2.4.1 LA-ICP-MS data processing

The grain boundary network was identi�ed manually in the impurity maps through comparison with optical images. Pixels

of high intensity in the chemical map which were located at visible grain boundaries in the optical image were considered as

grain boundary pixels. High-intensity pixels away from boundaries were considered to be impurities localised at dust particles

and are treated as grain-interior pixels. This approach results in a binary mask which was applied to chemical maps to separate115

grain boundary and grain interior pixels. The intensities of these pixel classes was then recorded and turned into a probability

distribution capturing the probability that a given pixel has a certain intensity.
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2.4.2 Ice structure generation

A 3D Poisson Voronoi tessellation (Zheng et al., 1996) is used to create the structure of modelled ice volumes. Voronoi

tessellations are produced by seeding region centres in a space, at random locations in the case of Poisson Voronoi tessellations,120

and allowing the regions to grow until they intersect with a neighbouring region. At this intersection, a boundary between the

regions is formed. The region shapes are governed by how distance is measured in the space. The generalised distance formula

in three dimensions allows calculation of the distance, D, between two points,x = ( x1;x2;x3) andy = ( y1;y2;y3)

D (x;y) =

 
3X

i =1

jx i � yi jp
! 1

p

: (1)

Wherep = 2 the resulting distance is the Euclidean distance. Changingp produces different shaped grains. This process125

produces notional spaces with regions classi�ed either as region (grain) interiors or region (grain) boundaries.

To match the average grain radii of a target ice sample, a suitable number of grains are seeded to create regions with the same

3D grain-number density as the physical sample, that is the same number of grains per unit volume. This process results in

a space containing grains with a grain volume distribution that conforms to a gamma distribution (Ferenc and Néda, 2007),

which is parameterised in the supplementary material to this paper, with a mean grain radius the same as the target ice sample.130

To create a spatial link to the pixels of the impurity maps, the Poisson Voronoi tessellation is built in a volume comprised of

voxels, the extension of pixels to three-dimensions. The modelled volume is completely populated by voxels assigned to grain

interior or boundary regions as illustrated in Fig. 2. The model treats voxels as having an edge length corresponding to the

pixel edge length and, therefore, the laser spot size of the LA-ICP-MS map which it represents,40µm in the case of the maps

collected as described in Sect. 2.3. This allows the dimensions of the notional volume to be tied to the dimensions of physical135

ice samples. Each voxel has a coordinate (x,y,z), with the X, Y, Z coordinate system illustrated in Fig. 2. The modelled space

is taken to have the Z axis aligned with the down-core axis of modelled samples.

2.4.3 Impurity distribution imprint

Each voxel in the generated space is assigned a numerical value representing its impurity intensity. This value is assigned by

taking the two probability distributions from empirical LA-ICP-MS mapping described in Sect. 2.4.1, one for grain bound-140

aries and another for grain interiors, and drawing a random value from these distributions for each voxel, depending on its

classi�cation as grain or boundary. The resulting intensity distribution resembles the intensity representation shown in Fig. 2.

2.4.4 Simulating and combining signals

Simulated LA-ICP-MS signals are obtained by recording the voxel intensity at each Z position of a pro�le of voxels, resulting

in a 1D signal at40µm resolution which runs the entire Z-axis of the modelled volume. Fig. 2 illustrates the paths of two such145

6



Figure 2. Visual representation of a 3D Poisson Voronoi tessellation used to represent a polycrystalline material. Each voxel, represented by

a coloured cube, in the space is considered to have an edge length corresponding to the laser spot size used to measure modelled samples.

The representation on the left shows the grain boundary voxels in transparent grey and each grain as a different colour. The representation

on the right shows the intensity distribution imprinted on the same volume. Volumes generated for analysis are much larger than this small

illustrative example, which, given a40µm voxel size, represents a 0.60 by 0.44 by 1.8mm volume.
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parallel pro�les as blue arrows. Intensity signals from directly adjacent pro�les can be summed to create a signal simulating

LA-ICP-MS data collection carried out with a larger spot size. Spatially averaged signals can be produced by taking the average

of two or more adjacent or non-adjacent single-pro�les signals. For spot sizes larger than40µm, all simulated LA-ICP-MS

signals are smoothed using a 1D Gaussian kernel with a standard deviation,� , set to the laser spot size, following the procedure

described in Bohleber et al. (2021). Additional subsequent Gaussian smoothing can then be applied as a post-processing step.150

Simulation of a CFA-like signal is only possible in a 3D model and is calculated by summing the impurity values of all the

voxels in each Z plane and applying Gaussian smoothing with a one-centimetre wide kernel. This approximates the collection

of a smoothed bulk signal resulting from experimental CFA (Erhardt et al., 2023), without considering effects such as dispersion

(Breton et al., 2012).

