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Abstract. Hydrological modeling in alpine catchments poses unique challenges due to the complex interplay of mete-

orological, topographical, geological and glaciological drivers on streamflow generation. A significant issue arises from

the limited availability of streamflow data due to the scarcity of high-elevation gauging stations. Consequently, there is

a pressing need to assess whether streamflow models that are calibrated with moderate-elevation streamflow data can

be effectively transferred to higher-elevation catchments, notwithstanding differences in the relative importance of differ-

ent streamflow-generation processes. Here, we investigate the spatial transferability of calibrated temperature-index melt

model parameters within a semi-lumped modeling framework. We focus on evaluating the melt model transferability from

the main catchment to nested and neighboring subcatchments in the Arolla valley, southwestern Swiss Alps. We use

the Hydrobricks modeling framework to simulate streamflow, implementing three variants of a temperature-index snow-

and ice melt model (the classical degree-day, aspect-related, and Hock’s temperature index). Through an analysis of

streamflow simulations, benchmark metrics consisting of resampled and bootstrapped discharge time series, and model

performance metrics, we demonstrate that robust parameter transferability and accurate streamflow simulation are pos-

sible across diverse spatial scales. This finding is conditional upon the melt model applied, with melt models using more

spatial information leading to convergence of the model parameters until we observe overparameterization. We conclude

that simple semi-lumped models can be used to extend hydrological simulations to ungauged catchments in alpine re-

gions and improve high-elevation water resource management and planning efforts, especially in the context of climate

change.

1 Introduction

Understanding the driving factors of nivo-glacial streamflow regimes is essential for managing high Alpine catchments

and their water resources under global change. With ongoing warming, the long-, intermediate- and short-term storage

capacities of Alpine nivo-glacial systems (e.g. storage capacities of subglacial drainage network, snow cover, glacier
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ice) will be impacted (Jansson et al., 2003; Huss et al., 2008), and high alpine catchments may transition from nivo-

glacial streamflow regimes to dominantly nival regimes (Horton et al., 2006). Currently, Alpine glaciated catchments

and downstream areas receive a strong surplus of meltwater from snow during spring and early summer (Penna et al.,

2017; Engel et al., 2019; Zuecco et al., 2019), gradually switching to glacier meltwater towards the end of summer. The

timing and amount of snow- and glacier-melt is strongly impacted by global warming and related glacier retreat, leading

to changes in streamflow regimes (e.g., Singh and Kumar, 1997; Bradley et al., 2006). These changes in streamflow

regimes and runoff generation characteristics have important consequences in terms of sediment transport, hydropower

production (Gabbud et al., 2016), flood prediction and ecology (Tague et al., 2020).

Despite this, high Alpine catchments often lack discharge monitoring stations due to their sparse population and dif-

ficulty of access. In highly glacierized catchments (i.e. glacial cover > 50%), there are very few gauging stations that

provide reliable and long-term streamflow records. This makes attributing historical changes in streamflow regimes to

glacial sources challenging and inevitably requires recourse to modeling, not just to predict the future but also to under-

stand the past.

Hydrological models are commonly classified into distributed, semi-distributed, semi-lumped and lumped models (Hor-

ton et al., 2022). Distributed models compute the storage and mobilization of water at a grid-cell scale, with parameters

that vary in space (fully distributed) or are partially kept constant (semi-distributed). Semi-lumped models define areas

of interest based on relevant physical parameters (e.g., elevation, aspect, stream network topology), and lumped models

consider the catchment as a single unit. While (semi-)distributed and semi-lumped models allow some spatial variations

to be taken into account and provide a more detailed representation of the processes, lumped models have to represent

the functioning of the entire system. The advantage and popularity of (semi-)lumped models should not be attributed

solely to their computational efficiency, which facilitates multiple model simulations. They also represent an optimal level

of model complexity with respect to available input and output data from a downward model development perspective

(Sivapalan et al., 2003); they furthermore operate at a scale at which averaging of small-scale processes enables a

reliable representation of dominant hydrological processes (Clark et al., 2016).

However, one of the main drawbacks of (semi-)lumped models is that streamflow can only be modeled reliably at the

selected control points (outlets) for which the model parameters have been calibrated against observed streamflow. Sim-

ulated streamflow at other locations within or near the catchment might not reliably represent the actual system dynamics.

In other words, the calibrated parameters might not be transferable to other locations of the stream network (subcatch-

ments) within the system. This transferability issue is particularly important in high Alpine catchments for snow and ice

melt parameters, as meltwater plays a major role in streamflow generation processes. The proportion of streamflow that

is melt-derived (either from snow or ice) and the dominant drivers of melt (i.e. components of the energy balance) will

change as the basin outlet selected for simulation is shifted upstream or downstream, which means that melt parameters

need to be scale-independent. This difficulty is exacerbated in catchments with strong topographic gradients and spatial

heterogeneity, where the complex spatial averaging complicates the extraction of melt-driven streamflow simulations at

smaller scales, which is typically the case in glaciated catchments. One possible solution to increase the spatial transfer-
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ability of calibrated models is the use of additional observed data to better constrain model parameters (Efstratiadis and

Koutsoyiannis, 2010) and thereby to increase their reliability, in particular in view of input data uncertainty (van Tiel et al.,

2020) and in view of simulating change conditions (climate change, land use change). In the field of high Alpine streamflow

simulation, the focus is on the value of glacier mass balance or snow data to ensure that the calibrated streamflow is right

for the right reasons (Kirchner, 2006) rather than due to compensating effects (see the review by van Tiel et al. (2020)).

Examples include the work of Parajka and Blöschl (2008); Şorman et al. (2009); Koboltschnig et al. (2008); Immerzeel

et al. (2009); Konz and Seibert (2010); Griessinger et al. (2016); Gyawali and Bárdossy (2022); Tiwari et al. (2024); Ruel-

land (2024), which all focus on different aspects of parameter reliability as a function of model calibration strategy. For

example, the work of Griessinger et al. (2016) underlines that the incorporation of snow data is especially important for

high-elevation catchments and snow-rich years. However, this wealth of literature does not address the question of how

to transfer calibrated parameters to other catchments or to subcatchments, which is the focus of hydrological parameter

regionalization methods.

Parameter regionalization techniques (Guo et al., 2021) in hydrological modeling have been developed to facilitate

the transfer of model parameters from gauged to ungauged locations (e.g., Mosley, 1981; Abdulla and Lettenmaier,

1997; Bardossy and Singh, 2008). Regionalization methods can be divided into two categories (Samaniego et al., 2010):

post-regionalization and simultaneous regionalization. Post-regionalization methods calibrate a model in several basins

independently and then statistically link the calibrated model parameters to basin predictors (e.g., mean catchment ele-

vation, stream network density, geology, areal proportion of porous aquifers) using a transfer function (e.g., Abdulla and

Lettenmaier, 1997; Seibert, 1999; Parajka et al., 2005; Wagener and Wheater, 2006). Simultaneous regionalizations aim

to calibrate model parameters for several basins while taking into account transfer functions that link model parameters to

catchment characteristics (e.g., Hundecha and Bárdossy, 2004; Götzinger and Bárdossy, 2007; Fernandez et al., 2000;

Troy et al., 2008). The second category of methods was developed to add additional spatial constraints to parameter

calibration and to avoid artifacts of the optimization algorithm. In all these methods, the need to define a function that

links catchment characteristics and model parameters is subject to additional uncertainties, and snow parameters are

often kept constant in such approaches (Götzinger and Bárdossy, 2007; Kling and Gupta, 2009).

Overall, the number of parameter regionalization studies in Alpine areas remains small (Horton et al., 2022), and the

spatial transfer of melt model parameters is still a crucial topic for the prediction of streamflow in catchments without

observed streamflow (Guo et al., 2021).

