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Abstract. The spectral wave model WAM (Cycle 6) is a commonly-used code package for ocean wave forecasting. However,

it is still a challenge to include it into the long-term earth system modeling due to huge computing requirement. In this study

we have successfully developed a GPU-accelerated version of the WAM model that can run all its computing-demanding

components on GPUs, with a significant performance increase compared with its original CPU version. The power of GPU com-

puting has been unleashed through substantial efforts of code refactoring, which reduces the computing time of a 7-day global 1/10◦ wave modeling to 7.65

minutes on a GPU server in a revolutionary way.The power of GPU computing has been unleashed through substantial efforts of code

refactoring, which reduces the computing time of a 7-day global 1/10◦ wave modeling to only 7.6 minutes in a single-node

server installed with 8 NVIDIA A100 GPUs. Speedup comparisons exhibit that running the WAM6 with 8 cards can achieve the

maximum speedup ratio of 37 over the dual-socket CPU node with 2 Intel Xeon 6236 CPUs. The study provides an approach

to energy-efficient computing for ocean wave modeling. A preliminary evaluation suggests that approximately 90% of power10

can be saved.
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1 Introduction

Ocean wave modeling has long been regarded as an important part of numerical weather prediction systems, not only due to

its critical role in ship routing and offshore engineering, but also its climate effects (Cavaleri et al., 2012). Nowadays wave15

forecasts are generated from the spectral wave models routinely operating at the scales of ocean basins to continental shelves

(Valiente et al., 2023). To assess uncertainty of wave forecasts, major national weather prediction centers also adopt ensemble

approach to provide probabilistic wave forecasts (Alves et al., 2013). For example, the Atlantic Ensemble Wave Model of the

Met Office issues probabilistic wave forecasts from an ensemble of 36 members at 20 km resolution. However, due to the

limitation of the High Performance Computing (HPC) resource, these ensemble members have to be loaded in 2 groups with20
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a latency of 6 hours for each (Bunney and Saulter, 2015). Increasing spatial resolution and conducting ensemble forecasting

both require huge HPC resource (Brus et al., 2021).

In recent decades, wind-generated surface waves are revealing themselves more and more as the crucial element modulating

the heat, momentum and mass fluxes between ocean and atmosphere (Cavaleri et al., 2012). The air-sea fluxes of momentum

and energy are sea state dependent and the forecasts of winds over ocean are demonstrably improved by coupling atmosphere25

and wave models. Ocean circulation modeling can also be improved through coupling to wave models (Breivik et al., 2015;

Couvelard et al., 2020). Waves absorb kinetic energy and momentum from the wind field when they grow and in turn release it

when they break, thus enhancing the turbulence in the upper mixing layer significantly (Janssen, 2012). Non-breaking waves

and swells stir the upper water and produce enhanced upper-layer mixing (Huang et al., 2011; Fan and Griffies, 2014). For

high-latitude Marginal Ice Zones (MIZs), ice-wave interactions comprise a variety of processes such as wave scattering and30

dissipation, ice fracturing, which also have important impacts on both atmospheric and oceanic components (Williams et al.,

2012; Iwasaki and Otsuka, 2021). The earth system model (ESM) developers are making efforts to explicitly include a surface

wave model into their coupling framework. For example, as part of ECMWF’s Earth system, the wave model component of the

IFS is actively coupled to both the atmosphere and the ocean modeling subsystems (Roberts et al., 2018). The FIO-ESM (Qiao

et al., 2013; Bao et al., 2020) and the Community Earth System Model Version 2 (Danabasoglu et al., 2020; Brus et al., 2021;35

Ikuyajolu et al., 2024) [New reference has been added.] also include a spectral wave model as part of their default components.

The spectral wave models resolve wave phenomenon as a combination of wave components along a frequency and direction

spectrum across space and time. Their generation, dissipation, and nonlinear interaction processes are described by a wave

action transport equation with a series of source terms, which requires large computational resources and long computing time

(Cavaleri et al., 2007). The first operational third-generation spectral model, the WAM (WAve Modeling) was developed in40

1980s (The Wamdi Group, 1988). The WAM has been replaced by the WaveWatch III (Tolman, 1999) as the most commonly

used global and regional wave model used by NWP centers. The SWAN (Simulating WAves Nearshore) is also a popular

wave model which has advantages in the nearshore regions (Booij et al., 1999). All these wave models are under continued

development by different communities, and their code packages are freely accessible.

