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Abstract. Atmospheric environments favorable for lightning and convection are commonly represented by proxies or param-

eterizations based on expert knowledge such as CAPE, wind shear, charge separation, or combinations thereof. Recent devel-

opments in the field of high resolution reanalyses, accurate lightning observations, machine learning (ML) and explainable

artificial intelligence (XAI) open possibilities for identifying tailored proxies without prior expert knowledge.

This study utilizes a deep neural network trained to match temporally and vertically well-resolved ERA5 soundings of cloud5

physics, mass-field, and wind-field variables with lightning observations from the Austrian Lightning Information & Detection

System (ALDIS). The ML model only receives the raw model atmosphere data as inputs, without incorporating any expert

parameters or proxies derived from the model levels. Using and adapting appropriate XAI methods, it is then demonstrated

how the inner workings of this well-performing deep learning model can be uncovered to identify physically meaningful

patterns within the ERA5 soundings that describe lightning processes.10

The ERA5 parameters are taken on model levels beyond the tropopause forming an input layer of approx. 670 features, the

lightning data are transformed to a binary target variable labeling the spatio-temporal ERA5 grid cells as cells with lightning

activity and cells without lightning activity.

Scaled SHAP values are introduced to highlight the atmospheric processes learned by the neural network and show that

the model identifies cloud ice and snow content in the upper and mid-troposphere as very relevant features. As these patterns15

correspond to the separation of charge in thunderstorm clouds, the deep learning model can serve as a physically meaningful

description of lightning. The scaled SHAP values also reveal that, depending on the location, the model additionally learns to

correctly classify cells with lightning activity by exploiting mass-field or wind-field variables.

This approach also showcases how XAI can be used to accelerate knowledge discovery in areas where expert knowledge is

still scarce.20

1 Introduction

Lightning affects many fields of our everyday’s life. Cloud-to-ground flashes might hit infrastructure such as wind turbines

(Becerra et al., 2018) and power lines (Cummins et al., 1998) and thus cause power outages. Humans might get injured

(Ritenour et al., 2008) or even die (Holle, 2016) after being hit by lightning. Wildfires (Reineking et al., 2010) release carbon
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dioxide into the climate system, and thus limit the biosphere’s capacity to store carbon dioxide. Lightning also affects the25

climate system by producing nitrogen oxides which play a key role in ozone conversion and acid rain production (DeCaria

et al., 2005). Ozone is an important greenhouse gas and changes in concentration can lead to warming or cooling of the

atmosphere. Thus, understanding of lightning is also an important factor in climate change research (Finney et al., 2018).

Given lightning’s impact and that an average of 46 flashes are occurring around the globe every second (Cecil et al., 2014) it

is desirable to have models of the atmosphere capable to simulate lightning and its underlying dynamic processes down to the30

resolved scales of the numeric model. Beyond the resolved scales one relies on so called proxies or parameterizations to further

describe lightning. The term proxy is commonly used for quantities derived from atmospheric model output after the simulation

has run. Parameterizations diagnose lightning while the model is running and hence can feed back on the simulation.

Proxies are frequently applied to assess historic and future behavior of convection and lightning. Popular proxies are cloud

top height (Price and Rind, 1992), cloud ice flux (Finney et al., 2014), CAPE times precipitation (Romps et al., 2018), or the35

lightning potential index (Brisson et al., 2021). Though, these proxies perform reasonably well (Tippett et al., 2019), there is a

need for more complex or holistic proxies, as the behavior of lightning in a changing climate is still uncertain (Murray, 2018).

Another application highlighting the need for further research on lightning description is operational weather forecasting.

