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Revision of the manuscript “egusphere-2024-170” submitted to SOIL 

This document contains a point-by-point reply to the comments of all reviewers, corresponding author responses and 

adjustments made in the original manuscript.  

 

The major comments of the two anonymous reviewers concerned the number of analyses conducted, the structure of the 5 

manuscript as well as the application of depth-extrapolation approaches and appropriate references for comparison. The 

reviewers suggested to enhance the structure of this paper by removing certain depth-extrapolation scenarios. Furthermore, 

recommendations were made to also apply the exponential filter method in addition to the SMAR model and the modified 

SMAR model and to use it as a reference when evaluating the performance of both SMAR models. 

 10 

We followed the comments of the reviewers by rephrasing large sections of the manuscript. We re-structured our data analyses 

and removed a large fraction of the original analyses making the results easier to follow. We added the exponential filter as an 

additional depth-extrapolation approach for comparison with our analyses and added a short chapter to the methods section. 

We modified large parts of chapter 2.3.2 (now 2.3.3) and completely replaced chapter 3.2. The introduction and conclusion 

chapter were adjusted accordingly. 15 

The changes made in the revised manuscript also include the introduction of several new figures and a reduction of tables 

which helps to better follow the results and their interpretation and discussion. 

 

The individual reviewer comments are denoted with R1-1 (reviewer 1, comment 1) and A1-1 (author response to reviewer 1, 

comment 1). When changes are made to phrases in the original manuscript, we state the original and adjusted 20 

sentence/paragraph or provide the phrase added.  

 

Please not that given the large number of changes made in the revised manuscript including the replacement of entire chapters. 

The revised chapters 2.3.2, 2.3.3 and 3.2 including all new figures are added to the end of this point-to-point reply. For all 

further changes (including reduced result tables in the appendix) which are neither addressed in the individual reviewer 25 

comments below nor at the end of this point-to-point reply, please see the track-changes-document. 
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Reviewer #1: 

We thank reviewer #1 for taking the time to review our manuscript. Following the suggestions of reviewer #1, we agree that 

our manuscript needed major revisions before it can be published. We are certain that the reviewer’s comments helped to 

streamline our manuscript, to make it clearer and more relevant for the reader of SOIL. 

 5 

R1-1: The soil moisture network (SMN) represents a valuable data-sets (L131-132). Still, it is explained that could not 

represent CRNS footprint well (L348). Considering in addition that the deeper soil moisture network (> 40 cm) is based on a 

lower number of point-scale sensors, it could be questionable its value as benchmark for testing the performance of the depth-

extrapolated CRNS-SM. For this reason, it cannot be concluded in my opinion if the difficulties to estimated deeper SM are 

based on CRNS settings, SMAR settings or an unrepresentativeness of the SMN. To circumvent this issue, I strongly 10 

recommend the Authors first to test SMAR settings only to the SMN, i.e., using first layer of SM measured by the SMN to 

estimate the deeper SM. Then, to apply the best settings of the SMAR model to CRNS. This exercise could be performed to 

each single soil moisture profile and any combinations. The results should provide a benchmark for testing the depth-

extrapolated SM based on CRNS. Please note that you have already quantified some differences between CRNS and SMN. 

Thus, it should be expected that the depth extrapolated CRNS-SM cannot perform better than that. Finally, it is not clear to me 15 

if the depth extrapolated CRNS is compared with the weighted SMN or to the arithmetic average SMN. It should be the former 

to be consistent with the signal but with the disadvantage to have again weighted soil moisture. This issue seems to not be 

resolvable and could limit some applications. Discussion should integrate this aspect. 

 

A1-1: We fully agree that a decreasing number is reference in-situ point-scale soil moisture sensors is likely to reduce the 20 

representativeness of the SMN in these depths. This indeed adds to the uncertainties coming with the surface soil moisture 

time series derived from CRNS as well as the SMAR model and the defined soil physical parameters used in SMAR. Different 

potential reasons for the poor performance are already given in the manuscript but they are difficult to disentangle. We agree 

that further analyses are necessary and agree on testing the original and modified version of SMAR on the SMN only prior 

using it with CRNS-derived surface soil moisture time series. For this reason, we conducted the following additional analyses 25 

and added them to the revised manuscript: 

 

1) We performed a comparison of the original and modified SMAR using the soil moisture in 0-20 cm depth for two individual 

soil moisture profiles which comprise sensors in all depths (i.e. 10, 20, 30, 50, 70, 130, 200, 300 and 450 cm). The SMAR-

derived second layer soil moisture time series was then compared to the soil moisture information in the respective depths of 30 

the two sensor profiles. 
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2) We performed a comparison of the original and modified SMAR using the average soil moisture in 0-20 cm depth from the 

entire SMN. The SMAR-derived second layer soil moisture time series was then compared to the average soil moisture 

information in the respective depths of the SMN. 

 

These additional analyses were performed on daily time steps and with the literature-based soil physical parameters shown in 5 

Tab. 1. This means that for the original SMAR, only the V2 water loss term was calibrated while the modified SMAR was not 

calibrated at all. This gives us insights on the performance of the original and modified SMAR model against our reference 

SMN, e.g. how the SMAR model performs on profile/plot scale and if the use on the entire SMN already provides results with 

lower accuracy. This provides an additional benchmark for the evaluation of the results which is more robust than the arbitrary 

threshold of 0.06 cm³/cm³ which has been used in previous studies to evaluate the SMAR performance. 10 

 

The CRNS-derived soil moisture time series always represents a weighted soil moisture average because by the nature of the 

geophysical method, it is more sensitive to soil moisture changes close to the neutron detector. When the performance 

(goodness of fit) of the CRNS-derived surface soil moisture time series is assessed, it should always show a better performance 

when the reference average soil moisture derived from e.g. the SMN is weighted according to the sensitivity of CRNS. 15 

Consequently, the assessment of the different neutron-to-soil moisture transfer functions is done accordingly and our analyses 

underline the improved performance when the reference soil moisture from the SMN is weighted. 