Spatial parameter transfer is particularly challenging in data-sparse high-elevation catchments where glacier melt, inter-

annual snow storage, and highly uncertain precipitation and evapotranspiration can lead to considerable parameterization

difficulties (Schaefli and Huss, 2011). A particular challenge in such catchments is the estimation of snow and glacier

melt contributions, which, for practical, data reasons, is often limited to the use of temperature-index melt models (TI) that
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link melt rates to air temperature (Eq. 1, Rango and Martinec, 1995):

MTI(t) =

aj(Ta(t)−TT ) : Ta(t)> TT with j ∈ snow, ice

0 : Ta(t)≤ TT

(1)

where MTI(t) is the melt rate at time step t (mm d−1), aj the degree day factor for ice or snow (mm d−1 °C−1), Ta is the

air temperature and TT is the threshold melt temperature.

Although it is commonly admitted that TI models present a good option for extrapolation to larger scales because of the

persistency of temperature over large areas (Frenierre and Mark, 2014), the spatial transferability of the related param-

eters calibrated at the outlet of a catchment to the outlet of a neighboring catchment exhibiting different characteristics

(elevation, aspect, glacial cover) can be questioned (Gabbi et al., 2014; Samaniego et al., 2010), and has been rarely

investigated. This challenge was exemplified for nested catchments by Comola et al. (2015), who studied the influence

aspect and found significant variability in the calibrated degree-day factors for small catchments (< 7 km2) when using a

simple temperature-index model.

One option to regionalize melt model parameters is to compute them directly based on in-situ snow observations,

which was already presented by Martinec (1960) (for an application to streamflow modelling see the work of Hingray et al.

(2010)). Similarly, they can be computed from remotely sensed snow extents: The work of He et al. (2014) shows that

such spatially variable melt model parameters can improve streamflow simulations compared to spatially constant param-

eters. Such approaches are rare because the value of temperature-index melt models is inherently linked to streamflow

simulation and most studies therefore calibrate melt parameters against streamflow.

In this study, we investigate the transferability of the melt and streamflow calibrated parameters between subcatchments

and neighboring catchments considering different melt models and with respect to very high-quality discharge measure-

ments obtained from a hydropower company (see Section 2.2 and Supplement Fig. 14). In view of this exceptional

discharge data set, we chose to not use remotely-sensed snow data, because the preprocessing of remotely-sensed

snow extents and their use for model calibration includes its own share of uncertainty (Parajka and Blöschl, 2006, 2008),

which would obscure our analysis.

For our analysis, we calibrate our model for seven catchments, then take the parameters of the largest catchment

and transfer them to its three nested watersheds and three other neighboring catchments. We then analyze the loss of

accuracy related to the transfer of parameters. To ensure that our conclusions hold for different commonly used objective

functions and assess the sensitivity to these objective functions, we use two different metrics: the Nash-Sutcliffe (NSE;

Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). These two very common metrics do

not translate into one another: the NSE measures the error variance related to the variance of the discharge, while the

KGE measures correlation, variability bias and mean bias. NSE and KGE are differently sensitive to discharge errors: for

example, for high variation regimes that show small errors and large bias, the NSE would give a very promising value

while the KGE would not (Knoben et al., 2019). We carry out this transferability assessment with three temperature-index
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Table 1. Catchments used in the simulations, and their properties.

Catchment
Abbre-

viation

Area

(km2)
Elevation (m)

Mean

slope

Dominant

aspect

Glacier

covered

catchm.

Debris

covered

glacier

Type

Mean Min Max

Bertol Inférieur BI 26.0 3063 2183 3722 28.7 NW 38.5% 9.9% Main

Haut Glacier d’Arolla HGDA 13.2 3014 2582 3677 29.5 NW 32.0% 16.3% Nested

Tsijiore Nouve TN 4.8 3180 2289 3789 28.2 N 57.7% 20.4% Neigh.

Pièce PI 2.9 3046 2636 3784 27.8 NE 57.6% 17.3% Neigh.

Bertol Supérieur BS 2.6 3127 2913 3583 32.4 SW 9.2% 14.3% Nested

Vuibé VU 2.2 3036 2730 3722 24.7 NE 54.4% 1.4% Nested

Douves Blanches DB 1.5 3218 3097 3364 35.4 W 10.1% 23.9% Neigh.

melt models of increasing complexity, and try answering the question: Could incorporating additional spatial information

into more complex TI models increase their spatial transferability?

2 Study area: the upper Arolla river basin and its subcatchments

2.1 Presentation of the study area

We use data (Table 3) from the Arolla river basin located in the south-western Swiss Alps (Fig. 1). A local hydropower

company provided 15-minute resolution streamflow recordings of very high quality given strict regulatory requirements

for monitoring water use (Lane and Nienow, 2019). The Bertol Inférieur (BI) gauging station is fed by water draining

from four subcatchments (Table 1): Bertol Supérieur (BS), Haut Glacier d’Arolla (HGDA), Mont Collon (MC) and Vuibé

(VU). The BI catchment, with an area of 26.0 km2, provides a good opportunity to test the transferability of hydrological

parameters to nested catchments as there are three subcatchments that are also gauged upstream: BS (2.6 km2 area),

HGDA (13.2 km2), and VU (2.2 km2). Remaining drainage to BI comes from the MC catchment or from points located

between the BS, HGDA and VU gauges and the BI gauge (Fig. 1). Immediately to the north of the VU catchment is the

Pièce catchment (PI), draining an area of 2.9 km2; and the Tsijiore Nouve (TN) catchment with a drainage area of 4.8 km2.

On the other side of the valley, immediately to the north of the BS catchment is the Douves Blanches (DB) catchment

with a drainage area of 1.5 km2. These catchments allow us to test the transferability of hydrological parameters to

neighboring catchments. The elevation of these basins ranges from 2112 m a.s.l. (the elevation of the BI gauging station)

to 3838 m a.s.l., the Grand Bouquetins peak, located in the Haut Glacier d’Arolla. At these elevations, it is extremely

unusual to have such high-quality streamflow data for small, highly glacier-covered catchments.

The upper Arolla river basin presents a variety of aspects (Fig. 1b), and its subcatchments have different general

orientations (Fig. 1c). The glacial cover within the Arolla basin decreased over the years (Fig. 1d), from 66.5% in 1850
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to 38.5% in 2016 for the BI catchment (GLAMOS, 2020), while remaining relatively constant since 2009. The geology

of the study area consists mainly of metamorphic and igneous rocks, extensively covered with till and colluvial deposits

(SwissTopo, 2024, Supplement Fig. 3). The geomorphological characteristics of the subcatchments are generally similar.

DB, BS, TN and the northern part of HGDA all feature some rock glaciers (Lambiel et al., 2016), although their relative

area is more significant for DB and BS.

Numerous studies have been carried out in the upper Arolla basin over the years, on topics ranging from glacier dynam-

ics, subglacial hydrology, sediment transport to hydrology (Sharp et al., 1993; Brock et al., 2000; Mair et al., 2002, 2003;

Swift et al., 2002, 2005; Arnold, 2005; Pellicciotti et al., 2005; Dadic et al., 2010; Gabbud et al., 2015, 2016; Lane and

Nienow, 2019), which makes this study area optimal for a technical study on hydrological parameter transferability.

2.2 Hydro-meteorological datasets

We use MeteoSwiss datasets for daily mean precipitation (MeteoSwiss, 2019a) and daily mean temperature available at

1 km resolution for Switzerland (MeteoSwiss, 2019b).

