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Abstract.

Melting calorimetry, a classic experiment often conducted in high school chemistry laboratories, holds significant untapped

potential for scientific applications beyond its educational context. Traditionally, this technique has been applied to measure

the liquid water content in snow using two different formulations: melting calorimetry and freezing calorimetry. In contrast to

freezing calorimetry, which is considered as the reference method for measuring liquid water content, melting calorimetry has5

been perceived as prone to generate significant inaccuracies. This research revisits the formulations for both melting and freez-

ing calorimeters to assess volumetric liquid water content in snow. By incorporating the calorimetric constant, we account for

heat exchange with the calorimeter, a critical factor often neglected in melting calorimetry experiments. This paper identifies

the most effective and least uncertain method for determining this constant. A central contribution of this work is the intro-

duction of a framework for estimating uncertainty in volumetric liquid water content measurements, adhering to established10

guidelines for uncertainty expression. This novel framework allows us to revisit past mathematical analyses and demonstrate

that melting calorimetry delivers reliable measurements with an uncertainty 0.25% greater than freezing calorimetry. Notably,

despite this slightly higher uncertainty, melting calorimetry offers significant practical advantages for field applications. More-

over, we show how the proposed uncertainty framework can be expanded beyond instrumental uncertainty and take into account

also the variability from environmental factors and operators, providing a more comprehensive characterization of the uncer-15

tainty. By exploiting the proposed uncertainty framework, we finally conduct an in-depth analysis for the optimal tuning of the

experimental parameters. This analysis culminates in a robust field protocol for melting calorimetry that transcends common-

sense procedural guidelines. Strict adherence to this protocol will maximize measurement accuracy. Applied in field tests in

Italy and Switzerland, the melting calorimetry demonstrated to accurately tracking the wet front penetration in the snowpacks,

producing results comparable to independent dielectric measurements. These findings highlight the accuracy and the practical20

advantages of melting calorimetry as a reliable field tool for quantifying snowpack liquid water content. Melting calorimetry

can potentially serve as a valuable tool for independent calibration and validation of proximal and remote sensing techniques

used for liquid water content retrieval.
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Table 1. List of Symbols

SYMBOL Definition

θw Snow Liquid Water Content expressed as percentage of liquid water for snow volume

θM
w θw obtained with melting calorimeter

θF
w θw obtained with freezing calorimeter

Vs Volume of the snow sample

Ms Mass of the snow sample

Mi Mass of the ice in the snow sample

MWθw
Mass of the liquid water fraction of the snow sample, it can be expressed as:

MWθw
= θwMs

Mw,Mo Mass of the melting and of the freezing agent, respectively

Mcal Calorimeter internal vessel mass

R Ratio between Mw and Ms

E Calorimetric constant expressed in equivalent water mass

Tw,To Hot water and freezing agent initial temperature

Tf Final temperature of the system at the end of the experiment

Tmi Temperature of the ice cube after it is melted, and it is equal to 273.15 K

Tcv Temperature of the cold water employed for indirect calorimetric constant estimation

Ts is the temperature of the snow sample, that by definition is set to 273.15 K

C Water specific heat i.e., 4.2× 103 J kg−1K−1

Ci Ice heat capacity i.e., 2.09× 103 J kg−1K−1

Co Freezing agent specific heat. In the case of using silicone oil, Co is 1.83×
103 J kg−1K−1 at −10◦C.

Ccal Calorimeter internal wall specific heat

L Latent heat of ice fusion i.e., 3.34× 105 J kg−1

ρw Water density i.e., 1000 kgm−3

σθw Uncertainty associated to the liquid water content measurement

σMw ,σMw Uncertainty associated to the mass of melting and freezing agent, respectively

σMs Uncertainty associated to the mass of the snow sample

σTw ,σTo Uncertainty associated to the measure of the melting and freezing agent, respectively

σTf Uncertainty associated to the final temperature of the system

σVs Uncertainty associated to the volume of the snow sample

σE Uncertainty associated to the calorimetric constant
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1 Introduction

The presence of liquid water has a profound impact on the physical characteristics of snow, including heat advection through25

preferential flow, thermal conductivity, density, and mechanical properties, consequently influencing its hydrological and sta-

bility responses (Techel and Pielmeier, 2011; Avanzi et al., 2017; Wever et al., 2016; Moure et al., 2023). Therefore, the

precise measurement of liquid water content (θw) within the snowpack assumes critical importance as it provides invaluable

information to properly describe the current conditions of the snowpack and predict its evolution (Hirashima et al., 2019;

Wever et al., 2014). Moreover, a proper characterization of liquid water content in the snowpack is essential to characterize the30

backscattering of radar signal e.g., (Gagliano et al., 2023; Marin et al., 2020).

Calorimetry is the scientific technique used to measure the heat energy transferred during a physical or chemical process,

such as a reaction or a state change. This is achieved by utilizing a calorimeter, a specialized device designed to accurately

measure the heat exchanged between a system and its surroundings. It has emerged as a promising technique for θw deter-

mination within the snowpack, e.g., (Yosida, 1960; Jones et al., 1983; Kawashima et al., 1998; Jones, 1979; Boyne and Fisk,35

1987; Kinar and Pomeroy, 2015). To measure the θw in snowpacks, calorimetry offers two distinct approaches based on the

process involved: melting and freezing calorimetry. In a melting calorimeter, a snow sample is immersed in hot water. This

results in the transition of the solid portion of the sample to a liquid phase, and the heating of the melted ice portion and θw to

the equilibrium temperature. The measurement of the energy required for this transition is directly related to the amount of ice

present in the snow sample. Consequently, θw can be derived as the difference between the mass or the volume of the sample40

and the ice content. This is why melting calorimetry is considered an indirect measurement (Colbeck, 1978). On the contrary, a

freezing calorimeter involves immersing a snow sample in a freezing agent such as cooled silicon oil that induces the transition

of any liquid water in the sample to a solid phase, and the cooling of the ice fraction and of the freezed θw to the equilibrium

temperature. The measurement of the energy required for this transition is directly related to the amount of θw present in the

snow sample. Freezing calorimeter is generally accepted as a reference standard for measurements (Colbeck, 1978) and it was45

used in the past to calibrate and validate non-destructive methods for liquid water content measurements (e.g., Denoth et al.

(1984); Stein et al. (1997); Kendra et al. (1994)).

The selection of the most suitable approach for implementing calorimetry demands consideration of both field usage and the

accuracy of the obtained results. Firstly, it becomes evident that the practical handling of these methods significantly varies.

Specifically, the usage of freezing calorimeter presents several challenges. This calorimeter requires the use of a freezing agent50

such as silicone oils or toluene, which possess characteristics that make them less desirable for use. For instance, these agents

may be toxic and pose difficulties in terms of proper disposal and cleaning of the instruments after use. Due to the variability

of the employed freezing agents, its specific heat has to be retrieved through a dedicated analysis every time a new agent is

used. Furthermore, operating a freezing calorimeter poses challenges associated with maintaining the freezing agent within a

temperature range of −50 to −20◦C. This task is complicated by thermal losses and operational difficulties encountered in55

cooling down the active agent on the field. Additionally, active monitoring of temperature changes is required throughout the
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experiment, lasting at least 15 minutes (Jones et al., 1983), to ensure complete freezing of θw and the system reaching thermal

equilibrium. During this period, thermal losses can be substantial, introducing significant uncertainties.

In melting calorimetry, keeping the melting agent warm in a cold environment remains an issue. However, this can be

mitigated by using a portable stove to raise water temperature. In contrast to freezing calorimetry, a large mass of ice needs60

to be melted, requiring a considerable amount of energy. Despite this, the process, with proper mixing, can achieve thermal

equilibrium quickly, resulting in fewer potential thermal losses through the calorimeter. This enhances the overall efficiency of

the experiment compared to a freezing calorimeter.

Regardless of being the established benchmark for measuring θw, the freezing calorimeter limitations have stimulated the

development of alternative methods. These include, among the most established and used, the alcohol calorimeter, which65

utilizes methanol (Fisk, 1986) and the dilution technique, which employs a 0.01 N hydrochloric acid stock solution (Davis et al.,

1985). Laboratory comparisons have demonstrated that these two methods yield equivalent results to the freezing calorimeter

and the denothmeter (Boyne and Fisk, 1987), a portable instrument that measures liquid water content in snow using its

dielectric properties (Denoth and Foglar, 1986). The advantage of the dilution technique lies mainly in its speed compared to

the freezing calorimeter. Following its successful comparison with the freezing calorimeter, the dilution technique was used70

to gather extensive data for calibrating and validating various dielectric models (Perla and Banner, 1988; Perla, 1991). These

studies revealed limitations in the models, also in the one used by the denothmeter. Indeed, despite performing well against

other methods (Boyne and Fisk, 1987), this model is accurate only for low θw values (Denoth et al., 1984; Perla, 1991).

The high variability in wet snowpacks is a key factor in this discrepancy. As liquid water content increases, water intrusions

change shape, eventually saturating the air spaces. Moreover, ice grains cluster and melting - refreezing cycles can create75

large ice structures like ice pipes. These changes in the snowpack internal composition lead to a diverse interaction with the

electromagnetic field, depending on the specific snowpack conditions (Colbeck, 1980; Camp, 1992). Consequently, identifying

a universally accepted optimal dielectric, or in general permittivity model remains a challenge, necessitating further research

(Picard et al., 2022). A crucial step towards a more accurate model is collecting a large amount of field measurements. In

this sense, melting calorimetry offers several advantages, not only over freezing calorimetry but also over alcohol and dilution80

methods: i) it eliminates the need to prepare a specific stock solution; ii) it has less stringent temperature requirements for the

solution (it does not need to be precisely at 0◦C); and iii) it allows for easier mixing. Interestingly, despite these advantages,

melting calorimeters have not been widely adopted in the past.

The fact that the melting calorimeter was avoided is likely due to the perception of large errors associated with it (Colbeck,

1978; Fisk, 1986; Boyne and Fisk, 1987; Denoth and Foglar, 1986). In particular, the study conducted by Colbeck (1978), where85

several measuring techniques including the freezing and melting calorimeter were compared within a theoretical framework of

uncertainty propagation, identifies the melting calorimeter as “inherently inaccurate”. The primary objective of Colbeck (1978)

was to determine the measuring methodology that would result in lower uncertainty when deriving the water saturation and

porosity. The analysis revealed that the uncertainty is propagating in a larger quantity when starting from a measurement of ice

volume, i.e., utilizing the melting calorimeter compared to starting from a measurement of water volume, i.e., employing the90

freezing calorimeter. Based on this analysis, assuming that the relative uncertainty in measuring the ice volume is similar or
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greater than that in measuring the water volume, the freezing calorimeter was deemed preferable over the melting calorimeter.

However, the study provided only an intuitive explanation to support this assumption without actually calculating the relative

uncertainties of ice and water, suggesting that freezing a smaller amount of water leads to a reduced error compared to melting

a larger amount of ice. Nonetheless, this overlooks the practical challenges associated with freezing a small amount of water95

within a snow sample under real-world conditions, as discussed previously. Despite Kawashima et al. (1998) attempt to address

Colbeck (1978) criticisms of melting calorimetry, their work suffers from limitations. Firstly, they do not account for heat

exchange with the calorimeter. This issue has been recognized since the early applications of melting calorimeter (Halliday,

1950) and has been recently re-emphasized by Fasani et al. (2023). Secondly, their mathematical uncertainty propagation

probably relies on simplified assumptions. These shortcomings likely compromise the accuracy of θw measurements obtained100

using melting calorimeter. Furthermore, these limitations have already propagated into subsequent studies like (Fasani et al.,

2023; Webb et al., 2022; Mavrovic et al., 2020), potentially invalidating their findings. Therefore, while the field applicability of

the melting calorimetry is attractive, a critical reevaluation of this technique is necessary. This should focus on the mathematical

formulation and uncertainty propagation to determine the true potential of the melting calorimetry for θw measurement and its

applicability as a reference measurement.105

Our paper addresses and rectifies the limitations of the state of the art for calorimetric analysis for liquid water measurement

by proposing a sound mathematical formulation. This provides a more rigorous understanding of the technique accuracy so

that the application of melting calorimetry in the future is correct and sound from the critics. In this sense, this paper prioritizes

unlocking the full potential of the melting calorimeter for θw measurement, rather than providing a comprehensive review of

all existing measurement methods. Moreover, while certain concepts may resemble those in previous works in broad terms,110

our formulation and its application differ significantly, constituting the primary novelty of our paper. In detail, the novelties lie

in the following points

– We present the formulations for both melting and freezing calorimeters, it is expressed in %vol and incorporating the

calorimetric constant.