However, this indeed means that a (CRNS-derived) weighted field-scale soil moisture average is used as the input for the 

SMAR model while we compare the modelled second-layer soil moisture time series with arithmetic averages of the SMN in 

the second layer.  20 

To gain further understanding how the weighting procedure of the SMN affects the depth-extrapolated soil moisture time 

series, we added two additional depth-extrapolation scenarios: Using the arithmetic and weighted averages surface soil 

moisture from the SMN (SMNarithmetic and SMNweighted) as the input for the different extrapolation approaches. The difference 

in the performance between SMNarithmetic and SMNweighted then allows to draw conclusion on the impact of the weighting 

procedure on the goodness of fit. 25 

 

R1-2: First, I found misleading the arguments to support the use of SMAR. The Authors argue several times that “most 

approaches require a site-specific calibration using depth-profiles of in-situ soil moisture data, which are often not available.” 

(L6-7). For this reason, you use SMAR. However, this approach also requires calibration. So your arguments do not support 

your decision. Similarly, it is stated (L9) that “SMAR is usually also calibrated to sensor data, but could be applied without 30 

calibration if all its parameters were known” and L90. “This method does not require calibration if the environmental 

parameters are known.” Well this is valid for any models and not only for SMAR. The problem is that it is often the case that 

we do not know the parameters, and especially at the scale of model application when soil is under investigation. The results 

of this study also confirm this statement. So your arguments do not support your decision to use SMAR as many other 
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approaches have similar settings. Overall, I’m fine with the decision to test SMAR (L86). But I’m against the argument that 

this is physically based and it does not require adjustment in comparison to other approaches. The results of the present study 

also confirm my doubt. Comparison to other approaches, e.g., the exponential filter (Franz et al., 2020; Wagner et al., 1999) 

could strengthen this study. 

Finally, the Authors tested several SMAR settings. Despite the overall exercises are remarkable, I’m wondering why testing 5 

approaches that already sound not appropriate. I.e., I found the assumptions behind the original SMAR model very arguable. 

E.g., a constant flux V2 (P and ET) is already debated when applied for estimating monthly groundwater recharge and it should 

be considered unrealistic over a long time series (years) for hourly to daily resolutions. The results show how V2 moves from, 

e.g., 50 to 300 mm h-1 in Table 3. These results are not consistent and support my doubt of using standard approach. So I’m 

not surprised if the Authors tried to modify the approach and I would remove the scenario with the constant V2. Similarly, the 10 

CRNS effective depth seems to be easily estimated (L279). So why testing a guess of 35 cm? I would remove this scenario. 

Overfitting a model calibrating all the parameters also seems to me a crash test and it does not seem to me a good approach 

for testing if a model is reliable. Several parameters are not in a physically consistent range and what was argued to be a 

physical approach has been destroyed. I would also remove this scenario. 

 15 

A1-2: We agree that our formulations may have been partly misleading and inconsistent. The original SMAR model introduced 

by Manfreda et al. (2014) comprises different parameters which have a direct physical meaning such as the porosity, soil 

moisture at wilting point and field capacity. The V2 parameter also has a physical meaning as it represents a water loss term 

comprising evapotranspiration and percolation losses from the second soil layer. Given the physical meaning of all parameters 

in the SMAR model, they are easier to be estimated compared to bulk fitting or calibration parameters. For this reason, we 20 

stated that the SMAR model allows for the estimation of soil moisture in a second, deeper soil layer without the necessity of 

in-situ reference information for calibration. Yet, we acknowledge that despite its physical meaning, the V2 parameter is 

difficult estimate and is usually calibrated. 

The reviewer mentions the soil water index which is often referred to as the exponential filter (Wagner et al. 1999). This very 

simple approach has been applied in numerous studies and only includes a single, bulk fitting parameter, namely the 25 

characteristic time length T. With its calibration against in-situ reference measurements, many processes are tried to be 

accounted for. Estimating T for a specific study site, e.g. from parameters such as soil depth, soil physical parameters proofed 

difficult (e.g. Zhang et al. 2017, Wang et al. 2017). This makes the use of the exponential difficult when no in-situ reference 

soil moisture measurements for calibrating T are available. 

However, we agree to the reviewer that the additional testing of the exponential filter approach would strengthen the outcome 30 

of this study. Consequently, we added the depth-extrapolation with the exponential filter method to our analyses, repeated all 

scenarios also with the exponential filter method and added these scenarios to the revised manuscript. 
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As the reviewer points out, when the V2 parameter is calibrated against in-situ reference measurements, its absolute calibrated 

value increases as the second layer thickness increases. This is related to the nature of the SMAR model being a version of a 

storage model. For example, when the field capacity of the second layer is exceeded by 10 cm3/cm3 or 10 vol.-%, the entire 10 

vol.-% percolate from the second layer to larger depths. Expressed in mm, this value is higher for a second soil layer with a 

thickness of 1000 mm compared to 500 mm. This explains higher values for V2 in units of mm when the thickness of the 5 

second soil layer increases. 