As an efficient, portable yet commercially available substitute for HPC clusters, GPU computation has played a central role45

in implementing massive computation across a wide range of areas (Yuan et al., 2020, 2023). In the area of ocean and climate

modeling, a variety of mainstream models and algorithms have been successfully ported to the GPU devices with substantial

improvement on model performance reported (Xiao et al., 2013; Xu et al., 2015; Qin et al., 2019; Yuan et al., 2020; Jiang et al.,

2019; Häfner et al., 2021). For brevity, in this paper we do not elaborate these pioneering works. Due to the complexity of code,

GPU acceleration of spectral wave models has not been reported in public until recently. Ikuyajolu et al. (2023) has ported one50

of the WaveWatch III’s source-term scheme W3SRCEMD to GPU with OpenACC. However, the GPU implementation only

exhibited a 35 – 40 % decrease in both simulation time and usage of computational resources, which was not satisfactory. They

suggested that, rather than a simple usage of OpenACC routine directives, a significant effort on code refactoring had to be

done for better performance.
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Since 2020, we have managed to fully port the WAM Cycle 6 wave model to GPUs through a significant amount of works on55

code refactoring. The purpose of this paper is to report the progress that has been made. The paper is organized as follows. Section

2 briefly reviews the governing equations and physical schemes adopted by the WAM; Then, the OpenACC implementation of

the model and optimization strategies are detailed in Section 3. Performance analysis through a global high-resolution wave

hindcast is made in Section 4. A brief summary is presented in Section 5.

2 Wave model WAM60

The ocean wave model WAM is a third-generation wave model that describes the evolution of the wave spectrum by solving the

wave energy transport equation. In this study, the WAM Cycle 6 (hereinafter referred to as WAM6) is adopted. The WAM6 is

one of the outcomes of European Union (EU) funded MyWave project, which brings together several major operational centers

in Europe to develop a unified European system for wave forecasting based on the updated wave physics (Baordo et al., 2020).

Generally, the third-generation wave models are based on the following wave action balance equation in spherical coordinates65

(Equation 1),

∂

∂t
N +(cosφ)−1 ∂

∂φ
(φ̇cosφN)+

∂

∂λ
(λ̇N)+

∂

∂ω
(ω̇N)+

∂

∂θ
(θ̇N) = Sin +Sds +Snl +Sbot +Sbrk, (1)

The left-hand side of Equation 1 accounts for spatial and intra-spectrum propagation of spectral wave energy along two-

dimensional geographic space (φ for latitude and λ for longitude), angular frequency (ω) and direction (θ), respectively. The

5 terms in the right-hand side of the equation 1 is source terms, which represent the physics of wind input (Sin), dissipation70

due to whitecapping (Sds), nonlinear wave-wave interaction (Snl), bottom friction (Sbot), and depth-induced wave breaking

(Sbrk), respectively. Two sets of wave physics parameterizations are available in the WAM6, which are based on the works of

Janssen (1989, 1991) and Ardhuin et al. (2010). A first-order upwind flux scheme is used for advection terms, and the source

terms are integrated using a semi-implicit integration scheme. The full description of the governing equation, parameterization

and numerical schemes can be referred to ECMWF (2023), Günther et al. (1992), and Behrens and Janssen (2013).75

The flow diagram of the WAM6 model is illustrated in Figure 1. The WAM6 model has a pre-processing program (PRE-

PROC) which generates the computing grids with two alternative options. The default option is to produce a reduced Gaussian

grid. In this case, the number of grid points along the latitude reduces polarward with east-west grid spacing comparable for

all latitudes. This approach not only benefits numerical stability required by the Courant–Friedrichs–Lewy (CFL) condition,

but also improves model efficiency by reducing cell number considerably. The forward integration of the model at each grid80

point is implemented within the main program CHIEF, which in turn considers wave propagation, source term integration, and

post-processing of wave spectra for a variety of wave parameters. These processed fields comprise parameters to describe the

mean sea state, major wind sea and swell wave components, as well as freak waves. Other parameters also include radiation

stresses, Stokes drifting velocities, and maximum wave/crest height (ECMWF, 2023). Wave spectra and wave parameters can

then be written into the formatted or NetCDF files at specified intervals, and this is achieved by the PRINT programs.85

When running in parallel, the WAM6 model splits the global computation domain into rectangular sub-domains with equal

size. Only sea points are retained. The Message Passing Interface (MPI) is adopted to exchange wave spectra of the overlapping

3



halos between connecting sub-domains. The WAM6 is able to run on a HPC cluster with up to thousands of processors with

acceptable speedup.