Experience indicates, for instance, that CAPE needs to be adapted to local conditions in order to perform well (Groenemeijer

et al., 2019).40

Parameterizations are an internal part of numeric models, as they emulate sub-scale processes that cannot be resolved due

the discretization of governing equations. Therefore, the emulated processes give feedback to the other processes, also on

larger scales, within the atmospheric model. For instance, Tost et al. (2007) showed that modeled nitrogen oxide is sensitive to

lightning parameterizations in numerical models. Next to the classic description of lightning using cloud top height (Price and

Rind, 1992), parameterizations have been developed using polynomial regression (Allen and Pickering, 2002) and schemes45

based on hydrometeors in the mixed-phase region which is important for cloud-resolving models (McCaul et al., 2009). A

comparison of several parameterizations using a superparameterized model is given by Charn and Parishani (2021). Recently,

the ECMWF launched a product for total lightning densities expressed as a function of hydrometeors contents, CAPE, and

(convective) cloud-base height output by the convective parameterization (Lopez, 2016).

In recent years, also machine learning approaches have been proposed to describe convection and lightning. Forty preselected50

single-level parameters from ERA5 were processed by artificial neural networks and gradient boosting machines to study

lightning in parts of Europe and Sri Lanka (Ukkonen et al., 2017; Ukkonen and Mäkelä, 2019). Other studies evaluated random

forests for regions such as the Hubei Province in China (Shi et al., 2022) or the Southern Great Plains (Shan et al., 2023) and

generalized additive models (GAM) for the European Alps (Simon et al., 2023). All these studies confirm that the use of ML

approaches for the description of lightning is promising.55

Very recently, explainable artificial intelligence (XAI) techniques are used to move towards understanding the underlying

reasoning of complex AI models and show encouraging results in various Earth System Sciences applications (Barnes et al.,

2020; Dutta and Pal, 2022; Hilburn et al., 2021; Mayer and Barnes, 2021; Stirnberg et al., 2021; Toms et al., 2021). Specifically,

Silva et al. (2022) use XGBoost classification trees to explore when the NASA Goddard Earth Observing System model of
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lightning flash occurrence shows weaknesses and apply Shapley additive explanations (SHAP) to describe which meteorolog-60

ical drivers are related to the model errors. They found that these errors are strongly related to convection in the atmosphere

and certain characteristics of the land surface.

This paper builds upon these studies and demonstrates the use of explainable artificial intelligence to discover potential

proxies favorable for lighting directly from raw model level atmospheric data. Unlike prior research (Ukkonen et al., 2017;

Ukkonen and Mäkelä, 2019; Shi et al., 2022; Shan et al., 2023; Simon et al., 2023) that applied machine learning to classify65

lightning occurrence using preselected proxies derived from atmospheric parameters by experts, this work directly exploits

the raw ERA5 model level data and targets at finding such proxies. Using model level data directly offers two key benefits.

First, it reduces the risk of overlooking potentially significant atmospheric conditions that could be missed when concentrating

solely on preselected proxies. Second, it provides a comprehensive view of the vertical atmospheric layers, requiring less

meteorological expertise to prepare the input data. This approach, however, increases the dimensionality of the input layer with70

highly correlated features along the vertical axis, making commonly used feature importance graphs hard to interpret. Inspired

by the use of SHAP values in imaging tasks, this work employs SHAP values to reason on model levels directly. Due to the

high dimensionality of the input, out of the box plotting routines are not feasible for interpreting SHAP values in this context.

Therefore, the obtained SHAP values are aggregated to provide a more global understanding of a feature’s contribution to the

final model output. To improve explainability, scaled SHAP values are introduced to align the SHAP values across all grid75

cells. The median, as well as the 25th and 75th percentiles of these scaled SHAP values are then visualized along the vertical

profiles, aiding the interpretation of the patterns exploited by the model.

This study focuses on lightning during the peak phase of the warm season (June, July, August) which differs fundamentally

in the underlying dynamic processes to lightning during the cold season (Morgenstern et al., 2022).

The region of interest are the Eastern Alps which are characterized by complex terrain. Atmospheric dynamics on a gamut80

of scales interact with topography, leading to various meso-scale processes (Feldmann et al., 2021) and local processes (Houze,

2012) that can trigger convection and lightning.

This paper is structured as follows. Section 2 presents both the lightning detection data and the atmospheric reanalyses.

