Juan A. Añel¹, Petr Šácha¹ and Laura de la Torre¹

j.anhel@uvigo.es

EPhysLab

¹Ourense, Spain

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Overview

Some methods used to evaluate tropical width

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

- SSTs
- subtropical jet stream/barriers
- tropopause height with 'artificial' thresholds -
- surface winds
- o outgoing IR radiation maximum at subtropics
- precipitation-evaporation difference
- [O₃] change tropics-subtropics

- Overview

Birner et al.(2014) adapted from IPCC AR5

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

- Overview

Problems assessing tropical width

- Some methodologies can only be applied to a given subset
- Some variables are very poor from models limiting future projections
- Most of them depend on randomly chosen threshold values
- Tropical widening is a problem more complex that getting a single 2D perspective

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Overview

Global Distribution of Potential Vorticity at the tropopause level

FIG. 1. Potential vorticity on the 320-K isentropic surface at 0000 GMT 15 February 1994, in lat-long projection for the Northern Hernisphere. Isolines are plotted every I PVU. Field produced by Dr. P. van Veithoven, using analyzed data from the European Centre for Medium-Range Weather Forecasts.

FIG. 2. Potential vorticity (in PVU) for the case of Fig. 1 plotted as a function of the area that is covered by potential vorticity values that are larger than the value at hand. Area is expressed as equivalent latitude, i.e., the latitude of a zonally symmetric contour enclosing the same area.

Ambaum M. (1997), Isentropic Formation of the Tropopause, J. Atmos. Sci., 54, 555-568.

Dac

Data & Methodology

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日</p>

Data & Methodology

Data & Methodology

- Analysis of the pressure leveles between 500 and 50 hPa.
- Datasets used: WACCM, WACCM UTLS, ERA-INTERIM, JRA55, NCEP2, MERRA

	N levels 500-50 hPa	Horizontal grid
WACCM	14	1.9×2.5
WACCM UTLS	40	1.9×2.5
ERA-INTERIM	14	0.5×0.5
JRA55	14	1.25×1.25
MERRA	11	1.25×1.25
NCEP2	9	2.5×2.5

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Data & Methodology

Data & Methodology

• θ is computed for each grid point

$$\theta(\lambda, \phi, p, t) = T(\lambda, \phi, p, t) \cdot (p_0/p)^{(R/c_p)}$$

- u, v and z fields are interpoled to the θ levels interesting for our study (from 340K to 420K)
- \circ the isentropic relative vorticity of the air $\xi_{ heta}$ is computed
- then we have the absolute vorticity
- $d\theta/dp$ is computed and then interpoled to isentropic levels.
- PV is computed

$$PV(\lambda, \phi, \theta, t) = -g \cdot (\xi_{\theta} + f) \cdot (d\theta/dp)$$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

- the PV field is interpoled to the desired values (1.6, 2, 3, 3.5, 4, 5, 6 PVU and the subsequent for the Southern Hemisphere).
- ϕ_e is computed

Data & Methodology

Añel et al. (2013) Equivalent Latitude Computation Using Regions of Interest (ROI). PLoS ONE 8(9): e72970

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Data & Methodology

Period of study:

WACCM — 1979-2006 WACCM-UTLS — 1979-2006 ERA-INTERIM — 1979-2013 JRA55 — 1979-2013 MERRA — 1979-2013 NCEP2 — 1979-2013

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

ϕ_e trend (degrees/decade) averaged for 340 K, 350 K and 360 K. Positive trends: northward displacement; negative trends: southward displacements

	WACCM	WACCM-UTLS	ERA-Interim	MERRA	NCEP2	JRA-55
-6.0	$-0,27\pm0,11$	- 0.04 ±0,17	- 0.17 ±0,14	0.02±0,13	0.72 ±0,12	0.06 ±0,16
-5.0	$-0,27 \pm 0,09$	0.00 ±0,17	0.08±0,11	0.14±0,10	0.66±0,10	0.15 ±0,11
-4.0	$-0,24\pm0,08$	0.05 ±0,18	- 0.04 ±0,11	- 0.21 ±0,07	- 0.04 ±0,05	- 0.05 ±0,06
-3.5	$-0,\!23\pm0,\!08$	0.06 ±0,18	0.19 ±0,16	0.09 ±0,08	0.87 ±0,11	0.15 ±0,11
-3.0	$-0,21 \pm 0,09$	0.05±0,17	- 0.04 ±0,08	0.00±0,04	- 0.84 ±0,10	- 0.19 ±0,08
-2.0	$-0,24\pm0,10$	- 0.01 ±0,18	0.00 ±0,08	0.06±0,05	- 0.41 ±0,08	- 0.05 ±0,09
-1.6	$-0,29 \pm 0,12$	- 0.08 ±0,21	0.04±0,10	0.16 ±0,07	- 0.16 ±0,08	0.05±0,09
1.6	$0,38\pm0,13$	0.25 ±0,17	0.41 ±0,12	0.45 ±0,12	- 0.01 ±0,09	0.23 ±0,09
2.0	$0,31\pm0,11$	0.23±0,15	- 0.27 ±0,15	0.05±0,14	0.76 ±0,12	0.00±0,14
3.0	$0,19\pm0,09$	0.13 ±0,11	0.13 ±0,09	0.02±0,09	0.47±0,10	0.10 ±0,09
3.5	$0,15\pm0,08$	0.10 ±0,10	- 0.43 ±0,15	- 0.27 ±0,09	0.10 ±0,07	- 0.20 ±0,10
4.0	$0,12\pm0,08$	0.06±0,09	- 0.04 ±0,13	0.01±0,08	0.59 ±0,07	- 0.02 ±0,07
5.0	$0,17\pm0,09$	0.03 ±0,10	- 0.10 ±0,06	0.03 ±0,04	- 0.60 ±0,08	- 0.17 ±0,06
6.0	$0,23\pm0,12$	0.05±0,12	0.04±0,08	0.17±0,05	- 0.19 ±0,07	0.02±0,07

-PV and θ

996

-PV and θ

WACCM REFB2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Age of Air

Conclusions, future research and open questions

Conclusions

- WACCM gives a clear poleward signal of the movement of the PV field
- Reanalysis give contradictory signals in several cases, but mostly agree for the isentropic levels closer to the tropopause
- The competing phenomena of tropopause rising vs broadening is clear.
- At UTLS levels the latitudinal gradient of AoA seems clear and average days under the mean could be an useful fingerprint

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>