Figure 1. Flow diagram of the WAM6 for a regular wave modeling. The WAM6 modeling is implemented with a three-step procedure,

including pre-processing (PREPROC), model integration (CHIEF), and output (PRINT). The shaded box denotes the compute-intensive

modules that are ported to GPU.

3 Porting WAM6 to GPU90

Before porting a complex code package to GPU, the developers should consider whether the core algorithm is suitable for GPU

(Applicability), whether the programming effort is acceptable (Programmability), whether the ported code can fit the rapidly

evolving and diverse hardware (Portability), and whether it can scale efficiently to multiple devices (Scalability). CUDA and

OpenACC are two commonly used GPU programming tools. CUDA can access all features of the GPU hardware to enable

more optimization. A number of studies on GPU-accelerated hydrodynamic models have been reported to use CUDA C or95

CUDA Fortran as coding languages (Xu et al., 2015; de la Asunción and Castro, 2017; Qin et al., 2019; Yuan et al., 2020).

Substantial efforts have to be done to encapsulate the computing code with CUDA kernels. However, lessons learned by us is

that using CUDA to rewrite a code package which is under community development is not always a smart choice. OpenACC is

a parallel programming model which provides a collection of instructive directives to offload computing code to GPU and other

multi-core CPU. Using OpenACC greatly shortens the development time, reduces the learning curve of non-GPU programmer100

and supports multiple hardware architectures. Therefore, we adopted OpenACC as the coding tool.
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To fully accelerate the WAM6 model and improve performance, the best practice is to offload all compute-intensive code

to GPU devices and maximize data locality by keeping necessary data resident on GPU. The spectral wave model is memory-

consuming due to the existence of a four-dimensional prognostic variable N (Equation 1). For example, for a global 1/10◦

wave model consisting of 36 directions and 35 frequencies, the variable of spectral wave energy is as large as 36 Gigabyte105

(GB). All the coding strategies should comply with the facts that GPU memory is limited and data transfer between the host

and device is expensive. As shown in Figure 1, the overall strategy in this study is to run the entire CHIEF program on GPUs

without any data transfer between CPU and GPU memories. For multiple-GPU programming, the cuda-aware OpenMPI is

used to conduct inter-GPU communication.

3.1 Data hierarchy110

Unlike its predecessor, the WAM6 now is modernized with the FORTRAN 90 standard. All subroutines are organized as groups

and then encapsulated as modules in accordance with their purposes. As the spatial and intra-spectrum resolutions increase, the

memory usage for a global wave modeling shows a exponential growth. Hence, careful design of data structure and exclusion

of unnecessary variables on GPU are important, which requires a panorama of the entire WAM6 model, as well as a thorough

analysis of individual variable.115

As illustrated in Figure 2, a three-level data hierarchy is established with each level having different lifetime and scope. The

prognostic and state variables are constantly modified during the program runtime, and declared as global variables using 〈acc

declare〉 directive with create clause. The module-level variables are private to the module where they are declared. They have

the same lifetime of the residing module, and are also defined on GPU using 〈acc declare〉 directive. For the global and module-

level variables, the FORTRAN allocate statement allocate the variables in both host and device memories simultaneously. The120

OpenACC uses 〈acc data〉 directive to create local variables that are only accessible locally inside a subroutine. They are

allocated and freed within the 〈acc data〉 region. The unstructured data region 〈acc enter/exit data〉 is not used in the study, though it can create

data region spanning different routines. It probably results in inconvenience for potential model developers.

3.2 Optimization strategies

Literally, OpenACC implementation can be as simple as inserting directives before specific code sections to engage the GPUs.125

However, to fully utilize the GPU resource, optimizations such as code refactoring or even algorithm replacing are necessary,

which require a wealth of knowledge of both GPU architecture and code package itself. Before introducing the optimizing

strategies, some knowledge about the WAM6, especially that related to GPU computing, is reiterated here.