Section 3 describes the two modelling approaches and elaborates on the XAI method used to interpret the patterns identified

by the deep learning model. The results of these analyses are given in Section 4. Section 5 discusses the physical patterns85

identified by the methods, highlights future applications and finally concludes the study.

2 Data

Two data sets build the foundation for this supervised machine learning task. First, the observational data from the lightning

location system ALDIS (Section 2.1) is used to derive the labels distinguishing cells with and without lightning activity.

Second, pseudo soundings from ERA5 (Section 2.2) serve as input for the deep learning approach. Spatially, the grid centers90

range from 8.25◦E to 16.75◦E and from 45.25◦N to 49.75◦N .
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Table 1. ERA5 parameters on model levels.

Name Short Name Units Parameter ID

Temperature t K 130

Specific humidity q kg kg−1 133

U component of wind u m s−1 131

V component of wind v m s−1 132

Vertical velocity w Pa s−1 135

Specific rain water content crwc kg kg−1 75

Specific snow water content cswc kg kg−1 76

Specific cloud liquid water content clwc kg kg−1 246

Specific cloud ice water content ciwc kg kg−1 247

Temporally, data for the meteorological summers (June, July, August) from 2010 to 2019 are available. The data of 2010–

2018 serve as training/validation1, the data from 2019 is reserved as truly independent test data.

2.1 Lightning Detection Data

The Austrian Lightning Detection & Information System (ALDIS) is part of the European Cooperation for Lightning Detec-95

tion (EUCLID) (Schulz et al., 2016). Cloud-to-ground flashes with a current greater than 15 kA or smaller than −2 kA are

aggregated to the spatio-temporal grid cells of ERA5 (Section 2.2). Each cell has a horizontal extent of 0.25◦ × 0.25◦ and

temporally of one hour. If at least one flash has been detected in such a grid cell, then the cell is labeled as cell with lightning

activity. Otherwise, if not a single flash has been detected, the cell is labeled as cell without lightning activity.

2.2 Atmospheric Reanalysis100

ECMWF’s fifth reanalyses, ERA5 (Hersbach et al., 2020), is available at a horizontal resolution of 0.25◦ × 0.25◦ (in the

region of interest this corresponds to approx. 19 km×28 km) and temporally of one hour. Vertically it consists of 137 hybrid

model levels that align with topography near ground and approach isobars in the upper atmosphere2. On these model levels

nine parameters (Table 1) are available to describe the state of the atmosphere. In addition to classical parameters such as

temperature, specific humidity and three-dimensional winds, ERA5 provides a description of liquid and solid water particles105

in clouds, i.e. the specific content of ice, snow (including graupel), liquid water, and rain. For this study, these parameters are

used on the lowest 74 model levels, spanning from level 64 (approx. 15000 m geopotential height) to level 137 (10 m above

ground).

1Data is split based on distinct days. 20% of these distinct days are used for validation, while the remaining 80% serve as training dataset.
2See https://confluence.ecmwf.int/display/UDOC/L137+model+level+definitions.
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2.3 Composition of Datasets

The two data sets are merged in order to obtain a tabular data shape. Each row of this tabular data refers to a spatio-temporal110

grid cell. Thus, it can be indexed by the longitude and latitude of its center as well as its hourly time stamp. Each row is either

labeled as cell with lightning activity or without lightning activity. The nine ERA5 parameters (Table 1) on their 74 model

levels enter the tabular data such that each resulting column refers to an individual parameter on an individual level, making

up a total of 9 · 74 = 666 ERA5 feature columns. Further, each row is complemented with the information of the hour of the

day and day of the season to account for diurnal and seasonal variations, respectively. Finally, the model topography3 is added115

as another column.

3 Methods

To avoid incorporating expert knowledge by using specialized deep learning architectures and to efficiently handle a large

number of input features, a classical fully connected neural network (Section 3.1) is used. To make sure that the neural network

can model lightning sufficiently well and is worth being analyzed, the resulting outputs are compared to those of a state-of-120

the-art reference model (Section 3.2) on unseen test data. Finally, insights into the patterns exploited by the trained model are

gained by applying Shapley additive explanations (Section 3.3).