Nevertheless, we do agree that the constant V2 is problematic but in our opinion keeping this scenario in the manuscript is 

important to compare our introduced modified SMAR (estimating a dynamic V2) with the original SMAR (calibrating a 

constant V2). 

 10 

The reviewer also argues that some scenarios (first layer depth of 35 cm) and fitting all soil physical parameters should be 

removed. We are thankful about this comment as we think that this will help to streamline the story of our manuscript, to make 

it more digestible for the reader and to highlight the key points of this study. We removed all scenarios where soil physical 

parameters are calibrated (except V2). We also removed the scenarios for hourly time steps and only keep scenarios with daily 

time steps as this is the temporal resolution for which both, the SMAR model and the exponential filter have been designed 15 

for. 

 

 

R1-3: L3-5. deeper than what? I would rephrase otherwise it is not clear to what you refer when saying “deeper”, e.g., moving 

the sentence “Many of these applications require information on soil water dynamics in deeper soil layers.” After “ Cosmic-20 

ray neutron sensing (CRNS) allows for non-invasive monitoring of field-scale soil moisture across several hectares around the 

instrument but only for the first few tens of centimeters of the soil.” 

 

A1-3: We rearranged the sentences accordingly: 

 25 

Original: “Many of these applications require information on soil water dynamics in deeper soil layers. Cosmic-ray neutron 

sensing (CRNS) allows for non-invasive monitoring of field-scale soil moisture across several hectares around the instrument 

but only for the first few tens of centimeters of the soil.” 

 

Modification: “Cosmic-ray neutron sensing (CRNS) allows for non-invasive monitoring of field-scale soil moisture across 30 

several hectares around the instrument but only for the first few tens of centimeters of the soil. Many of these applications 

require information on soil water dynamics in deeper soil layers.” 
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R1-4: L8. Personally, I’m not too much on the philosophical discussion about process-based or empirical approaches (e.g., 

(Hrachowitz and Clark, 2017)). But to call a bucket model with several empirical assumptions a physical-based approach could 

be highly criticized. Please consider rewording. 

 

A1-4: We rephrased the sentence in the following way: 5 

 

Original: “The physically-based soil moisture analytical relationship SMAR is usually also calibrated to sensor data, but could 

be applied without calibration if all its parameters were known. However, in particular its water loss parameter is difficult to 

estimate.” 

 10 

Modification: “The soil moisture analytical relationship SMAR is usually also calibrated to sensor data, but due to the physical 

meaning of each model parameter, it could be applied without calibration if all its parameters were known. However, in 

particular its water loss parameter is difficult to estimate.” 

 

 15 

R1-5: L36. Despite, I agree that establishing an extensive point sensor network requires a lot of effort, the international soil 

moisture network ISMN (Dorigo et al., 2021) provides a good example that it is worth citing. 

 

A1-5: We added this reference to our manuscript: 

 20 

Original: “As a consequence, extensive point sensor networks which allow for the estimation of field-scale soil moisture are 

often restricted to a rather small number of research related monitoring sites such as the Terrestrial Environmental 

Observatories (TERENO, www.tereno.net) in Germany (e.g., Zacharias et al., 2011; Bogena et al., 2018; Kiese et al., 2018; 

Heinrich et al., 2018).” 

 25 

Modification: “As a consequence, extensive point sensor networks which allow for the estimation of field-scale soil moisture 

are often restricted to a rather small number of research related monitoring sites such as the Terrestrial Environmental 

Observatories (TERENO, www.tereno.net) in Germany (e.g., Zacharias et al., 2011; Bogena et al., 2018; Kiese et al., 2018; 

Heinrich et al., 2018) or the International Soil Moisture Monitoring Network (ISMN, Dorigo et al. 2021) covering sites around 

the globe.” 30 
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R1-6: “L80 and L82. To my knowledge, (Wagner et al., 1999) proposed the use of an exponential filter approach to estimate 

soil water content at deeper soil layers based on surface soil moisture. Instead the term SWI refers to a quantity of water content 

between 0-100%. Thus, I would not call the extrapolation approach “soil water index” but rather “exponential filter approach”. 

 

A1-6: We exchanged/added the term “soil water index” with “exponential filter approach” throughout a revised version of this 5 

manuscript. 

 

 

R1-7: L128. How field capacity and wilting point have been estimated is missing and should be added. 

 10 

A1-7: This information is already given in the caption of Tab. 1: “[…]. The soil moisture content at field capacity and wilting 

point were taken from tabulated values in Sponagel et al. (2005) according to the respecitve soil grain size class (medium-fine 

sand) and the soil bulk density of the individual layers.” 

 

 15 

R1-8: L134. The use of the manufacture’s calibration function could be another source of errors that should be discussed in 

the result section. 

 

A1-8: This is correct. Adding the additional analyses and the new results requested by reviewer #1 in R1-1 and R1-2 will lead 

to severe changes in content and structure of the manuscript.  We added the following sentence to chapter 3.4: 20 

 

“When assessing the results obtained from using the in-situ sensor, it should also be noted that the use of the manufacturer's 

calibration function adds additional uncertainty to the results.” 

 

 25 

R1-9: L154. The fact that you use a 25h moving average could be a reason to not be able to capture fast soil moisture changes? 

This could be discussed in the result section. 

 

A1-9: The smoothing of the corrected CRNS neutron signal prior transferring it soil moisture may have some effect on 

capturing fast soil moisture changes. Although we think that this effect is not responsible for the poor performance of SMAR, 30 

we added the following sentence to chapter 3.4: 
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“Although this effect may be small, particularly on the daily time step, smoothing hourly CRNS data prior estimating surface 

soil moisture and aggregating daily soil moisture estimates could contribute to the poorer performance of depth-extrapolated 

time series in the CRNS scenarios compared to the SMN scenarios.” 