First of all, the WAM6 is compute-intensive, so GPU accelerating is certainly promising. A global 1/10◦ high-resolution

wave modeling (corresponding to nearly 3 million grid points) with 35 frequencies and 36 directions means that approximately130

4 billion equations have to be solved for a time step. In the WAM6, a mapping from the two-dimensional spherical grid to a one-

dimensional array is performed. Thus, the computation of wave physics is mainly composed of a series of three-level nested

loops iterating each grid, frequency and direction. Iteration on grid points is placed in the innermost loop for vectorization
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Figure 2. The three-level data hierarchy of the WAM6-GPU.

where appropriate. Nevertheless, as explained later, sometimes better performance requires loop on grid points placed to the

outermost, leaving two another loop levels executing serially.135

Secondly, the WAM6 can be memory- and I/O-bound, as it contains a dozen of three-dimensional (3D) variables with overall

size amounting to hundreds of GB. Some optimizing strategies, such as loop collapse, contain trade-off between performance

and memory occupancy. Besides, previous work (Ikuyajolu et al., 2023) only accelerates source terms of the wave model, and

postprocessing of spectral wave energy for a variety of wave parameters has not been ported to GPUs. This leads to a mass

device-to-host transfer of the 3D wave spectra at each output time step. The consequence is that the achieved speedup ratio is140

immediately neutralized by the transfers.

Thirdly, the nonlinear wave-wave interaction (Snl) redistributes energy over wave components with similar frequencies and

directions. Thus parallelism along the dimensions of frequency and direction cannot be performed. We made significant efforts to

restructure the code. Optimizing strategies on Snl should be considered carefully. Spectral separation of windsea and swell also

involve manipulation between different wave components, which cannot be vectorized either.145

Generally, we pursue a high GPU occupancy by loop reordering, collapse and refactoring. The key principles are to tune

how the loops are mapped to the GPU hardware, and allocate optimal workload and on-chip resource for each CUDA core. We

take full advantage of on-chip memories and caches by evaluating the necessity of each global memory access, and whether it

can be converted to on-chip access. We eliminate device-host memory copies completely during the runtime of the program by

migrating the whole wave physics and postprocessing modules to the GPUs. It should be noted that too much code refactoring150

may be detrimental to code readability in terms of its physical concept. Based on the full absorption of model physics, loop

reordering and collapse are the main strategies for better speedup, which have not altered the code structure in most cases.

Heavy code refactoring only occurs in computing source term of nonlinear wave interactions, as well as in some MPI interface

functions. More specifically, some of the code optimization is presented by a few examples as follows.
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Restructuring the complex loops The wave physics of the WAM6 consists of complex loops with nested functions and a155

number of private scalars or local variables. A simplest implementation is to insert OpenACC directives before the outer loops

to generate a huge GPU kernels, and using 〈acc routine〉 to automatically parallelize the nested functions. The implementation

does work but comes with poor performance generally. A GPU kernel with appropriate size helps to achieve better performance. When

appropriate, we split complex loops into a series of short and concise loops to increase parallelism and GPU occupancy. For

nested subroutines, a naive usage of 〈acc routine〉 is not encouraged. A rule of thumb is to make loop-level (fine-grained)160

parallelism inside the nested subroutines with complex structure.

Nevertheless, splitting the outermost loop into pieces sometimes leads to an dilemma. In WAM6, evaluation of the spectral

wave energy is a 3D computation. As shown in Figure 3(a), local, intermediate scalars or variables have to be declared as 3D

variables to store the temporary information. It is commonplace in subroutine to compute the nonlinear wave-wave interactions

Snl. Although splitting the loop can achieve vectorization along all loop levels (Right panel of Algorithm a), the space of GPU165

memory may be limited in this case, not to mention the overhead for creating/freeing the memory each time. Thus, trade-off

between parallelism and global memory must be considered.

Increasing parallelism by loop collapse Except aforementioned loop splitting, loop reordering is commonly used to orga-

nize the nested loops. We ensure that the 3D global variables are being accessed consecutively along the dimensions with an

increasing manner. OpenACC then collapses the nested loops into one dimension. For the nested loops without any dependency,170

we place the gridcell-based loop (IJ) to the innermost, immediately followed by the direction- (K) and frequency-based (M )

loops. Loop collapse is limited to the tightly nested loops. As shown in Figure 3(b), for loosely nested loops, some scalars are

computed between the nested loops. If appropriate, these scalars are placed into the innermost loop at the cost of computing

them redundantly. In this way, the loops are converted to the tightly-nested loops.

Reducing global memory allocation and access Global memory allocation and access are expensive operations on GPU,175

which may incur performance degradation. One widely-used strategy is to convert 2D or 3D local variables in the nested loops

to loop-private scalars if appropriate. In the subroutine to evaluate Snl, there are parameter arrays that store dozens of factors

for spectral components of the wave. As exhibited in Figure 3(c), the best practice is to assign each value of the array to a

temporary scalar which is private to the loop, rather than offloading the array to the global memory of the device. The latter

would increase global memory access substantially. Using too many private scalars inside one kernel raises the concerns of a180

possible lower GPU occupancy due to spills of registers. The fact is that OpenACC tries to handle it properly by manipulating

the physical resource (i.e., registers, L1/L2 cache) for these local variables, without degrading performance notably.

