
1

Authors’ response to referee #1: egusphere-2024-169: “Towards a real-time
modeling of global ocean waves by the fully GPU-accelerated spectral wave
model WAM6-GPU”

Hi, the anonymous referee,

Thank you for your constructive comments on our manuscript entitled ‘Towards a real-time
modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU’.
We feel indebted to you for your time on this manuscript. In the response below, all the comments
and concerns are replied point by point, and the revised manuscript is attached as PDF
supplements.

Kind Regards,
Ye Yuan, on behalf of the co-authors.

I wish to congratulate the authors on a job well done. This is a very comprehensive piece of work,
and the speedups achieved on GPU are indeed impressive. What I particularly enjoyed was the level
of detail in which code optimisations were discussed. Some of the computational and memory access
patterns present in WAM6 are also relevant to many scientific algorithms, and thus the
optimisations demonstrated herein have a wider utility beyond the wave modelling community.

I have attached an annotated copy of the paper with some detailed comments. I have mainly
requested further clarifications and/or evidence for some of the points made in the paper. The most
significant of these is the request for further detail into the optimisation of the non-linear wave
interaction. There are also a few typographical and grammar corrections.

1. Section 3.1: Can you please explain how unstructured data directives would prove inconvenient
for model developers? Alternatively you could also simply remove this statement; you don’t need it to
justify the use of sturctured data directives.

Response: I have removed the statement “[Line 122 in the revised manuscript] The unstructured
data region <acc enter/exit data}> is not used in the study, though it can create data region spanning
different routines. It probably results in inconvenience for potential model developers.”. My personal
experience was that some of my colleagues who were unfamiliar with the OpenACC might forget to
complete the unstructured data directives that were spanning multiple subroutines.

2. Line 151: While I do agree that adding simple openacc directives around the outer loop and
relying simply on acc routine directives to deal with nested functions would lead to poor
performance, this is not the same as saying GPU kernel size necessarily has a detrimental effect on
performance. I suspect modern GPU compilers with link-time optimisations would go a long way
towards mitigating any performance penalty related to large kernels with nested function calls.
Therefore, this statement should either be removed or backed up by an example comparing an
optimised large kernel versus many smaller ones.

Response: I agree with your comments. Thanks a lot. I removed the statement from the manuscript
[Line 158 in the revised manuscript]. Here I try to express that a very huge GPU kernel may claim

2

more on-chip resource, thus lower the GPU occupancy. My previous experience on FUNWAVE-GPU
project with CUDA Fortran told me to reduce the GPU-kernel complexity when possible. Besides, this
comment is related to the Comment 6. I have made time measurements of the experiments that are
made for Snl term. Please refer to the response for Comment 6.

3. Figure 3: why is there a ‘?’ above the optimisation operator in subplot 3a? The RHS of figure 3b
should read “compute MxKxIJ times”

Response: The question mark which I placed here is explained between Line 156-161 in the revised
manuscript. Here I would like to express the concerns that in some occasions this code refactoring is
not appropriate, or there is no universal rule for code refactoring in GPU implementation. In the revised
manuscript, we decide to remove the question mark [Figure 3 Algorithm (a) in the revised
manuscript].

The typing error in the RHS of Figure 3b has been corrected. Thank you. Please also refer to the Figure
R1 below.

3

Figure R1. Optimizing strategies to improve performance in the WAM6-GPU.

4. Line 187: Does this mean the CPU baseline was established using only one of the two Intel xeon
chips in each node? Please clarify.

Response: Each Intel Xeon CPU has 16 physical cores. Thus in our single-node GPU server, the total
number of the CPU cores are 32. To avoid misunderstanding, the sentence is rephrased as,

[Line 195 in the revised manuscript]“The GPU server is hosted by 2 Intel Xeon 6236 CPUs with 32
(2×16) physical cores running at 2.9 GHz.”

4

5. Line 216: “Averagely” is incorrect English. The sentence can be rephrased as follows: “The
average wall-time taken to run a 1-day forecast is 2393.2 seconds.”

Response: Adopted. The sentence has been rephrased as,

[Line 225 in the revised manuscript] “The average wall-time taken to run a 1-day forecast is 2393.2
seconds.”

6. Line 249-255: Considering that the non-linear wave interaction is the most expensive kernel on
GPU, this section should be backed up with code examples detailing the three optimisation levels.
Moreover, given that clearly a great deal of performance analysis has been carried out, key metrics
from GPU profiles (e.g. occupancy) of the three approaches should also be shown.

Response: Adopted. By combining two reviewers’ suggestions, the subsection 4.3 has been
supplemented with the pseudocode and the wall time measurement for each experiment, which are also
shown here [Line 250-274 in Section 4.3].

 Exp1: Placing the IJ loop to the innermost (Not adopted; 0.214 s): It leads to too much overhead
for serially launching thousands of kernels in a single time step.