Discharge data were provided by Grande Dixence SA (2024) at seven water intakes. In Switzerland, regulatory stan-

dards require hydroelectric power production companies to report water abstraction details to the authorities. In the upper

Arolla river basin, discharge data were thus provided at a 15-minute resolution since 1969. Each basin features a cali-

brated water level recorder, initially utilizing a chart recorder and later upgraded to a pressure transducer with digital data

logging. Water levels are measured across a broad-crested weir, ensuring highly reliable discharge records (±0.01 m3/s

for regulatory compliance). Under very high flow conditions, the intake overflows and only part of the water is recorded.

However, since any loss of water is a financial loss, the intake has been designed to capture practically all the discharge.

Such overflows are therefore possible, but infrequent. Furthermore, the current ecological minimum flow was only intro-

duced in one of the intakes, BI, as of 2018, after the period used in this study (Tobias et al., 2023). The intakes defining

the extent of each subcatchment are sometimes multiple, as with DB and VU, which both present two intakes, and PI,

which presents four (See Fig. 1). Thus, the discharge is the sum of the corresponding intakes.

With the exception of BI, discharge data were already preprocessed by Lane and Nienow (2019) to eliminate drawdown

events linked to sediment removal during intake flushing. Since these drawdown periods typically last between 30 and 60

minutes, they can be visually recognized using the method outlined in the work of Lane et al. (2017). After the removal of

data portions corresponding to such drawdowns, any missing data points were linearly interpolated. However, for the VU

intake, data were unavailable from August 31 to December 31, 2011, due to intake maintenance work. In our study, we

excluded this last period for VU and applied the same preprocessing method to the BI discharge time series, removing

drawdown events and discarding associated time periods (in blue, Fig. 2). Furthermore, the water from the HGDA, BS

and VU intakes is diverted and does not pass through the BI intake. We thus added the records of its upstream nested

intakes to the BI discharge record (the actual measurements in BI is called BIrest, see Fig. 2). We propagated to BI

the intake maintenance work of VU and the drawdown removals of BIrest by discarding the affected time periods. The

time taken by the water to reach the BI intake from the upstream intakes is approximately 15-30 minutes depending on
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Figure 1. (a) Overview of the modeled catchments and subcatchments in the upper part of the Heremence valley, in the Arolla

catchment. Changes in glacial cover through time are indicated in shades of yellow and green. The inset map shows the location

of the study catchments in the Swiss Alps. (b) Aspect of the study area. (c) Aspect variogram derived from the aspect variance of

each glacier (in blue) and each catchment (in green), normalized by the variance in the total glaciated area/total catchment (Whole),

as done by Comola et al. (2015). (d) Glacial cover fraction through time, with the study period highlighted in orange, the available

discharge period and meteorological data in blue and yellow, respectively. Topography is obtained from the SwissTopo DHM25 dataset

(Swisstopo, accessed 2023) and glacier extents from the GLAMOS inventory (GLAMOS, 2020, Table 3).

the days, which is negligible at the daily scale (Supplement Fig. 13). Subsequently, the 15-minutes time step discharge

datasets were summed up to daily time step datasets after the preprocessing.

Due to the confidentiality of the original discharge data, these datasets are shown here normalized by the same

highest observed discharge values for all catchments (see figures 2, 4, 6, 8, 9, 11 and 14). The normalized dataset is

called either "normalized discharge" when the discharge was expressed in m3 s−1, and "specific normalized discharge"

when the discharge was expressed in mm.

Glacier extents for the years 2010 and 2016 were obtained from the GLAMOS inventory (Fig. 1; GLAMOS, 2020;

Linsbauer et al., 2021; Fischer et al., 2014). This inventory specifies the debris cover extent for the year 2016. To obtain
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Figure 2. Observed discharge series for all subcatchments: Comparison of the discharge series kept for calibration in Hydrobricks

(orange) with the discarded periods (blue). Discharge (unit: m3 s−1) is normalized by the same highest observed discharge values for

all catchments. The BI discharge corresponds to BIrest + HGDA + BS + VU.

older debris cover trends, we used the algorithm developed by Shokory and Lane (2023), now available in an ArcGIS Pro

toolbox, and computed the 2010 extents based on Landsat Level 1 imagery (for details, see Supplement section 4). We

assumed the glacial cover of 2009 to be identical to 2010.

We derived the topography from the SwissTopo DHM25 dataset (Swisstopo, accessed 2023) available at 25 m resolu-

tion. From this topography, we automatically extracted the catchment areas, except for VU. VU requires manual correction

of its southern extent due to the presence of thick ice cover, which complicated the identification of the drainage divide

(Fig. 6 of Bezinge et al., 1989; Hurni, 2021).
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3 Methods

3.1 Hydrological modeling with Hydrobricks

Hydrobricks (v0.7.2; Horton and Argentin, 2024) is a hydrological modeling framework that implements the semi-lumped

GSM-SOCONT model (Glacier and SnowMelt – SOil CONTribution; Schaefli et al., 2005) to simulate nivo-glacial hydrolog-

ical regimes. The model consists of two main components: (a) the reservoir-based SOCONT model, which incorporates a

linear reservoir method to account for slow storage contribution (emulation of subsurface ground water) and a non-linear

reservoir approach to address quick runoff, and (b) the GSM model, which is specifically designed for glacier-covered

catchments. The Hydrobricks framework is based on a C++ core integrated into a Python interface, which allows for

enhanced computing performances.

The model discretizes the catchment into hydrological response units (HRUs) by elevation, aspect and potential clear-

sky direct solar radiation. The HRUs can have fractional land cover types, here ‘glacier’ for glacier-covered areas, and

‘ground’ for non-glacier-covered areas. The distinction between debris-covered glacier areas (‘glacier_debris’) and debris-

free glacier areas (‘glacier_ice’) can also be made (Shokory and Lane, 2023). The processes occurring within the same

land cover type but in different HRUs are assigned identical parameters.

Following GSM-SOCONT’s original structure, the model behavior differs between the glacier-covered area and the ice-

free part. For the ice-free fractional part of a given HRU, surface and subsurface runoff components, along with baseflow

from melt and rainfall (Supplement Fig. 1), are computed per HRU and summed across all HRUs to build the non-glacier

streamflow component at the outlet. For glacier-covered areas, the liquid water from melt and rainfall produced by each

HRU is fed into two lumped parallel linear reservoirs shared by all HRUs. The purpose of these reservoirs, which only

apply to glacier surfaces, is to represent the glacier’s retention effect on water flow. For a detailed workflow, refer to

Supplement Figure 1 and Schaefli et al. (2005).

The transition from rainfall to snowfall is defined in a fuzzy approach (Schaefli and Huss, 2011) between 0°C for the

lower end (Ts-r,min) to 2°C for the upper end (Ts-r,max). Snow and ice start melting at a threshold melt temperature TT

defined at 0°C, and ice can only melt when it is no longer covered by snow.

We use the SPOTPY library (Houska et al., 2015) provided with Hydrobricks for parameter optimization with the Shuf-

fled Complex Evolution algorithm of the University of Arizona (SCE-UA). The SCE-UA algorithm is designed to prevent

remaining stuck in local optima. We use it in combination with the Nash-Sutcliffe (NSE; Nash and Sutcliffe, 1970) and

Kling-Gupta efficiency (KGE; Gupta et al., 2009) performance criteria to find the best combination of parameters (Table 2),

after 10,000 simulations.

3.2 Hydrobricks developments

In the original version of GSM-SOCONT (Schaefli et al., 2005), precipitation type (snow or rain) is determined by a

temperature threshold and melt is calculated through a classic temperature-index melt model (TI). Two new melt models
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were implemented in Hydrobricks: the aspect temperature-index model (ATI) and the temperature-index model of Hock

(HTI).