Choosing longest dimension for reduction Reduction operations are ubiquitous in the WAM6. A simple usage of 〈acc

reduction〉 construct along the dimensions of frequency or direction should be avoided. It requires a parallel level of vector in

OpenACC to do the reduction at each grid point, leaving the majority of threads idle. Instead, we should map each thread to185

a grid point and instruct the thread to do the reduction in a serial way (Figure 3(d)). The approach can fully occupy the GPU

resource. Using 〈acc reduction〉 for global reduction along the longest dimension IJ is encouraged.

For multiple-GPU MPI communication, we fill the sending and receiving buffers by GPU, and using 〈acc host_data〉 con-

struct for device-to-device data exchange. This reduces MPI communication time dramatically (Figure 5).
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Figure 3. Optimizing strategies to improve performance in the WAM6-GPU. In the model, the three-level nested loops are extremely com-

mon, and IJ , M , K denote indexes of grid cell, frequency and direction.
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4 Performance evaluation190

4.1 Hardware and model configuration

The WAM6-GPU is tested on a GPU server with 8 NVIDIA A100 GPUs. The compilation environment is NVIDIA HPC SDK

version 22 and NetCDF 4.3. The NVIDIA A100 consists of 6912 CUDA cores sealed on 108 streaming multiprocessors. These

cores access 80 GB of device memory in a coalesced way. The GPU server is hosted by dual Intel Xeon 6236 CPUs with 32 physical cores

running at 2.9 GHzThe GPU server is hosted by 2 Intel Xeon 6236 CPUs with 32 (2×16) physical cores running at 2.9 GHz. In this195

study, the test case first runs on these 2 CPUs with 32 cores fully occupied, and the corresponding execution time (measured

in second) is chosen as the baseline for speedup computation. Speedup ratio is defined as a ratio of the baseline time over the

execution time of the same test case on GPUs

Besides, 2 HPC clusters are used to test the MPI scalability of the WAM6. The National Marine Environmental Forecasting

Center of China’s (NMEFC’s) cluster has 120 active computing nodes, and each has dual Intel Xeon E5-2680 v4 CPUs with200

28 cores. The Beijing Super Cloud Computing Center’s (BJSC’s) cluster provides us with 32-node computing resource. Each

node has dual AMD EPYC 7452 CPUs with 64 cores. The hardware configurations is listed in Table 1.

Table 1. Hardware configurations for performance evaluation of the WAM6-GPU.

Hardware Specifications

Resource CPU cores

per node

GPUs

per node

Available

nodes

CPU cores

in total

NMEFC’s GPU server 32

Intel Xeon 6326

8

NVIDIA A100
1 32

NMEFC’s HPC cluster 28

Intel Xeon 2680v4
0 120 3360

BJSC’s HPC cluster 64

AMD EPYC 7452
0 32 2048

To evaluate performance of the WAM6-GPU, 3 test cases (hereafter referred as to T1-T3) are configured to conduct a global

high-resolution wind hindcast. The model configuration is summarized in Table 2. In T1, the global model runs on a reduced

Gaussian grid at horizontal resolution of 0.1◦, and the wave spectrum at each grid point is discretized with 24 directions and 25205

frequencies. The modeling area extends to latitude of 89.9◦ in Arctic and Antarctic regions. The total grid points is 2,923,286.

The resolution of wave spectrum changes to 36 directions and 35 frequencies for T2. In T3, regular grid is adopted, and the

number of grid points increase to 4,271,075. According to CFL condition, the time step for propagation reduces from 43

second to 0.9 second. In short, the computing workload gets heavier as spectral resolution and grid points increase from T1 to

T3. Generally, regular grid adopted in T3 is not used for a practical global modeling.210
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The hourly ECMWF ERA5 reanalysis (Hersbach et al., 2020) is used as atmospheric forcing with a spatial resolution of

0.25◦. Output parameters are generated at an interval of 3 hours. The WAM6-GPU is configured as a stand-alone model which

do not consider sea ice-wave interaction and current refraction. Two schemes for wave growth and dissipation parameterization

(Janssen, 1991; Ardhuin et al., 2010) are used with integrating time step of 5 minutes. Ardhuin et al. (2010)’s scheme is slightly

more compute-intensive. In the study the performance metric is based on the average computing time required for a 1-day global215

wave hindcast collected from the 30-day simulations (January 1-30, 2021).

