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Abstract. Ground-based soil moisture measurements at the field-scale are highly beneficial for different hydrological applica-

tions including the validation of space-borne soil moisture products, landscape water budgeting or multi-criteria calibration of

rainfall-runoff models from field to catchment scale. Cosmic-ray neutron sensing (CRNS) allows for non-invasive monitoring

of field-scale soil moisture across several hectares around the instrument but only for the first few tens of centimeters of the

soil. Many of these applications require information on soil water dynamics in deeper soil layers. Simple depth-extrapolation5

approaches often used in remote sensing applications may be used to estimate soil moisture in deeper layers based on the

near-surface soil moisture information. However, most approaches require a site-specific calibration using depth-profiles of

in-situ soil moisture data, which are often not available. The soil moisture analytical relationship SMAR is usually also cal-

ibrated to sensor data, but due to the physical meaning of each model parameter, it could be applied without calibration if

all its parameters were known. However, in particular its water loss parameter is difficult to estimate. In this paper, we intro-10

duce and test a simple modification of the SMAR model to estimate the water loss in the second layer based on soil physical

parameters and the surface soil moisture time series. We apply the model with and without calibration at a forest site with

sandy soils. Comparing the model results with in-situ reference measurements down to depths of 450 cm shows that the SMAR

models both with and without modification as well as the calibrated exponential filter approach do not capture the observed

soil moisture dynamics well. While, on average, the latter performs best over different tested scenarios, the performance of the15

SMAR models nevertheless meets a previously used benchmark RMSE of ≤ 0.06 cm3 cm−3 in both, the calibrated original

and uncalibrated modified version. Different transfer functions to derive surface soil moisture from CRNS do not translate

into markedly different results of the depth-extrapolated soil moisture time series simulated with SMAR. Despite the fact that

the soil moisture dynamics are not well represented at our study site using the depth-extrapolation approaches, our modified

SMAR model may provide valuable first estimates of soil moisture in a deeper soil layer derived from surface measurements20

based on stationary and roving CRNS as well as remote sensing products where in-situ data for calibration are not available.

1 Introduction

Soil moisture is a key parameter in the hydrological cycle (e.g., Vereecken et al., 2008, 2014; Seneviratne et al., 2010). It

controls several aspects of the environment such as soil infiltration, runoff dynamics, plant growth and biomass production
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which in turn influence evapotranspiration as well as the climatic conditions on varying spatio-temporal scales (see reviews25

by e.g., Daly and Porporato, 2005; Vereecken et al., 2008; Seneviratne et al., 2010; Wang et al., 2018). Thus, information on

soil water dynamics at the field-scale have great importance for various larger-scale hydrological applications ranging from

landscape water budgeting to multi-criteria calibration approaches in rainfall-runoff modeling. However, due to the high spatio-

temporal variability of soil water content (Famiglietti et al., 2008; Vereecken et al., 2014) which is highest in surface soil layers

(Babaeian et al., 2019), measuring field-scale soil moisture and its dynamics proves difficult based on invasive point-scale soil30

moisture measurement methods as for example reviewed in Vereecken et al. (2014) and Babaeian et al. (2019). For instance,

the installation of electromagnetic point sensors measuring at high temporal resolution would require a very large number of

sensors to obtain a representative field-scale average (Babaeian et al., 2019). Additionally, sensor networks are not always

feasible as agricultural management practices hamper a permanent installation of point sensors (Stevanato et al., 2019). As a

consequence, extensive point sensor networks which allow for the estimation of field-scale soil moisture are often restricted35

to a rather small number of research related monitoring sites such as the Terrestrial Environmental Observatories (TERENO,

www.tereno.net) in Germany (e.g., Zacharias et al., 2011; Bogena et al., 2018; Kiese et al., 2018; Heinrich et al., 2018) or the

International Soil Moisture Monitoring Network (ISMN, Dorigo et al., 2021) covering sites around the globe.

Kodama et al. (1979), Kodama et al. (1985) and Dorman (2004) suggested the potential of naturally occuring secondary

neutrons produced by high-energy cosmic rays for estimating soil and snow water. About a decade ago Zreda et al. (2008);40

Desilets et al. (2010), introduced a methodological framework for soil moisture estimation using cosmic-ray neutrons. The

cosmic-ray neutron sensing (CRNS) approach is a non-invasive geophysical method for estimating representative field-scale

soil moisture (Schrön et al., 2018b) based on the measurement of cosmic-ray neutrons which are inversely related to the amount

of hydrogen in the vicinity of the neutron detector. As soil water is the largest pool of hydrogen in the footprint of the neutron

detector in most terrestrial environments, CRNS allows for the measurement of integrated soil moisture of several hectares45

around the instrument and the first decimetres of the soil (e.g., Zreda et al., 2008; Desilets et al., 2010; Köhli et al., 2015;

Schrön et al., 2017).

Estimating soil moisture using CRNS has a high potential for various hydrological applications, which require soil moisture

observations at the field-scale. Several studies demonstrate the potential of CRNS-derived soil moisture estimates for example

for a comparison with satellite derived soil moisture products, their validation and the improved calibration of environmental50

models (e.g., Holgate et al., 2016; Montzka et al., 2017; Iwema et al., 2017; Duygu and Akyürek, 2019; Dimitrova-Petrova et al.,

2020). Besides stationary CRNS probes for the retrieval of field scale soil moisture time series, roving CRNS-devices have been

successfully used, mapping CRNS-derived surface soil moisture in even larger areas with instruments mounted on vehicles

(e.g., McJannet et al., 2017; Schrön et al., 2018a; Vather et al., 2019) and (Fersch et al., 2018) illustrate potential synergies

between CRNS, airborne radar and in-situ point sensor networks for soil moisture estimation across spatial scales. Due to the55

sensitivity of CRNS to any hydrogen in the measurement footprint, snow monitoring (e.g., Schattan et al., 2017, 2019; Gugerli

et al., 2019), irrigation management (e.g., Li et al., 2019a) as well as biomass estimation (e.g., Baroni and Oswald, 2015; Tian

et al., 2016; Jakobi et al., 2018; Vather et al., 2020) pose further fields of application and are reviewed in Andreasen et al.

(2017).
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Although the large areal footprint of the CRNS-instrument allows estimating field-scale integral soil moisture, the CRNS-60

derived time series lack soil moisture information from greater depths. However, soil moisture at these greater depths becomes

highly relevant as soon as the rooting depth of crops or forest extends past the first decimeters. The maximum rooting depth

and hence, root zone extent as well as root density along the soil profile varies with vegetation type and biome (e.g., Canadell

et al., 1996; Jackson et al., 1996). According to Jackson et al. (1996), on global average across all biomes, the 75 percent of

plant roots occur in the first 40 centimetres of the soil, which would be largely covered by the CRNS. However, the global65

average maximum rooting depth, and thus, root zone depth is about 4.6 m (Canadell et al., 1996) where the rooting depth also

depends on prevailing soil hydrological conditions (Fan et al., 2017). Even grassy vegetation and crops can have rooting depths

of more than 200 cm (Canadell et al., 1996), thus exceeding the measurement depth of CRNS. Deep roots play a significant

role for the water supply of plant ecosystems especially during dry conditions (Canadell et al., 1996) i.e. through hydraulic

redistribution (see e.g., Neumann and Cardon, 2012) or increased root water uptake from deeper soil layers under drought con-70

ditions (Maysonnave et al., 2022). Furthermore, plant species influence infiltration and vertical soil moisture patterns through

species dependent root distributions (e.g. Jost et al., 2012) and horizontal soil moisture patterns through species dependent

evapotranspiration and interception rates (e.g. Schume et al., 2003). Hence, field-scale soil water information from the deeper

vadose zone overcoming these smaller scale heterogeneities can be important for the quantification of water storage variations,

potential influences on vegetation dynamics, matter fluxes and the characterization of the local hydrological cycle.75