 

 5 

R1-10: Eq.5. I guess h is air humidity. Please clarify. 

 

A1-10: This is correct. We added this information accordingly: 

 

Original: “The universal transport solution (UTS), eq. (5) – eq. (6), (Köhli et al., 2021) accounts for the changing relationship 10 

between neutrons and soil moisture under different conditions of absolute humidity.” 

 

Modification: “The universal transport solution (UTS), eq. (5) – eq. (6), (Köhli et al., 2021) accounts for the changing 

relationship between neutrons and soil moisture under different conditions of absolute humidity h in g m-3.” 

 15 

 

R1-11: L179. Please clarify how look-up-table approach works. What are also the assumptions/approximations in using this 

approach? 

 

A1-11: The look-up table approach is necessary because the UTS equation cannot be simply rearranged to be solved for soil 20 

moisture. Instead, one approach is to calculate the neutron intensity from the UTS for each soil moisture value in a range from 

0.0001 to 0.5 cm³/cm³ in 0.0001 cm³/cm³ steps and compare the derived neutron intensity with the observed neutron intensity 

at each time step. The soil moisture value which produces the smallest absolute difference between the predicted neutron 

intensity and observed neutron intensity is then used for each time step. We added this information: 

 25 

Original: “Soil moisture can be derived from the UTS using numerical inversion or a look-up table approach which is used in 

this study.” 

 

Modification: “Soil moisture can be derived from the UTS using numerical inversion or a look-up table approach which is 

used in this study. In the look-up table approach, soil moisture values in the range from 0.0001 to 0.5 cm3 cm-3 in steps of 30 

0.0001 cm3 cm-3 are used to predict the neutron intensity using the UTS for each time step. For each time step, the soil moisture 

value producing the smallest absolute difference between the observed and predicted neutron intensity is then assigned as the 

CRNS-derived soil moisture value.”  
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R1-12: L181. So how Nd has been actually calculated? Is it related to N0? Please clarify. 

 

A1-12: ND has been calculated just like the look-up table approach described in the response to the previous comment. For the 

hours of the calibration campaign in February 2019, soil moisture from independent soil samples and absolute humidity from 5 

local temperature and relative humidity measurements were used to predict a neutron intensity with the UTS for a range of ND 

values. The ND value with the smallest RMSE between observed and predicted neutron intensities was then used. The ND value 

needs to be calibrated for each version of the UTS (MNCP thl, MCNP drf, URANOS thl, URANOS drf). 

N0 is derived equally for the standard transfer function. However, the physical meaning of the two parameters differs and a 

direct, unique relationship between the calibration parameters does not exist as the absolute humidity term in the UTS changes 10 

this relationship. We will added the following sentence to line 201: 

 

Original: “Reference soil moisture information from the soil sampling campaign in February 2019 was weighted accordingly 

and used for calibrating both transfer functions.” 

 15 

Modification: “Reference soil moisture information from the soil sampling campaign in February 2019 was weighted 

accordingly and used for calibrating both transfer functions. N0 and ND were iteratively calibrated. For N0, the value producing 

the smallest RMSE between soil moisture from soil samples and the one predicted with eq. 1-4 was chosen. For ND soil 

moisture information derived from soil samples for the hours of the sampling campaign were used to predict neutron intensities 

with eq. 5-6. The ND producing the smallest RMSE between predicted and observed neutron intensities was chosen.” 20 

 

 

R1-13: L187. What are the differences between URANOS type and MCNP type equation? 

 

A1-23: The UTS is based on neutron transport simulations conducted with two different neutron transport model codes: 25 

URANOS and MCNP. As expected two different models produce slightly different results and hence, different fitting 

parameters for p1-p10 have been obtained. We tested all available parameter sets for the UTS to determine which should be 

used and our results are in line with the initial findings of Köhli et al. (2021) who introduced the UTS. 

 

 30 

R1-14: L211. Are you sure you have to move back and forward from volumetric soil moisture and relative saturation? Could 

you not try directly expanding eq. 7 directly for volumetric soil moisture? 
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A1-14: In case of the SMAR model we have to stick to the procedures and units defined. This would be different for the 

exponential filter method which can be applied to soil moisture data in units of relative saturation and cm3/cm3 (Bouaziz et al. 

2020). However, the calibrated characteristic time length parameter T is likely to be different for a soil moisture time series 

that have been previously transformed to relative saturation and one in units of cm3/cm3. This should be considered when 

comparing different studies reporting calibrated values for T. 5 

 

 

R1-15: L248. I guess the estimation would be very sensitive to the length of the time series. Did you use the entire time series 

for estimating ET? Please clarify. 

 10 

A1-15: The average ET2 for the entire time series determined based on eq. 12-13 would indeed be dependent on the length of 

the surface soil moisture time series. However, we are not determining an average ET2 and P2 for the entire time series and 

then use the subsequently derived time series average V2 to run the SMAR model for deriving soil moisture in the second 

layer. 

Instead, as it can be seen in eq. 13, the ET2 value is calculated and used individually for each time step and so it also done for 15 

P2. This also means that each time step of in the modified SMAR model receives its individual ET2 and P2 value and hence, 

also and individual varying V2 water loss. We added the following modification: 

 

Original: “Here, we estimate the amount of evapotranspiration from the deeper layer ET2 based on the difference between the 

current and past value of relative saturation of the first layer, by scaling the value to the dimension (i.e. extent) of second layer 20 

and by considering the difference in cumulative root fraction between both layers, assuming that root water uptake for ET is 

larger in the layer with more roots eq. (13).” 