2.5 Modelled data analysis155

These modelled signals were then analysed to give insight into how the underlying impurity distribution creates variability in

measurement. It is assumed that centimetre-scale bulk volumes of ice have an invariant intensity distribution in the X and Y

directions. This bulk-invariance also holds in the Z direction of modelled ice. This Z-invariance can be interpreted as an ice

sample with an unchanging climate signal despite micro-scale variability in the spatial distribution of sodium arising from the

impurity-boundary association. The bulk-invariant impurity distribution in all directions means that the mean average intensity160

in the space,�I , serves as a reference value: the intensity value that would be recorded if the entire volume were melted and

measured. If some sub-volume of the modelled space is representative of the volume as a whole, it will have a mean intensity

of �I . Therefore, if a single-pro�le laser signal, a spatially averaged signal resulting from the combination of several pro�les, or

the simulated CFA signal has an average intensity approaching�I at each Z value, the signal can be considered representative

at every depth. A metric to measure how much the spatial distribution of impurities affects some signal,I (zi ), or the signal165

representativeness, is its mean absolute deviation (MAD) from�I . For a signal of lengthl , the MAD measured in intensity units,

MAD I , is calculated as

MAD I =
1
l

lX

i =1

jI (zi ) � �I j: (2)

To allow easy comparison of variation between ice samples, MAD values calculated using equation 2 are reported as percent-

ages normalised to�I170

MAD =
MAD I

�I
� 100: (3)

A MAD of 0 % as calculated using equation 3 represents a signal that fully captures the underlying intensity distribution at

every depth interval.
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3 Results

3.1 Experimental LA-ICP-MS175

All measured samples' optical and intensity maps are shown in Fig. 3, alongside the grain boundary segmentation used to

isolate the grain interior and boundary intensities. A comparison of the optical images and intensity maps in Fig. 3 shows

sodium is concentrated preferentially at the grain boundaries compared with grain interiors for all measured samples. This bi-

modal distribution is evident in Fig. 4, which shows the resulting frequency-normalised impurity distributions acquired from

overlaying the boundary segmentation mask onto the intensity maps for each measured sample. All samples have higher average180

intensities at grain boundaries than in grain interiors. Pixels below the detection limit of the ICP-MS have their intensities

recorded as zero after drift and background correction. Note that different intensity plots are not directly comparable as no

calibration was performed.

Individual, spatially averaged, and smoothed signals collected from the EDC Holocene sample are shown in Fig. 5. Equivalent

�gures for all other measured ice samples are shown in the supplementary material. Similar to what was noted in previous185

studies (Bohleber et al., 2020; Della Lunga et al., 2017), experimentally collected signals vary signi�cantly when collected at

different lateral positions on the ice surface due in part to the association of impurities with grain boundaries. The two signals

plotted in Fig. 5 (a) for the EDC Holocene sample are laterally separated by160µm. Even at this short distance, the signals

have different numbers of peaks at varying positions and intensities. The spatially averaged signal in Fig. 5 (b) averages these

differences somewhat, lowering overall intensity variations (note the different y-axis scale). This averaging and smoothing is190

further evident in Fig. 5 (c), a smoothed version of the data in (b).

3.2 Computational

Parameterised by the grain radii reported in Table 1 and impurity distributions in Fig. 4, modelled representations of ice mi-

crostructure and impurity distribution were produced for all the analysed ice sections. All samples are modelled to have a

cross-sectional area of 1 by 2� 0.2 cm with lengths corresponding to the sample lengths from Table 1. This was computation-195

ally more ef�cient than generating a full 3.5 by 3.5cm cross-section typically used in CFA, although no principal limitation

prevents simulation of a volume with this cross-section. Both EDC and the RECAP LGP samples were generated in approxi-

mately half a day using a laptop computer. The RECAP Holocene sample required more RAM to manage larger grain sizes and

took 4 days to generate on a high-performance computing system. To illustrate the extremes in grain sizes, one face from each

of the 3D-modelled EDC Holocene and RECAP Holocene samples are shown in Fig. 6. The simulated LA-ICP-MS signals200

plotted for EDC Holocene in Fig. 7 originate from pro�les taken along the face shown in Fig. 6 (a). Equivalent �gures for all

other modelled ice volumes are contained in the supplementary material.