 Exp2: Placing the IJ loop to the outermost and accessing global coefficient and index arrays
directly (Not adopted; 0.252 s): It leads to lower GPU occupancy and higher GPU latency due to
spilling of local memory, and frequent access of global arrays within a kernel is detrimental to
performance.

 Exp3: Placing the IJ loop between the M (frequency) and K (direction) loops (Adopted; 0.171 s
for loop collapse on IJ and K, and 0.151 s for parallelism on IJ and sequential execution on K): It
overcomes the shortcomings of the above experiments. Besides, actually two tests have been
conducted in Exp3. By reorganizing the code substantially, we managed to collapse the IJ and K
loops at first. As the second test, we did not do the loop collapse, and simply inserted <acc loop
seq> before the nested K loop. Surprisingly, the second test took 0.02 s less time. Although loop
collapse on IJ and K may increase code parallelism, it seems that the reorganized code leads to
increased overhead.

5

Figure R2. Pseudocode of optimizing experiments on source term describing nonlinear wave
interaction (Snl)

6

Authors’ response to referee #2: egusphere-2024-169: “Towards a real-time
modeling of global ocean waves by the fully GPU-accelerated spectral wave
model WAM6-GPU”

Hi, the anonymous referee,

Thank you for your constructive comments on our manuscript entitled ‘Towards a real-time
modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU’.
We feel indebted to you for your time on this manuscript. In the response below, all the comments
and concerns are replied point by point, and the revised manuscript is attached as PDF
supplements.

Kind Regards,
Ye Yuan, on behalf of the co-authors.

Summary
The authors have fully ported the spectral wave model (WAM6) to GPU using OpenACC with a
substantial amount of code refactoring. On a GPU cluster with 32-core Intel Xeon6326 and 8
NVIDIA A100 GPUs, the WAM6-GPU code achieved a speed-up of 37x when utilizing all the
resources on a node. As a result, they achieved around 90% reduction in power consumption.

This is an important study that would enable century-long global simulations with a stand-alone
wave model and also facilitate the integration of wave models into Earth system models. However,
before accepting this manuscript, the authors need to address the following issues thoroughly.
Main:

1. In the abstract, the authors need to state the speed-up value based on a node comparison e.g.,
32-core intel Xeon6326 and 8 NVIDIA A100.

Response: Adopted. Line 4-6 in the abstract has been rephrased as,
[Line6-9 in the revised manuscript] “The power of GPU computing has been unleashed through
substantial efforts of code refactoring, which reduces the computing time of a 7-day global 1/10 wave
modeling to only 7.6 minutes in a single-node server installed with 8 Nvidia A100 GPUs. Speedup
comparisons exhibit that running the WAM6 with 8 cards can achieve the maximum speedup ratio of
37 over the dual-socket CPU node with 2 Intel Xeon 6236 CPUs.”

2. Looking into the code, I saw that most of the subroutines/modules were refactored. A rough
estimate of how much the original CPU code has been refactored should be discussed within the
manuscript.

Response: Adopted. As shown Figure 1 by shaded boxes, to eliminate expensive CPU-GPU data
transfer, we have ported all computing modules to GPUs. During the study, we bear in mind that code
refactoring can be a ‘two-edges sword’. Too much code refactoring may be detrimental to code
readability in terms of its physical concept. So based on the full absorption of model physics, we tried
to achieve better speedup mainly through loop reordering and collapse, which haven’t altered the code

7

structure in most cases. Substantial code refactoring mainly occurs in the source term of nonlinear
interaction (SNONLIN), as well as MPI library (wam_mpi_comp_module.f90).

The above concern has been added to Line 151-154 in Section 3.2 of the revised manuscript.

“It should be noted that too much code refactoring may be detrimental to code readability in terms of
its physical concept. Based on the full absorption of model physics, loop reordering and collapse are
the main strategies for better speedup, which haven’t altered the code structure in most cases. Heavy
code refactoring only occurs in computing source term of nonlinear wave interactions, as well as in
some MPI interface functions.”

3. One important thing missing from this paper is the structure of the WAM code. The authors
should include a skeletal code structure of both CPU and GPU versions of some parts of the code.
This would greatly improve the manuscript for readers, especially for understanding the SNL
optimization explained in line 245-255.

Response: Figure 1 only gives a top-level flowchart of the WAM package. As stated in Line 71-72, the
full description of the model structure and numerical schemes can be referred to ECMWF (2023),
Gunther et al. (1992), and Behrens and Janssen (2013).

In Section 4.3, we have included the pseudocode for the SNL optimizing experiments, and more
discussion has been made. I hope it will improve the readability of the manuscript in this section.
Details please refer to Section 4.3 and Figure 6 in the revised manuscript, which is also shown in
below.

 Exp1: Placing the IJ loop to the innermost (Not adopted; 0.214 s): It leads to too much overhead
for serially launching thousands of kernels in a single time step.