The aspect temperature-index model (ATI) is based on the discretization of the study area by aspect (North, South,

East/West) and the use of a distinct degree-day factor depending on aspect. A more complex model, the temperature-

index melt model of Hock (HTI; Hock, 1999), links potential clear-sky direct solar radiation to melt rates (Eq. 2):

MHTI(t) =

(m+ rjIpot)(Ta(t)−TT ) : Ta(t)> TT with j ∈ snow, ice

0 : Ta(t)≤ TT

(2)

where MHTI is the melt rate (mm d−1), m is the melt factor common to both ice and snow (mm d−1 °C−1), rj is the

radiation factor for ice or snow (mm d−1 °C−1 m2 W−1), Ipot is the potential clear-sky direct solar radiation (W m−2), Ta

is the air temperature and TT is the threshold melt temperature. Thus, while the ATI model represents a first attempt at

handling spatial differences in melt rates, the HTI model has the benefit of directly taking into account irradiation, which

should make it better suited to reproduce melt rates in catchments influenced by aspect and cast shadows (e.g., Gabbi

et al., 2014).

The HTI model requires computation of the potential clear-sky direct solar radiation Ipot, here implemented using the

definition of Hock (1999, Eq. 3):

Ipot = I0

(
Rm

R

)2

Ψ

(
P

P0cos(Z)

)
a cos(θ) (3)

where I0 is the solar constant (1368 W m−2), (Rm/R)
2 is the Earth’s orbit’s eccentricity correction factor, composed

of R and Rm the instantaneous and mean Sun-Earth distances, Ψa is the mean atmospheric clear-sky transmissivity, P

and P0 the local and the mean sea-level atmospheric pressures, Z the local zenith angle and θ the angle of incidence

between the normal to the grid slope and the solar beam. The potential direct solar radiation, computed on a 15-minute

interval, is set to 0 when a point is not directly irradiated by sunlight (night time and cast shading brought by surrounding

relief), then summed at the daily scale to obtain the daily potential direct solar radiation I. This 15-min interval allows

accounting for changes in sun position, sun rising and setting times during the year.

For the TI model, based on temperature only, the HRUs are evenly spaced elevation bands (Schaefli et al., 2005). For

the ATI and HTI models, the HRUs reflect the elevation variations as well as the aspect or the mean annual irradiation

variations. To avoid any HRU scaling influence on parameter transferability (Liang et al., 2004; Troy et al., 2008), we use

a spacing of 40 m for elevation, 3 categories for aspect (North, South and East-West to group by degree of sun exposure)

and a spacing of 65 W m−2 for potential direct solar radiation for all catchments (Supplement Fig. 2). Furthermore,

in contrast to earlier studies employing GSM-SOCONT/Hydrobricks, which relied on monitoring station data to derive

meteorological lapse rates across the different elevation bands, we needed to derive our meteorological input from gridded

datasets. Our study therefore adopts a distinct methodology, extracting meteorological input for each HRU directly from

gridded datasets. This involves quantifying how much the different cells in the gridded datasets contribute to each HRU.
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We do this by downscaling once the grid of the meteorological data (1 km) to the DEM resolution (25 m): we compute

the weights representing the contribution of each data cell to each HRU based on their spatial coverage, then use these

weights to calculate the mean values for each HRU, for each daily time step. This allows direct use of future climate model

outputs often provided as gridded datasets. The evapotranspiration is then computed at the HRU level, from mean values

of temperature, following the Hamon equation (Hamon, 1963).

In the case where we differentiate between debris-covered and debris-free glacier coverage, we also have to adapt the

melt models by introducing new melt parameters governing the ice melt. The TI model switches from a single parameter

(aice) to two parameters (adeb-free and adeb-cov). The ATI model goes from three parameters (aice, j with j ∈ N, S, EW)

to six parameters (adeb-free, j and adeb-cov, j with j ∈ N, S, EW). The HTI model goes from two parameters (m and rice)

to three parameters (m, rdeb-free and rdeb-cov). The new melt parameters respect the same calibration ranges, but an

inequality constraint is added to force lower melting rates of debris-covered ice: adeb-cov < adeb-free, adeb-cov, j < adeb-free, j

with j ∈N,S,EW , or rdeb-cov < rdeb-free, depending on the chosen melt model.

Under current climate conditions, virtually all snow in our study area melts every summer, making it unnecessary to

model the firn separately.

3.3 Modeling approach

Our study of the transferability of nivo-glacial parameters from the TI, ATI and HTI melt models to nested subcatchments

and neighboring catchments (cf. section 2) can be divided into 4 steps:

1. Calibration runs: We calibrate the model on all subcatchments and neighboring catchments independently and

compare them.

2. Transfer runs in nested catchments: We transfer the parameters calibrated on the main catchment, the Bertol

Inférieur (BI), to its nested subcatchments (BS, HGDA and VI) to simulate their streamflow and compare the results

to observed streamflow.

3. Transfer runs in neighboring catchments: As previous step but we transfer the parameters calibrated on the main

catchment, the Bertol Inférieur (BI), to the neighboring catchments (TN, PI and DB).

4. Increased model complexity run: We repeat the three above points but calibrate and run the model with differentia-

tion of debris-covered glacier and debris-free glacier areas.

For the first step of our study, we calibrate the model for all catchments individually using daily observed streamflow

over the years 2009-2014. We chose this simulation period because glacier cover remains relatively stable (Fig 1d). For

performance metric assessment, the first simulation year is discarded since it is assumed to initialize the system. These

runs are called "calibration runs" as the whole period is used for calibration, and no validation is carried out.
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For the second and third steps of our study, we transfer the calibrated parameters from the calibration run of the main

catchment to nested and neighboring subcatchments. As for the calibration runs, the first year is discarded. These runs

do not include any calibration procedure and are called "transfer runs".

To analyze the effect of differentiating between bare ice melt and debris-covered glacier melt, we complete all of the

above steps twice: once assuming bare ice for the entire glacier area and once accounting for debris-cover.

3.4 Benchmark metrics

A key challenge in model calibration is to assess how good a calibrated model actually is since commonly-used metrics

do not have an absolute meaning (Schaefli and Gupta, 2007). Here, we assess how good the transferred runs are by

assessing if they outperform 1) exhaustively resampled and 2) bootstrapped time series. Bootstrapping is a statistical

resampling method that generates independent samples by repeated random draw with filling (Efron, 1979), on the

basis of which statistics can then be calculated. In hydrology, bootstrap methods have been used mostly to assess

uncertainty (Vogel and Shallcross, 1996; Ebtehaj et al., 2010; Clark et al., 2021), sometimes in the performance metrics

used (Ritter and Muñoz-Carpena, 2013; Clark and Slater, 2006) and to simulate multi-site discharge time-series (Srinivas

and Srinivasan, 2005; Clark et al., 2021). Since the original bootstrapping procedure (Efron, 1979) assumes independent

and identically distributed data, which would destroy the temporal correlation of our discharge data, hydrologists (e.g.,

Srinivas and Srinivasan, 2005; Ebtehaj et al., 2010; Clark et al., 2021) usually opt for block bootstrapping (Carlstein, 1986;

Künsch, 1989), which preserves the internal data structure and is typically used for time-series. In the case of hydrological

data strongly impacted by snow and glacier melt, the block size is annual, starting in January during low flow, to coincide

with the annual periodic structure of the discharge (Ebtehaj et al., 2010). As the evaluation of our hydrological simulation

takes place over 4 years only, we calculate a derived metric where we exhaustively resample the years of the evaluation

period (2010-2014; 3125 combinations), based on the same principles as block bootstrapping. This resampling has the

advantage of not being affected by long-term processes such as global warming, and being easily reproducible because

of its non-stochasticity. For comparison, we perform block bootstrapping on the entire discharge series (1969-2014),

stochastically drawing 3125 combinations. We then compute the NSE and the KGE on each exhaustively resampled

and bootstrapped series and average them to obtain benchmark metrics. In the following article, we call "benchmark"

NSE and KGE the metrics computed over 5 years, and "long-term benchmark" the metrics computed over 46 years. The

benchmark NSE and KGE correspond to the prediction potential of the discharge dataset itself.