Given the importance of soil moisture in the deeper root zone, extending CRNS-measurements to greater depths is of high

importance for broadening the applicability of CRNS for soil water estimations (Peterson et al., 2016). Numerous studies

extrapolate surface soil moisture time series to greater depths using different empirical approaches (e.g., Zhang et al., 2017;

Li and Zhang, 2021) including regression analyses, machine learning techniques or other approaches such as the exponential

filter/soil water index (SWI) (Wagner et al., 1999; Albergel et al., 2008). Few studies address the depth-extrapolation of field-80

scale CRNS-derived soil moisture time series (e.g., Peterson et al., 2016; Zhu et al., 2017; Nguyen et al., 2019; Franz et al.,

2020) to the shallow root zone (approx. 100 cm) by applying and comparing extrapolation approaches with the SWI being

the most commonly used approach (e.g., Peterson et al., 2016; Dimitrova-Petrova et al., 2020; Franz et al., 2020). All these

approaches require reference soil moisture information in the depth of interest to either build an empirical model or calibrate

the depth-extrapolated soil moisture time series. This information may not always be available in sufficient quantity and quality.85

In contrast, the physically-based soil moisture analytical relationship (SMAR) (Manfreda et al., 2014), applied and modified

in recent studies (e.g., Faridani et al., 2017; Baldwin et al., 2017, 2019; Gheybi et al., 2019; Zhuang et al., 2020; Farokhi et al.,

2021), allows for the extrapolation of daily surface soil moisture information to a second, lower soil layer by solely relying on

soil physical information and a water loss term. This method does not require calibration if the environmental parameters are

known.90

Against this background, we investigate the potential to depth-extrapolate daily surface soil moisture time series without

calibration and thus without the need for reference soil moisture information in the depth of interest by applying the SMAR al-

gorithm at a highly instrumented study site in the TERENO-NE observatory located in the lowlands of north-eastern Germany.

While soil physical parameters may be determined from soil samples or directly in-situ, the water loss parameter describing the
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water loss per unit time from the second soil layer is more difficult to estimate. Therefore, we propose a simple modification95

of the SMAR algorithm to estimate the water loss term from soil physical characteristics and from the surface soil moisture

time series. We first compare the standard SMAR that uses a constant, calibrated water loss term (calibrated against in-situ

reference sensors) with the modified, uncalibrated SMAR that uses the estimated water-loss term for different depths of the

second soil layer down to 450 cm. For comparison with the two versions of the SMAR model, we also calibrate the exponential

filter approach (Wagner et al., 1999; Albergel et al., 2008) for the study site.100

Different approaches exist to derive soil moisture from observed neutron signals. The standard approach after Desilets et al.

(2010) is commonly used to derive soil moisture from CRNS but has been found insufficient especially at observation sites

with low soil moisture contents. New approaches include the interdependence of the relationship between neutrons and soil

moisture (Köhli et al., 2021) and report an improved estimation of surface soil moisture with CRNS.

The three depth-extrapolation approaches (SMAR, modified SMAR and exponential filter) are therefore applied using dif-105

ferent surface soil moisture time series, including single point-scale in-situ sensor profiles, averages of the entire in-situ sensor

network and CRNS-derived soil moisture from different neutron-to-soil moisture transfer functions in order to investigate the

performance of the different approaches and if a better CRNS-derived surface soil moisture time series translates into better

estimates of the depth-extrapolated soil moisture.

2 Material and methods110

2.1 Study site

The study site is located in the TERENO-NE observatory (Heinrich et al., 2018) in the young Pleistocene landscape of north-

eastern Germany (Fig. 1). The site hosts the CRNS sensor „Serrahn“ (Bogena et al., 2022). The site has a mean annual

temperature of 8.8◦C and mean annual precipitation of 591 mm per year, measured at the long-term weather station in Waren

(in a distance of approximately 35 km) operated by the German Weather Service (station ID: 5349, period 1981–2010) (DWD115

- German Weather Service, 2020a, b). It is situated on the southern ascent of a glacial terminal moraine formed during the

Pomeranian phase of the Weichselian glaciation in the Pleistocene (Börner, 2015). The dominating soil types in the vicinity of

the sensor are Cambisols formed on aeolian sands with depths down to 450 cm deposited during the Holocene (Rasche et al.,

2023). Continuing downwards, these are followed by deposited glacial till of the terminal moraine, glacio-fluvial sediments and

glacial tills originating from earlier glaciations with the latter forming the aquitarde the upper groundwater aquifer with water120

level depths ranging between 13 and 14 m below the surface (Rasche et al., 2023). A mixed forest dominated by European beech

(Fagus sylvatica) and Scots pine (Pinus sylvestris) is the dominant landcover type. A clearing covered by grassy vegetation can

be found nearby.

In order to calibrate the CRNS sensor, soil samples were taken at different distances around the instrument in February 2019

as shown in Fig. 1. Soil samples were taken in 5 cm depth increments from 0–35 cm using a split tube sampler containing125

sampling rings in order to derive soil moisture, soil physical characteristics, average grain size distributions, soil organic matter

and lattice water from laboratory analyses as shown in Tab. 1. Soil moisture and soil bulk density were determined from oven-
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Figure 1. Location of the study area within Germany (a) and location of the CRNS observation site „Serrahn“ (b) (digital elevation

model: LAIV-MV - State Agency for Interior Administration Mecklenburg-Western Pomerania (2011), land cover: BKG - German Fed-

eral Agency for Cartography and Geodesy (2018)).

drying at 105◦C for 12 h and gravimetric analyses of all individual soil samples. Subsequent loss-on-ignition analyses at 550

and 1000◦C with a duration of 24 h were used to determine the amount of soil organic matter and lattice water from bulk

samples per depth assuming that no inorganic carbon is present in the acidic aeolian sands. Soil porosity was estimated based130

on the material density of quartz (2.65 g cm−3) and corrected for the amount of soil organic matter based on the density of

cellulose (1.5 g cm−3).

In addition to the stationary CRNS instrument, the study site is equipped with a groundwater observation well, a weather

station and a network of in-situ point-scale soil moisture sensor profiles (type SMT100; Truebner GmbH, Germany). A total

of 59 in-situ soil moisture sensors is deployed in depths down to 450 cm depth with 12 sensors in 10 cm, 6 sensors in 20 cm, 8135

sensors in 30 cm, 8 sensors in 50 cm, 6 sensors in 70 cm, 4 sensors in 130 cm, 7 sensors in 200 cm, 4 sensors in 300 cm as well

5



as 450 cm. The sensors are located in distances up to 22 m from the CRNS instrument and continuously monitor the volumetric

soil moisture content based on the manufacturer’s calibration function.

Table 1. Soil physical characteristics at the CRNS site Serrahn obtained from laboratory analyses of soil samples (Rasche et al., 2023,

modified). Below the maximum sampling depth of 35 cm and down to the maximum depth of the aeolian sand deposits, the soil physical are

assumed to have the same soil physical parameters as the layer between 30 and 35 cm. The soil moisture content at field capacity and wilting

point were taken from tabulated values in Sponagel et al. (2005) according to the respecitve soil grain size class (medium-fine sand) and the

soil bulk density of the individual layers.