Table 2. Summary of the configuration for the global wave hindcast cases.

Configuration of WAM6

T1 T2 T3

Model grid 0.1◦, 89.9◦S - 89.9◦N

Grid type Gaussian grid

2,923,286 grids

Gaussian grid

2,923,286 grids

Regular grid

4,271,075 grids

Bathymetry ETOPO2 interpolated to 0.1◦

Wave spectrumn 24 directions

25 frequencies

36 directions

35 frequencies

36 directions

35 frequencies

Source time step 5 minutes

Source schemes Janssen, 1991 Janssen, 1991 Ardhuin et al., 2010

Wind forcing ECMWF ERA5, 0.25◦, 1-hour

Hindcast duration January 1-30, 2021

Sea ice concentration Sea ice masking is not implemented

Ocean current Current refraction is not considered

4.2 Speedup comparisons

First of all, MPI scalability of the WAM6 is evaluated on NMEFC’s HPC cluster using 84, 168, 336, 672, 1344 and 2688 cores,

respectively. The T1 case is used. As shown in Figure 4, the WAM6 exhibits perfect linear scaling up to 1344 cores. The drop

in scalability becomes significant when the T1 case is split onto 2688 cores. In this case, 1-day global wave hindcast requires220

at least 72.0 seconds. Communication time for the exchange of the overlapping halo cells among the neighboring sub-domains

(upper panel in Figure 4) declines, and the curve gradually flattens as expected.

In Figure 5, the bar plot displays the execution time and speedup ratios of the WAM6-GPU when allotted with different

hardware resource. The T1 case is used. The original code is first placed on NMEFC’s GPU server with only 32 CPU cores

fully used. Averagely, it takes 2393.2 second to complete 1-day modelingThe average wall-time taken to run a 1-day forecast is 2393.2 sec-225

onds. Time for model initialization is excluded. We then choose it as baseline to compute speedup ratios, which are annotated

as gray text in Figure 5.
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Figure 4. MPI scalability of WAM6 for a global 0.1◦, 1-day wave hindcast case (T1) on NMEFC’s HPC cluster with Intel Xeon E5-2680 v4

processors. Diagonal line denotes linear scalability. Both speedup (left y-axis) and corresponding execution time in second (right y-axis) are

shown by open cycles.

Overall, when running on 2 GPUs, the WAM6-GPU can achieve a speedup of 10 over the dual-socket CPU node, and a near-

linear scaling can be observed when 4 and 8 GPUs are allocated. This means when the 8-card GPU server is at full strength,

the maximum speedup ratio can achieve 37, which greatly shortens the execution time of the 1-day global wave modeling to230

65.2 second. As a comparison, the T1 case has been tested on the NMEFC’s and BJSC’s HPC clusters (Table 1). The execution

times are 72.0 and 74.5 second separately when 2688 and 2048 cores are allocated at each cluster, corresponding to speedup

ratios of 33 and 32. The GPU-accelerated WAM6 model shows its superiority over the original code with regard to computing

efficiency. It should be noted that how to showcase the performance of GPU acceleration over CPU is somewhat difficult. The

reported speedup ratios vary in terms of the hardware and workload.235

For operational 7-day wave forecast, the global model usually adopts reduced Gaussian grid and spectral resolution of 36

directions and 35 frequencies, which is similar to the T2 case in the study. Therefore, the energy consumption (E) of a 7-day

global wind forecast using T2 case is measured by E = Pchip ·N ·T in terms of chip’s thermal design power (TDP). Pchip is

the TDP value of the GPU/CPU chip, N is the number of devices, and T is the computing time of the model. For NVIDIA

A100 GPU and Intel Xeon 2680v4 CPU, the TDP values are 350 and 120 watt, respectively. N is the number of devices, and T is the240

computing time of the model. In the NMEFC, the operational global wave model runs for 2.5 hours on the NMEFC’s cluster (Table

11



Figure 5. Speedup ratios of the WAM6-GPU on 2, 4 and 8 NVIDIA A100 cards over its original code on a 32-core node with 2 Intel Xeon

6326 processors for 1-day global 0.1◦ wave hindcast. The computing time of the CPU code on the NMEFC’s and BJSC’s HPC clusters is

also included. Speedup ratios are labeled over the bars. MPI communication time is denoted as solid triangles.

1) with 560 cores. A global wave forecast consumes 0.84 kWh on the 8-card GPU server (Table 3), and approximately 12 kWh

on the NMEFC’s cluster. That means at least 90% of power could be saved if a 8-card GPU server is used.