– We clarify the most effective method for estimating the calorimetric constant (E).115

– We introduce the formulations for estimating volumetric liquid water measurement uncertainty for melting and freezing

calorimetry, emphasizing its importance for facilitating comparisons between measurements. We do not account not only

for instrument uncertainty but we also include the random uncertainty introduced by different environment conditions

and operators. Something that was never attempted in the past.

– While Colbeck (1978) argued that melting calorimetry is “inherently inaccurate”, a view echoed in later studies, we120

revisit and refine this analysis. This mathematical refinement, occurring 45 years after Colbeck’s original paper, fun-

damentally alters the prevailing understanding that the melting calorimeter, an indirect measurement of liquid water

content, is not inherently inaccurate, a significant breakthrough that we believe researchers in the field will appreciate.

– we have devised a field protocol that effectively minimizes the uncertainties.
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Figure 1. The figure illustrates a cross-section of the calorimeter, depicting a schematic representation of its components. In detail it is

possible to notice the double wall insulated bottle and the vacuum in between the walls, a snow sample (Ms) immersed in the melting (Mw)

or freezing agent (Mo). For convenience, the thermometer is embedded within the insulated cap of the system.

– We have made available all the codes necessary for calculating liquid water content and its associated uncertainty based125

on the measured variables.

Regarding the field protocol, it is termed as the “field protocol” but it transcends commonsense procedural guidelines for

conducting analyses in real-world settings. Rather, it represents the culmination of comprehensive mathematical development

presented within the paper. The protocol includes specific instructions on the amount of hot water to be used, its temperature,

the size of the calorimeter, the masses involved, and other crucial details for controlling the uncertainty during the experiment130

replication. While certain instructions may resemble those in (Kawashima et al., 1998), our formulation and the mathematical

justification differ significantly. The proposed protocol was applied in two different test sites in Italy and Switzerland by two

different research groups with different melting calorimeters. The results, compared to independent measurements of dielectric

constant of the snow using the Denothmeter, show how the application of the proposed protocol to the melting calorimeteric

measurements is able to properly track the wet front penetration inside the snowpack in an accurate way.135

2 Formulation of Melting and Freezing Calorimetry

The calorimeter experiment is formulated as an energy budget problem. Each term in the energy budget associated with a

change in temperature depends on the mass involved, their specific heat, and the temperature difference. Conversely, terms

related to phase transitions are determined by the mass involved and the latent heat. Before dealing with the computation of

the energy balance, some practical considerations on the setup and measurement operations will be provided.140

The setup for calorimetry used to measure θw in snow involves three essential instruments: i) a specialized instrument

known as a calorimeter (see Fig. 1), ii) a scale, and iii) a thermometer. The calorimeter is designed as an insulated container

to maintain a given temperature and create an adiabatic environment, ensuring ideal heat exchange between the snow sample

and the melting or freezing agent. The thermometer is generally already part of the calorimeter. It is inserted into the insulated
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cap of the calorimeter, with particular attention to not introducing any points for heat exchanges, and it is used to monitor145

temperature changes during the experiment. Prior to the wide availability of modern materials and construction techniques,

Yosida conducted extensive research on optimizing calorimeter design (Yosida, 1960). Today, calorimeters can be as simple

as a commercially available insulated bottle, which provide superior thermal insulation than the Yosida design. The vacuum

between the vessels significantly reduces heat transfer by both conduction and convection. Additionally, silvered internal walls

minimize heat loss through thermal radiation. These advancements extend the time during which the calorimeter can work as150

an adiabatic environment, eliminating the need for the double-container design (one for hot water and one for snow) and the

stirrer introduced by Yosida (1967).

From a practical point of view, the calorimetric experiment starts with the placement of a precise mass of either melting agent

(Mw) or freezing agent (Mo) into the insulated container. The most commonly used melting agent is hot water, while the most

used freezing agent is silicone oil. The initial temperature of the melting agent (Tw ≫ 0◦C) or the freezing agent (To ≪ 0◦C) is155

recorded. Subsequently, a snow sample of mass Ms and volume Vs is added to the calorimeter. The resulting mixture is stirred

to facilitate rapid mixing and efficient heat transfer. During this process, the temperature of the mixture is monitored until it

reaches equilibrium (Tf ), indicating the completion of the heat exchange between the snow sample and the agent. Minimizing

the duration of these steps is essential to maintain the assumption of an adiabatic system. Any potential losses of the calorimeter,

which may be large in the freezing calorimeter giving the longer time of operation, must be accounted for in the analysis e.g.,160

monitoring the temperature for long time (Jones et al., 1983). Calorimetric experiments involve heat exchange between the

snow sample and the fluid. During the calorimetric experiment, heat exchange occurs not only between the snow sample

and the fluid, but also with the internal metallic calorimeter wall. The wall, due to its high thermal conductivity and vacuum

insulation, rapidly reaches thermal equilibrium. While thermal radiative heat transfer represents the most significant energy

loss for the calorimeter, the impact of radiation can be considered negligible when compared to the timescale of the experiment165

(around one minute). Therefore in this study, we will focus primarily on heat conduction as the dominant mechanism for heat

exchange as done also in Jones et al. (1983). All the mentioned quantities are then used to calculate the heat exchanged during

the process, allowing for an estimation of θw within the snowpack. As we progress with the paper, when we discuss liquid

water content, we will be specifically referring to the volumetric liquid water content (Fierz et al., 2009), which is a measure

defined as the ratio of the volume of liquid water content to the volume of the snow sample. Regarding the notation, θM
w refers170

to the volumetric liquid water content measured with the melting calorimeter, while θF
w identifies the same quantity measured

with the freezing calorimeter as reported in Table 1.

From the heat exchange point of view, in the melting calorimeter, the energy introduced by the hot water Qhot water and the

calorimeter internal wall Qcalorimeter must balance with the sum of energy terms for the sinks. These include the heat needed

for melting the ice content Qice melt and the heat required to bring the melted ice and the liquid water already present in the175

snow to the equilibrium temperature, Qmelted ice and Qθw
. In Eq.(1) is shown the energy budget, detailing the different terms

of the equations
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Qhot water︸ ︷︷ ︸
MwC(Tf −Tw)

+ Qcalorimeter︸ ︷︷ ︸
McalCcal(Tf −Tw)

+Qice melting︸ ︷︷ ︸
LMi

+ Qmelted ice︸ ︷︷ ︸
MiC(Tf −Ts)

+ Qθw︸︷︷︸
MWθw

C(Tf −Ts)

= 0 (1)

Where:

– C represents the specific heat of water (4.2× 103 J kg−1K−1);180

– L represents the latent heat of fusion of ice (3.34× 105 J kg−1);

– Ts is the temperature of the snow sample, that by definition is set to 273.15 K;

– Mcal represents the mass of the internal wall of the calorimeter in contact with the water;

– Ccal represents the specific heat of the internal wall of the calorimeter in contact with the water;

– MWθw
is the mass of the liquid water fraction of the snow sample and can be expressed as:185

MWθw
= θwMs;

– Mi is the mass of the ice fraction of the snow sample and can be expressed as:

Mi = Ms−MWθw
;

In the operative formulation of the melting calorimeter, the heat exchange contribution of the calorimeter internal wall is

expressed as an additive term to the water mass, introducing the so-called calorimetric constant E (Jones et al., 1983; Fasani190

et al., 2023). Therefore, as an inherent material property of the calorimeter, the computation of E can be accomplished as

follows

E =
McalCcal

C
(2)

An accurate estimation of E requires precise information about the calorimeter construction. Ideally, the manufacturer

can provide detailed specifications, including the weight of the internal container and the material used in its construction195

(typically stainless steel). As a last resort, a destructive approach can be employed. This involves carefully dismantling the

calorimeter and precisely measuring the weight of the internal container. Several non-destructive methods for estimating E

have been proposed, such as mixing fluids at different temperatures (e.g., (Jones et al., 1983; Austin, 1990)) or inverting

eq. (3) (e.g., (Fasani et al., 2023)), given that wet snow samples are prepared at a given θw. However, these methods often

suffer from significant uncertainty propagation. For instance, applying the method used by Jones et al. (1983); Austin (1990)200

yields an uncertainty of σE = 2.6g for E = 6.58g. Similarly, creating artificial wet snow samples (Fasani et al., 2023) can

further increase uncertainty to unacceptable levels i.e., σE = 4.87g, even if we assume that θw is known without uncertainty.

Therefore, although non-destructive, these methods are associated with significant uncertainties and are thus recommended to
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be avoided. The complete mathematical derivations for estimating the uncertainty associated with E using various methods

from the literature are provided in Appendix A.205

From Eq.(1) and Eq.(2) θM
w can be derived as follows:

θM
w =

Ms

Vsρw

(
1− C

L

[
(Mw + E)(Tw −Tf )

Ms
− (Tf −Ts)

])
(3)

This formulation differs from Kawashima et al. (1998) in the inclusion of the parameter E, its simplification of the involved

masses, and its use of density for volumetric conversion (i.e., snow density Ms/Vs, and water density ρw).

The freezing calorimeter operates on a similar principle to the melting calorimeter, however in this case the freezing agent210

and the container extract heat from the ice content and θw in the snow, causing it to freeze. The corresponding energy balance

equation is given by:

Qfreezing agent︸ ︷︷ ︸
MoC(Tf −To)

+ Qcalorimeter︸ ︷︷ ︸
McalCcal(Tf −To)

+ Qcooling ice︸ ︷︷ ︸
MiCi(Tf −Ts)

+Qfreezed θw︸ ︷︷ ︸
−MWθw

L

+Qcooling freezed θw︸ ︷︷ ︸
MWθw

Ci(Tf −Ts)

= 0 (4)

Where, Co is the heat capacity of the freezing agent, and Ci is the heat capacity of ice (2.09× 103 J kg−1K−1). In the case

of using silicone oil, Co is 1.83× 103 J kg−1K−1 at −10◦C.215

– Co is the heat capacity of the freezing agent. In the case of using silicone oil, Co is 1.83× 103 J kg−1K−1 at −10◦C;

– Ci is the heat capacity of ice (2.09× 103 J kg−1K−1);

As for the melting calorimeter, the heat exchange contribution of the calorimeter internal wall is expressed as an additive

term, but this time on the freezing agent mass Mo. The calorimetric constant EF in that case can be obtained as:

EF =
McalCcal

Co
(5)220

In the freezing case, the θF
w is directly related to the temperature difference induced by the freezing of water present in the

snow and, as shown in (Jones et al., 1983), it is derived from Eq.(4) and Eq.(5) as follows:

θF
w =

Ms

Vsρw

(
(Mo + EF )Co(Tf −To)

LMs
− Ci(Ts−Tf )

L

)
(6)

3 Propagation of the Uncertainty in Calorimetry

In scientific measurements, accounting for uncertainty propagation is crucial to accurately quantify the uncertainty associated225

with the obtained results (IEC et al., 1993; Moffat, 1988). Moreover, to assess measurement effectiveness and choose the
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formulation yielding the lowest uncertainty, the analysis of uncertainty propagation should be the first step. As exemplified

in the previous section for the calorimetric constant, various formulas exist for calculating E, but they differ significantly in

handling instrumental uncertainty propagation. Analyzing uncertainty propagation beforehand would have readily identified

the optimal approach. Unfortunately, this crucial step is often overlooked.230

The overall measurement uncertainty is influenced by a variety of factors, including instrumental uncertainties, environ-

mental conditions and variations introduced by the operator during the experiment. Properly accounting and quantifying these

sources of uncertainty is essential to ensure the reliability and validity of the θw measurements using calorimetry. While it is

factored into the theoretical development, and generally it is illustrated with common values, it is crucial to apply the uncer-

tainty calculation for each new measurement. This additional information allows us to better interpret the results and compare235

different measurements. Previous attempts to quantify uncertainty in freezing and melting calorimeters relied only on instru-

mental uncertainty propagation. Other sources of error, such as operator variations and environmental factors, were often added

to the instrumental uncertainty with subjective reasoning (and quantities), leading to inconsistent interpretations. As a result,

a wide range of values, generally expressed by percentage of mass, from “several percent” (Colbeck, 1978; Linlor, 1975) to

±2% for melting calorimeters (Kawashima et al., 1998) and 0.5% to 1−2% for freezing (Jones, 1979; Jones et al., 1983; Fisk,240

1986), have been reported as absolute uncertainties. This paper aims to address this historical ambiguity and establish a more

rigorous approach to uncertainty quantification in calorimetry for liquid water content estimation.