Depth Grain size fractions Bulk density Porosity Organic matter Lattice water Field capacity Wilting point

[cm] [weight-%] [g cm−3] [-] [g g−1] [g g−1] [cm3 cm−3] [cm3 cm−3]

> 2 mm 2 - 0.63 mm 0.63 - 0.2 mm 0.2 - 0.063 mm < 0.063 mm

0–5 2.7 19.7 42.2 33.7 2.1 0.24 0.91 0.32 0.003 0.16 0.06

5–10 1.1 8.7 43.5 45.7 2.4 0.77 0.70 0.10 0.002 0.16 0.06

10–15 0.7 7.2 41.5 47.9 2.8 1.25 0.52 0.05 0.002 0.16 0.06

15–20 1.2 7.8 38.7 44.3 2.2 1.43 0.45 0.02 0.002 0.14 0.05

20–25 1.7 7.7 42.2 46.5 2.2 1.55 0.41 0.02 0.002 0.14 0.05

25–30 1.7 8.5 43.5 45.4 1.2 1.59 0.40 0.01 0.002 0.12 0.04

30–35 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04

35–450 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04

2.2 Field-scale surface soil moisture derived with CRNS

Secondary neutrons are produced by primary cosmic-rays interacting with matter in the atmosphere and in the ground. Depend-140

ing on their energy level, secondary neutrons may be classified as fast (0.1-10 MeV), epithermal (> 0.25-100 keV) and thermal

neutrons (< 0.25 eV) (e.g., Köhli et al., 2015; Weimar et al., 2020). Cosmic-ray neutron sensing for soil moisture estimation

relies on the amount of neutrons in the epithermal energy range produced by nuclear evaporation in the atmosphere and ground

(Köhli et al., 2015). Epithermal neutrons are sensitive to elastic scattering by collision with hydrogen and are further moderated

to thermal neutrons (< 0.25 eV). Thus, the amount of epithermal neutrons detected by the instrument is inversely correlated145

with the amount of hydrogen in the sensitive measurement footprint of the sensor.

Epithermal neutron counts detected by the instrument are influenced by atmospheric pressure, the amount of primary high-

energy cosmic-ray neutrons entering the earth’s atmosphere from space (Zreda et al., 2012) as well as variations of absolute

air humidity (Rosolem et al., 2013) and need to be corrected for these influencing factors before soil moisture information can

be derived. In this study, we use the correction procedure for air pressure and incoming primary cosmic-ray flux presented in150

Zreda et al. (2012). The correction factor for the shielding effect of the atmosphere can be calculated from local air pressure

measurements where the attenuation length L is set to 135.9 g cm−2 for the study area (Heidbüchel et al., 2016). The correction

factor for the incoming high-energy primary neutron flux was obtained from hourly pressure and efficiency corrected primary

neutron intensities (cps) of the Jungfraujoch neutron monitor (JUNG, www.nmdb.eu). Furthermore, the neutron data was

corrected for the influence of absolute air humidity introduced by Rosolem et al. (2013). The absolute humidity is calculated155
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from relative humidity and temperature observations of the weather station at the observation site according to Rosolem et al.

(2013). For all correction approaches, the time series averages of air pressure, incoming radiation and air humidity are used

as the required reference values. Finally, a 25 h moving average filter is applied to the corrected neutron time series to reduce

noise and uncertainty in the data (e.g., Schrön et al., 2018b).

θStandard =

((
ã0

1− Npih

Nmax

ã1 − Npih

Nmax

)
× ρsoil

ρwater

)
− (θSOM + θLW) , (1)160

where

ã0 =−a2, (2)

ã1 =
a1a2

a0 + a1a2
, (3)

Nmax =N0 ·
a0 + a1a2

a2
. (4)

Desilets et al. (2010) introduced a transfer function to convert neutron counts into soil moisture by calibration against165

reference measurements. Although other approaches exist (e.g., Franz et al., 2013; Köhli et al., 2021), the Desilet’s equation

became the methodological standard and can be rewritten as eq. (1) – (4) (Köhli et al., 2021) with a0 = 0.0808, a1 = 0.372,

a2 = 0.115 and N0 being a local calibration parameter describing the neutron intensity above dry soil (Desilets et al., 2010).

As observed epithermal neutron intensities are sensitive to any hydrogen present in the measurement footprint, the water

equivalent of soil organic matter θSOM and the amount of lattice water θLW in cm3 cm−3 need to be subtracted. Additionally, ρsoil170

describes the average soil bulk density in the measurement footprint (g cm−3) and ρwater the density of water assumed to be 1

g cm−3. In this neutron-to-soil moisture transfer function the neutron intensity corrected for variations in air pressure, incoming

primary neutron flux and absolute humidity Npih is used. However, the more recent study by Köhli et al. (2021) suggests that

the influence of absolute air humidity and soil moisture on the observed epithermal neutron signal are interdependent, i.e.

the shape of the neutron-soil moisture relationship changes with absolute humidity. The universal transport solution (UTS),175

eq. (5) – eq. (6), (Köhli et al., 2021) accounts for the changing relationship between neutrons and soil moisture under different

conditions of absolute humidity h in g m−3.

Npi =ND ·
(
p1 + p2 θtotal

p1 + θtotal
·
(
p3 + p4h+ p5h

2
)
+ e−p6 θtotal (p7 + p8h)

)
, (5)

where

7



θtotal =
(
θUTS + θSOM + θLW

)
· 1.43gcm

−3

ρsoil
(6)180

The UTS is designed to describe the neutron intensity response caused by changes in total soil water content and absolute air

humidity and therefore, the predicted neutron intensity represents the intensity corrected for variations in atmospheric pressure

and incoming primary neutron flux Npi. Soil moisture can be derived from the UTS using numerical inversion or a look-up

table approach which is used in this study. In the look-up table approach, soil moisture values in the range from 0.0001 to

0.5 cm3 cm−3 in steps of 0.0001 cm3 cm−3 are used to predict the neutron intensity using the UTS for each time step. For185

each time step, the soil moisture value producing the smallest absolute difference between the observed and predicted neutron

intensity is then assigned as the CRNS-derived soil moisture value. Analogously to the standard transfer function, the UTS

needs to be calibrated locally. The calibration parameter ND may be interpreted as the average neutron intensity of the local

neutron detector under the boundary conditions defined in the neutron transport simulations which where used to subsequently

derive the UTS. θtotal describes the total water content comprising the sum of all below-ground hydrogen pools, namely the190

soil moisture content θUTS , θSM and θLW which is then scaled by ratio of the soil bulk used in the neutron transport simulations

to derive the UTS (1.43 g cm−3) and the local soil bulk density at the study site ρsoil (Köhli et al., 2021). Different sets of

shape-giving parameters p1 – p10 are available for the UTS in Köhli et al. (2021) and originate from the different neutron

transport models used and whether a simple energy window threshold (thl) was used (parameter sets: URANOS thl, MCNP

thl) to evaluate the neutron transport simulations or a more complex detector response function was applied (parameter sets:195

URANOS drf, MCNP drf). The latter mimics the response of a real neutron detector and is therefore expected to provide more

accurate results. In the scope of this study, we investigate which of the two transfer functions and which parameter set of the

UTS performs best in estimating surface soil moisture.