3.1 Deep Learning Approach

A fully connected neural network was designed, consisting of eight hidden layers with 512×512×512×512×128×128×128×
16 nodes. Leaky rectified linear unit (leaky ReLU) is used as activation function for all hidden layers. The input dimension is125

predetermined by the number of input features and thus equals 671 (nine atmospheric variables on 74 levels, longitude, latitude,

hour of the day, day of the season, and topography). The dimension of the output layer equals one, as it solely classifies whether

the cell is with or without lightning activity. The model output is activated with the sigmoid function.

Prior to training, the input variables are standardized. For each of the atmospheric variables v ∈ {ciwc,clwc,crwc,cswc,q,t,u,v,w},

the mean µv and standard deviation σv are calculated over all 74 model levels together, but separately for each of the nine vari-130

ables.

To prevent the model from overfitting, dropout (Srivastava et al., 2014) with a value of 0.15 and early stopping with a

patience of ten epochs are applied. Binary cross entropy serves as loss function with a weight of approximately 41 for positive

events (flash occurrences) to address for the highly imbalanced data set.

3The topography is represented by a single scalar value: the geopotential height from model level 137, which is the layer adjacent to the Earth’s surface at

the specified grid point.
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Table 2. The reference model is trained using the following ten atmospheric variables.

Description Short Name

Convective available potential energy cape

Binary indicator whether cloud is present cloud_exists

Convective precipitation cp

Mass of specific snow water content between the −20◦C and −40◦C isotherms cswc2040

Cloud top height in height above ground cth

Instantaneous surface sensible heat flux ishf

Medium cloud cover mcc

Total column supercooled liquid tcslw

Mass of water vapor between the −10◦C and −20◦C isotherms wvc1020

Two meter temperature 2t

3.2 Reference Model135

For reference a generalized additive model (GAM) (Wood, 2017) is used and fitted using an algorithm tailored for gigadata

(Wood et al., 2017). This model is trained on longitude, latitude, hour of the day, day of the season, topography and the

atmospheric variables listed in Table 2, which were derived from ERA5 soundings on meteorological expertise (Simon et al.,

2023).

Thus, the input dimension for the reference model is only 15.140

3.3 Explainability

While generalized additive models are interpretable by users (Lou et al., 2012), interpretability research of deep neural networks

still suffers many gaps (Zhang et al., 2021). In this work SHAP (Lundberg and Lee, 2017) is utilized to gain insights into the

patterns exploited by the neural network from Section 3.1 and to understand the features contributing to the classification of a

spatio-temporal cell as one exhibiting lightning activity.145

SHAP is a game theoretic approach which can be used to explain the relation of input and output of any machine learning

model. It follows the concept of Shapley values (Shapley, 1952) to provide local interpretability by computing feature attribu-

tions that lead to the model’s output for a given input. Unfortunately, the computation time for calculating exact Shapley values

grows exponentially with the number of input features, leading to various ways in which Shapley values are operationalized

(Sundararajan and Najmi, 2020; Chen et al., 2023). The two main approaches, observational and interventional, differ in the150

way they sample dropped input features to attribute for the difference between the model output and the expectation caused

by the removed feature (Chen et al., 2020). While there is an ongoing debate about which approach is preferable (Chen et al.,

2020), Janzing et al. (2020) argues, supported by experiments, that the observational approach is flawed and interventional

provides the correct notion of dropping features.
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This work applies Deep SHAP4 (Lundberg and Lee, 2017) which is a model agnostic method that leverages extra knowledge155

about the nature of deep neural networks to approximate Shapley values more efficiently. The input features in this work

are highly correlated, particularly along the vertical profiles within a single variable. Deep SHAP belongs to the family of

interventional methods, thus effectively identifies the features that the model genuinely uses to generate a specific output, even

in the presence of correlated inputs.

4 Results160

This section first evaluates the performance of the deep learning approach and compares it to the reference model (Section 4.1).

Next, the application of SHAP provides insights into the vertical profiles that the neural network found to be favorable for

lightning (Section 4.2).