In Section 3.1, we will initiate the uncertainty propagation analysis by focusing on the instrument uncertainty. The losses

occurring during the experiment realization can be assumed to be equal for both melting and freezing calorimeters since the

basic operations are analogous. This will enable a direct comparison between the melting and freezing calorimeters, revealing245

the suitability of the methods for real θw measurements. In Section 3.2, practical considerations about each step of the melting

calorimetric experiment will be explored, focusing on minimizing all sources of uncertainty. Section 3.3 shows the results of

the sensitivity analysis of the melting calorimeter providing all the indications for a field protocol that maximizes the accuracy.

Finally, in Section 3.4, we will extend the analysis to include uncertainties due to operator and environmental variations in the

melting calorimetry, something never attempted before. This is done by conducting repeated measurements done by different250

operators and under different environmental conditions, which will also showcase both the method consistency and its accuracy.

3.1 Instrumental uncertainty propagation: Melting vs Freezing Calorimetry

Instrumental uncertainty, which arises from the limitations and imperfections of the measuring instruments used in the calori-

metric experiment, propagates into the final estimation of θw. In both melting and freezing calorimetry, the uncertainties are

associated with temperature measurements and mass determinations. To quantify uncertainty propagation, we employ a statisti-255

cal method for uncertainty propagation in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM)

(IEC et al., 1993). In detail, the uncertainty σθM,F
w

can be determined as the squared root of the sum of the squared partial

derivatives of θM,F
w with respect to the variables with an associated uncertainty, each, multiplied by the squared associated

error. By assuming independent variables,the general formulation is reported in Eq. (7) (IEC et al., 1993; Moffat, 1988).
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σθM,F
w

=

√√√√∑

mi

(
∂θM,F

w

∂mi

)2

σ2
mi

(7)260

In Eq. (7), mi represents a single measurement affected by uncertainty, and σmi
is the associated uncertainty. For the melting

calorimeter, the required measurements are Vs, Mw, Ms, Tw, Tf and E (see Eq. (3)) with associated instrumental uncertainties

σMw
and σMs

, which depends on the accuracy of the scale, σTw
and σTf

, which depends on the accuracy of the thermometer,

σVs , which depends on the uncertainties in measuring the volume of the sampler; and finally on σE , which depends on the

uncertainty of the estimation of E (see Appendix A). In previous studies, different uncertainty estimators have been used like265

the sum of the relative uncertainty (Colbeck, 1978), or the sum of the absolute uncertainty (Jones, 1979; Kawashima et al.,

1998) to calculate the uncertainty in the mass of liquid water. This paper breaks new ground by providing the volumetric

uncertainty that adheres to the GUM guidelines.

Equation (7) can be applied to Eq. (3) and expanded as follows

σθM
w

=

√(
∂θM

w

∂Mw

)2

σ2
Mw

+
(

∂θM
w

∂Ms

)2

σ2
Ms

+
(

∂θM
w

∂Tw

)2

σ2
Tw

+
(

∂θM
w

∂Tf

)2

σ2
Tf

+
(

∂θM
w

∂Vs

)2

σ2
Vs

+
(

∂θM
w

∂E

)2

σ2
E (8)270

The partial derivatives in Eq. (8), known as sensitivity coefficients, are calculated as follows (to preserve the explicit depen-

dence on snow density i.e., ρs = Ms/Vs, we refrain from simplifying terms involving Ms):

∂θM
w

∂Mw
=− Ms

Vsρw

C

L

Tw −Tf

Ms
(9)

∂θM
w

∂Tw
=− Ms

Vsρw

C

L

Mw + E

Ms
(10)

∂θM
w

∂Tf
=

Ms

Vsρw

C

L

(
Mw + E

Ms
+ 1
)

(11)275

∂θM
w

∂Ms
=

Ms

Vsρw

C

L

(Mw + E)(Tw −Tf )
M2

s

+
1

Vsρw

(
1− C

L

(
(Mw + E)(Tw −Tf )

Ms
− (Tf −Ts)

))
(12)

∂θM
w

∂Vs
=− Ms

V 2
s ρw

(
1− C

L

(
(Mw + E)(Tw −Tf )

Ms
− (Tf −Ts)

))
(13)

∂θM
w

∂E
=− Ms

Vsρw

C

L

Tw −Tf

Ms
(14)
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It is important to note that although there are significant differences in our calorimetric equations, Kawashima et al. (1998)

calculated some of the same derivatives we present. Here is a breakdown of the key distinctions.280

The approximation used to transition from Eq. (1) to Eq. (4) in their original paper, via Eq. (3), is not clear. This ambiguity

results in different values when properly calculating the derivatives. Despite being mathematically sound, Kawashima et al.

(1998) propose fixing Tf for uncertainty propagation.

These points highlight the differences and clarify the approaches taken in the respective works. However, as detailed in

Section 2, calorimetric experiments begin with hot water at a known Tw. The fixed-Tf approach makes their uncertainty285

propagation method non-representative of the propagation of the error under real conditions making Figure 3 of the original

paper misleading.

Similarly, for the Freezing Calorimeter, we can analyze the error propagation associated with temperature and weight mea-

surements of Eq. (6). In detail, by applying Eq. (7) we obtain

σθF
w

=

√(
∂θF

w

∂Mo

)2

σ2
Mo

+
(

∂θF
w

∂Ms

)2

σ2
Ms

+
(

∂θF
w

∂To

)2

σ2
To

+
(

∂θF
w

∂Tf

)2

σ2
Tf

+
(

∂θM
w

∂Vs

)2

σ2
Vs

+
(

∂θF
w

∂E

)2

σ2
E (15)290

The partial derivatives in Eq. (15) are calculated as follows:

∂θF
w

∂Mo
=

Ms

Vsρw

Co(Tf −To)
LMs

(16)

∂θF
w

∂To
=− Ms

Vsρw

(Mo + E)Co

LMs
(17)

∂θF
w

∂Tf
=

Ms

VsρwL

(
(Mo + E)Co

Ms
+ Ci

)
(18)

∂θF
w

∂Ms
=− 1

L

(
(Mo + E)Co(Tf −To)

VsρwMs
+

1
Vsρw

(
(Mo + E)Co(Tf −To)

Ms
−Ci(Ts−Tf )

))
(19)295

∂θF
w

∂Vs
=− Ms

V 2
s ρw

(
(Mo + E)Co(Tf −To)

LMs
− Ci(Ts−Tf )

L

)
(20)

∂θF
w

∂E
=

Ms

Vsρw

Co(Tf −To)
LMs

(21)

Similar derivatives have been presented in (Jones, 1979) for the propagation of the instrumental uncertainty for the liquid

water content expressed in percentage of mass.
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Figure 2. The figure provides a comparison of uncertainty in estimating θw by propagating instrumental uncertainty using both the melting

and freezing calorimeter methods. Notably, freezing calorimetry demonstrates lower uncertainty. However, it is essential to recognize that

both methods offer uncertainties that still enable accurate measurement of θw.

By evaluating Eqs. (8) and (15) it is possible to compare the two methods as done in Colbeck (1978). In detail, by assuming300

Vs = 200 cm3, a value consistent with the density measurement sampler (Proksch et al., 2016), which ensures compact dimen-

sions for both the snow sampler and the calorimeter, facilitating transportation, and considering a snow density of the dry snow

of 366 kgm−3 as a legacy of (Colbeck, 1978), to which we add a given percentage of liquid water increasing the density of

consequence. We set the temperature and mass of hot water at 40◦C and 2 times Ms, respectively, in line with the analysis of

Section 4. Similarly, we set the temperature and mass of the freezing agent at −30◦C and 1.3 times Ms, respectively, as per305

(Jones et al., 1983). The calorimetric constant was assumed to be equal to 6.58g. θw was varied from 0 to 12%, considering

the most common values in melting snowpack. Additionally, we consider a scale with uncertainty of 0.1 g, a thermometer with

uncertainty 0.2◦C, an uncertainty in the estimation of the calorimeter constant E of 0.1 g. Regarding the uncertainty associated

with the sample volume, to the best of our knowledge, no studies have been conducted in that specific direction. However from

our practical experience, a value of 2 cm3 can be realistic according to the tools we are using.310

By substituting these values into Eqs. (8) and (2), we quantified the uncertainty associated to θw. The results are illustrated

in Fig. 2. The comparison demonstrates the superior performance of the freezing calorimeter, particularly for high θw values,

where the melting calorimetry reaches almost 0.5% uncertainty whereas the freezing calorimetry stops at 0.2% uncertainty, a

similar value obtained by Jones et al. (1983); Jones (1979) when converted to the sum of the absolute errors and in percentage of

mass (note that the sum of the absolute uncertainties is always larger than the root mean square of the uncertainties). However,315

the general low value of σθM
w

, indicates that the melting calorimeter can still provide a significant and reliable measurement

of θw. Coupled with its notable practical advantages, the melting calorimeter becomes an attractive and compelling choice for

field applications, particularly in remote areas.
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It is important to highlight that, the uncertainty analysis presented here produces the same results as the paper of Colbeck

(1978). By applying Eq. (8) for water saturation Sw, we can find that its relative uncertainty ΣSw
is 5.1 times the relative320

uncertainty of the ice volume ΣVi , whereas by applying Eq. (15), ΣSw is 0.84 times the relative uncertainty of the water

volume ΣVw , considering the values used in the original paper of Colbeck (1978). Nevertheless, it is essential to note that the

relative uncertainty produced by the melting calorimeter on the estimation of the ice volume ΣVi
is one order of magnitude

lower than the relative uncertainty produced by the freezing calorimeter on the water volume ΣVw
. This renders the final

uncertainty of the two methods comparable, as shown in Fig. 2. All the mathematical details are reported in Appendix B and325

relative codes. Therefore, while Colbeck (1978) argued that melting calorimetry is “inherently inaccurate”, our mathematical

refinement, occurring 45 years after Colbeck’s original paper, fundamentally alters the prevailing understanding that the melting

calorimeter, an indirect measurement of liquid water content, is not inherently inaccurate.

Finally, Figure 2 shows an opposite trend compared to Figure 3 in Kawashima et al. (1998). In our study, the uncertainty

σθw
increases with increasing θw. This is because we compared snow samples with the same volume and ice content but330

varied liquid water content, mimicking an introduction of liquid water in the snow filling the voids. Consequently, as the liquid

water content increases, so does the snow density. In contrast, Kawashima et al. (1998) does not account for volume in their

formulation, instead adapting the snow mass to the water mass based on the parameter R = Mw

Ms
. While both approaches are

mathematically correct, adjusting the snow density according to the liquid water content aligns more closely with the practical

reality of measuring liquid water content in the snowpack (Picard et al., 2022).335

3.2 Minimizing the Instrumental Uncertainty of the Melting Calorimetry

Leveraging the framework established in Section 3.1, we can now analyze how the uncertainties in variables measurement

propagate to the final water content uncertainty σθM
w

through the melting calorimetry formula (Eq. 3). Often overlooked,

uncertainty propagation analysis is a critical step for new instruments. It helps us to identify the optimal operational range for

achieving the least uncertain measurements. Given the substantial differences between our approach (volumetric formulation340

with compensation for the calorimetric constant) and previous methods, a new analysis is necessary. As described in Section 2,

some of the variables involved in the calorimetry are free to be selected during the experiment. These are Vs, Ms, Mw, Tw,

and E (see Eq. (3)). However, all these variables are strictly connected to each other with some implications that it is better to

account for.