The CRNS footprint diameter as well as the integration depth decrease with i.e. increasing soil water content. The ra-

dius ranges between 130 and 240 m and the integration depth ranges between 15 and 83 cm during wet and dry conditions,200

respectively (Köhli et al., 2015). In addition, further factors may influence the footprint dimensions such as open water or to-

pography (e.g., Köhli et al., 2015; Schattan et al., 2019; Mares et al., 2020). Consequently, reference measurements need to be

depth-distance weighted according to the sensitivity of the CRNS instrument in order to match field observations of reference

measurements when calibrating the two different transfer functions and derive soil moisture information from observed neu-

tron intensities. In this study, we adapt the weighting procedure proposed by Schrön et al. (2017) which takes the total water205

content, average bulk density, absolute air humidity and vegetation height (set to 20 m) into account. Reference soil moisture

information from the soil sampling campaign in February 2019 was weighted accordingly and used for calibrating both transfer

functions. N0 and ND were iteratively calibrated. For N0, the value producing the smallest RMSE between soil moisture from

soil samples and the one predicted with eq. (1)–(4) was chosen. For ND soil moisture information derived from soil samples for

the hours of the sampling campaign were used to predict neutron intensities with eq. (5)–(6). The ND producing the smallest210

RMSE between predicted and observed neutron intensities was chosen. In a second step, the CRNS-derived soil moisture time

series are compared to an analogously weighted average of all available in-situ soil moisture sensors in 10, 20 and 30 cm depth.
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In order to assess the impact of weighting procedure, the calibration is repeated using the arithmetic soil moisture average from

soil samples and comparing the CRNS-derived soil moisture time series to the arithmetic average soil moisture time series

from in-situ sensors.215

2.3 Depth-extrapolation of surface soil moisture time series

2.3.1 Modification of the SMAR model

To estimate depth-extrapolated soil moisture time series for a second, deeper soil layer from surface soil moisture time series,

the SMAR model is used. Introduced by Manfreda et al. (2014), it allows for the physically-based estimation of soil moisture

in an adjacent second, lower soil layer from soil moisture information in a first, upper soil layer. SMAR is based on the relative220

saturation in the first and second layer s1 (-) and s2 (-), respectively, the relative saturation at field capacity sc1 (-) and wilting

point sw2 (-). In order to transform values from cm3 cm−3 to relative saturation, the respective variables are divided by the

porosity of the individual layer n1 (cm3 cm−3) and n2 (cm3 cm−3). After applying the SMAR model, the resulting relative

saturation time series of the second layer s2 (-) is transformed back to volumetric soil moisture in cm3 cm−3 by multiplication

with n2 (cm3 cm−3) and resulting in the depth-extrapolated soil moisture time series θLayer 2. Soil moisture in layer 2 at time t225

is calculated with

s2 (ti) = sw2 +(s2 (ti−1)− sw2) · e−a·(ti−ti−1) +(1− sw2) · b · y (ti) · (ti − ti−1) , (7)

where a and b depend on the vertical extent of the first layer (Zr1 in mm) which begins at the soil surface, and the vertical

extent of the second layer (Zr2 in mm). Zr2 is the difference between the maximum depth of the second soil layer and Zr1. The

water loss term V2 (mm t−1) comprises the bulk water losses from the second layer due to percolation and evapotranspiration230

per unit time:

a =
V2

(1− sw2) ·n2 ·Zr2
, (8)

b =
n1 ·Zr1

(1− sw2) ·n2 ·Zr2
, (9)

The fraction of saturation of the first layer that instantaneously infiltrates into the second layer y(ti) (-) is described as (e.g.,235

Manfreda et al., 2014; Patil and Ramsankaran, 2018):

y(ti) =

(s1 (ti)− sc1) , s1 (ti) ≥ sc1

0, s1 (ti) < sc1.
(10)
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The SMAR model can be applied using known soil physical and environmental variables. However, although the soil physical

parameters may be estimated through pedotransferfunctions, using tabulated values or global soil databases (e.g. SoilGrids 2.0

(Poggio et al., 2021)), the bulk water loss from the second layer V2 is more difficult to estimate. This hampers the use of240

SMAR without calibration against reference soil moisture information in the depth of interest, i.e., in the deeper soil layer.

To overcome this issue we modified and extended the SMAR model (SMARmod) in order to estimate the V2 based on simple

soil physical, environmental variables and the surface soil moisture time series. A modification of the SMAR model with an

extended definition of the water loss term V2 has been suggested by Faridani et al. (2017) leading to an improved performance

compared to the original SMAR model. As any modification makes the SMAR model more complex and potentially less easy245

to apply, our aim was to keep the added complexity to the model low by only including 3 additional parameters. These are the

relative saturation at field capacity in the second layer sc2 (-) and the cumulative root fraction to the maximum depth of the

first and second layer R1 (-) and R2 (-), respectively. The water loss term is then defined as the sum of evapotranspiration ET2

(mm t−1) and percolation P2 (mm t−1) from the second layer.

V2 = ET2 +P2, (11)250

We adapt the suggestion of Manfreda et al. (2014) to make use of existing (surface) soil moisture time series to gain in-

formation about water loss from the soil by evapotranspiration at a study site. Here, we estimate the individual amount of

evapotranspiration from the deeper layer ET2 for each time step based on the difference between the current and past value of

relative saturation of the first layer, by scaling the value to the dimension (i.e. extent) of second layer and by considering the

difference in cumulative root fraction between both layers, assuming that root water uptake for ET is larger in the layer with255

more roots eq. (13). The required root fraction R (-) for maximum depth d (cm) of the first and second layer are derived from

the empirical equation (eq. 12) for forest biomes presented in Jackson et al. (1996):

R= 1− 0.970d (12)

Using eq. 13, ET2 can only be estimated from the change in relative saturation in the first layer when 1) the relative saturation

of the first layer s1 decreases, 2) no infiltration into the second layer occurs and 3) the relative saturation of the second layer260

exceeds the relative saturation at wilting point. This means that both, surface evaporation and transpiration losses are scaled

from the first layer to the second layer. Although surface evaporation is hardly relevant for the second layer due to its missing

connection with the surface, this is a reasonable yet simplified approach because surface evaporation is a comparatively small

component of total evapotranspiration in forests, with transpiration dominating ET (e.g., Li et al., 2019b; Paul-Limoges et al.,

2020).265

ET2 (ti) =

(s1 (ti − 1)− s1 (ti)) ·n1 ·Zr1 · Zr2
Zr1

· (R2−R1)
R1

, s1 (ti − 1) ≥ s1 (ti) ; y (ti) > 0; s2 (ti − 1) ≤ sw2

0, otherwise.
(13)
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The amount of percolation P2 from the second layer is estimated in analogy to the infiltration into this layer as an instanta-

neous water loss when the relative saturation exceeds field capacity sc2 (eq. 14).