 

Modification: “Here, we estimate the individual amount of evapotranspiration from the deeper layer ET2 for each time step 

based on the difference between the current and past value of relative saturation of the first layer, by scaling the value to the 25 

dimension (i.e. extent) of second layer and by considering the difference in cumulative root fraction between both layers, 

assuming that root water uptake for ET is larger in the layer with more roots eq. (13).” 

 

 

R1-16: L490. Well, the discovery that root water uptake varies with time and depth depending on the water availability goes 30 

probably back to the introduction of irrigation practices in the history. I guess Maysonnave et al.,2022 showed more than that. 

If the Authors remove the scenario with V2 constant, this comment could also be probably removed. Otherwise please rephrase. 
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A1-16: As stated in A1-1, we would like to keep the results for the original SMAR version in this manuscript to compare it 

with our modified SMAR version and, as requested by reviewer #1, also with the exponential filter in a revised version of our 

manuscript. We interpret R1-16 in the way that the reference of Maysonnave et al. (2022) is not appropriate here and that 

information on depth and water availability related root-water uptake is well established. Consequently, we removed this 

sentence. 5 

 

 

R1-17: The Authors have stated that this study is the first who evaluates the UTS (L515). If this is the case I think is worth 

clarifying this from the beginning and provide some additional information to better understand how it works and is 

implemented. 10 

 

A1-17: Yes, to our knowledge this is the first study apart from Köhli et al. (2021) who introduced the UTS which compares 

the standard transfer function after Desilets et al. (2010) and UTS in terms of their performance in deriving soil moisture from 

CRNS. More information on the calibration of ND and the look-up table approach will also be added (see A1-11, A1-12, A1-

13). We replaced the following statement in the introduction: 15 

 

Original: “In addition, we apply different neutron-to-soil moisture transfer functions available to derive the surface soil 

moisture time series. This is done to assess which transfer function performs best and if a better CRNS-derived surface soil 

moisture time series translates into better estimates of the depth-extrapolated soil moisture.” 

 20 

Modification: “Different approaches exist to derive soil moisture from observed neutron signals. The standard approach after 

Desilets et al. (2010) is commonly used to derive soil moisture from CRNS but has been found insufficient especially at 

observation sites with low soil moisture contents. New approaches include the interdependence of the relationship between 

neutrons and soil moisture (Köhli et al., 2021) and report an improved estimation of soil moisture with CRNS.  

 25 

The three depth-extrapolation approaches (SMAR, modified SMAR and exponential filter) are therefore applied using different 

surface soil moisture time series, including single point-scale in-situ sensor profiles, averages of the entire in-situ sensor 

network and CRNS-derived soil moisture from different neutron-to-soil moisture transfer functions in order to investigate the 

performance of the different approaches and if a better CRNS-derived surface soil moisture time series translates into better 

estimates of the depth-extrapolated soil moisture.” 30 

 

Additional references: 
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Reviewer #2: 

We thank reviewer #2 for taking the time to review our manuscript and the helpful comments which will improve 

the quality of the manuscript. 

 

 5 

R2-1: MAJOR: A large number of simulations have been carried out. It is difficult to make a summary of the 

results obtained and to clearly understand the more important scientific understanding that has been gained by 

carrying out the study. For example, when looking at the figures, it seems that no configuration gives satisfactory 

results, especially in terms of soil moisture dynamics. A RMSE lower than 0.06 cm^3/cm^3 is not very 

representative and depends on the dynamic range of the soil moisture data. I would strongly suggest reducing the 10 

number of simulations and focusing on more relevant results. 

 

A2-1: We are thankful about this comment and this leads into the same direction compared to what reviewer #1 

mentioned in his/her comments. As also suggested by reviewer #1, we removed the scenarios with hourly data, a 

first layer depth of 35 cm and all scenarios in which we calibrated all soil physical parameters. This helped to 15 

streamline our analyses and made the main points in our manuscript clearer. 

 

 

R2-1: MAJOR: Why are the results not as good as expected? Does it depend on the SMAR model, or on the CRNS 

data, or on the soil moisture benchmark? This should be clarified. For example, a simulation with surface and 20 

deeper layers from the Soil Moisture Benchmark data can give insight into the performance of SMAR. Some 

additional analysis in this direction should be done. 

 

A2-2: This is again a very similar comment to what has been mentioned by reviewer #1. We are glad to see that 

the improvements which need to be made on this manuscript are clear. 25 

In addition to removing a large part of the scenarios as mentioned in A2-1, we performed the remaining scenarios 

of SMAR also based on the in-situ point-scale soil moisture sensors, only. This means that we used the surface soil 

moisture time series of the in-situ soil moisture sensors and applied all SMAR scenarios for two selected soil 

moisture sensor profiles. Furthermore, we then performed the analyses based on arithmetic and weighted averages 

from the entire soil moisture sensor network. 30 
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This gives us a better, site-specific benchmark to evaluate the original and modified version of the SMAR model 

by testing it on in-situ profile scale and in-situ network scale before testing the influence of a CRNS-derived soil 

moisture time series as the input. This way, we are also able to get more clues on the performance of the original 

SMAR model and our modified version. 