4.1 Performance of the deep learning approach

The neural network is trained as described in Section 3.1 to distinguish whether a given spatio-temporal cell is a cell with or165

without lightning activity. To map the model’s output to a binary category, a threshold has to be defined. Due to the highly

imbalanced nature of the given data set, this threshold is determined by maximizing the F1 score, which balances precision

and recall, on the validation set.

This study aims at finding the atmospheric patterns exploited by the neural network to classify cells being with or without

lightning, making the strategy and exact choice of threshold less critical. However, before analyzing the inner workings of170

the model it is essential to ensure that the trained model’s performance is comparable to or even better than a state-of-the-art

reference model.

The reference model is fitted as described in Section 3.2 and the threshold is computed following the same procedure.

From the confusion matrices displayed in Table 3 it can be concluded that the neural network slightly outperforms the

reference model in every category of the confusion matrix on previously unseen test data (year 2019). This is further supported175

by comparing the Matthew correlation coefficients (mcc) of the two models, where +1 represents a perfect match between

model output and observations, and 0 indicates no better than random guessing. The deep learning model has an mcc of

approximately 0.278, while the reference model has an mcc of 0.237.

4.2 Identifying patterns exploited by the deep learning model

The performance of the deep learning approach encourages a closer examination of the patterns the model has learned to180

differentiate between cells with and without lightning activity. A sample is classified as having lightning activity when the

model output exceeds the threshold ϕ.

SHAP values (Section 3.3) indicate which inputs the neural network is particularly interested in. Given a specific input, the

SHAP values of all input features always sum up, with only minor approximation errors, to the difference between a base value

4Provided by the DeepExplainer class within the Python package shap.

7



Table 3. Confusion matrices of the neural network model (left) and the reference model (right) on test year 2019.

observed

yes no

modeled
yes 14 372 61 431

no 15 766 1 374 756

observed

yes no

yes 12 654 65 176

no 17 484 1 371 011

(derived from the expected model output based on so-called background data) and the actual model output. To identify patterns185

that are consistent across the entire training region and not influenced by the frequency of lightning in specific spatial cells,

SHAP values and corresponding background data are calculated and sampled separately for each spatial cell. Specifically, for

each spatial cell, the background data consists of the complete set of samples without lightning activity from that cell. To better

understand the underlying patterns, the SHAP values are then scaled by dividing them by the difference between the base value

of the corresponding spatial cell and the threshold (ϕ) at which a cell is classified as having lightning activity. This implies that190

the model classifies a sample to have lightning activity as soon as the scaled SHAP values sum up to one or more, regardless

of the underlying base value and location.

Expressiveness is further improved by splitting the class of true positives into less confident and very confident. True positives

with a model output in the interval [ϕ, 1+ϕ
2 ) are considered less confident true positives and true positives with a model output

in [ 1+ϕ
2 ,1] are termed very confident true positives.195

The aggregated results of the scaled SHAP values of correctly classified cells with lightning activity are visualized in Fig. 1.

On average cloud ice (ciwc) and snow water content (cswc) contribute the most to the model’s output. Also note that ciwc

with its lighter-weighted ice crystals is particularly interesting at a geopotential height of approx. 8000 to 12000 m and cswc

with its solid precipitation at approx. 3000 to 10000 m.

Taking a closer look (Fig. 2) at the ciwc and cswc at these altitudes, it is noticeable that the model exhibits greater confidence200

when ciwc and cswc values are substantially elevated. Furthermore, there is a tendency for the model to produce false positives

during periods of high ciwc and cswc, while false negatives are more prevalent when these values are low compared to correctly

classified lightning events.