P2 (ti) =

(s2 (ti − 1)− sc2) , s2 (ti − 1) ≥ sc2

0, s2 (ti − 1) < sc2.
(14)

270

2.3.2 Comparison with the exponential filter method

To evaluate the performance of the original SMAR and the modified version SMARmodified, we also compared it to the

exponential filter approach (soil water index SWI, Wagner et al., 1999; Albergel et al., 2008) . This approach is often applied to

depth-extrapolated surface soil moisture time series (e.g., Zhang et al., 2017; Tian et al., 2020). It has also been used to depth-

extrapolate surface soil moisture time series derived from CRNS (Peterson et al., 2016) as well as to evaluate the performance275

of the SMAR model (e.g., Manfreda et al., 2014). This exponential filter has a single calibration factor: the characteristic

time length T (days). Although attempts have been made to investigate the controls of T and relating its variability to climatic

variables, vegetation characteristics and soil physical properties (e.g., Wang et al., 2017; Bouaziz et al., 2020), the characteristic

time length T is commonly treated as bulk calibration parameter which needs to be optimised against reference soil moisture

information.280

2.3.3 Application of depth-extrapolation approaches

We applied the SMAR model in its original form with aggregated daily soil moisture data by calibrating the V2 water loss term

as a constant value while the remaining soil physical parameters were assigned according to Tab. 1. The modified version of

the SMAR model (SMARmodified) introduced in this study was applied with the same soil physical parameters but estimating

daily V2 based on eq. 11–14. Consequently, SMARmodified was applied completely without calibration.285

In order to apply and calibrate the exponential filter approach for comparison, the daily surface soil moisture time series was

converted to relative saturation by dividing it by the porosity n1. The extrapolated second layer time series of relative saturation

based on the exponential filter is then converted back to soil moisture by multiplication with the porosity of the second, deeper

soil layer n2. The same porosity values (Tab. 1) are used as for the application of SMAR and SMARmodified.

The calibration and evaluation was performed against reference soil moisture time series in the deeper layer derived from290

in-situ sensors of the soil moisture sensor network (SMN) covering the entire study period. The reference soil moisture content

of the second, deeper soil layer was calculated by weighting the individual sensor values according to their representative

layer extent. For example, having soil moisture sensors installed in 30, 50 and 70 cm depth, the soil moisture content per

time step observed in 50 cm is representative for the layer between 40 and 60 cm. The soil physical parameters assigned to

the individual layers can be found in Tab. 1 and were weighted the same way. The calibration is performed by minimising the295
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root-mean square error (RMSE) between the depth-extrapolated soil moisture time series and the entire reference soil moisture

time series of the second soil layer.

The original SMAR with calibrated V2, the modified SMAR model (SMARmodified) with estimated V2 (without calibration)

and the exponential filter with calibrated T was applied to estimate a soil moisture time series in a second soil layer with a

maximum depth below terrain surface of 70, 130, 200, 300 and 450 cm. The depth of the first soil layer was set to the median300

sensitive measurement depth of the CRNS method for the study period. We calculated the median CRNS measurement depth

of the entire CRNS-derived soil moisture time series based on Schrön et al. (2017). According to Schrön et al. (2017), the

sensitive measurement depth D86 is estimated using the calibrated CRNS-derived soil moisture time series for distances from

1 to 300 m around the instrument. Subsequent averaging allows for estimating the average measurement depth in the CRNS

footprint for each time step of the time series. The time series median measurement depth D86 is then calculated for the soil305

moisture time series derived with the standard transfer function and the UTS. For both CRNS-derived soil moisture time series,

the estimated median sensitive measurement depth is 20 cm.
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The three depth-extrapolation approaches are applied in the following scenarios:

Scenario Profile 1 and Scenario Profile 2 Surface soil moisture estimated separately from two individual profiles of in-situ310

soil moisture sensors (average over the two sensors installed in 10 and 20 cm depth), depth extrapolation calibrated/e-

valuated against reference second layer soil moisture calculated from the deeper sensors of the each individual sensor

profile.

Scenario SMNarithmetic Surface soil moisture estimated with the arithmetic average of all in-situ soil moisture sensors of

the SMN (depth-averages of sensors installed in 10 and 20 cm depth, 12 and 6 sensors per depth), depth extrapolation315

calibrated/evaluated against reference second layer soil moisture calculated from the arithmetic depth-averages of all

in-situ sensors of the SMN.

Scenario SMNweighted Weighted average surface soil moisture estimated after Schrön et al. (2017) from all in-situ soil moisture

sensors of the SMN in 10, 20 and 30 cm depth (26 in total), depth-extrapolation calibrated/evaluated against reference

second layer soil moisture calculated from the arithmetic depth-averages of all in-situ sensors of the SMN.320

Scenario CRNSRevised standard Surface soil moisture time series from CRNS based on the standard transfer function, depth-

extrapolation calibrated/evaluated against reference second layer soil moisture calculated from the arithmetic depth-

averages of all in-situ sensors of the SMN.

Scenario CRNSUTS Surface soil moisture time series from CRNS based on the UTS, depth-extrapolation calibrated/evaluated

against reference second layer soil moisture calculated from the arithmetic depth-averages of all in-situ sensors of the325

SMN.

All calculations were performed in R statistical software (R Core Team, 2018, 2023) using the hydroGOF package (Zambrano-

Bigiarini, 2017, 2020) for calculating goodness-of-fit measures which evaluate absolute values and time series dynamics,

namely the RMSE, the Kling-Gupta-Efficiency (KGE) (Gupta et al., 2009), the Pearson correlation coefficient as well as the

Nash-Sutcliffe-Efficiency.330

3 Results and discussion

3.1 CRNS-derived surface soil moisture time series

The goodness-of-fit of the calibrated CRNS-based soil moisture time series to the time series derived from in-situ point obser-

vations is shown for the two transfer functions Tab. 2. When the different transfer functions are calibrated against an arithmetic

average soil moisture from soil samples and compared to an arithmetic average of soil moisture time series in 10-30 cm depth,335

the Pearson correlation coefficient and the KGE are lower than when using a weighted average of soil moisture observations for

calibration as proposed by Köhli et al. (2015) and Schrön et al. (2017). However, the RMSE is slightly higher for the calibration

against the weighted observations. This might be linked to differences between the laboratory measurements of soil moisture
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in the soil samples (which were used for calibration) and the continuous soil moisture data obtained from the in-situ sensors.

Overall, however, in view of the much better KGE and correlation values, the results underline the importance of the weighting340

procedures when calibrating the CRNS observations to derive soil moisture estimates or comparing them to observations from

in-situ soil moisture sensors.

Table 2. Goodness-of-fit between the CRNS-derived soil moisture time series and the arithmetic and weighted average soil moisture time

series from the local in-situ point-sale soil moisture sensors in 10-30 cm depth. The different neutron to soil moisture transfer functions

are independently calibrated against soil moisture from soil samples taken in February 2019. The UTS transfer function can be used with

different parameter sets originating from different neutron transport models which are either based on an energy level threshold (thl) or a

more realistic detector response functions (drf).