Firstly, by increasing the volume sample Vs, we expect that the uncertainty is decreasing being Vs at the denominator for all345

the terms in Eq. (8). Nonetheless, the volume of the sample is linked to its mass, which increases by increasing the volume, this

has an effect of compensation on σM
w . This outcome paves the way for dedicated investigations into employing various sample

volumes for characterizing liquid water transport within the snowpack. Although such research lies outside the scope of this

paper, we provide here some ideas that explain the volume selected in the context of this paper. As discussed in Section 3.1, Vs

is generally constrained by the snow sampler used, which is normally fixed e.g., the Taylor–LaChapelle density cutter. Similarly350

with the measuring of the density (Proksch et al., 2016), Vs is selected focusing primarily on the resolution required to describe

θw in the snowpack: a small snow cutter allows to sample the small difference in θw within the snowpack, whereas a large
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volume density sample provides snowpack bulk information. Given the high heterogeneity of θw (Techel and Pielmeier, 2011),

one can think of sampling the snowpack with a high vertical and horizontal resolution. However, this requires performing a

large number of calorimetric analyses, hence it is not possible to assume that θw did not change for that time - to avoid this,355

in 1967 Yosida employed a parallel team of students that performed 120 measurements to describe the temporal evolution of

a 160 cm snowpack over 7 hours highlighting that an average of 20 mins are required for each measurement. On the contrary,

taking a snow sample that is big poses some challenges for both the selection of the calorimeter, which generally features a

small aperture (see Fig. 1) and the possibility of representing specific cases such as the situations of water saturation on top

of ice layers. In practice, by considering a calorimeter with a capacity of 0.5L, Vs should fall between 100 and 300 cm3. For360

melting snow, this corresponds to a Ms that ranges approximately between 60 and 150g. Within these values the influence

of Vs on the overall uncertainty σM
w is limited. For samples of this volume, it is advisable to prioritize a smaller vertical

footprint—such as a cylindrical sampler with a diameter of 4 cm and a depth of 18 cm—over a shallower penetration depth

with a larger vertical footprint. This strategy aids in identifying saturated layers and ensures smoother insertion of the snow

sample into the calorimeter i.e., the diameter of the sampler is smaller than the opening of the calorimeter.365

At this point, the remaining variables are Mw, Tw, and E. It is then mathematically convenient to introduce a new variable

as done in (Kawashima et al., 1998) i.e.,

R =
Mw

Ms
(22)

This allows us to plot the uncertainty as a function of the water temperature and the ratio between the masses for different

levels of θw (see Fig. 3). Considering a Vs = 200cm3, a dry snow density of 366kgm−3 and a calorimeter with E = 6.58 g, it370

is possible to show that low values of R i.e. a same mass of hot water and snow and high water temperature Tw are the ones

that produce the best results in terms of uncertainty. However, high Tw means a large temperature loss when the calorimeter is

open to insert the snow sample. To minimize this loss, which otherwise has to be considered in the calorimetric formulation, a

Tw of 40 to 50 ◦C Celsius together with a quick insertion of the snow sample in the calorimeter, is a good trade-off for all the

possible cases as indicated by Kawashima et al. (1998). On the other hand it is worth stressing the fact that, even though low375

values of R produce the best results, this has two practical implications that should not be neglected:

i) if an immersion thermometer is used (as the one represented in Fig. 1) particular attention should be devoted to the fact that

the probe is properly immersed inside the water-snow mixture. Otherwise the temperature measure will oscillate. Therefore,

especially if the calorimeter is very tall and the snow sampler is small and cannot be increased, Mw should be increased. This

may allow a proper immersion of the temperature probe inside the snow-water mixture.380

ii) If the snow sample is too big with respect to the water mass, or the water temperature is too low, the heat exchange cannot

be completed i.e., Tf < 0◦C. As recommendation we advise to keep Tf > 5◦C. A value of R = 2 is a good trade-off for all the

possible real cases (see Fig. 3).

Finally it is important to mention that different values of E imply a change in the uncertainty (see Eq. (9)-(14)). However,

we stress the fact that this change is limited and therefore different sizes, shapes and qualities of calorimeter can potentially be385
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(a) (b)

(c)

Figure 3. In the figure the uncertainty associated to θM
w is presented as a function of the experiment parameter R and Tw. In detail, the

uncertainty is presented for 3 representative scenarios of θM
w i.e., 0%, 6%, and 12%. In (a) the dry snow scenario with θM

w = 0% is presented;

in (b) the medium wetness scenario with θM
w = 6% is presented and in (c) the limit wetness scenario with θM

w = 12% is presented. Gray areas

represent the cases where the calorimetric experiment results in a final temperature lower than 0◦C. The indicated red boundary signifies a

"safety" threshold constrained by a final temperature of 5◦C, i.e. the points laying on the red line result in a Tf = 5◦C. When working on the

left side of the curve, we are pushing the limits of experimental feasibility. Therefore, it is advisable to exercise caution and strive to remain

on the right side of this boundary. In all cases, high values of R are associated with high uncertainty.

employed. Differently, a wrong estimation of the calorimeter constant can have a big impact on the accuracy of the measure of

θw (see next section).

3.3 Sensitivity Analysis of the Melting Calorimetry

By studying the so-called sensitivity coefficients i.e., Eqs. (9)-(14), we can derive important information about the sensitivity

of melting calorimetry to variation of the input variables Vs, Ms, Mw, Tw, and E to the final value of θM
w . In fig.4 the390

variation in θM
w associated with the change of the experiment parameters is reported for a realistic case where the snow density

is 416kgm−3, Ms = 83.4g, Mw = 166.8g, Tf = 4.8◦C, Tw = 40◦C, E = 6.58g and θM
w = 5.0%. Note how R and Tw are
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derived from the considerations discussed in Section 3.2. Fig.4 allows an operator to become more aware of the impact of

potential variations when taking new measurements.

Figure 4a illustrates that the error in volume measurement is directly proportional to θw. However, the impact of this error395

is relatively limited. For instance, in the considered scenario where a snow box cutter with dimensions of 4× 2.75× 18cm =

198cm3 is employed, and a portion of 20cm3 is lost due to incomplete filling i.e., the snow cutter is not filled to a depth of 2cm,

the resulting θw measurement is overestimated by a mere 0.10%. This suggests the feasibility of utilizing snow samplers with

variable depth, such as samplers with a moving piston, to adapt the sample size according to θw distribution in the snowpack.

In Fig. 4b, one can observe how even a small error of a few grams in the measurement of hot water mass can significantly400

impact the resulting θw, causing a nearly 1 percentage point difference. This highlights the crucial significance of ensuring a

stable, level, and well-prepared position for the scale, protected by the influence of wind gusts by a well dug snow pit and an

additional shield. In the end the plate of the balance should be sufficiently large compared to the calorimeter.

The accurate measurement of the hot water temperature is equally important (see Fig. 4c). An overestimation of 1◦C in Tw

results in an approximate 1% underestimation of θM
w . Additionally, it is crucial to emphasize the importance of measuring Tw405

only after the entire calorimeter reaches a stable temperature. Using a well-insulated container and promptly inserting the snow

sample into the calorimeter, so that the hot water is not cooling down, are vital factors to minimize errors in the measurement

of Tw as seen in Section 3.4. The specification regarding the depth of immersion for the thermometer probe must be satisfied.

The misreading of Tf leads to a directly proportional error in the final θw measurement (see Fig. 4d). Achieving an accurate

measurement of Tf necessitates ensuring that the heat exchange process is fully completed. To facilitate this, it is recommended410

to gently shake the calorimeter, and the completion of the process can be verified by observing a clear stabilization in the

temperature reading. This is usually occurring within 30 seconds after inserting the snow sample into the calorimeter. Even

under harsh conditions, heat loss from the closed calorimeter remains minimal. The negligible temperature loss holds true even

when the calorimeter is exposed to sunlight or experiences internal-external temperature differences exceeding 40◦C. These

conditions far surpass typical operating environmental conditions.415

An error in the mass measurement of the snow sample Ms introduces a directly proportional error in θM
w (see Fig. 4e). To

ensure accurate measurements, the same precautions as those taken for the measurements of Mw should be followed.

Finally, it is crucial to note that an error in E is inversely proportional to θw (see Fig. 4f). Neglecting the heat exchange with

the calorimeter wall, i.e., assuming E = 0g, results in significant errors in the final measurement of θM
w . Therefore, when using

a new calorimeter, proper time and effort should be dedicated to accurately estimating E, as described in Section 3.1.420

The selection of the values will be summarized in section 4 in form of a protocol that all the researchers and practitioners

can follow during field experiments.

3.4 Random uncertainty introduced by environmental factors and operator variations

After assessing the instrumental uncertainty of the melting calorimeter, it is crucial to consider the additional error sources

that arise during the practical implementation of the experiment. These uncertainty sources primarily stem from the operator425

handling the various steps involved in the experiment, and the environmental factors at the measurement site. Quantifying these
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(a) (b) (c)

(d) (e) (f)

Figure 4. In the figure the variation of θM
w with respect to the six parameters that define the experiment is reported. In detail, we report in (a)

the variation of θM
w with respect to Vs, in (b) the variation of θM

w with respect to Mw, in (c) the variation of θM
w with respect to Tw, in (d) the

variation of θM
w with respect to Tf , in (e) the variation of θM

w with respect to Ms

and in (e) the variation of θM
w with respect to E.

errors is challenging, but it is essential to establish a robust measurement protocol to minimize their impact. It is therefore

important to dig into a comprehensive analysis of these two distinct sources of uncertainty.

Field campaigns often expose researchers or practitioners to challenging environmental conditions, encompassing factors

such as wind, snowfall, rain, or high solar radiation. The temperature spectrum can fluctuate significantly, spanning from sub-430

zero to positive values, thereby amplifying the potential for heat loss from the hot water and inducing changes in the sample

phase, respectively. Additionally, the involvement of different operators, each potentially employing slightly varied techniques

due to the different interpretations, introduces a layer of variability throughout the measurement procedure.

Experiments with excessively harsh environmental conditions and/or those that deviate from established snow pit measure-

ment practices will yield unreliable results and hinder uncertainty estimation, compromising the validity of the measurement.435

Wind impacting the scale and direct solar radiation exposure of the snow sample are prime examples of such conditions. To

quantify the impact of wind on measurement uncertainty, we conducted an experiment where a controlled breeze (around

15 km/h) generated by a fan was directed at the scale. This resulted in a tenfold increase in scale uncertainty, from 0.1g

to 1.5g. By applying σMw
= 1.5g and σMs

= 1.5g to Eq. 8, a significant uncertainty of more than 1% will be associated to
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the measurement of liquid water content. These results highlight that wind is a major factor that can invalidate calorimetric440

measurements by introducing excessive uncertainty. Similar to wind, solar radiation and sample handling can significantly

impact θw. Rough handling, and prolonged air and sun exposure can all alter θw of the snow sample. Fortunately, following

basic snow pit practices like shielding the scale from wind and protecting the sample and instruments from direct sunlight can

prevent measurement failure and allow a correct computation of the associated uncertainty. In most cases, this allows us to

assume σMw
and σMs

equal to the scale uncertainty.445

Therefore, by assuming proper adherence to common field protocols, the main factors that contribute to random uncertainties

include: i) prolonged exposure of the sample to air temperature, producing liquid water; ii) variations in the time the calorimeter

insulated cup is open for sample insertion, affecting heat exchange; iii) proper mixing and operator judgment of thermal

equilibrium, since the snow samples immerse in the snow can find local equilibrium points before the complete melting. All

of these uncertainties can be quantified by performing many controlled experiments under varying conditions. While using450

reference samples with a known θw would be ideal, preparing such samples artificially introduces significant uncertainties.