4 Results

4.1 Calibration runs

For the calibration runs without accounting for debris-cover, the NSE and KGE values are better than the benchmark

values for all catchments (Fig. 3; section 3.4), implying a consistent enhancement in streamflow modeling with Hydrobricks

compared to a simple temporal transfer of observed data. This improvement is more pronounced in smaller catchments,
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Table 2. Parameters used in the simulations and their a priori range of values.

Parameter

(set)
Unit Description Set value

Melt

model

Ts-r,min °C lower temperature threshold of the snow-rain fuzzy transition 0 all

Ts-r,max °C upper temperature threshold of the snow-rain fuzzy transition 2 all

TT °C threshold melt temperature 0 all

Parameter

(calibrated)
Unit Description Condition Range

Melt

model

MELT MODEL-DEPENDENT PARAMETERS

aice or

adeb-free,

adeb-cov

mm d−1 °C−1
ice degree-day factor, independent (ice) or depen-

dent on ice cover (debris-covered or debris-free)
adeb-cov < adeb-free 5 - 20 TI

asnow mm d−1 °C−1 snow degree-day factor asnow < aice or adeb-cov 2 - 12 TI

aice, j or

adeb-free, j,

adeb-cov, j with

j ∈ N, S, EW

mm d−1 °C−1

ice degree-day factor, independent (ice) or depen-

dent on ice cover (debris-covered or debris-free)

and dependent on aspect (North, South, East/West)

adeb-cov, j < adeb-free, j with j ∈ N,

S, EW

5 - 20, 0 -

20 (North)
ATI

asnow,N,

asnow,S,

asnow,EW

mm d−1 °C−1
snow degree-day factor, dependent on aspect

(North, South, East/West)

asnow, j < aice, j or adeb-cov, j with

j ∈ N, S, EW

2 - 12, 0 -

12 (North)
ATI

m mm d−1 °C−1 melt factor 0 - 12 HTI

rice or

rdeb-free,

rdeb-cov

mm d−1 °C−1 m2

W−1

ice radiation factor, independent (ice) or dependent

on ice cover (debris-covered or debris-free)
rdeb-cov < rdeb-free 0 - 1 HTI

rsnow
mm d−1 °C−1 m2

W−1
snow radiation factor rsnow < rice 0 - 1 HTI

RUNOFF TRANSFORMATION PARAMETERS

kice d−1 ice outflow coefficient

ksnow d−1 snowpack outflow coefficient ksnow < kice

kquick d−1 surface runoff outflow coefficient

A mm slow storage capacity 0 - 3000

kslow1 d−1 slow storage outflow coefficient kslow1 < kquick

kslow2 d−1 baseflow storage outflow coefficient kslow2 < kslow1

ρperc mm d−1
slow storage percolation rate to the baseflow stor-

age
0 - 10

as the values of the benchmark metrics decrease with decreasing catchment area, while the Hydrobrick simulation scores

remain consistently high. This suggests that in smaller catchments, discharge time-series present more variable and

marked yearly signals than in bigger catchments, which can be effectively replicated using Hydrobricks, but not with

resampling. Given that, in general, KGE values tend to be higher than NSE values (Knoben et al., 2019), this trend is

particularly apparent with the benchmark NSE and slightly less with the benchmark KGE. Thus, even though the achieved
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Table 3. Data used in the simulations, with corresponding source.

Dataset Description Acquisition period Provider

Mean temperature daily interval, 1 km resolution gridded dataset since 1961 MeteoSwiss

Mean precipitation daily interval, 1 km resolution gridded dataset since 1961 MeteoSwiss

Discharge
15-minute sampling time interval, measured at water

intakes
since 1969 Grande Dixence SA

Topographic data 25 m resolution DEM (DHM25 dataset) - SwissTopo

Clean glacier extents shapefiles of glacier extents
1850, 1931, 1973,

2010, 2016
GLAMOS inventory

Debris-covered glacier ex-

tents
shapefiles of debris-covered glacier extents 2016 GLAMOS inventory

Landsat imagery
Level 1 Landsat 7 imagery at 30 m resolution for

debris-free ice mapping
06/09/2009 Landsat
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Figure 3. Comparison of the performance of the three melt models on the seven catchments for the period 2010-2014, quantified either

by the Nash–Sutcliffe efficiency (NSE, orange bars) or by the Kling-Gupta efficiency (KGE, blue bars). For comparison, the benchmark

NSE and KGE are computed and plotted as red and dark blue thresholds. The model is calibrated by running 10,000 times over the

years 2009 - 2014, where 2009 is discarded for model initialization. Catchments are ordered by area, from BI (largest) to DB (smallest).

BI’s nested catchments are underlined.

NSE values are often lower than those of KGE, the improvement they represent compared to the benchmark metric values

is much bigger.

To illustrate how well the calibrated discharge simulations fit the observed discharge, Fig. 4 shows the corresponding

hydrographs. The calibration runs based on NSE and KGE (Fig. 4) result in globally similar hydrographs for the TI and

HTI melt models, and for the ATI model (Supplement Fig. 4). While overall discharge dynamics are well simulated, some

discharge peaks are smoothed and thus not adequately reproduced. This is particularly evident in the case of the "spring

event" occurring early- to mid-June. This first prominent peak during the melting season results from the melt of the
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Figure 4. Observed and simulated hydrographs for all catchments for 2010 with the a) TI and b) HTI melt models. Observed discharge

(black solid line) is compared to the calibration run using NSE (dotted orange) and KGE (dotted blue). Specific discharge (unit: mm) is

normalized to the highest value.

supraglacial and hillslope snowpacks, that occurred due to an unusually strong foehn that blew on the 9th and 10th of

June (Zbinden et al., 2010). This foehn event is only partially captured in the temperature records of the period, and none

of the melt models account for wind, which is why this peak could not be reproduced entirely.

The variability of calibrated parameters between performance criteria and between catchments depends on the melt

model used (Kruskal-Wallis test; Fig. 5). Some models produce more pronounced variations, while others generate more

limited variations. With the TI model, the calibrated parameter sets show very different values, depending on the catch-

ment and the performance criterion used. With the ATI model, the degree-day factors and outflow coefficients obtained
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Figure 5. Calibrated ice and snow melt parameters for all simulated NSE and KGE runs for all catchments, with the three melt models

and the two performance criteria. The parameter sets achieving the best NSE and KGE scores are plotted on top with a dot. Catchments

are ordered by area, from BI (largest) to DB (smallest). The significance of the parameter distribution difference between BI and its

neighboring and nested catchments is denoted as follows: *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and ns for non-significant

(Kruskal-Wallis test). BI’s nested catchments are underlined.

with KGE and NSE tend to converge to similar values, but these values still show a certain spread between the catch-

ments. With the HTI model, the all parameter values are more consistent both between the two performance criteria and

across the seven catchments. For example, the HGDA catchment shows high similarity with the BI catchment for both

the snow radiation factor rsnow and the ice radiation factor rice in NSE calibration (non significant distribution change - ns;

Fig. 5).

Thus, refining the representation of the melt process leads to increased spatial coherence of the melt parameters.