Transfer function In-situ soil moisture Calibration parameter [cph] KGE [-] RMSE [cm3 cm−3] Pearson correlation [-]

Revised standard

Arithmetic average

777 0.08 0.030 0.88

UTS URANOS drf 1245 0.14 0.029 0.86

UTS URANOS thl 1596 0.59 0.020 0.87

UTS MCNP drf 1294 0.33 0.025 0.87

UTS MCNP thl 1645 0.59 0.021 0.87

Revised standard

Weighted average

809 0.46 0.030 0.91

UTS URANOS drf 1302 0.49 0.029 0.89

UTS URANOS thl 1693 0.81 0.022 0.90

UTS MCNP drf 1357 0.60 0.027 0.90

UTS MCNP thl 1741 0.77 0.023 0.90

The goodness-of-fit of the CRNS-derived soil moisture time series that are based on the revised standard transfer function is

always lower than for those that are derived with the UTS all parameters sets, especially when the KGE is considered, showing

the improved soil moisture estimation with the UTS. However, the parameters sets of the UTS mimicking the varying sensitivity345

of a real neutron detector to neutrons of different energies (URANOS drf, MCNP drf) perform worse than those which rely

on a simple energy range threshold (URANOS thl, MCNP thl). This counter-intuitive result has been previously described by

Köhli et al. (2021) and could be related to the high sensitivity of the CRNS method to the soil moisture dynamics in the first

few centimetres of the soil where unfortunately no in-situ sensors are installed (the uppermost sensors are installed in 10 cm

depth). Therefore, the better performance of the energy threshold parameters sets of the UTS can be related to insufficient350

reference soil moisture information from the in-situ sensor network. Generally, the UTS with the parameter sets representing

the response of a real neutron detector can be expected to be provide more accurate results. Here, the UTS with parameter set

MNCP drf reveals a higher statistical goodness-of-fit compared to the URANOS drf parameter set which is in line with the

findings presented in Köhli et al. (2021). The improved performance of the UTS with the parameter set MNCP drf compared
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to the standard transfer function is shown in Fig. 2, revealing that the latter tends to overestimate soil moisture under the wet355

winter conditions and underestimate soil moisture under dry summer conditions.

Different from the study of Köhli et al. (2021) which introduced the UTS, we apply UTS to derive soil moisture from neutron

observations at a forest site. The UTS calibration parameter ND represents the average count rate under boundary conditions

of the neutron transport simulations conducted to the derive the UTS. Therefore, ND can be expected to be close to the average

corrected neutron intensity observed at a study site with little or without vegetation or other above-ground hydrogen pools360

influencing the observed neutron intensity. At our study site, the calibrated ND is much higher than the observed average

corrected neutron intensity Npi (557 cph). This is probably caused by the influence of the forest vegetation on observed neutron

intensities and the calibration parameter of the transfer function and has been similarly described for the standard transfer

function by Baatz et al. (2015). As hydrogen stored in air humidity influences the functional relationship between neutron

intensities and soil moisture, hydrogen stored in vegetation might have a similar effect. Therefore, a correction or inclusion365

approach for other above-ground hydrogen pools such as vegetation may yield an even better performance of the UTS and may

be investigated in future studies.

Our analyses confirm the improved performance of the UTS compared to the standard transfer function. In order to test

whether the improved performance in deriving surface soil moisture translates into a better estimation of soil moisture in

deeper layers, we apply the SMAR model using the surface soil moisture time series based on both the revised standard370

transfer function and the UTS with the MCNP drf parameter set (Fig. 2).
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Figure 2. Soil moisture estimates with CRNS. (a) estimated time-variable sensitive measurement depth D86 of the CRNS-approach and

precipitation time series (light blue bars); (b) soil moisture time series derived with the revised standard transfer function and the UTS with

parameter set MCNP drf and (c) a period in 2022 illustrating the differences between the two CRNS-derived soil moisture time series.
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3.2 Depth-extrapolation of surface soil moisture time series

The performance of the different depth-extrapolation approaches, i.e. based on the calibrated original SMAR (calibrated water

loss only), the uncalibrated SMARmodified (estimated water loss based on eq. (11-14)) as well as the exponential filter approach

(calibrated characteristic time length parameter) for the different scenarios are listed in Tab. A1- A3 and shown in Fig. 3. Figure375

3 also includes a RMSE threshold of ≤ 0.06 cm3 cm−3 which has been used to evaluate the original SMAR performance in

previous studies (Baldwin et al., 2019; Guo et al., 2023). In all scenarios and all depths, with exception of SMARmodified in

the Profile 2 scenario, the RMSE of depth-extrapolated time series lies below this threshold, indicating that both SMAR models

and the exponential filter approach result in acceptable soil moisture time series for the second soil layer down to 450 cm depth.

However, goodness-of-fit indicators more sensitive to temporal dynamics such as the KGE and the NSE show negative values380

indicating an insufficient simulation of the temporal dynamics of second layer soil moisture times compared to the reference.

This can also be seen in Fig. 5 showing the extrapolated soil moisture time series with the different approaches in a second

layer with a maximum depth of 130 cm. For example, comparing the scenarios of Profile 1 and Profile 2, the performance of

the individual extrapolation approaches in terms of capturing the temporal soil moisture dynamics can differ strongly. These

strong differences and largely unsatisfactory representation of soil moisture dynamics indicates that the RMSE threshold used385

in previous studies to evaluate the performance of depth-extrapolation approaches should be treated with caution. Regarding

the exponential filter method, it should be noted that the maximum T value of 300 days defined in this study was reached

during calibration in some scenarios as displayed in Fig. 4.
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Figure 3. Goodness-of-fit parameters derived for the depth-extrapolation approaches in the individual scenarios depending on maximum

second layer depths. In addition to the three depth-extrapolation methods applied in this study, also the comparison with the surface soil

moisture time series is shown. For the RMSE, a threshold value 0.06 cm3 cm−3 is indicated as grey horizontal line.
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Fig. 3 also shows the goodness-of-fit parameters between surface soil moisture time series of the respective scenario and

the reference soil moisture time series in the second soil layer in order to test if any of the depth-extrapolations perform better390

than simply assuming that the soil moisture in the second layer is similar to the surface soil moisture time series. However, all

depth-extrapolation approaches, including the uncalibrated SMARmodified, show a better performance in most scenarios and

especially in larger depths. This indicates that if no reference soil moisture time series for calibration in the depth of interest

is available, the uncalibrated SMARmodified provides better results than simply using the available surface soil moisture time

series as a first estimate for the soil moisture time series in a second, deeper layer of interest. An exception to this finding395

is scenario Profile 2, where the NSE and RMSE of all depth-extrapolation approaches perform worse compared to the using

the surface soil moisture time series as the predicted time series in the second soil layer. Comparing the scenarios Profile

1 and Profile 2 in Fig. 5 shows large differences in the surface soil moisture time series between the two scenarios but a

rather similar reference soil moisture time series in the second soil layer. This indicates small scale heterogeneity of surface

soil moisture within the SMN caused by e.g. heterogeneous infiltration, root-water uptake and preferential flow processes.400

Preferential flow in macropores including bypass flow along roots (e.g., Nimmo, 2021) can result in highly conductive forest

soils with infiltrating water being quickly transported from the surface to deeper layers and bypassing e.g. individual point-

scale sensors. Heterogeneous evapotranspiration, interception, (e.g., Schume et al., 2003) and root distribution patterns (e.g.,

Jost et al., 2012) add to the surface soil moisture heterogeneity in forests which may explain the differing performance of

all depth extrapolation approaches at different individual profiles of in-situ soil moisture sensors. In larger depths with e.g.405

lower root-densities, more similar soil moisture dynamics can be expected, explaining the more similar soil moisture dynamics

between the two individual sensor profiles. When assessing the results obtained from using the in-situ sensor, it should also be

noted that the use of the manufacturer’s calibration function adds additional uncertainty to the results.
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Figure 4. Optimum calibration parameters (minimum RMSE) derived for the different extrapolation approaches and depths in the individual

scenarios. For SMARmodified the time series average of V2 is shown.
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Using averages of in-situ soil moisture sensor networks therefore improve the performance of all depth-extrapolation ap-

proaches as shown in Fig. 6. Scenarios SMNarithmetic and SMNweighted as well as both CRNS scenarios generally show a410

higher goodness-of-fit for most depth-scaling approaches. This highlights the need for a representative estimation of surface

soil moisture at complex study sites with strong small-scale heterogeneities in soil moisture and soil hydrological processes

when depth-extrapolating surface soil moisture time series and underlining the potential of CRNS. The differences between