The methods employed by Kawashima et al. (1998) and by Fasani et al. (2023) involve introducing liquid water into dry snow,

which is a complex operation. A critical challenge in this approach is maintaining precise temperature control. Both the snow

sample, the air, and the added liquid water need to be at exactly 0◦C for successful preparation. Deviations from this ideal

temperature can significantly alter the effective θw of the reference sample. Given the inherent difficulty in achieving such455

precise temperature control, we recommend avoiding this approach.

To address the challenges associated with reference samples, we designed two alternative experiments. In the first experi-

ment, we used dry snow samples and measured the final system temperature. This experiment serves as a proxy for evaluating

the impact of sample handling by the skilled operator on measurement uncertainty. In the second experiment, we investigated

the combined effects of environmental conditions and operator variability. Here, we controlled the air temperature and re-460

cruited a group of volunteers with varying levels of snow field experience. To assess uncertainties stemming from wet snow

reference sample preparation in a controlled manner, we employed ice cubes. The significant temperature difference between

the ice cubes and the room temperature allowed us to simulate worst-case scenarios. This approach provides a valuable assess-

ment of uncertainties without introducing the complexities associated with artificial wet snow samples. Moreover, these two

experiments allow us to appreciate the effectiveness of the melting calorimeter.465

3.4.1 Dry snow experiment

As done for Eq. (1), we can derive the expression for the energy budget in case of dry snow:

Qhot water︸ ︷︷ ︸
MwC(Tf −Tw)

+ Qcalorimeter︸ ︷︷ ︸
McalCcal(Tf −Tw)

+ Qwarming snow︸ ︷︷ ︸
Mdry_snowCice(Tf −Tdry_snow)

+Qsnow melting︸ ︷︷ ︸
LMdry_snow

− Qmelted snow︸ ︷︷ ︸
Mdry_snowC(Tf −Tmi)

= 0 (23)

From eq. 23 can be retrieved the final temperature of the system as:
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Tf =
CiMdry_snowTdry_snow −LMdry_snow + C(Mw + E)Tw

C(Mw + E) +Mdry_snowC
(24)470

The associated instrumental uncertainty can be derived as follows (IEC et al., 1993):

σIns
Tf

=
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∂Tf

∂Ms

)2

σ2
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+
(

∂Tf

∂Ts

)2
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+
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+
(

∂Tf

∂E

)2

σ2
E (25)

Where Ts and Ms are respectively the temperature and the mass of the dry snow sample.

The dry snow experiment revealed a lower overall uncertainty than the inherent instrumental uncertainty (refer to Fig. 5a).

The results demonstrate that well-trained operators can significantly minimize uncertainties associated with sample handling475

and lid opening during calorimetric analysis. Since for this experiment we always obtained an experimental uncertainty lower

than the instrumental uncertainty, we made only a total of 5 experiments. We instead focus on the heat lost when the calorimeter

is opened for snow sample insertion. We observed a temperature loss of 0.2◦C after 10 seconds with a 40◦C difference between

the air and the water temperature. Since sample insertion itself takes a maximum of 2 seconds by a skilled operator, the heat

lost is negligible. This is another evidence that the instrumental uncertainty found in Section 3.1 can be applied in this case.480

This last finding aligns with the observations from Kawashima et al. (1998) (see Section titled “the effect of the heat loss by

opening the lid” of the original paper). The results of Fig. 5a further emphasize the effectiveness of the melting calorimeter

design for accurate snowmelt measurements, especially when combined with proper operator training and handling techniques.

3.4.2 Ice cube experiment

The second experiment aims at quantifying the impact of the operator variability at different air temperatures. To this end,485

we recruited a group of volunteers to perform a large number N of calorimetric experiments i.e., N > 30 following basic

guidelines. To simulate variations in air temperature and operator performance, we assemble a diverse group of individuals

with varying expertise in the field of snow measurements. These participants are tasked with conducting measurements within

an environment spanning temperatures from -5 to 20 ◦C. This multifaceted approach aims to capture the intricate interplay

between operator influence and temperature differentials. The experimental setup, resembling the dry snow calorimetric exper-490

iment, aims to compare the measured final temperature Tf
Exp of the mixture of hot water after the addition of the ice cube with

the theoretical temperature Tf calculated using the calorimetric formula. Specifically, the experiment involved a predetermined

mass Mice_cube of ice sample at a known temperature Tice_cube and a mass Mw of water at a known temperature Tw. The

ratio between the ice mass Mice_cube and the water mass Mw was kept constant to 1
10 . The temperature of the ice cubes was

determined by leaving the cubes for at least 24 hours in a refrigerator with monitored temperature. As done in Eq. (1), we can495

express the experiment as an energy budget by equalizing the energy carried by the hot water (Qhot water) and the internal

wall of the calorimetry, in thermal equilibrium with the hot water (Qcalorimeter), with the sinks consisting of the ice cube

(Qice melting) and the water derived by melted ice (Qmelted ice). Starting from the energy balance presented in Eq. (23) the
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final temperature Tf can be derived from Eq. (24) by changing the mass and temperature of the dry snow with the mass and

the temperature of the ice cube.500

(a) (b)

Figure 5. Results of the calorimetric experiment performed using (a) dry snow; and (b) ice cubes by a group of volunteers. The measured

final temperature (y-axis) is compared with the theoretical final temperature (x-axis) derived from Eq. (24). In (a) the green buffer represents

the instrumental uncertainty of all the measurements using Eq. (25), which is slightly visible to its low values. In (b) the different colors

of the dots represent the different people who performed the experiment. The red area represents the instrumental uncertainty of all the

measurements using Eq. (27).

The outcome of the experiment is presented in Fig. 5b. From a qualitative point of view, the figure demonstrates a good

agreement between the measured and theoretical values indicating the effectiveness of the melting calorimetry. The small

spread of the data indicates that the experiment is largely reproducible among different operators, even though some operators

generate larger errors. The missing of a bias indicates that there are no large systematic errors. From a quantitative point of

view, the experimental uncertainty can be calculated from this data as the Root Mean Square (RMS) of the differences between505

the measured final temperature Tf
Exp and the theoretical final temperature Tf as follows (IEC et al., 1993).

σExp
Tf

=

√∑N
i (Tfi −Tfi

Exp)2

N
(26)

This results in σExp
Tf

= 0.5. However, in our setup, the thermometer uncertainty of 0.1◦C and the scale uncertainty of 0.1g

limited our ability to definitively isolate the impact of environmental and operator variability on the measured liquid water

content. A t-test for null hypothesis verification (Rouder et al., 2009) applied to Eq. (26) sometimes rejected the null hypothesis510

i.e., the small resolution of our instruments resulted in statistically insignificant differences between the estimated and measured

temperatures. To more effectively characterize the uncertainty arising from environmental factors and operator variability, this

experiment should be repeated with a higher precision thermometer (e.g., σT = 0.01◦C), which was not available during the

experiment.
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Figure 6. Comparison of the propagation of uncertainty considering the instrumental uncertainty (solid red line) and random uncertainty

introduced by variations in operators and environmental factors (dashed red line) for the melting calorimeter.

Despite the limitations of our current instrumentation, let us explore a hypothetical scenario where the experimental un-515

certainty σExp
Tf

= 0.5. This total uncertainty can be further broken down as the sum of the instrumental uncertainty σIns
Tf

, the

operator induced uncertainty σOpe
Tf

and the environment induced uncertainty σEnv
Tf

. The instrumental uncertainty σIns
Tf

can be

calculated as follows (IEC et al., 1993):

σIns
Tf

=

√(
∂Tf

∂Mi

)2

σ2
Mi

+
(

∂Tf

∂Ti

)2

σ2
Ti

+
(

∂Tf

∂Mw

)2

σ2
Mw

+
(

∂Tf

∂Tw

)2

σ2
Tw

+
(

∂Tf

∂E

)2

σ2
E (27)

At this point, the uncertainty associated to the operator variations σOpe
Tf

and the environmental factors σEnv
Tf

can be retrieved520

as a simple difference i.e., σOpe
Tf

+ σEnv
Tf

= 0.3◦C. Given the fact that the operational steps of this experiment are exactly the

same of the operational steps for the melting calorimeter, we can use the derived σOpe+Env
Tf

to update the uncertainty calculated

in Section 3.1 by adding this uncertainty to the final temperature measurement uncertainty σTf
. In Fig. 6, we observe how

this new characterization of the uncertainty affects the uncertainty in the estimation of θw with respect to only considering

the instrumental. While the limitations of our current instrumentation prevent definitive conclusions from this analysis (i.e.,525

non-statistically significant results), this exercise demonstrates the value of a quantitative approach to understanding complex

uncertainty sources. This framework can be applied in future studies with more precise equipment to accurately characterize

these uncertainties. A similar analysis could be also applied to the freezing calorimeter, considering the losses associated with

the measurement time required by this technique. However, this is beyond the scope of the paper.
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4 Melting Calorimeter Protocol530

In this section, we will provide a comprehensive summary of the analyses conducted throughout the paper and propose a

practical measurement protocol to be followed during field campaigns. First, the necessary materials need to be prepared,

including:

Calorimeter This could be a commercially available insulated container designed to maintain the temperature of beverages

or food. The calorimeter constant must be known or derived for accurate measurements (e.g., with Eq. (2)). In this535

work we used a commercial insulated container i.e., Stanley Classic Legendary Food Jar made of stainless steel (i.e.,

SAE 304) Ccal = 500 Jkg−1 K−1 and Mcal = 69.1 g, E = 6.58 g. The uncertainty of this measurement is only related

to the uncertainty of the scale used to weigh the container i.e., 0.1g. These values have been measured, and they are not

provided by the producer.

High-Precision Immersion Thermometer Used to monitor temperature changes during the experiment (we used a Hanna540

Instruments HI98501).

Precision Balance Utilized for measuring the mass of hot water and snow samples. The scale should be at least splash proof

(IPX4). We used a Kern PCB-10000-1

Supportive Surface A level, hard and supportive surface such as Plexiglass.

Wind Shield A well dug shelter or an external barrier, such as a plexiglas container can be used to shield the scale from wind.545

Insulated bottle The bottle acts as a reservoir of hot water, ensuring a continuous supply for the experiment.

Snow sampler This can be any of the available snow samplers for density measurements. The shape and size of the sampler

must be compatible with the shape and size of the calorimeter.

The snow pit should be dug so that the snow wall is shaded from the sun. Once the snow pit is prepared, a shaded area

for the scale should be established (see Fig. 7a), protecting it from solar radiation and wind. If shade is unavailable for the550

scale, measurements should be avoided. Alternatively, a shading protection system like the one shown in Fig. 7c can be used.

Another hole should be dug for storing the snow sampler and auxiliary tools needed for sample preparation to maintain them

at low temperatures. The outer surface of the pit profile should be smoothed, and the bottom should be level to ensure accurate

measurement of the snow height at which the θM
w measurement will be taken.

Following these preparations, the following steps should be followed:555

1. Warm up the water at the temperature of 40 to 50◦C and store it in the insulated bottle;

2. Tare the scale with the calorimeter and the lid with the thermometer on top;
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3. Prepare the hot water inside the calorimeter in a quantity that meets the minimum immersion requirement of the ther-

mometer and is approximately two times the sample mass (annotate it as Mw); If a volume of 200cm3 is used, approxi-

mately 200g of hot water should be used;560

4. Close the calorimeter and wait for the temperature to stabilize;

5. Record the temperature Tw. It should be around 40◦C;

6. Tare the scale with the calorimeter and hot water (otherwise the uncertainty of the two measurements must be propagated

through Eq.(7)).