The parameters showing no significant distribution changes between catchments could be assumed to be transferable

16



between these catchments without calibration. The HTI model can thus be assumed to be suitable to model the melt

processes occurring in neighboring or nested catchments.

4.2 Transfer runs in nested catchments: spatial parameter transferability
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Figure 6. Observed and simulated hydrographs of the BI catchment and its nested subcatchments for 2010 with a) TI and b) HTI

melt models. Observed discharge (solid black line) is compared to the calibration runs and to the transfer runs with the calibrated

parameters of BI: Shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs, solid lines show the

transfer runs. For BI, the calibration and transfer runs are identical. Specific discharge (unit: mm) is normalized to the highest value.

To assess the spatial parameter transferability to nested subcatchments, we apply, for all melt models, the calibrated

parameter set obtained for the BI catchment to model the discharge of its nested subcatchments BS, HGDA and VI. The
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results for the TI and HTI models are shown in Fig. 6, and the ATI model in Supplement Fig. 5; the transfer runs closely

match the observed discharge for the TI and HTI models. For both models, the simulated discharges of the HGDA and BS

catchments show slightly underestimated low flow periods and peaks. While this can be observed for HGDA throughout

the summer, it is especially true for BS in the late summer. VU, on the contrary, shows slightly overestimated discharge in

the low flows and the peaks, starting July, and overall, its discharge is best reproduced by the TI model. Close inspection

reveals some differences between the transfer runs based on NSE versus KGE calibration, but no systematic differences.
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Figure 7. As Figure 3 but comparing calibration and transfer runs for the subcatchments of BI for the period 2010-2014. Shown are

NSE values (orange) and KGE values (blue), along with the benchmark NSE value (red line) and KGE value (dark blue line) values. The

performance values for the corresponding calibration run are shown in more transparent color. BI’s nested catchments are underlined.

As expected, the transfer runs reproduce the observed discharge less closely than the calibration runs for each of

the catchments. The performance metric values of the transfer runs (Fig. 7) are, nevertheless, high compared to the

benchmark values. Globally, the performance drop is larger for KGE than for NSE but given the different sensitivities of

the two metrics, they cannot be directly compared (see Section 4.1). Although all subcatchments and models experience

a drop in KGE values, VU is the only catchment whose results drop just below the KGE benchmark value with all models.

With the exception of the BS catchment, the best results are obtained with the TI and the HTI models.

We tested the consistency of the model across scales by checking whether the simulated discharges of the subcatch-

ments (VU, HGDA and BS) were coherent across subcatchments and with the discharge of the main catchment (BI)

(Fig. 8). This test is partial, as the discharge generated by the Mont Collon (MC) area is not monitored, and thus the

added discharges of VU, HGDA and BS do not account for all of BI’s discharge. We thus expect the sum of the three sub-

catchments’ discharges (dotted black line, Fig. 8) to be always lower than the discharge of the main catchment BI (dotted

purple), and to have a consistent overestimation/underestimation of the flow across the different subcatchments. This is

true for the high flow event trigered by the 9th-10th June 2010 foehn event (Zbinden et al., 2010), which is consistently

underestimated in all catchments. Similarly, we find that for the low flow periods end of June and early September, which
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Figure 8. Observed and simulated hydrographs with the HTI model for the Bertol Inférieur (BI) and its subcatchments (VU, HGDA and

BS) for the summer of 2010. For the subcatchments, the simulations (dotted lines) are the NSE-transfer runs, for the main catchment,

BI, the dotted line corresponds to the calibration run. The solid lines are the observed hydrographs. The dotted black line shows the sum

of the transfer runs of the three subcatchments. Discharge (unit: m3 s−1) is normalized to the highest value. BI’s nested catchments

are underlined.

are slightly overestimated in BI, the stacked discharges (dotted black) are consistent and stay below the BI discharge

(dotted purple).

4.3 Transfer runs in neighboring catchments: spatial parameter transferability

The results of transferring the calibrated parameters of BI to neighboring catchments (Fig. 9, Supplement Fig. 6) demon-

strate for 2010 high accuracy in discharge simulation, both with the TI and HTI models, with minimal performance loss

compared to calibration runs. The simulated discharge changes resulting from this forcing are more pronounced for the

TI model than for the HTI model. Again, the discharge dynamics are relatively well-reproduced but with a significant

underestimation of the initial June discharge peak for all catchments and the July ones for the TN and PI catchments.

Interestingly, the July peaks are absent in the observed discharge of the DB catchment (as they are absent in the ob-

served discharge of the BS catchment, see Figure 6). As seen in the nested forcing results (Fig. 6), the NSE calibration

run fits the discharge peak sometimes better than the KGE calibration run, such as in catchment DB in early July with the

TI model.

We observe similar drops in NSE and KGE values when applying the BI parameters to the neighboring catchments

as for the transfer runs in the BI subcatchments (compare Figs. 7 and 10). Nevertheless, with the exception of the DB

catchment using the ATI melt model, the performance decreases are less pronounced compared to the nested catch-

ments. In all neighboring catchments, the simulations exhibit NSE and KGE values that exceed those of the benchmark.

Thus, the catchments whose discharges are the least well simulated with BI’s calibrated parameters are the BI’s nested

subcatchments: VU, BS and HGDA.

19



0.00

0.25

0.50

0.75
BI

a) TI melt model

0.00

0.25

0.50

0.75
BI

b) HTI melt model

0.00

0.25

0.50

0.75
TN

0.00

0.25

0.50

0.75
TN

0.0

0.5

1.0

No
rm

al
ize

d 
sp

ec
ifi

c 
di

sc
ha

rg
e

PI

0.0

0.5

1.0

PI

Jun
2010

Jul
2010

Aug
2010

Sep
2010

Oct
2010

0.00

0.25

0.50

0.75

DB

Observed NSE Calibration KGE Calibration NSE Transfer KGE Transfer

Jun
2010

Jul
2010

Aug
2010

Sep
2010

Oct
2010

0.00

0.25

0.50

0.75

DB

Figure 9. Observed and simulated hydrographs of the BI catchment and its neighboring catchments for 2010 with a) TI and b) HTI melt

models. Observed discharge (solid black line) is compared to the calibration run and to the transfer runs with the calibrated parameters

of BI: Shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs, solid lines show the transfer runs.

For BI, the calibration and transfer runs are identical. Specific discharge (unit: mm) is normalized to the highest value.

Analyzing monthly discharge hydrographs (Fig. 11) can yield additional insights into KGE performance, since this metric

is by construction more sensitive to model biases than NSE, and such biases can become more apparent in monthly

values compared to daily values. The monthly hydrographs (Fig. 11) clearly show the monthly discharge patterns that

contribute to decreases in KGE, especially notable in 2012: In the VU catchment, discharge is overestimated, whereas in

the HGDA and BS catchments, underestimations are observed.
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Figure 10. As Figure 7 but comparing calibration and transfer runs for the neighboring catchments of BI for the period 2010-2014.

Shown are NSE values (orange) and KGE values (blue), along with the benchmark NSE value (red line) and KGE value (dark blue

line) values. The performance values for the corresponding calibration runs are shown in more transparent color.

4.4 Increased model complexity run: accounting for debris-cover

In an attempt to investigate whether the melt model could be missing an important driving factor, we tried to attribute the

performance decrease between calibration and transfer simulations to catchment characteristics. We chose to focus on

the nested catchments, which show the largest drop in performance (Fig. 12). The catchment area and mean catchment

elevation do not show any obvious relations to performance decreases. However, the percentage of glacier debris cover

and the mean catchment and glacier slopes show more consistent relations. When the slope is steeper than in BI,

discharge is underestimated, whereas when the slope is flatter, discharge is overestimated. In a similar way, when the

debris coverage of the glacier is smaller than in BI, discharge is underestimated. Consequently, in the next step, we tested

the transferability of model versions that differentiate between debris-covered and debris-free glacier areas.