Table 3. GPU memory and computing time required for a 7-day global 0.1◦ wave forecast on the GPU servera.

Model configurations GPU memory

(GB)

Computing time

(min)

T1b 102.1 7.6

T2 199.9 17.9

T3 312.8 49.2
aSpecification of the GPU server is presented in Table 1.
bModel configurations are presented in Table 2.

4.3 GPU profiling

The major processes of the WAM6 and its GPU version are profiled and their performance is illustrated by timeline plots in245

Figure 6. The WAM6 runs with 2 CPUs with 32 cores, and its GPU version runs with 4 GPUs. In T21 case, the time intervals for
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wave propagation, source term integration, and wave parameter computation are 43 second, 5 minute, and 3 hour, respectively.

The profiling of wave propagation and source term integration in a 5-minute period is presented in Figure 6a.

At each integration time step, the model begins with MPI exchange of 3D spectral energy, which is followed by the com-

putation on propagation and source terms. Generally, a complete model integration on CPU takes 8.589 second while its GPU250

counterpart takes only 0.435 second on 4 A100 cards. This corresponds to a speedup ratio of 20. In more details, for original

CPU version, wave propagation and wind input (Sin) are 2 major computing-intensive processes, which contributes 27.9% and

38.0% of the runtime, respectively. For GPU version, the most prominent feature is the share of nonlinear transfer (Snl) soars

to 39.236.4%. By adopting optimizing strategies introduced in Section 3.2, OpenACC implementation of wave propagation

and Sin can take full advantage of GPU resource. On the contrary, the computation of Snl requires 5 layers of loops, and the255

dependency along frequency and direction inhibits multi-level parallelism. The original algorithm only allows parallelization

on IJ loop. An naive implementation of OpenACC results in very poor performance and substantially lower speedup ratio.

Extensive optimizing experiments on Snl have been made to reduce its share from nearly 60% to 39.236.4%. Among these

experiments, three of them (Exp1 - 3) are summarized below, with their time measurements shown in bracket. The pseudocode

is shown in Figure 7.260

1. Exp1: Placing the IJ loop to the innermost (Not adopted; 0.214 s): It leads to too much overhead for serially launching

thousands of kernels in a single time step.

2. Exp2: Placing the IJ loop to the outermost (Not adopted): It leads to lower GPU occupancy and higher GPU latency due to spilling of local mem-

oryPlacing the IJ loop to the outermost and accessing global coefficient and index arrays directly (Not adopted; 0.252

s): It leads to lower GPU occupancy and higher GPU latency due to spilling of local memory, and frequent access of265

these arrays within a kernel are detrimental to performance.

3. Restructuring the algorithm and reorder the nested loops in order to achieve loop collapse on IJ and K (Adopted): It overcomes the shortcomings of

the above experiments, and achieves better performance by increasing parallelism, as well as maintaining appropriate usage of global and local mem-

ories.Exp3: Placing the IJ loop between the M (frequency) and K (direction) loops (Adopted; 0.171 s for loop collapse

on IJ and K, and 0.151 s for parallelism on IJ and sequential execution on K): It overcomes the shortcomings of the270

above experiments. Besides, actually two tests have been conducted in Exp3. By reorganizing the code substantially, we

managed to collapse the IJ and K loops at first. As the second test, we did not do the loop collapse, and simply inserted

〈acc loop seq〉 before the nested K loop. Surprisingly, the second test took 0.02 s less time. Although loop collapse on

IJ and K may increase code parallelism, it seems that the reorganized code leads to increased overhead.

Furthermore, in contrast with the common sense that MPI exchange is a limiting factor for speedup, in this study its GPU275

implementation exhibits a considerable speedup, with its share reducing from 2.8% to 1.5%. The best practice is to pack and

decode the MPI buffers through GPU acceleration, and transfer them using 〈acc host_data〉 construct.

The WAM6 has several postprocessing modules to derive a series of wave parameters from wave spectra at each output time

step (ECMWF, 2023). Some of the derived parameters serves as interface variables for coupling with atmospheric, oceanic
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and sea ice models (Breivik et al., 2015; Roberts et al., 2018). It is found that even though these modules are only used at280

each output time step (normally 1-3 hours), the device-to-host transfer of the 3D spectral energy is so expensive that the

overall performance can be affected. Besides, as shown in the timeline, the postprocessing runs 6.068 second on the CPU node.