7. Retrieve the snow sampler from the shaded hole and collect a snow sample from the designated height, ensuring no565

phase changes occur (i.e. take the sample on shade) or any loss;

8. Open the calorimeter and place the snow sample inside. Minimize the time for this step;

9. Gently shake the calorimeter;

10. Weigh the snow mass Ms by placing the calorimeter on the tared scale waiting for the temperature to stabilize;

11. Once the temperature stabilizes, approximately 30 seconds - 1 minute after sample insertion, read the temperature Tf .570

12. Empty and dry the calorimeter for subsequent measurements.

By following this protocol meticulously, the measurement of θM
w in the snowpack can be conducted with the accuracy and

the uncertainty shown in this paper. By using the shared code provided with the paper θM
w and the relative uncertainty can be

derived starting from the measured data.
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(a) (b) (c)

Figure 7. In (a) is reported the essential materials for the melting calorimeter experiment. From left to right: the calorimeter, its thermometer,

the thermos storing the hot water used in the experiment, and the scale for measuring mass placed on a stable plexiglass panel. In (b) is

reported from left to right, the snow cutter, used for sampling the snowpack at the Weissfluhjoch site and the Denomether used during the

measurement campaign. In (c) it is possible to see the measurement configuration in case it is not possible to dig a snow pit deep enough to

protect the calorimeter from wind and solar radiation. However, Measurements under extreme weather conditions are not recommended.

5 Experimental Application of the Melting Calorimeter protocol: θM
w Profiles in the Field575

To assess the performance of the calorimeter in field conditions and refine the measurement protocol, a series of field activities

were conducted. These activities aimed to test the accuracy and reliability of the calorimeter protocol in real snowpack and with

real conditions. The field tests were carried out in Val Senales (Italy) (see Fig. 8b-d) and at the Weissfluhjoch (Swiss) (see Fig.

8c-e) with different melting snowpacks, including different snow densities and liquid water content levels spanning the period

from April to June 2023. To assess the validity of the calorimetric measurements of θM
w , additional measurements of density,580

specific surface area (SSA), stratigraphy, infrared imaging (IR), and θM
w conducted with the Denothmeter (Denoth and Foglar

(1986)) were acquired. The large number of measurements allowed us to fine-tune the operations in the field according to the

protocol and minimize the disturbance caused during sample collection allowing us to compare the different measurements.

5.1 Weissfluhjoch

The field tests performed in Switzerland were carried out at the field site of Weissfluhjoch (2536 m a.s.l.) in the area of Davos585

(Graubünden). In addition to being a high-altitude research station for which there is one of the longest observed time series

in the world (Marty and Meister, 2012). It lies on a wide flat area partially sheltered from wind, the research field is fenced to
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Figure 8. The figure gives an overview of the two sites used for testing the calorimeter. In a) the two sites can be visualized in the Alpine

context, while in b) and c) the Weissfluhjoch and Senales sites can be respectively visualized in the local context. In the end in d) is shown a

picture of the Senales site and in e) is shown a picture of the Weissfluhjoch site.

safeguard the snow surface as much as possible from outside intrusion and disturbance, and finally, two huts are made available

to the operator, providing shelter and tools, as well as electricity, heating and internet connection. These features make the

research field particularly suitable for performing high-level measurement campaigns for various types of snowpacks.590

θM
w measurements carried out at the Weissfluhjoch field site are part of a comprehensive measurement campaign which took

place over the course of the winter season 2022-2023. The measurement campaign started on 14 February and lasted until

16 June 2023. At the beginning of the campaign, the recorded snow height was 108 cm; on the last day of measurements, it

was 50 cm. The maximum recorded snow height during a campaign day was 192 cm. Measurements have been performed

for a total of 36 days of measurements. A wide set of variables was measured (Snow Water Equivalent; profiles of snow595

temperature, density, dielectric constant, Specific Surface Area; snow roughness) using manual, electromagnetic and remote

sensing systems. The vertical resolution of the snow temperature, density, permittivity and Specific Surface Area profiles is

very high: measurements were taken each 10, 4, 3 and 2 cm, respectively.

Figure 9 describes the state of the snowpack at the field site of Weissfluhjoch through some properties sampled with vertical

profiles on the day of 22 May 2023. The measurements started at 08:00 Local Time (LT) in the morning underneath an600
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Figure 9. Snow profile at Weissfluhjoch on 22 May 2023. Panel (a) shows the volumetric θM
w profile sampled every 5 cm with the melting

calorimeter and its associated uncertainty computed with Eqs. (3) and (8). Panel (b) shows θM
w profile sampled every 2 cm with the De-

nothmeter. Panel (c) shows the snow density sampled every 3 cm with the snowcutter. Panel (d) shows the Specific Surface Area profile

sampled every 4 cm with the SLF InfraSnow sensor. Panel (e) is the co-registered Near Infra-Red picture on a greyscale taken on the same

day before starting the measurements: different reflectance values in the picture identify differences in optical equivalent grain size. Layers

are indicated according to the wetness, whereas acronyms refer to the official classification of snow on the ground (Fierz et al., 2009): MF

refer to melt forms, RG to rounded grains, DH to depth hoar. On the panels, bullet points represent measurements, lines connecting them are

linear interpolations, grey lines represent the position of the ice lenses as visually detected in the field.

overcast sky. The measured air temperature was 7 ◦C and a negligible wind was blowing from North at a speed of 1 kmh−1.

The height of the snowpack was 164 cm, the surface was smooth, and no new snow had fallen in the previous 24 hours. The

temperature profile sampled every 10 cm from top to bottom showed that the snowpack was fully isothermal. The Near Infra-

Red (NIR) photograph reported in Figure 9e illustrates quite a complex snowpack stratigraphy on that day, which along with

the stratigraphic observations helps to get a qualitative idea about general conditions and local peculiarities. It is important to605

notice that even though the NIR image was aligned with θM
w and density profiles through a rigorous co-registration procedure,

ensuring that the meterstick depicted in the middle of the images aligns with the y-axis of the plots, the stratigraphic features

of the snowpack and the vertical profiles shown in Fig. 9 were sampled one next to each other along an approximately 2-meters
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wide wall. Given the irregularity of the layers, the location of the ice lenses recorded in the field and shown in Fig. 9 does not

match perfectly with the NIR image.610

Figure 9e is annotated with qualitative comments about the state of the snowpack on the measurement day, in terms of

wetness, layers and types of grains. Surface melt was observed on the superficial layer, blocked by a layer of transformed

snow. Between H=124 cm and H=121 cm, the first ice lens was observed. Between the first ice lens and the upper transformed

layer, the snow seemed drier than on the surface. Other dry layers were observed until H=98 cm, spaced out by two more ice

lenses. Just below the last ice lens the snow seemed dry, but it was observed to become wetter towards the ground. Finally, water615

runoff was found on the bottom of the snow pit. Figure 9(a) and 9(b) show θM
w sampled with the melting calorimeter and with

the Denoth every 5 and 2 cm, respectively; Fig. 9(c) shows the snowpack density sampled every 3 cm with the snowcutter; Fig.

9(d) shows the Specific Surface Area (SSA) sampled every 4 cm by means of the SLF InfraSnow sensor (FPGA Company).

Surface melt is captured by both the calorimeter and the Denoth, although θM
w on the surface measured with the calorimeter

is notably higher. The layer of transformed snow is highlighted by θM
w values between 4 and 5% by both the calorimeter and620

the Denoth, which basically agree considering the possible natural variations. Ice lenses are characterized by drops in θM
w

values (this is particularly well observed with the Denoth because of its higher measurement vertical resolution) and a locally

higher density. Ice lenses are observed to block the drainage of θM
w to the bottom: in between ice lenses the snow is drier and

characterized by a drop in θM
w which can be observed with both the calorimeter and the Denoth (Fig. 9(a) and 9(b)), a local

decrease in density (Fig. 9(c)) and a local increase in SSA, which increases with smaller and drier grains (Fig. 9(d)).625

Figure 9(a) shows a very high θM
w value at 87 cm from the bottom. As can be qualitatively observed from the NIR picture

in Fig. 9(e), that height coincided with an extremely wet layer of snow. This was well captured by the calorimeter and can be

confirmed by the fact that at that height the highest snow density and SSA were recorded (Fig. 9(c) and 9(d), respectively).

Interestingly, despite the high vertical resolution of the measurements, the Denoth seemingly did not identify this wet layer.

This can also be due to a very localized point of water saturation. Finally, θM
w values measured by both the calorimeter and the630

Denoth show that from H=87 cm to the bottom, the snowpack is releasing meltwater: from close to zero, values increase to 2

and 10% at the bottom, respectively. The release of water can also be observed as a gradual decrease of snow density below

the highest value measured at H=87 cm and, qualitatively, in a gradual decrease of SSA. This detailed analysis that compares

the stratigraphic profile, density profiles, and the liquid water content profiles reveals how these complementary data sources

provide a comprehensive picture of the snowpack conditions.635

We compared the Denothmeter measurements with the melting calorimetry measurements, particularly in non-saturated

layers where we saw that the Denothmeter underestimates θw (Perla, 1991). Following the procedure outlined in Boyne and

Fisk (1987), we analyzed the 16 measurements where both instruments sampled the same LWC conditions for the profile of

Fig. 9 i.e., leaving out the measurement at H=87 and H=0 cm. The results showed a mean difference of 0.96% and a standard

deviation of 1% between the two methods (please consider that the setup for this experiment was not meant to sample in the640

exact same place with the two techniques). Nonetheless, these values are mostly in agreement with the values of the original

paper by Boyne and Fisk (1987) i.e. 0.35 and 1.13% when comparing alcohol calorimeter and Denothmeter. This supports our

analysis that the melting calorimeter, if correctly used, can provide results indirectly comparable to the freezing calorimeter
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and also dilution, since the main conclusion of the paper by (Fisk, 1986) is that the “four techniques - freezing and melting

calorimetry, dilution and Denothmeter - are equivalent”.645

Finally, it is interesting to note that applying the original formulation by Kawashima et al. (1998) implies an overestimation

of LWC by about 3.5% on average compared to using the calorimetric constant, and a larger uncertainty estimation of more

than 1%.

5.2 Schnalstal

The Italian test site is located in Schnalstal, in South Tyrol. This site has been chosen because the high altitude (∼3000m)650

guarantees the presence of abundant snow and a long-lasting melting season, and it is well-served by lifts and roads, making it

easy to access.

The snowpack at the Schnalstal field site, with a height of 79 cm, was profiled on 7 June 2023, at 12:30 LT. During the

measurements, the air temperature stood at 1.8 ◦C, and there was negligible wind speed, ensuring relatively stable conditions

for the assessment. The snowpack structure was as follows: from the surface down to 65 cm, a layer of recent snow was655

observed, which had undergone wetting due to temperature and solar radiation, which were relatively high that day. The

subsequent layer, spanning from 65 cm to 57 cm, contained three prominent ice lenses. Notably, a significant amount of θw

was trapped within this layer, contributing to its distinctive characteristics.

Continuing downwards, the layer from 57 cm to the base at 0 cm was characterized by coarse snow crystals with size from

1 to 2 mm, exhibiting lower water retention capability. Importantly, there was no noticeable θM
w presence within this layer.660

However, the lowermost 20 cm of the snowpack presented some noticeable challenges. This section displayed loose and coarse

crystals, leading to difficulties in proper sampling and ensuring optimal coupling between the Denoth instrument and the snow.

Consequently, these lower 20 cm were excluded from the subsequent analysis to ensure data accuracy and reliability.

Figure 10 (a) depicts the volumetric liquid water content (θM
w ) profile, measured with the melting calorimeter technique,

along with its corresponding uncertainty, as computed using Eqs. (3) and (8). Panel (b) of the figure portrays θw profile derived665

from Denoth measurements. Panel (c) showcases the snow density associated with the measurement points obtained from the

calorimeter. These profiles collectively provide valuable insights into the internal structure of the snowpack and its distribution

of liquid water. Specifically, the θw profile reflects the typical conditions in 2023 of the European alpine snowpacks, where

ice lenses were often present. Despite a significant amount of snowfall occurring in spring, the melting process was hindered

by the presence of these ice lenses, impeding the transport of water to the ground. We can notice how the Denothmeter un-670

derestimates the superficial θw as for WFJ. Finally, to verify the consistency of our measurements, we repeated a subset of

profile measurements at very close distances. These repeated measurements yielded very similar θw values inside the uncer-

tainty range, demonstrating the good stability of the melting calorimetry technique and the minimal influence of proper sample

handling.
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Figure 10. Snow profile at Schnalstal on 7 June 2023. Panel (a) displays θM
w profile generated using the melting calorimeter, including its

associated uncertainty calculated through Eq. (3). Panel (b) exhibits the θw profile sampled with the Denoth. Panel (c) illustrates the snow

density associated with the calorimeter measurement points. In panel (d) it is reported a scheme of the profile since for that site no IR photos

were available.