With model versions that apply different melt and radiation factors to simulate melt from debris-covered and debris-free

glacier areas, we obtain better model performances in the calibration phase (see Supplement Fig. 8). However, for the

transfer runs, the performances are lower than for model versions that do not account for debris cover (Fig. 13b), i.e. the

transferability of the model parameters decreases. This is especially noticeable for the VU and TN catchments.

4.5 Regionalization of the melt model

We showed that with the TI and HTI models it is possible to simulate the discharge of nested and neighboring catchments

with parameters calibrated at the main local outlet (BI), albeit with a small decrease in performance. The ensuing question

is to know whether or not these parameters can be used to infer conclusions about the physical processes and dynamics

occurring in the neighboring and subcatchments. In our simulations, the studied catchments have very similar meteo-
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Figure 11. Observed and simulated monthly hydrographs for the HTI melt model on the seven catchments, calibrated or transferred

with the calibrated parameter set of BI. Observed discharge (solid black line) is compared to the calibration run and to the transfer runs

with the calibrated parameters of BI: shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs,

solid lines show the transfer runs. For BI, the calibration and transfer runs are identical. Observed monthly discharges with missing

values are not shown. Specific discharge (unit: mm) is normalized to the highest value.

rological drivers, in terms of precipitation (Fig. 14a) and temperature (Fig. 14b). The meteorological data is interpolated

based on ground-based observations from a few rather low elevation measuring stations, with the only station in our study

area being that of Arolla at 2005 m a.s.l. (Fig. 1a) and the highest station in the surrounding area being located 29 km

SW at Col du Grand St-Bernard, at 2472 m a.s.l.. Thus, the actual weather patterns may be more different between the

studied subcatchments than is suggested by the interpolated weather data. Indeed, the studied catchments’ discharge

patterns show clear differences between DB and BS and the other catchments. DB and BS show for all years on record

a single melt-induced discharge peak in early summer, followed by low discharge. All other catchments show the same

discharge peak in June, followed by even higher discharges in the subsequent summer months (Fig. 14c).
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Figure 12. Comparison of selected physiographic characteristics of the nested catchments with the relative performance change

between the calibration and transfer discharge simulations. The relative performance change is the relative drop in KGE and NSE

performance criterion, calculated as follow: (calibration run− transfer run)/calibration run× c with c a visually assessed coefficient

reflecting the overestimation (1; VU) or the underestimation of simulated discharge (-1; HGDA and BS). The relative differences are

calculated as follow, with the catchment are as example: (BI catchment area− catchment area)/BI catchment area. The point showing

performance changes and relative differences of 0 is BI.

To assess the quality and uncertainty of the precipitation inputs fed into the model, we compared the mean precipitation

for each catchment with the measured precipitation from four weather stations: the Arolla station (2005 m a.s.l., since end

of 2011 only), the Orzival (2640 m a.s.l.) and Tracuit (2590 m a.s.l.) stations from the Anniviers valley just to the East, and

the Col du Grand St-Bernard station (2472 m a.s.l.) farther to the west. The precipitation inputs of our catchments globally

fall within the same range as the measured precipitation of the Arolla station (Supplement Fig. 12c) in terms of annual

precipitation amounts. The modeled interannual trend also matches the interannual trend observed in the neighboring

Anniviers valley. At the daily scale, the peaks are globally well reproduced in terms of timing, but are sometimes more

uncertain in terms of amount (July 2012 peak; Supplement Fig. 12b). This discrepancy is explained by the high variability
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Figure 13. As Figure 3 but comparing calibration and transfer runs for all seven catchments, a) without and b) with debris cover

separation, for the period 2010-2014. Shown are NSE values (orange) and KGE values (blue), along with the benchmark NSE value

(red line) and KGE value (dark blue line) values. The performance values for the corresponding calibration runs are shown in more

transparent color. BI’s nested catchments are underlined.

of precipitation in high alpine areas, which is well illustrated by the precipitation differences at large spatial scales between

the Col du Grand St-Bernard and the Anniviers stations (Supplement Fig. 12a, c), and at smaller spatial scales between

the two Anniviers stations (April 2012 peak; Supplement Fig. 12b). This small spatial scale variability, however, has no

impact on the global interannual trends (Supplement Fig. 12c). There is little variation in the amount of precipitation

between our catchments (Supplement Fig. 12b), which leads us to believe that the spatial variability of our precipitation

input is probably underestimated. This minimized variability of the input precipitation might explain the model’s difficulty

in reproducing specific discharge peaks, and the distinctive hydrological regimes exhibited by DB and BS. Thus, some

effects from rainfall variability that are not captured in the input data are possible.

Another reason may relate to the glacial coverage of the DB and BS catchments. Based on the simulated snow water

content, we find that the lower discharges exhibited by BS and DB in July-August cannot be entirely explained by snow

exhaustion, as BS and DB still show more than 10 cm of mean simulated snow depth at the beginning of July. However,
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Figure 14. Patterns of a) precipitation, b) temperature, c) observed discharges, d) simulated glacier snowpack thickness and e)

potential clear-sky direct solar radiation for the different catchments during the summer 2010. The values are mean values computed

over the entire catchments from the RhiresD and TabsD MeteoSwiss datasets. The mean elevation of the catchment is indicated in the

legend. Specific discharge (unit: mm) is normalized to the highest value.

they may be explained by the intra-annual pattern of snow and ice melt - when snow melt slows due to depletion, glaciers

become snow-free and ice melt begins. DB and BS show the lowest glacial coverage (< 10.1%; Table 1), so when the

snow has disappeared, very little ice melt occurs. In other catchments, ice cover is much greater (> 32.0%), and in late

July and early August, discharge is at its highest due to high rates of ice melt. We also note that TN is the only catchment

for which the simulated snow cover did not melt completely during summer 2010 (Fig. 14d).

5 Discussion

5.1 An exhaustive block resampling benchmark

In this study, we have introduced a benchmark based on the bootstrapping method, where we exhaustively resample

discharge data from the 5 years 2010-2014 in yearly blocks to simulate 3125 discharge time-series, calculate the NSE

and KGE objective functions for each of these time-series and average them. This resampling method was retained

because it is an easy metric to compute and it gives a good idea of the model fit in comparison to a sample of discharge
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with the same hydrologic regime. Our catchments are all dominated by recurrent summer snowmelt and icemelt dynamics

(Supplement Fig. 22), albeit with some temporal variability. To ensure that our benchmark is not affected by outlier

years exhibiting significantly different dynamics, we computed a long-term benchmark over the whole available dataset

(46 years; Table 4), which show lower values of NSE and KGE than the 5-year benchmark, demonstrating the relative

consistency of the dynamics in recent years.