 5 

 

R2-3: MODERATE: Other methods have been proposed to extrapolate soil moisture data from the surface to 

deeper layers. The exponential filter is the most commonly used approach. I would suggest a comparison with such 

an approach, again to provide additional information on the performance of the SMAR model. 

 10 

A2-3: The reviewer is right. The exponential filter method (also referred to as the Soil Moisture Index) is a famous 

and often used approach to derive soil moisture time series in deeper layers from a surface soil moisture time series. 

We initially decided not to add this approach to our manuscript as its only bulk fitting parameter T is not directly 

linked to a single specific physical quantity and is difficult to predict for individual observation sites (e.g. Zhang et 

al. 2017, Wang et al. 2017). Hence, it always requires calibration against reference soil moisture information in the 15 

depth of interest. However, finding an approach which can be used without reference information in the depth of 

interest was the initial objective of this study. 

Nevertheless, as also pointed out by reviewer #1, the exponential filter is a standard approach and comparing the 

original SMAR with calibrated water loss parameter V2 and the completely uncalibrated modified SMAR with the 

exponential filter with calibrated T parameter can provide some additional insights into the performance of either 20 

SMAR version at our study site. 

Following the response to the comments of reviewer #1, we repeated all analyses also with the exponential filter 

and added the results to a modified version of our manuscript. 

 
Additional references: 25 

 

Wang, T., Franz, T. E., You, J., Shulski, M. D., and Ray, C.: Evaluating controls of soil properties and climatic conditions on 

the use of an exponential filter for converting near surface to root zone soil moisture contents, Journal of Hydrology, 548, 683-

696, http://dx.doi.org/10.1016/j.jhydrol.2017.03.055, 2017. 

 30 
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New chapter 2.3.2: 

 

To evaluate the performance of the original SMAR and the modified version SMARmodif ied, we also compared it to the 

exponential filter approach (soil water index SWI, Wagner et al., 1999; Albergel et al., 2008) . This approach is often applied 5 

to depth-extrapolated surface soil moisture time series (e.g., Zhang et al., 2017; Tian et al., 2020). It has also been used to 

depth- extrapolate surface soil moisture time series derived from CRNS (Peterson et al., 2016) as well as to evaluate the 

performance of the SMAR model (e.g., Manfreda et al., 2014). This exponential filter has a single calibration factor: the 

characteristic time length T (days). Although attempts have been made to investigate the controls of T and relating its 

variability to climatic variables, vegetation characteristics and soil physical properties (e.g., Wang et al., 2017; Bouaziz et al., 10 

2020), the characteristic time length T is commonly treated as bulk calibration parameter which needs to be optimised against 

reference soil moisture information. 

 

 

New chapter 2.3.3: 15 

 

We applied the SMAR model in its original form with aggregated daily soil moisture data by calibrating the V2 water loss term 

as a constant value while the remaining soil physical parameters were assigned according to Tab. 1. The modified version of 

the SMAR model (SMARmodified) introduced in this study was applied with the same soil physical parameters but estimating 

daily V2 based on eq. 11–14. Consequently, SMARmodified was applied completely without calibration. In order to apply and 20 

calibrate the exponential filter approach for comparison, the daily surface soil moisture time series was converted to relative 

saturation by dividing it by the porosity n1. The extrapolated second layer time series of relative saturation based on the 

exponential filter is then converted back to soil moisture by multiplication with the porosity of the second, deeper soil layer 

n2. The same porosity values (Tab. 1) are used as for the application of SMAR and SMARmodified. 

The calibration and evaluation was performed against reference soil moisture time series in the deeper layer derived from290 25 

in-situ sensors of the soil moisture sensor network (SMN) covering the entire study period. The reference soil moisture content 

of the second, deeper soil layer was calculated by weighting the individual sensor values according to their representative 

layer extent. For example, having soil moisture sensors installed in 30, 50 and 70 cm depth, the soil moisture content per time 

step observed in 50 cm is representative for the layer between 40 and 60 cm. The soil physical parameters assigned to the 

individual layers can be found in Tab. 1 and were weighted the same way. The calibration is performed by minimising the 30 

root-mean square error (RMSE) between the depth-extrapolated soil moisture time series and the entire reference soil moisture 

time series of the second soil layer. 

The original SMAR with calibrated V2, the modified SMAR model (SMARmodified) with estimated V2 (without calibration) 

and the exponential filter with calibrated T was applied to estimate a soil moisture time series in a second soil layer with a 
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maximum depth below terrain surface of 70, 130, 200, 300 and 450 cm. The depth of the first soil layer was set to the median  

sensitive measurement depth of the CRNS method for the study period. We calculated the median CRNS measurement depth 

of the entire CRNS-derived soil moisture time series based on Schrön et al. (2017). According to Schrön et al. (2017), the 

sensitive measurement depth D86 is estimated using the calibrated CRNS-derived soil moisture time series for distances from 

1 to 300 m around the instrument. Subsequent averaging allows for estimating the average measurement depth in the CRNS 5 

footprint for each time step of the time series. The time series median measurement depth D86 is then calculated for the soil 

moisture time series derived with the standard transfer function and the UTS. For both CRNS-derived soil moisture time series, 

the estimated median sensitive measurement depth is 20 cm. 

 

 10 

The three depth-extrapolation approaches are applied in the following scenarios: 

 

Scenario Profile 1 and Scenario Profile 2 Surface soil moisture estimated separately from two individual profiles of in-situ  

soil moisture sensors (average over the two sensors installed in 10 and 20 cm depth), depth extrapolation calibrated/e- 

valuated against reference second layer soil moisture calculated from the deeper sensors of the each individual sensor 15 

profile. 