While classifications where a cloudy atmosphere is the most dominantly exploited feature by the neural network are the

majority, grouping the results into three categories, following Morgenstern et al. (2023), reveals additional patterns:205

cloud: True positives where the sum of scaled SHAP values of ciwc, clwc, crwc and cswc over all model levels exceeds

0.5. Cloud-dominant cells with lightning activity are distributed across the entire region of interest, but are particularly

abundant along the primary chain of the Alps.

mass: True positives where the sum of scaled SHAP values of q and t over all model levels exceeds 0.5. Mass-dominant cells

are predominantly situated in Northern Italy and Slovenia.210
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Figure 1. Scaled SHAP values for several variables (names on top of each subfigure) on correctly modeled lightning events (true positives).

The two colors represent the confidence (stratified by median) of the network in its output. The dark green color summarizes the events where

the network is very confident that a lightning event occurred. The light green color summarizes the events where the network still modeled

correctly, but with less confidence. The solid lines show the median of all observations and the dashed lines highlight the interquartile range.

wind: True positives where the sum of scaled SHAP values of u, v and w over all model levels exceeds 0.5. Wind-dominant

cells are primarily concentrated in the northwestern region of the Italian flat terrain, the Po Plain.

Approximately 39.8% of the true positives belong to the cloud dominant, 2.6% to the mass dominant and 7.9% to the wind

dominant class. Note that a single sample may belong to multiple groups or even none at all if the characteristics of cloud,

mass, or wind are not distinctly pronounced.215

Visualizing the vertical profiles of the real feature values (Fig. 3), their temperature profiles (t) are distinct. Events with

high values for the mass-field have warmer temperatures and their temperatures decrease more strongly with height than the

other two classes. This indicates that less work is required to displace particles in the vertical thus making it more prone to

produce thunderstorm clouds. Since the maximum possible amount of water vapor in the air before condensation occurs is

exponentially related to temperature via the Clausius-Clapeyron equation, events with high values of the mass-field also have220

by far the largest values for specific humidity q, particularly in the part of the atmosphere closest to the surface. When that

water vapor condenses as air is lifted from near the surface the latent heat released during this phase change will heat the air

and thus decrease its density and make a further rise of the air parcels more likely. Since there is so much more water vapor

available for a phase change than with the other two categories, one would expect the category with high mass field values

to also have higher amounts of liquid and solid water (ciwc, clwc, crwc, cswc) at altitudes above the level where the phase225

change occurs. However, the opposite is the case. The explanation rests in the difference of the horizontal size of a grid cell
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Figure 2. The two left columns display the vertical profiles of the real feature labels, while the two right columns present the vertical profiles

of the scaled SHAP values. The upper row illustrates less confident true positives (TP) compared to false positives (FP), while the lower row

illustrates less confident true positives compared to false negatives (FN). True negatives (TN) are also included for reference. The solid lines

show the median of all observations and the dashed lines highlight the interquartile range.

of the ERA5 atmospheric reanalysis data, which is approximately 19 km×28 km in the region of interest, compared to the

typical diameter of 5 km of the most frequent type of thunderstorms - single cell thunderstorms (Markowski and Richardson,

2010). ERA5 data are average values over the whole grid cell and when only one single-cell thunderstorm occurs in an ERA5

grid cell, the average cloud-variables will be low since most of the ERA5 grid cell is cloud-free. The lowest absolute values230

of vertical velocity of all three categories support this conclusion. The deep learning approach thus has learned lightning from

single cell thunderstorms.

The category with high wind-field values has the coldest temperature (t) profiles of all three categories and – because of the

exponential relationship to maximum possible water vapor – also the lowest values of specific humidity (q) in the lower part

of the atmosphere. Despite the least amount of water vapor available for condensation, this category has the largest amounts235

of cloud droplets (clwc) and of rain (crwc). Consequently such thunderstorms must occur in situations when most or all of

an ERA5 grid cell is filled with clouds. Also, the absolute values of vertical velocity are largest of all three categories. The

corresponding meteorological situations are large scale patterns of lifting in the atmosphere such as along cold fronts. Cold

fronts in this region occur more frequently in the months between fall and spring, which explains why this category has the

coldest temperatures. Also, cold fronts in this region typically occur in southwesterly flow downstream of the trough axis,240

which explains the exceptional large values of the v-component of the wind. Since wind speed also increases most strongly
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Figure 3. Vertical profiles of the real features per variable with colors indicating true negatives and different groups of true positives (cloud-,

mass-, wind-dominant). The solid lines show the median of all observations and the dashed lines highlight the interquartile range. Note that

in pressure coordinates, negative values of vertical velocity indicate upward motion.

with height, charge separation occurs on a tilted instead of a nearly vertical path as in mass-field lightning, having earned this

type of lightning the name tilted thunderstorm (Brook et al., 1982; Takeuti et al., 1978; Takahashi et al., 2019; Wang et al.,

2021).