6 Discussion675

The primary objective of this study was to provide a rigorous exposition of the melting calorimetric technique for estimating

liquid water content. The literature outlines two calorimetric approaches used for the estimation of θw. Prior to our paper,

a rigorous mathematical analysis by Colbeck (1978) argued against the use of melting calorimetry, a concept that echoed in

subsequent works, thus becoming widely accepted. We have clarified and expanded upon Colbeck’s findings, demonstrating

unequivocally that the two techniques are comparable in terms of accuracy. While freezing calorimetry still holds an edge,680

particularly considering instrumental uncertainty alone, our analysis serves to dismiss the melting calorimeter accusations. The

additional sources of uncertainties that stem from the challenging operational conditions of using a freezing calorimeter still

require further investigation but might result in large uncertainty especially when used by inexperienced operators (Fisk, 1986).

However, the melting calorimetry reputation for inaccuracy is partially justified by limitations in its mathematical modeling

and uncertainty analysis. Building new concepts upon these unconsolidated works leads to the propagation of errors that may685

hinder the advancement of liquid water content measurement techniques. We therefore found it necessary to invest significant

effort in thoroughly analyzing all available material.

We present the correct formulations i.e., Eq. (3) and Eq.(6) for both melting and freezing calorimeters, respectively expressed

in %vol and incorporating the calorimetric constant. While the freezing formulation was established upon its introduction

in literature (Jones et al., 1983), the melting formulation lacked compensation for heat exchange within the calorimeter, a690

discrepancy we noted since Yoshida’s initial works and reiterated by Kawashima et al. (1998). This was pointed out from
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the first applications of the melting calorimeter Halliday (1950). The concept of the calorimetric constant, denoted as E,

was initially introduced for freezing calorimeters (Jones et al., 1983; Boyne and Fisk, 1987; Austin, 1990), but had not been

extended to melting calorimetry until a recent study by Fasani et al. (2023). Despite the existence of the calorimetric constant

in literature, various methodologies for its estimation are available, which lead to different implications. We clarify the most695

effective method for estimating the calorimetric constant (E), considering various approaches documented in the literature

and evaluating their impact on uncertainty reduction. The detailed mathematical analysis is provided in Appendix A and

related Python code. Notably, the freezing formulation historically utilized by Jones et al. (1983) emerges as very uncertain,

as corroborated by Austin (1990). Fasani et al. (2023) attempted the estimation of E using artificial wet snow (i.e., adding a

given quantity of water to the snow sample) and inverting Eq. (3). This procedure is the most uncertain and should be avoided.700

We generally doubt the effectiveness of preparing artificial samples as reference samples with a given θw as done in (Fasani

et al., 2023; Kawashima et al., 1998), because the assumption that the added water exchange heat with the whole ice matrix

cannot be always satisfied. Therefore, the selected approach for estimating E in (Fasani et al., 2023), which is characterized

by a significant uncertainty propagation, coupled with strong assumption and non-stringent experimental protocols such as

elevated values of R (as depicted in Fig. 3 the impact of high R on measurement uncertainty is large), yields results impacted705

with noise. This renders the interpretation of the presented results challenging and subject to dispute. The impression is that

the manner in which water is added to the snow samples, introduces a systematic bias, varying with the amount added to which

a large uncertainty is added (see Fig. 5 of the original paper).

We introduce a correct formulation for estimating volume measurement uncertainty according to the GUM (IEC et al.,

1993), emphasizing its importance for facilitating comparisons between measurements, accounting not only for instrument710

uncertainty but also for variations in measurement setups, such as the value of R or the initial water temperature. While the

error propagation method proposed by Jones et al. (1983) aligns with our approach (and leads to similar results when expressed

in sum of absolute uncertainty per mass), the Kawashima et al. (1998) formulation for melting calorimeters relies on erroneous

approximations. Specifically, the transition from eq. 3 to eq. 4 of the original paper lacks clarity regarding the underlying

approximation. Moreover, the assumption to maintain constant the final temperature for all the θw cases to simplify eq. 4 to715

eq. 7 (of the original paper) is invalid since the final temperature inherently depends on θw. Consequently, Fig.3 of the original

paper misrepresents the uncertainty of the melting calorimeter, even mathematically correct.

Colbeck (1978) asserts that the melting calorimeter is “inherently inaccurate”, a notion echoed by the numerous subsequent

studies. However, our analysis, detailed in Appendix B and provided in form of codes, demonstrates that this assertion is

not completely true. By calculating the relative uncertainties of ice and water volumes and translating them into absolute720

uncertainty of θw, we refine and extend Colbeck’s reasoning in section 3.1 of our paper, yielding Figure 2. This mathematical

refinement, occurring 45 years after Colbeck’s original paper, fundamentally alters the prevailing understanding. We now

know that the melting calorimeter, an indirect measurement of θw, is not inherently inaccurate, a significant breakthrough

that we believe researchers in the field will appreciate. Moreover, our findings indicate that the performance of the melting

calorimeter is comparable to the Denothmeter under certain circumstances, which was validated against freezing calorimetric725

measurements. This challenges the general notion propagated by Linlor (1975) of the melting calorimeter overestimation
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compared to freezing methods, which at this point should be possibly attributed to the missed calorimetric constant. This

insight could be leveraged in (Webb et al., 2022), and related datasets, which at the moment show a bias similar to our WFJ

measurements when the calorimetry compensation is not applied.

Leveraging our proposed formulation, we have developed and validated a field protocol for measuring liquid water content730

using the melting calorimeter. This formulation allows us to analytically track how uncertainties from the instrument, operators,

and environment propagate to the final θw value. While some steps of the field protocol may resemble those in Kawashima et al.

(1998), their approach lacked a correct theoretical foundation as discussed before. Our analysis provides guidance on various

aspects, including calorimeter design, hot water temperature and mass relative to the snow sample, and the optimal sample

volume considering liquid water distribution within the snowpack. To our knowledge, this is the first attempt to quantify random735

uncertainty related to environmental and operator variability. While the limitations of the available instrument prevented a fully

comprehensive uncertainty analysis, we believe that we pave the way for investigating the impact of operator variability on θw

measurements remains an intriguing topic for future research and development.

Sample handling during extraction from the snowpack remains a key source of uncertainty. Mechanical shocks, contact with

sampler material, large temperature difference from the snow and air, and shading from solar radiation during extraction can740

all generate liquid water. Additionally, the impact of potentially prolonged pit exposure, a necessity for obtaining spatially

detailed liquid water content profiles for deep snowpack, on water transport within the snowpack remains an open question.

While our primary focus here is on the melting calorimeter accuracy for field-based θw measurements, and not its application

in water transport studies, the results suggest that following the protocol strictly, including measures like shading the pit from

solar radiation, can mitigate this issue and provide important information about water transport inside the snowpack. Further745

investigation is anyway require to properly assess the influence of pit exposure.

In a field comparison at the Italian and Swiss sites, we measured liquid water content using both the melting calorimeter

and the Denothmeter. By comparing our findings with results from Boyne and Fisk (1987) (which compared the freezing

calorimeter, alcohol calorimeter, dilution technique, and Denothmeter), we established that our novel formulation for the melt-

ing calorimeter yields results indirectly comparable to the established freezing and dilution methods. This finding validates our750

approach and strengthens the case for the melting calorimeter as a reliable measurement tool. The obtained liquid water profiles

of Figures 9 and 10 corroborate the observations in (Perla, 1991) that the Denothmeter provides accurate measurements for low

liquid water content θw – typically below 5− 8% the uncertainty is between 0.5− 1% – but underestimates θw in very wet or

soaked snow. The melting calorimeter, when employed with the proposed formulation, has the potential to expand the already

substantial data set established by (Perla, 1991). This expanded data set could be instrumental in refining the calibration of755

the relationship between wet snow dielectric constant and θw, potentially leading to a clearer understanding of the physical

factors that limit the unique determination of water content through dielectric measurements (Picard et al., 2022; Colbeck,

1980; Camp, 1992).

Finally, we have made available all the codes necessary for calculating θw and its associated uncertainty based on the

measured variables. Additionally, we offer the complete set of codes required to reproduce the results presented in our pa-760

per. This transparency ensures the reproducibility and verifiability of our findings, enabling fellow researchers to validate our
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methodology and build upon our work with confidence. Crucially, with the provided methodology and codes, each calorimetric

measurements can be provided alongside its associated uncertainty, which is calculated to account for variations in measure-

ment setups, which transcend subjective interpretation. We advocate for this practice to become the standard for all future

measurements, as it ensures transparency and robustness in data interpretation. By adhering to such standards, researchers765

can enhance the reliability and comparability of their findings, ultimately advancing the field of θw estimation. We believe

that sharing such resources promotes collaboration and accelerates progress in the field, avoiding misunderstanding based on

subjective, incomplete, or even wrong reasoning.

7 Conclusions

The potential of melting calorimetry for measuring snow liquid water content has long been overshadowed by misconceptions770

about its accuracy.

This paper, challenged this perception by comparing the melting and freezing calorimetry techniques, focusing on their

applicability for measurements in the field. While freezing calorimetry still holds an edge, our findings indicated that the

measurements obtained using the melting calorimeter are still accurate enough for a meaningful analysis of liquid water content

in the snowpack, offering at the same time notable practical advantages. To support our claims, we had thoroughly examined775

and propagated uncertainties, encompassing not only instrumental factors but also variations arising from the operational

procedures and environmental conditions. As a result, we devised a field protocol that effectively minimizes these uncertainties.

The protocol includes specific instructions on the amount of hot water to be used, its temperature, the size of the calorimeter, the

masses involved, and other crucial details for controlling the uncertainty during the experiment replication. This protocol was

applied in two different test sites in Italy and Switzerland by two different research groups with different melting calorimeters.780

The results, compared to independent measurements of dielectric constant of the snow, showed how the application of the

proposed protocol to the melting calorimeteric measurements is able to properly track the wet front penetration inside the

snowpack in an accurate way.

In conclusion, this research promotes the wider adoption of melting calorimetry as a reliable field tool for quantifying liquid

water content in snowpacks. This capability offers significant advantages for calibrating or validating new and potentially785

non-destructive methods based on electromagnetic interactions with wet snow.

Code and data availability. The code to calculate θw and its uncertainty from the melting calorimetry analysis will be made available along

with the code for generating the figures in the paper in a dedicated GitLab of the Snowtinel project.

Appendix A

In order to derive the calorimetric constant E, if information regarding the material and mass of the calorimeter cannot be790

obtained, the heat-balance principle can be applied. In the literature, the calorimeter constant was determined using a basic
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heat-balance principle (Jones et al. (1983); Austin (1990)). When warm fluid is mixed with cold fluid in the calorimeter bottle,

the heat lost by the warm fluid must be equal to the heat gained by the cold fluid and the bottle itself.