 

Scenario SMNarithmetic Surface soil moisture estimated with the arithmetic average of all in-situ soil moisture sensors of 

the SMN (depth-averages of sensors installed in 10 and 20 cm depth, 12 and 6 sensors per depth), depth extrapolation 

calibrated/evaluated against reference second layer soil moisture calculated from the arithmetic depth-averages of all 20 

in-situ sensors of the SMN. 

 

Scenario SMNweighted Weighted average surface soil moisture estimated after Schrön et al. (2017) from all in-situ soil moisture 

sensors of the SMN in 10, 20 and 30 cm depth (26 in total), depth-extrapolation calibrated/evaluated against reference 

second layer soil moisture calculated from the arithmetic depth-averages of all in-situ sensors of the SMN. 25 

 

Scenario CRNSRevised standard Surface soil moisture time series from CRNS based on the standard transfer function, depth- 

extrapolation calibrated/evaluated against reference second layer soil moisture calculated from the arithmetic depth- 

averages of all in-situ sensors of the SMN. 

 30 

Scenario CRNSUTS Surface soil moisture time series from CRNS based on the UTS, depth-extrapolation calibrated/evaluated 

against reference second layer soil moisture calculated from the arithmetic depth-averages of all in-situ sensors of the 

SMN. 
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All calculations were performed in R statistical software (R Core Team, 2018, 2023) using the hydroGOF package (Zambrano- 

Bigiarini, 2017, 2020) for calculating goodness-of-fit measures which evaluate absolute values and time series dynamics, 

namely the RMSE, the Kling-Gupta-Efficiency (KGE) (Gupta et al., 2009), the Pearson correlation coefficient as well as the 

Nash-Sutcliffe-Efficiency. 

 5 

 

New chapter 3.2: 

 

The performance of the different depth-extrapolation approaches, i.e. based on the calibrated original SMAR (calibrated water 

loss only), the uncalibrated SMARmodified (estimated water loss based on eq. (11-14)) as well as the exponential filter approach 10 

(calibrated characteristic time length parameter) for the different scenarios are listed in Tab. A1- A3 and shown in Fig. 3. 

Figure 3 also includes a RMSE threshold of ≤ 0.06 cm3 cm−3 which has been used to evaluate the original SMAR performance 

in previous studies (Baldwin et al., 2019; Guo et al., 2023). In all scenarios and all depths, with exception of SMARmodified in 

the Profile 2 scenario, the RMSE of depth-extrapolated time series lies below this threshold, indicating that both SMAR models 

and the exponential filter approach result in acceptable soil moisture time series for the second soil layer down to 450 cm 15 

depth. However, goodness-of-fit indicators more sensitive to temporal dynamics such as the KGE and the NSE show negative 

values indicating an insufficient simulation of the temporal dynamics of second layer soil moisture times compared to the 

reference. This can also be seen in Fig. 5 showing the extrapolated soil moisture time series with the different approaches in a 

second layer with a maximum depth of 130 cm. For example, comparing the scenarios of Profile 1 and Profile 2, the 

performance of the individual extrapolation approaches in terms of capturing the temporal soil moisture dynamics can differ 20 

strongly. These strong differences and largely unsatisfactory representation of soil moisture dynamics indicates that the RMSE 

threshold used in previous studies to evaluate the performance of depth-extrapolation approaches should be treated with 

caution. Regarding the exponential filter method, it should be noted that the maximum T value of 300 days defined in this 

study was reached during calibration in some scenarios as displayed in Fig. 4. 

 25 

Fig. 3 also shows the goodness-of-fit parameters between surface soil moisture time series of the respective scenario and 

the reference soil moisture time series in the second soil layer in order to test if any of the depth-extrapolations perform better 

than simply assuming that the soil moisture in the second layer is similar to the surface soil moisture time series. However, all 

depth-extrapolation approaches, including the uncalibrated SMARmodified, show a better performance in most scenarios and 

especially in larger depths. This indicates that if no reference soil moisture time series for calibration in the depth of interest 30 

is available, the uncalibrated SMARmodified provides better results than simply using the available surface soil moisture time 

series as a first estimate for the soil moisture time series in a second, deeper layer of interest. An exception to this finding 

is scenario Profile 2, where the NSE and RMSE of all depth-extrapolation approaches perform worse compared to the using 

the surface soil moisture time series as the predicted time series in the second soil layer. Comparing the scenarios Profile 



18 
 

1 and Profile 2 in Fig. 5 shows large differences in the surface soil moisture time series between the two scenarios but a 

rather similar reference soil moisture time series in the second soil layer. This indicates small scale heterogeneity of surface 

soil moisture within the SMN caused by e.g. heterogeneous infiltration, root-water uptake and preferential flow processes. 

Preferential flow in macropores including bypass flow along roots (e.g., Nimmo, 2021) can result in highly conductive forest 

soils with infiltrating water being quickly transported from the surface to deeper layers and bypassing e.g. individual point- 5 

scale sensors. Heterogeneous evapotranspiration, interception, (e.g., Schume et al., 2003) and root distribution patterns (e.g., 

Jost et al., 2012) add to the surface soil moisture heterogeneity in forests which may explain the differing performance of 

all depth extrapolation approaches at different individual profiles of in-situ soil moisture sensors. In larger depths with e.g. 

lower root-densities, more similar soil moisture dynamics can be expected, explaining the more similar soil moisture dynamics 

between the two individual sensor profiles. When assessing the results obtained from using the in-situ sensor, it should also be 10 

noted that the use of the manufacturer’s calibration function adds additional uncertainty to the results. 