The third category in Fig. 3 with high cloud-field variables has the largest amounts of solid water – ice crystals (ciwc),245

snow flakes and graupel (cswc) – but only the second largest amounts of liquid water (clwc, crwc). Also the vertical velocities

are in between the other two categories. Therefore this category likely represents the meteorological situation of multicell

and supercell thunderstorms (Markowski and Richardson, 2010), which have a larger footprint than single cell thunderstorms

(the mass-field category) and will thus fill larger fractions of an ERA5 grid cell. This category could also contain cold front

situations (the wind-field category) where the cold front occupies only parts of an ERA5 grid cell.250

To test the hypothesis that the category with high cloud-field values contains both of these situations, i.e. mass-field and

wind-field dominated situations, we divide this category into a cloud-mass and a cloud-wind category in Fig. 4. This is an

approach also taken by Morgenstern et al. (2023). The grouping is based on whether the aggregate of scaled SHAP values is

greater for mass-related or wind-related parameters.

And indeed, we find that the cloud-wind subcategory again has the largest amount of liquid water (clwc, crwc) and also255

larger values of the southerly wind component (v) indicative of the typical southwesterly flow for which (cold) fronts occur

in this region. The cloud-wind category even has the higher solid water contents than the cloud-mass category indicating that

even larger-sized thunderstorms in the absence of cold fronts do not always completely fill an ERA5 grid cell.
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Figure 4. Vertical profiles of the real features per variable with colors indicating cloud-mass and cloud-wind dominant true positives. The

solid lines show the median of all observations and the dashed lines highlight the interquartile range.

4.3 Sample case study

Thunderstorms and lightning commonly exhibit linear organization along meteorological boundaries such as fronts or conver-260

gence zones. Our deep learning model, trained exclusively on individual vertical atmospheric profiles, successfully identifies

these linear structures without explicit knowledge of horizontal connections. A case study from June 20, 2019, demonstrates

this capability. Two weak frontal systems occur in the region shown in Fig. 5. They are embedded within a region of high

equivalent potential temperature (not shown). The bow-shaped front in the eastern half of the figure is more pronounced and

extends over a larger part of the figure. The second one over Switzerland is only visible in the westernmost part of the figure.265

The deep learning approach model accurately reproduced the linear lightning pattern in the eastern region. However, it overes-

timated the width of the lightning zone and failed to capture its northernmost extent, as indicated by false positives (small green

circles, Fig. 5). Nevertheless, the model exhibits deficiencies in reproducing the southwestern portion of the thunderstorm line

over Switzerland, generating an erroneous linear feature further northward.

It is noteworthy that the threshold in this study was not chosen to perfectly calibrate the model, but instead to balance270

between precision and recall. Due to the heavy class imbalance, this generally results in overestimation.

5 Discussion and Conclusions

In this study, the region of interest are the Eastern Alps, a region that offers a variety of atmospheric processes due to its

complex terrain and is well understood (Simon et al., 2023; Morgenstern et al., 2023). This is important, because it allows for
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Figure 5. The map shows ERA5 grid cells with classifications of true positive (green diamonds), false negative (red diamonds) and false

positive (dots) for the test data case June 20, 2019, in the hour before 18:00 UTC which is a case of the unseen test data. The size of the green

diamonds indicates whether it is a very or less confident true positive. Low saturation of the red diamonds indicates that the output of the

network was close to labeling the cell as one with lightning activity. The data for the displayed topography layer is taken from TanDEM-X

(Rizzoli et al., 2017).
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critical evaluation of the patterns uncovered by explainable AI methods and provides insights into whether this approach is275

suitable for accelerating scientific discovery in regions where knowledge is still scarce.