SMNarithmetic and SMNweighted are rather small, indicating only a minor impact of using a weighted surface soil moisture

time series and comparing it to a reference second layer soil moisture time series calculated from arithmetic averages. Sim-415

ilarly, the difference between CRNSRevised standard and CRNSUTS is relatively small with a slightly higher goodness-of-fit

in the scenario CRNSUTS . However, as the differences are small, a clear conclusion that a better CRNS-derived surface soil

moisture time series translates into a better depth-extrapolated time series cannot be drawn from the results of this study. This

may also be linked to the differences in the CRNS-derived surface soil moisture time series being smaller than the uncertainties

introduced by the different depth-extrapolation approaches.420
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Figure 5. Daily depth-extrapolated soil moisture time series of the different scenarios and depth-extrapolation approaches for a depth of

130 cm. The respective surface soil moisture time series for the first soil layer (0-20 cm) and the reference soil moisture time series for the

deeper, second soil layer (20-130 cm) are also shown.
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In contrast, larger differences can be found between the SMN-scenarios (SMNarithmetic and SMNweighted) and the CRNS-

scenarios (CRNSRevised standard and CRNSUTS) where the latter two often show lower goodness-of-fit parameters for the

different extrapolation approaches as expressed by e.g. a lower KGE. This can be related to general differences between the

surface soil moisture derived from the SMN and CRNS and could be related to the sensor locations of the SMN not being

representative for the sensitive measurement footprint of CRNS. Also, the changing sensitive measurement depth of CRNS425

with soil moisture content may cause uncertainties when using a constant (median) sensitive measurement depth of 20 cm

for the extent of the first soil layer in the depth-extrapolation approaches. Although this effect may be small, particularly on

the daily time step, smoothing hourly CRNS data prior estimating surface soil moisture and aggregating daily soil moisture

estimates could contribute to the poorer performance of depth-extrapolated time series in the CRNS scenarios compared to the

SMN scenarios.430

Averaged over all tested scenarios, all three depth-extrapolation approaches do not properly represent the time series dynam-

ics the our study site as indicated by negative mean NSE values and KGE values below 0.5 (Fig. 7). The highest average good-

ness of fit is obtained when applying the exponential filter approach calibrated against reference soil moisture measurements in

the second soil layer of interest. The uncalibrated SMARmodified shows average RMSE and NSE values lying largely between

the exponential filter approach and the calibrated SMAR in its original form, indicating that the introduced SMARmodified can435

compete with the (calibrated) original SMAR and can be applied without calibration to derive first estimates of soil moisture

in a second, deeper layer.

Nevertheless, all three approaches do not produce satisfactory results in terms of soil moisture dynamics which may be

explained with the particular water flow dynamics at our study site located in a mixed forest with sandy soils. Complex prefer-

ential flow and infiltration processes are unlikely to be properly captured by any of the three depth-extrapolation approaches.440

This is especially true for SMAR and SMARmodified as they allow water movement only for soil moisture conditions above

field capacity. In contrast, the exponential filter includes a constant dependence between the surface soil moisture dynamics

of the first and of the deeper, second layer, which could be an explanation for its higher average performance at our study site

with expected highly conductive soils due to e.g. preferential flow processes. In addition, the decreasing number of reference

in-situ soil moisture sensors with increasing soil depth may lead to a lower representativeness of the reference soil moisture445

time series at larger depths, lowering comparability to the model results. However, with point sensors installed down to 450 cm,

this study allows for exploring the potential of simple depth-extrapolation approaches for larger soil depths than commonly

applied.

An important limitation of the present study for evaluating the standard and the introduced modified SMAR models is its

application to a single observation site. Furthermore, other empirical approaches such as regression models (e.g., Zhang et al.,450

2017) and cumulative distribution function matching (e.g., Gao et al., 2018) as well as other versions of the SMAR model (e.g.,

Faridani et al., 2017) would allow for an improved evaluation of the presented modification of the SMAR model and should be

assessed in future studies at sites with a broader range of climatic conditions, vegetation covers and soils.
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Figure 6. Goodness-of-fit parameters per depth-extrapolation approach and maximum second layer depth for the individual scenarios.

4 Conclusions

In the present study we investigated the feasibility of depth-extrapolating surface soil moisture time series derived from CRNS455

to deeper soil layers without additional in-situ soil moisture information for calibration. We furthermore evaluated the Universal

Transport Solution (UTS) for the estimation of field scale soil moisture from CRNS neutron counts.

Being among the first who evaluate the UTS as a new transfer function to estimate field-scale surface soil moisture infor-

mation from CRNS, we confirm its improved performance compared to the standard approach. The UTS accounts for the

interdependence of soil moisture and air humidity on the observed neutron intensity, being most important for dry soil condi-460

tions. Although applied at a forested site with rather dry soils but with large amounts of above-ground hydrogen stored in the

local biomass and influencing the neutron signal, CRNS-derived soil moisture estimates can be improved compared to using

established transfer functions. Thus, our results suggest hat the UTS should be used for an improved estimation of surface soil

moisture in future CRNS research and applications.

24



Figure 7. Goodness-of-fit parameters of the three depth-extrapolation approaches averaged over all scenarios.

We modified SMAR for estimating soil moisture times series in a second, deeper layer in a way that it can be applied without465

calibration against in-situ sensors and with soil physical properties and the cumulative root fraction as a vegetation parameter

only. Our analyses show that on average, the uncalibrated SMARmodified can compete with the original SMAR model down

to a maximum depth of the second soil layer of 450 cm when the same soil physical properties are assigned and only the

water loss term is calibrated. However, depending on the tested scenario, major temporal dynamics of the reference in-situ soil

moisture in the second soil layer are neither captured by the original nor by the modified SMAR nor by the exponential filter470

approach. This is likely linked to the location of the study site: a forest with sandy soils, which results in soil moisture being

influenced by processes such as preferential flow and root water uptake. These processes are difficult to simulate, especially

with rather simple modeling approaches. On average, the calibrated exponential filter method performed best in predicting soil

moisture in a deeper, second soil layer.

Although our study suggests that improved surface soil moisture estimates from CRNS do not translate to distinctly im-475

proved soil moisture estimates in greater depths, a more accurate estimation of the representative measurement depth of CRNS

leads to better results of either depth-extrapolation approach. This indicates that an accurate estimation of the representative

measurement depth of CRNS is especially important when using CRNS data as input for hydrological models.

Given the overall performance of the SMAR model at our single study site, further research and testing of the presented

modified version of the SMAR model with and without calibration at sites with varying climatic conditions, vegetation cover480

and soil properties is necessary and encouraged for future studies. Despite the overall unsatisfactory performance of the SMAR

model with respect to accurately capturing soil moisture dynamics at our study site, it meets the defined RMSE benchmark of

≤ 0.06 cm3 cm−3 and the simple modification of the SMAR algorithm may serve as a valuable first estimate of soil moisture
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from a second, deeper soil layer, when in-situ reference soil moisture information for calibration are not available and the soil

physical parameters can be reasonably well estimated.485

In CRNS research, this modified SMAR approach opens up potential for roving CRNS, i.e., by mounting CRNS instruments

on cars (e.g., Schrön et al., 2018a) or trains (e.g., Schrön et al., 2021; Altdorff et al., 2023) moving beyond the field-scale of

stationary CRNS applications, thereby providing valuable information for landscape water balancing or hydrological catchment

models on larger scales. Moreover, the modified SMAR approach introduced in this study is not limited to CRNS applications.