 

Using averages of in-situ soil moisture sensor networks therefore improve the performance of all depth-extrapolation 

approaches as shown in Fig. 6. Scenarios SMNarithmetic and SMNweighted as well as both CRNS scenarios generally show a higher 

goodness-of-fit for most depth-scaling approaches. This highlights the need for a representative estimation of surface 15 

soil moisture at complex study sites with strong small-scale heterogeneities in soil moisture and soil hydrological processes 

when depth-extrapolating surface soil moisture time series and underlining the potential of CRNS. The differences between 

SMNarithmetic and SMNweighted are rather small, indicating only a minor impact of using a weighted surface soil moisture 

time series and comparing it to a reference second layer soil moisture time series calculated from arithmetic averages. 

Similarly, the difference between CRNSRevised standard and CRNSUTS is relatively small with a slightly higher goodness-of-fit in 20 

the scenario CRNSUTS. However, as the differences are small, a clear conclusion that a better CRNS-derived surface soil 

moisture time series translates into a better depth-extrapolated time series cannot be drawn from the results of this study. This 

may also be linked to the differences in the CRNS-derived surface soil moisture time series being smaller than the uncertainties 

introduced by the different depth-extrapolation approaches. 

 25 

In contrast, larger differences can be found between the SMN-scenarios (SMNarithmetic and SMNweighted) and the CRNS- 

scenarios (CRNSRevised standard and CRNSUTS) where the latter two often show lower goodness-of-fit parameters for the different 

extrapolation approaches as expressed by e.g. a lower KGE. This can be related to general differences between the surface soil 

moisture derived from the SMN and CRNS and could be related to the sensor locations of the SMN not being representative 

for the sensitive measurement footprint of CRNS. Also, the changing sensitive measurement depth of CRNS with soil moisture 30 

content may cause uncertainties when using a constant (median) sensitive measurement depth of 20 cm for the extent of the 

first soil layer in the depth-extrapolation approaches. Although this effect may be small, particularly on the daily time step, 

smoothing hourly CRNS data prior estimating surface soil moisture and aggregating daily soil moisture estimates could 

contribute to the poorer performance of depth-extrapolated time series in the CRNS scenarios compared to the SMN scenarios. 
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Averaged over all tested scenarios, all three depth-extrapolation approaches do not properly represent the time series dynamics 

the our study site as indicated by negative mean NSE values and KGE values below 0.5 (Fig. 7). The highest average goodness 

of fit is obtained when applying the exponential filter approach calibrated against reference soil moisture measurements in the 

second soil layer of interest. The uncalibrated SMARmodified shows average RMSE and NSE values lying largely between the 

exponential filter approach and the calibrated SMAR in its original form, indicating that the introduced SMARmodified can 5 

compete with the (calibrated) original SMAR and can be applied without calibration to derive first estimates of soil moisture 

in a second, deeper layer. 

Nevertheless, all three approaches do not produce satisfactory results in terms of soil moisture dynamics which may be 

explained with the particular water flow dynamics at our study site located in a mixed forest with sandy soils. Complex prefer- 

ential flow and infiltration processes are unlikely to be properly captured by any of the three depth-extrapolation approaches. 10 

This is especially true for SMAR and SMARmodified as they allow water movement only for soil moisture conditions above 

field capacity. In contrast, the exponential filter includes a constant dependence between the surface soil moisture dynamics 

of the first and of the deeper, second layer, which could be an explanation for its higher average performance at our study site 

with expected highly conductive soils due to e.g. preferential flow processes. In addition, the decreasing number of reference 

in-situ soil moisture sensors with increasing soil depth may lead to a lower representativeness of the reference soil moisture 15 

time series at larger depths, lowering comparability to the model results. However, with point sensors installed down to 450 

cm, this study allows for exploring the potential of simple depth-extrapolation approaches for larger soil depths than commonly 

applied. An important limitation of the present study for evaluating the standard and the introduced modified SMAR models 

is its application to a single observation site. Furthermore, other empirical approaches such as regression models (e.g., Zhang 

et al., 2017) and cumulative distribution function matching (e.g., Gao et al., 2018) as well as other versions of the SMAR 20 

model (e.g., Faridani et al., 2017) would allow for an improved evaluation of the presented modification of the SMAR model 

and should be assessed in future studies at sites with a broader range of climatic conditions, vegetation covers and soils. 
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Figure 3. Goodness-of-fit parameters derived for the depth-extrapolation approaches in the individual scenarios depending on maximum second layer depths. 

In addition to the three depth-extrapolation methods applied in this study, also the comparison with the surface soil moisture time series is shown. For the 

RMSE, a threshold value 0.06 cm3 cm−3 is indicated as grey horizontal line. 5 
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 5 
Figure 4. Optimum calibration parameters (minimum RMSE) derived for the different extrapolation approaches and depths in the individual scenarios. For 

SMARmodified the time series average of V2 is shown. 
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Figure 5. Daily depth-extrapolated soil moisture time series of the different scenarios and depth-extrapolation approaches for a depth of 130 cm. The respective 

surface soil moisture time series for the first soil layer (0-20 cm) and the reference soil moisture time series for the deeper, second soil layer (20-130 cm) are 

also shown. 5 
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Figure 6. Goodness-of-fit parameters per depth-extrapolation approach and maximum second layer depth for the individual scenarios 

 

 

 5 
Figure 7. Goodness-of-fit parameters of the three depth-extrapolation approaches averaged over all scenarios. 
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