A neural network is trained on the vertical columns of raw ERA5 data without inducing any further expert knowledge about

atmospheric processes to classify whether there was a lightning event or not. Then scaled SHAP values are used to explain

which variables and vertical levels attribute the most to correct classifications of cells with lightning activity. As indicated in

Section 4.2, the specific snow water and ice water content significantly capture attention, with peak interest occurring at a280

geopotential height of approximately 4000 m and 7000 m (cswc), and at heights of 9000 m and 11000 m (ciwc) respectively.

Thus, the neural network discovered by itself the essential ingredient for lightning, namely charge separation. It occurs when ice

crystals (ciwc) and larger frozen particles (graupel, cswc) are present in the convective updraft. Once the graupel is sufficiently

heavy, its velocity is smaller than the velocity of the rising ice crystals, and the collisions between ice crystals and graupel

result in oppositely charged particles (Reynolds et al., 1957; Saunders et al., 2006). Lopez (2016, Fig. 1) shows the typical285

distribution of charges in a mature thunderstorm cloud. Additionally, it is noteworthy that the model seems to be particularly

interested in the cloud ice water content at a height of 9000 to 11000 m while recent literature usually examines the cloud

ice water content at 440 hPa (typically about 6000 m) (Finney et al., 2014, 2018; Silva et al., 2022). Focusing on the region

between 9000 and 11000 m means that it is crucial to vent ice particles all the way up to the tropopause and form anvils, as is

typical of thunderstorm clouds.290

Moreover, the model leverages the presence of southerly winds and vertical updrafts as reliable indicators for lightning

occurrence especially in the northwestern Po Plain. Additionally, high specific humidity below 4000 m serves as a robust

proxy in the central and eastern Po Plain, as well as in the southern regions of the Slovenian Alps.

The case study in Section 4.3 demonstrates that, altough recall and precision of the neural network may appear to be low at

first glance, the model effectively reproduces the general patterns of thunderstorms, despite overestimating and underestimating295

their extents. Similar observations were also made for many other examples not included in this manuscript.

The results in this work suggest promising future applications. Being able to train a neural network directly on atmospheric

soundings with good ability to distinguish between cells with and without lightning activity, and then opening the black box

may enable researchers to gain a better understanding of atmospheric processes in regions like e.g. equatorial Africa where am-

ple studies are scarce (Chakraborty et al., 2022). The first MTG-I satellite was launched on 13 December 2022 and will provide300

a lightning imager (Holmlund et al., 2021) which appears to be a promising source for the target variable. Furthermore, many

existing models come with two very different parameterizations for ocean and land (Finney et al., 2014) and this inevitably

leads to discontinuities in coastal areas. Also the reasons for the much lower lightning frequency over ocean are not as well

understood yet. XAI might be a valuable building block in moving towards a more holistic understanding of the underlying

atmospheric processes.305

Using ML models to find parametrizations require them to be generalizable. In Ehrensperger et al. (2023) a similar model

was trained on the same region but without using longitude, latitude and the day of the year as input features. While not giving

the location to the model still provided a comparable performance, it enabled to evaluate the model on Continental Europe.
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The results show that the model is still able to perform comparably well on landcovered areas on previously unseen test data,

demonstrating its ability to generalize across both time and location.310

Future work might improve the results presented in this study. Here, a simple fully connected neural network is used and

therefore the model loses information about the connectivity of the values along the levels of the vertical profiles. Using

convolutional layers to process the profiles would, most likely, improve the results.

Convection and cloud processes are not purely vertical processes and thus ML parameterization greatly benefits from using

multiple neighboring vertical atmospheric columns instead of a single column. Wang et al. (2022) work with 192 km×192 km315

grid cells to model, among others, subgrid zonal and meridional momentum flux due to vertical advection and suggest that a

3× 3 subgrid could further improve the performance of the deep learning approach.
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