It may also be used in estimating root-zone soil moisture in greater depths from satellite derived surface soil moisture where490

the original SMAR already proved useful (e.g., Baldwin et al., 2017, 2019; Gheybi et al., 2019).

Data availability. All data sets are available from the authors upon request.

Appendix A

26



Table A1. Statistical goodness-of-fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture

time series in the second layer extending from 20 to 70 cm and 130 cm for the different scenarios. Asterisk indicates reaching the maximum

allowed characteristic time length T value during calibration of the exponential filter method.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [-] NSE [-]

20-70

Profile 1

SMAR Yes 1 - 0.055 0.091 -9.066

SMARmodified No - - 0.032 -0.142 -2.363

exp. Filter Yes - 1 0.040 0.068 -4.240

Profile 2

SMAR Yes 53 - 0.042 -0.115 -6.785

SMARmodified No - - 0.044 -0.161 -7.489

exp. Filter Yes - 300∗ 0.043 0.338 -7.208

SMNarithmetic

SMAR Yes 18 - 0.038 0.297 -4.221

SMARmodified No - - 0.031 -0.079 -2.309

exp. Filter Yes - 3 0.019 0.634 -0.305

SMNweighted

SMAR Yes 19 - 0.038 0.252 -3.958

SMARmodified No - - 0.029 -0.102 -2.022

exp. Filter Yes - 3 0.018 0.619 -0.097

CRNSRevised standard

SMAR Yes 56 - 0.034 0.210 -3.202

SMARmodified No - - 0.037 -0.063 -3.997

exp. Filter Yes - 255 0.017 0.480 -0.090

CRNSUTS

SMAR Yes 51 - 0.034 0.217 -3.252

SMARmodified No - - 0.035 -0.517 -3.479

exp. Filter Yes - 164 0.016 0.570 0.062

20-130

Profile 1

SMAR Yes 48 - 0.057 -0.055 -12.754

SMARmodified No - - 0.031 -0.163 -3.130

exp. Filter Yes - 300∗ 0.041 0.017 -6.113

Profile 2

SMAR Yes 2 - 0.058 -0.363 -9.163

SMARmodified No - - 0.064 -0.370 -11.418

exp. Filter Yes - 1 0.057 0.324 -8.846

SMNarithmetic

SMAR Yes 16 - 0.040 0.021 -5.396

SMARmodified No - - 0.036 0.093 -3.991

exp. Filter Yes - 3 0.021 0.563 -0.79

SMNweighted

SMAR Yes 17 - 0.039 0.181 -5.069

SMARmodified No - - 0.032 -0.081 -3.116

exp. Filter Yes - 3 0.02 0.546 -0.508

CRNSRevised standard

SMAR Yes 48 - 0.036 0.093 -4.086

SMARmodified No - - 0.029 -0.422 -2.387

exp. Filter Yes - 300∗ 0.019 0.318 -0.496

CRNSUTS

SMAR Yes 44 - 0.036 0.093 -4.140

SMARmodified No - - 0.028 -0.310 -2.083

exp. Filter Yes - 300∗ 0.018 0.295 -0.302
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Table A2. Statistical goodness-of-fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture

time series in the second layer extending from 20 to 200 cm and 300 cm for the different scenarios. Asterisk indicates reaching the maximum

allowed characteristic time length T value during calibration of the exponential filter method.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [-] NSE [-]

20-200

Profile 1

SMAR Yes 56 - 0.048 -0.175 -15.889

SMARmodified No - - 0.028 -0.549 -4.836

exp. Filter Yes - 300∗ 0.031 0.031 -6.158

Profile 2

SMAR Yes 8 - 0.059 -0.327 -9.794

SMARmodified No - - 0.068 -0.469 -13.265

exp. Filter Yes - 1 0.058 0.303 -9.356

SMNarithmetic

SMAR Yes 16 - 0.036 0.156 -5.494

SMARmodified No - - 0.034 -0.242 -4.678

exp. Filter Yes - 23 0.018 0.556 -0.611

SMNweighted

SMAR Yes 17 - 0.035 0.133 -5.133

SMARmodified No - - 0.031 -0.193 -3.907

exp. Filter Yes - 35 0.16 0.606 -0.325

CRNSRevised standard

SMAR Yes 51 - 0.032 0.089 -4.089

SMARmodified No - - 0.027 -0.461 -2.567

exp. Filter Yes - 300∗ 0.017 0.311 -0.449

CRNSUTS

SMAR Yes 47 - 0.32 0.092 -4.128

SMARmodified No - - 0.026 -0.369 -2.321

exp. Filter Yes - 208 0.016 0.400 -0.255

20-300

Profile 1

SMAR Yes 81 - 0.032 -0.045 -12.728

SMARmodified No - - 0.026 -1.150 -8.273

exp. Filter Yes - 300∗ 0.017 -0.028 -2.987

Profile 2

SMAR Yes 21 - 0.044 -0.235 -8.774

SMARmodified No - - 0.054 -0.492 -14.104

exp. Filter Yes - 1 0.043 -0.298 -8.472

SMNarithmetic

SMAR Yes 21 - 0.026 0.232 -4.356

SMARmodified No - - 0.028 -0.521 -5.113

exp. Filter Yes - 78 0.011 0.581 0.108

SMNweighted

SMAR Yes 23 - 0.025 0.249 -4.022

SMARmodified No - - 0.027 -0.498 -4.576

exp. Filter Yes - 82 0.010 0.596 0.203

CRNSRevised standard

SMAR Yes 67 - 0.023 0.184 -3.158

SMARmodified No - - 0.027 -0.870 -4.717

exp. Filter Yes - 225 0.016 0.302 -1.070

CRNSUTS

SMAR Yes 62 - 0.023 0.191 -3.179

SMARmodified No - - 0.027 -0.769 -4.490

exp. Filter Yes - 182 0.016 0.368 -0.988
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Table A3. Statistical goodness-of-fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture

time series in the second layer extending from 20 to 450 cm for the different scenarios. Asterisk indicates reaching the maximum allowed

characteristic time length T value during calibration of the exponential filter method.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [-] NSE [-]

20-450

Profile 1

SMAR Yes 181 - 0.013 0.346 -4.083

SMARmodified No - - 0.031 -2.101 -26.355

exp. Filter Yes - 300∗ 0.018 -0.508 -7.850

Profile 2

SMAR Yes 27 - 0.033 -0.173 -4.179

SMARmodified No - - 0.044 -0.258 -8.314

exp. Filter Yes - 45 0.032 0.369 -3.916

SMNarithmetic

SMAR Yes 38 - 0.015 0.382 -1.65

SMARmodified No - - 0.023 -0.704 -5.442

exp. Filter Yes - 160 0.015 0.444 -1.728

SMNweighted

SMAR Yes 40 - 0.014 0.429 -1.461

SMARmodified No - - 0.024 -0.827 -6.041

exp. Filter Yes - 152 0.016 0.447 -2.307

CRNSRevised standard

SMAR Yes 122 - 0.014 0.427 -1.187

SMARmodified No - - 0.032 -1.373 -11.435

exp. Filter Yes - 199 0.025 -0.064 -6.573

CRNSUTS

SMAR Yes 112 - 0.014 0.427 -1.191

SMARmodified No - - 0.032 -1.268 -11.385

exp. Filter Yes - 174 0.026 0.022 -6.900
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