For the case of water, the heat-balance equation is given by:

Qhot water︸ ︷︷ ︸
MwC(Tf −Tw)

+ Qcold water︸ ︷︷ ︸
McwC(Tf −Tcw)

+ Qcalorimeter︸ ︷︷ ︸
McwCcal(Tf −Tcw)

= 0 (A1)795

Therefore we can obtain the calorimetric constant expresed in equivalent water mass as follows

E =
Mw(Tf −Tw)
(Tcw −Tf )

−Mcw (A2)

In this equation, Mw and Tw represent the mass and temperature of the hot water, while Mcw and Tcw represent the mass

and temperature of the cold water, respectively. By analyzing the uncertainty propagation of the measurements on E with the

same approach presented in 3.1 we can retrieve the uncertainty on the estimation of E, σE :800

σE =

√(
∂E

∂Mw

)2

σ2
Mw

+
(

∂E

∂Mcw

)2

σ2
Mcw

+
(

∂E

∂Tw

)2

σ2
Tw

+
(

∂E

∂Tf

)2

σ2
Tf

+
(

∂E

∂Tcw

)2

σ2
Tcw

(A3)

The partial derivatives in Eq. (A3) are calculated as follows:

∂E

∂Mw
=

Tf −Tw

Tcw −Tf
(A4)

∂E

∂Mcw
=−1 (A5)

∂E

∂Tw
=− Mw

Tcw −Tf
(A6)805

∂E

∂Tf
=

Mw(Tcw −Tf ) +Mw(Tf −Tw)
(Tcw −Tf )2

(A7)

∂E

∂Tcw
=−Mw

Tf −Tw

(Tcw −Tf )2
(A8)

It becomes evident that σE is strongly related to the difference Tf −Tcw, which should be maximized. To achieve this,

we aim to maximize the difference between Tcw and Th, while minimizing Mcw. However, in a hypothetical scenario with
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Mcw = 5 g, Mw = 495 g, Tcw = 273K, Tw = 373K, and E = 6.58 g, the uncertainty σE associated with E is equal to 2.6 g,810

which is approximately 1
3 of the value of E. Realistically, this experiment is challenging to conduct, primarily because it would

be extremely difficult to maintain thermal equilibrium for 5 g of water with the internal wall. This was also recongized in

Austin (1990).

An alternative way for estimating the calorimetric constant E is discussed in Fasani et al. (2023). Here the parameter E is re-

trieved using the same energy balance as in Eq. 1, and in detail inverting Eq. 3 expliciting E as a function of θM
w . This approach815

requires the employment of wet snow samples with known liquid water content, with all the relative associated difficulties in

controlling the process. We present here the analysis on the uncertainty σE associated to the parameter E following the same

approach as in Eq. 3.1. In detail, by inverting Eq. 3, we can obtain E as:

E =
(Tf −Ts)Ms + L

C (Ms− θM
w Vsρw)

Tw −Tf
−Mw (A9)

By analyzing the uncertainty propagation of the measurements on E with the same approach presented in 3.1 we can retrieve820

the uncertainty on the estimation of E, σE :

σE =

√(
∂E

∂Tf

)2

σ2
Tf

+
(

∂E

∂Tw

)2

σ2
Tw

+
(

∂E

∂Ms

)2

σ2
Ms

+
(

∂E

∂θM
w

)2

σ2
θM

w
+
(

∂E

∂Vs

)2

σ2
Vs

+
(

∂E

∂Mw

)2

σ2
Mw

(A10)

The partial derivatives in Eq. (A10) are calculated as follows:

∂E

∂Tf
=

Ms(Tw −Ts) + L
C (Ms− θM

w Vsρw)
(Tw −Tf )2

(A11)

∂E

∂Tw
=−Ms(Tf −Ts) + L

C (Ms− θM
w Vsρw)

(Tw −Tf )2
(A12)825

∂E

∂Ms
=

Tf −Ts

Tw −Tf
+

L

C(Tw −Tf )
(A13)

∂E

∂θM
w

=− VsρwL

C(Tw −Tf )
(A14)

∂E

∂Vs
=− θM

w ρwL

C(Tw −Tf )
(A15)

∂E

∂Mw
=−1 (A16)
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It is evident that σE is strongly related to the difference Tf −Tw, which should be maximized. However, in a hypothetical830

scenario with Mw = 167 g, Ms = 83 g, Tw = 313K, the uncertainty σE associated with E is equal to 4.87 g, which is more

than 2
3 of the value of E, here set to 6.58 g.

A possible mitigation for the large error associated to the estimation of E, it is to use hot water and ice instead of water at

different temperatures. However, it is again important to use the propagation of uncertainty to find how uncertainty is such kind

of measurment of E. For the ice-water case, the heat-balance equation to retrieve E becomes:835

Qhot water︸ ︷︷ ︸
MwC(Tf −Tw)

+ Qcalorimeter︸ ︷︷ ︸
McalCcal(Tf −Tw)

+Qmelting ice︸ ︷︷ ︸
LMi

+ Qmelted ice︸ ︷︷ ︸
MiC(Tf −Tmi)

= 0 (A17)

From where we can derive E as follow:

E =
Mi(CiTi−L−Tf )

C(Tf −Tw)
−Mw (A18)

Here, Mi and Ti represent the mass and temperature of ice, while Mw and Tw represent the mass and temperature of hot

water. Tmi instead is the temperature of the water coming from the melted ice cube, and it is equal to 273.15 K. Also for this840

case we can propagate the measurements uncertainty and find the associated σE

σE =

√(
∂E

∂Mi

)2

σ2
Mi

+
(

∂E

∂Mh

)2

σ2
Mh

+
(

∂E

∂Th

)2

σ2
Th

+
(

∂E

∂Tf

)2

σ2
Tf

+
(

∂E

∂Ti

)2

σ2
Ti

(A19)

The partial derivatives in Eq. (A19) are calculated as follows:

∂E

∂Mi
=

CiTi−L−CTf

C(Tf −Th)
(A20)

∂E

∂Mh
=−1 (A21)845

∂E

∂Th
=

Mi(CiTi−L−CTf )
C(Tf −Tw)2

(A22)

∂E

∂Tf
=
−CMi(Tf −Th)−Mi(CiTi−L−CTf )

C(Tf −Tw)2
(A23)

∂E

∂Ti
=

MiCi

C(Tf −Tw)
(A24)
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Analyzing the error for this case, we observe that it is strongly influenced by the difference between Tf and Tw. In a

hypothetical scenario with Mh = 300g, Mi = 200g, Th = 373K, Ti = 244.5K, and E = 6.58g, the uncertainty σE associated850

with E is equal to 1.6 g, which is approximately 1
4 of the value of E. This is still an high uncertainty, but unlike the water-water

case, this experiment does not suffer from the same limitations. Hence, if it is impossible to retrieve the exact mass and specific

heat of the calorimeter, the best way to estimate E would be using hot water and ice. It is important to note that for both cases,

using ice and water at extreme temperatures would lead to noticeable heat dispersion in a short amount of time, making it

challenging to obtain exact temperature measurements.855

Because of these reasons we destructively analyzed our calorimeters to estimate E using Eq. (2). Fortunately this process

has to be done once, and other users can use E provided in the paper i.e., E = 6.58g given that they use the same calorimeter.

Appendix B

In this Appendix, we will show all the formulations partly presented in (Colbeck, 1978) that allows us to prove that the relative

uncertainty produced by the melting calorimeter on the estimation of the ice volume is one order of magnitude lower than860

the relative uncertainty produced by the freezing calorimeter on the water volume. With this mathematical step we unlock the

melting calorimeter for being “inherently inaccurate".

We compute the relative uncertainty produced by the melting calorimeter on the estimation of the ice volume starting from

Eq. (3) in the main paper, written in terms of Vi:

Vi =
C

ρiL
[Mw(Tw −Tf )−Ms(Tf −Ts)] (B1)865

Note that we do not account for E to be consistent with the Colbeck’s formulation. Hence, we compute the partial derivatives

for each of the measured variables, by assuming k = C
L :





∂Vi

∂Tw
=

k

ρi
Mw

∂Vi

∂Tf
=− k

ρi
(Mw + Ms)

∂Vi

∂Mw
=

k

ρi
(Tw −Tf )

∂Vi

∂Ms
=− k

ρi
(Tf −Ts)

(B2)

and calculate the relative uncertainty ΣVi
as sum of each term:

ΣVi =
∣∣∣∣
∂Vi

∂Tw

∣∣∣∣
∣∣∣∣
Tw

Vi

∣∣∣∣
∣∣∣∣
dT

Tw

∣∣∣∣+
∣∣∣∣
∂Vi

∂Tf

∣∣∣∣
∣∣∣∣
Tf

Vi

∣∣∣∣
∣∣∣∣
dT

Tf

∣∣∣∣+
∣∣∣∣

∂Vi

∂Mw

∣∣∣∣
∣∣∣∣
Mw

Vi

∣∣∣∣
∣∣∣∣
dT

Mw

∣∣∣∣+
∣∣∣∣

∂Vi

∂Ms

∣∣∣∣
∣∣∣∣
Ms

Vi

∣∣∣∣
∣∣∣∣
dT

Ms

∣∣∣∣ (B3)870

By simplifying, we obtain:

ΣVi
=
∣∣∣∣
∂Vi

∂Tw

∣∣∣∣
∣∣∣∣
dT

Vi

∣∣∣∣+
∣∣∣∣
∂Vi

∂Tf

∣∣∣∣
∣∣∣∣
dT

Vi

∣∣∣∣+
∣∣∣∣

∂Vi

∂Mw

∣∣∣∣
∣∣∣∣
dM

Vi

∣∣∣∣+
∣∣∣∣

∂Vi

∂Ms

∣∣∣∣
∣∣∣∣
dM

Vi

∣∣∣∣ (B4)
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Table B1. Variable values used for the computation of the relative uncertainty produced by the melting calorimeter on the estimation of the

ice volume.

Variable Value Unit

C 4.2 ·103 Jkg−1 K−1

L 3.34 ·105 Jkg−1

ρi 917 kgm−3

Mw 1.067 kg

Tw 313.15 K

Tf 277.04 K

Ms 0.5335 kg

Ts 273.15 K

By considering the values reported in Table B1, we obtain ΣVi
= 0.007426m3. The values in the table are obtained by

considering a snow sample with Mw = 2 ·Ms, Vs = 10−3m3, Vi = 500 · 10−6m3, Vi = 75 · 10−6m3 and Va = 425 · 10−6m3.

Similarly, for the freeezing calorimeter we can compute the relative uncertainty on the estimation of the water volume875

starting from the equation of Jones, Eq. (6) in the main paper, written in terms of VW :

Vw =
MoCo(Tfo−To) +MsCs(Tfo−Ts)

ρwL
(B5)

Hence, we compute the partial derivatives for each of the measured variables, by assuming k = C
L :





∂Vw

∂To
=−MoCo

ρwL

∂Vw

∂Tfo
=

MoCo + MsCs

ρwL

∂Vw

∂Mo
=

Co(Tfo−To)
ρwL

∂Vw

∂Ms
=

Cs(Tfo−Ts)
ρwL

(B6)

and calculate the relative uncertainty ΣVw as sum of each term:880

ΣVw
=
∣∣∣∣
∂Vw

∂To
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∣∣∣∣
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∣∣∣∣ (B7)

By simplifying, we obtain:

ΣVw
=
∣∣∣∣
∂Vw

∂To

∣∣∣∣
∣∣∣∣
dT
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∣∣∣∣
∣∣∣∣
dT

Vw

∣∣∣∣+
∣∣∣∣
∂Vw

∂Mo
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dM
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∣∣∣∣+
∣∣∣∣
∂Vw

∂Ms

∣∣∣∣
∣∣∣∣
dM
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∣∣∣∣ (B8)

dM and dT are the instrumental uncertainties and are fixed to 10−4 g and 0.1 K respectively. By considering the values

reported in Table B2, we obtain ΣVw = 0.014809m3 that results twice the error ΣVi calculated for the melting calorimeter.885
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Table B2. Variable values used for the computation of the relative uncertainty produced by the freezing calorimeter on the estimation of the

water volume.

Variable Value Unit

Co 1.83 ·103 Jkg−1 K−1

Cs 2.09 ·103 Jkg−1 K−1

L 3.34 ·105 Jkg−1

ρw 1000 kgm−3

Mo 0.69355 kg

To 243.15 K

Tfo 267.69 K

Ms 0.5335 kg

Ts 273.15 K

The values in the table are obtained by considering a snow sample with Mo = 1.3 ·Ms, Vs = 10−3m3, Vi = 500 · 10−6m3,

Vi = 75 · 10−6m3 and Va = 425 · 10−6m3.
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