Figure 7 shows signals collected under different simulated conditions, with intensity values normalised such that�I has an

intensity of 1. Figure 7 (a) shows two modelled signals, collected using a40µm laser spot, that are separated by160µm,

representing the modelled equivalent of the two pro�les in Fig. 5 (a). The modelled LA-ICP-MS signals show the same205
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Figure 3. Columns show optical image (left), grain boundary segmentation (middle), and sodium intensity map (right) for all of the analysed

samples, one sample in each row. The dark grid visible in the optical mosaics is an imaging artifact. Grain boundaries are visible as dark

lines in the optical image, and bubbles as dark rounded regions. Each intensity map has its own intensity scale. The spatial scale bar relates

to all images for each sample. The areas shown in this image are small snapshots, with the full data shared in the repository associated with

this work.
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Figure 4. Sodium intensity probability distributions for all measured samples. These distributions result from the normalisation of distribu-

tions acquired from the application of binary masks which separate grain boundaries from grain interiors to the intensity maps, both shown

in Fig. 3. The zero intensity cross represents pixels with intensities below the detection limit of the ICP-MS. The legend applies to all plots.

general features as experimentally measured LA-ICP-MS signals, with large spikes in intensity where pro�les intersect grain

boundaries. Figure 7 (b) shows the result of simulating two pro�les, centred at the same point as those in (a), with a spot size

of 120µm, comparable to the100µm spot size used in previous studies (Spaulding et al., 2017; Sneed et al., 2015), which

show less variation around�I . The spatially averaged signal resulting from combining all40µm pro�les along the illustrated

modelled face, shown in Fig. 6 (a), is plotted in Fig. 7 (c) and its CFA-resolution smoothed equivalent in (d). These signals210

represent the largest amount of data which can be collected if limited to measuring the surface of only one face of ice samples

during LA-ICP-MS, which is a common restriction for such analysis. The simulated CFA signal is plotted in (e) and shows

the least variation around the mean of all simulated signals. The large smoothing applied to the signals plotted in (d) and (e)

reduces the variation around�I to the order of 2 % or less. In the illustrated case, both signals are similar in the sense that

they show very little variation around�I , although at the narrow range of intensity values in this plotted data, the signals show215

roughly opposite trends. Data for the other modelled samples contained in the supplementary material show both similar and

dissimilar trends, highlighting this as a product of the narrow y-scale used for these plots.

11



Figure 5. Measured LA-ICP-MS signals resulting from line pro�les taken across the surface of the EDC Holocene sample. All pro�les

run down the central core axis. Panel (a) shows two signals resulting from two parallel laser tracks. Panel (b) shows the spatially averaged

signal resulting from combining all measured parallel pro�les, including the two signals in (a), with a range of separations between adjacent

pro�les. Panel (c) shows this spatially averaged signal after smoothing to a 1 cm resolution and has a linear y-axis, as the variations at this

level of smoothing are relatively small.

MAD values are visualised for data collected from modelled EDC Holocene and RECAP Holocene ice in Fig. 8 with key

values for all ice samples reported in Table 2. Figure 8 shows how the MAD for different signals changes based on how many

pro�les are combined to construct a spatially averaged signal and how much smoothing is applied. Data for the EDC Holocene220

sample is shown in (a) and (b) and the RECAP Holocene sample in (c) and (d). Panels (a) and (c) show data for40µm spot

size signals and (c) and (d) for280µm spot size. The general trends are that (1) MAD decreases asymptotically as more

pro�les are averaged, (2) smoothing reduces signal MAD by some constant, regardless of the number of pro�les a spatially

averaged signal comprises, and (3) larger spot sizes produce signals with smaller MADs. These general trends hold for all

measured ice intervals. For the EDC Holocene ice, single pro�le signals taken at40µm have MADs of over 100 %, meaning225

that signal intensities can vary by over 100 % of the mean intensity in the space. By comparison, the simulated CFA signal,

which gives the most representative signals of those simulated, has a deviation of 0.7 %. Spatially averaged signals constructed

from 10 pro�les, such as the signal experimentally measured and plotted in 5 (b), show variations on average of 62 % for EDC
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Figure 6. The intensity, (a) and (c), and structural, (b) and (d), representations of one modelled face of the EDC Holocene and RECAP

Holocene samples. The structural representation shows grains as different shades (which do not hold any special signi�cance), separated by

grain boundaries represented in red. The colour scale for the intensity representations has been adjusted for readability and holds the general

trend of brighter colours showing greater intensities, as used in �gure 2. Each of the rows in the intensity representation can be taken as a

separate laser pro�le. The green and magenta lines in panels (a) and (b) show the track of the pro�les plotted in Fig. 7 for the EDC Holocene

sample, separated by the lateral separation reported in Table 1. This separation is illustrated in (c).
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