 Exp2: Placing the IJ loop to the outermost and accessing global coefficient and index arrays
directly (Not adopted; 0.252 s): It leads to lower GPU occupancy and higher GPU latency due to
spilling of local memory, and frequent access of global arrays within a kernel is detrimental to
performance.

 Exp3: Placing the IJ loop between the M (frequency) and K (direction) loops (Adopted; 0.171 s
for loop collapse on IJ and K, and 0.151 s for parallelism on IJ and sequential execution on K): It
overcomes the shortcomings of the above experiments. Besides, actually two tests have been
conducted in Exp3. By reorganizing the code substantially, we managed to collapse the IJ and K
loops at first. As the second test, we did not do the loop collapse, and simply inserted <acc loop
seq> before the nested K loop. Surprisingly, the second test took 0.02 s less time. Although loop
collapse on IJ and K may increase code parallelism, it seems that the reorganized code leads to
increased overhead.

8

Figure R1. Pseudocode of optimizing experiments on source term describing nonlinear wave
interaction (Snl)

4. The use of two CPU-only HPC clusters is confusing. Given that the study focuses on GPU and not
the optimization of the CPU code on the CPU, I think there is no need to run the CPU code on two
CPU-only HPCs. Since the NMEFC’s GPU server does not have more than one node needed for
scalability of the GPU code, the authors should only keep the NMEFC’s HPC cluster for comparing
resource usage needed to achieve the GPU execution time.

Response: The Beijing Super Cloud Computing Center’s (BJSC’s) cluster is equipped with AMD
EPYC 7452 CPUs with 64 cores, which was released in 2020 (Noting that Nvidia’a A100 was released
in 2020), while the NMEFC’s cluster uses older Intel Xeon 2680v4 CPUs with 28 cores (year of
2016-2017). As shown in Figure 5, to achieve a comparable performance with 8 A100 cards, the
required processors for AMD and Intel are 2048 and 2688 cores, respectively. Sometimes there is no
fair comparison between CPU and GPU performance. Besides, some readers may concern about the
WAM’s performance on different x86 CPU brands (Intel and AMD). So we decide to include the

9

metric for both CPU clusters in the manuscript. We can remove the content about the BJSC’s cluster if
the reviewer insist. This will not affect the completeness of the paper.

5. Fig. 7: The authors should show the spatial difference between the output parameters generated
by the WAM6-GPU and the CPU version. Mean difference (Fig. 8) sometimes averages out the
spatial difference between, if any.

Response: Below I have posted a log contour plot of spatial difference for significant wave height,
wave mean period and wave directions between GPU and CPU versions. Generally, the absolute
difference falls below 10-6 in most areas. This is normal since the WAM6 runs in single-precision. I
didn’t include the figure into the manuscript at this time, as the spatial distribution doesn’t show any
recognized patterns. In the reviewer suggest we do so, we will include it into the manuscript.

For other output parameters, the reader may want to run the GPU and CPU versions by themselves.
Both CPU and GPU code packages are available at Zenodo. Besides, I have updated a new version
WAM6-GPU v1.1 not long ago, which support grid nesting on GPU and fix some bugs. However, this
version has not been checked thoroughly. Using this version should be cautious.

Figure R2. Logarithmic contour plot of the absolute difference between the modeling results of CPU
and GPU version (a: Significant wave height; b: Mean wave period; c: Wave direction in rad).

6. Apart from running on the NVIDIA A100 GPU, are there any other further optimization
strategies to improve the WAM6-GPU code on H100?

Response: Sorry, we have had no access to NVIDIA’s H100. H100 is prohibited to sale in China
Mainland at this time.

7. Just curious. Considering this study started in 2020, I wonder if the authors used P100 and V100.
If so, what were the achieved speed ups?

Response:We indeed started to develop the WAM6-GPU with a server with 4 NVIDIA’s early
product V100. The theoretical computing power of the V100 is half of that for A100. The related
metrics are shown in Figure R3.

10

Figure R3. Computing time of the WAM6-GPU for 1-day global 0.1◦ wave hindcast on NVIDIA’s
V100 and A100 GPUs.

Minor:

Line 11: This is a scientific dataset. Cite Cavaleri et al., 2012 as in Line 20

Response: Adopted. Please refer to Line 15 in the revised manuscript.

Line 13: Check citation format.

Response: Corrected. Please refer to Line 17 in the revised manuscript.

Line 33: The new U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM)
has also included WW3 as part of the default component. Cite Ikuyajolu et al., 2024 and Brus et al.,
2021

Response: Adopted. Please refer to Line 35 in the revised manuscript.

Line 228: Define all terms in the equation

Response: All terms are defined now. Please refer to Line 240 in the revised manuscript.

Figure 6: Check caption for incorrect latex degree symbol

Response: Corrected. Please refer to Figure 7’s captain in the revised manuscript.