Considering the postprocessing is both computing-intensive and I/O-bound, these modules are ported to the GPU in the study.

The profiling of these modules is shown in Figure 6b. The postprocessing is categorized as 4 types shown in the figure legend.

GPU implementation exhibits acceptable acceleration with a speedup metric of 12. As expected, the spectral separation take285

the largest share of the runtime (77.0%), as it involves a succession of frequency-dependent loops. Not much optimization has

been done at this time.

Figure 6. GPU runtime analysis within the integration (a) and postprocessing (b) time steps for a global 0.1◦ wave hindcast case.

4.4 Comparison of CPU and GPU results

The numerical models running on CPU and GPU are supposed to produce slightly different results due to multiple factors.

For example, the execution order of the arithmetic operations are different on CPU and GPU for a global reduction. Besides,290

iterative algorithms lead to the accumulation of the errors. Substantive difference is not allowed, and ideally it should not

grow rapidly for a long-term simulation. Absolute difference (AD = CPU −GPU ) and Relative difference (RD = (CPU −
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Figure 7. Pseudocode of optimizing experiments on source term describing nonlinear wave interaction (Snl). Algorithms (a)-(c) correspond

to Exp1 - 3 separately.

GPU)/CPU ) are used to measure the difference between the CPU and GPU results. Both the WAM6 and its GPU version

run with single precision for one-month period.

As many as 72 different wave parameters can be computed by the WAM6-GPU, and some of them are visualized in Figure295

8. The field-mean AD and RD values for a one-day period are presented in Figure 9 as gray cycles and open triangles, respec-

tively. Generally, GPU implementation is proven to be a success, which is demonstrated by the well-controlled differences.
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Figure 8. A series of output parameters generated by the WAM6-GPU.

The mean AD values are well below 10−6 with several outliers observed for some output parameters with their values several

orders of magnitude larger than others (i.e., radiation stress components and wave direction in degree). In this case the RD

metric is more appropriate for comparison. Time series of mean relative differences (RD) from January 1 to 30, 2021 for300

significant wave height, peak & mean wave period, and wave direction are shown in Figure 10. Two dashed lines marking the

RD values of 10−6 are plotted. It is satisfying that the differences between CPU and GPU results do not show a growing trend

for the whole simulation.

5 Conclusions

In recent years giant HPC clusters have been replaced by dense and green ones in an increasing pace. Moreover, programming305

barrier to port numerical models to GPUs are now incredibly low with the aid of high-level programming tools such as Ope-

nACC. These progresses pave fast lane to energy-efficient computing for climate and earth system modeling. It is anticipated

that the transition of ESMs from CPU-based infrastructure to GPU-based computing devices is inevitable.

In this study, the WAM6, one of the most commonly-used spectral ocean wave models, has been ported to multiple GPUs

by OpenACC with considerable efforts of code restructuring and refactoring. To evaluate model performance, a global wave310

hindcast case has been configured with horizontal resolution of 1/10◦, and intra-spectrum resolution of 25×24 or 35×36. It
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Figure 9. Mean difference (cycles) and mean relative differences (triangles) between the WAM6 and WAM6-GPU for major output param-

eters for a one-day global simulation. Both versions use single precision for computation. Outliers in mean difference can be observed for

parameters with several orders of magnitude larger than others.

shows that when using an 8-card GPU server (NVIDIA A100), a speedup of 37 over a fully-loaded CPU node can be achieved,

which reduces the computing time of a 7-day global wave modeling from more than 2 hours to 7.6 minutes. We expect even

higher performance of the WAM6-GPU on the latest NVIDIA H100 GPU. The study emphasizes that for a complicated model,

GPU performance may not be desirable if OpenACC directives are implemented without substantial consideration on GPU’s315

features and their combination with code itself.

To move the study forward, the ongoing works include adding a new finite-volume propagation scheme to support Voronoia

unstructured grid, and incorporating seaice-wave interaction source term to the WAM6-GPU’s physics. These works will extend

the application of WAM6-GPU to the polar areas and nearshore.
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Figure 10. Time series of mean relative differences (RD) between the WAM6 and its GPU version from January 1 to 30, 2021 for significant

wave height (circles), peak wave period (stars), mean wave period (triangle), and wave direction (left-pointing triangles).

Code and data availability. This version of the WAM6-GPU is available from https://doi.org/10.5281/zenodo.10453369 (Yuan, 2024). As-320

sistance can be provided through yuanye@nmefc.cn. The original WAM6 source code is maintained at https://github.com/mywave/WAM.
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