5.2 Discharge predictability: catchment size matters

We first discuss the influence of catchment size on discharge predictability, notably on our benchmark metrics. The bench-

mark metrics show that the predictability of discharge from past discharge signals alone is less high for small catchments

than for larger ones (Fig. 3). However, Hydrobricks shows similarly high model performances for small and larger catch-

ments, highlighting the added value of a hydrological model in small catchments. This outcome can be directly explained

by spatial relations. Large catchments exert a stronger averaging effect on spatio-temporal processes than small catch-

ments. Indeed, the discharge in small catchments is driven by a localized and likely uniform meteorological patterns,

while larger catchments draw from multiple local meteorological patterns, leading to a certain averaging. This is well

illustrated by the precipitation events in the Anniviers valley (Supplement Fig. 12b), which are not always recorded by

both stations. This complexity obscures the correlation between meteorology and discharge in larger catchments, but

not in smaller ones. Furthermore, the difference in catchment areas is here closely linked to differences in stream order,

which results in a different balance between water travel times in unchanneled states (hillslopes, surface runoff) and in

channeled states (in-stream) (Rinaldo et al., 2006; Michelon et al., 2021). Longer in-stream flow paths lead hereby to a

stronger dampening effect of hillslope- and glacier-scale runoff variability. This geomorphological dispersion of the dis-

charge waves traveling downstream (Rinaldo et al., 1991) can also be observed when comparing the discharge patterns

recorded in the BI, VU and HGDA intakes (Supplement Fig. 13): the smaller catchments (VU and HGDA) are relatively

much more affected by the precipitation event than BI, even though they are hydrologically similar. Given the inherent

year-to-year variability in meteorological patterns, and the close link between meteorology and discharge, it ensues that

in small catchments, the discharge patterns from previous years are poor predictors of the current discharge. In contrast,

even simple meteorology-based hydrological models such as Hydrobricks deliver much better results.

Additionally, we note that the NSE benchmark metric values tends to decrease much more strongly than the KGE

benchmark metric values with decreasing catchment size (from 0.62 to 0.22 for NSE and from 0.80 to 0.60 for KGE;

Fig. 3). This difference in decrease is explained by the resampling approach used to produce the discharge data. The

NSE assesses the fit of one series to another solely based on the squared difference between the two time series. The

KGE, on the other hand, uses a linear combination of correlation between the two series, variability error (ratio of the

standard deviations), and bias error (ratio of the means). Given the definition of KGE and NSE, the correlation term is

linearly related to NSE, whilst the variability term and the bias term have a quadratic relation to NSE (Clark et al., 2021). As

a result, the NSE is much more sensitive to changes in variability or shifted yearly patterns than the KGE (see Supplement

section 9.1; Knoben et al., 2019). Furthermore, since the KGE evaluates bias, variability, and correlation independently,
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two good components (e.g., bias and variability) can offset a suboptimal third component (e.g., correlation). This is not

the case in the NSE. Thus, the benchmark KGE values past discharges much more highly than the NSE, which makes

it a much harder criterion to meet for simulated discharges than the benchmark NSE. We thus expect the simulated

hydrographs to outperform the benchmark NSE and match the benchmark KGE.

5.3 Satisfactory hydrograph predictions across nested and neighboring catchments

As discussed previously, we expect the simulated hydrographs to outperform the benchmark NSE and match the bench-

mark KGE. When transferring the parameters calibrated for the largest subcatchment (BI) to model the discharge in all

other nested (Fig. 7) and neighboring catchments (Fig. 10), we observe that despite exhibiting slightly inferior perfor-

mance compared to the direct calibration, most catchments still show satisfactory results, even for the smallest ones. For

all catchments, the transfer simulations with transferred parameters match both the benchmark KGE and NSE, at the

exception of VU. The decreases in KGE for the HGDA, BS and VU observed in all melt models is not accompanied by

a similar NSE decrease, which hints toward an amplitude change in the discharge signal (Supp. Sect. 9.1). This ampli-

tude change is produced by the underestimation (HGDA, BS) and overestimation (VU) in discharges that we observed in

Figure 6.

The lowest NSE score obtained through a HTI transfer run is 0.76, and the biggest decrease with respect to the

calibration run reaches 0.05. As a comparison, the best fits achieved by Parajka et al. (2005) for regionalization over

Austrian catchments yielded a NSE decrease from 0.72 to 0.67, and globally, the mean and maximum NSE in European

catchments reach 0.72 and 0.91, respectively (Guo et al., 2021). Furthermore, the discharges in nested catchments are

consistent with each other (Fig. 8), as the sum of the nested discharges does not exceed the main catchment’s discharge.

The performance decrease between calibration and transfer simulations in nested catchments could be attributed

to the slope of the terrain and the debris coverage of the glacier (Fig. 12). When the catchment and glaciated slopes

are steeper, the models tend to underestimate discharge, maybe because steeper slopes lead to faster runoff and higher

discharge rates that are not fully captured by the model. Conversely, for flatter slopes, the models overestimate discharge,

possibly due to slower runoff and more significant water retention. Additionally, lower debris coverage on glaciers leads

to underestimated discharge, potentially because debris cover, in our case, increases rather than decreases melt rates.

By taking into account these relations between discharge and physiography explicitly in the model, we could potentially

improve its transferability.

5.4 Possible explanations for slightly over- and underestimated discharges

Several factors could contribute to the overestimation of the VU discharge and to the underestimation of the HGDA

and BS discharges observed in the monthly hydrographs (Fig. 11). Firstly, the meteorological forcing could be incorrect,

as it is highly variable in such alpine environments, difficult to observe, and available at a coarse resolution (1 km).

Calibrated parameters are known to compensate for such input error effects (Bárdossy and Das, 2008) and transferred

parameters might thus induce biases. Secondly, the delineation of some of the catchments is uncertain, considering the
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uncertainty of water flow paths beneath glaciers. This might in particular be the case for VU, where Bezinge et al. (1989)

suggest a potentially smaller catchment area to the north. Thirdly, the melt model could be missing an important driving

factor. Temperature-index based methods are known to yield good results in environments where melt is mainly driven

by incoming longwave radiation and sensible heat flux (Ohmura, 2001), which is typically the case in Alpine catchments

(Thibert et al., 2018).

We also observe a worsened result when accounting for debris cover on glaciers. The following reasons might explain

this result: i) an overfitting of local specificities of the model, ii) a spatially inconsistent effect of debris cover on ice-melt

or iii) difficulties making the high number of parameters converge given the amount of reference information contained

in observed discharge (which does not provide enough constraints on the parameters). These reasons are linked. The

inconsistent effect of debris (ii) when the “local specificity” is, for example, a strong melting or protective effect of the debris

cover, which is not shared by other catchments is a specific example of model overfitting (i). Convergence difficulties (iii)

lead to the difficulty of finding a single set of parameters to explain the results, which in turn can lead to an overfitting of

local specificities if a solution is slightly better (i). All these reasons fall under the overparametrisation problem.

We observe that in both the cases of the ATI and the debris cover in TI or HTI, we introduce differential melt rates that

cannot be independently calibrated as we only use the discharge to calibrate against. Compared to the simple TI model

(without accounting for debris), the introduction of debris cover within the TI model results in a greater drop in goodness

of fit than using the simple ATI model. Thus, we can conclude that this decrease in goodness of fit is probably due to the

differential behavior of debris cover.

5.5 Enhanced parameter transferability through improved melt model accounting for potential solar radiation

Melt rates per positive degree-day are sensitive to a number of characteristics that influence the surface energy balance,

and which include elevation, direct solar radiation input, albedo, wind speed and seasonality (Hock, 2003; Ismail et al.,

2023). These imply that for a given glacier, the degree-day factors of ice and snow are different, with ice, being less

reflective than snow, melting more per positive degree-day. This variability of the link between positive air temperature

and melt can also be found at a local-scale, within snow and ice patches (Gabbud et al., 2015). This sensitivity of melt

rates tends to limit the transferability of melt parameters from one catchment to a neighboring or nested catchment for the

basic TI model and motivated the computation of spatially variable degree-day factors from snow data in previous work

(He et al., 2014; Hingray et al., 2010). Here, we tested the influence of aspect and radiation on melt model parameter

transferability by discretizing the study catchment according to aspect and solar radiation and implementing the ATI and

HTI models. According to the work of Comola et al. (2015), local-scale degree-day factors become stable (and therefore

transferable) at scales at which the variability of local hillslopes’ orientation does not further increase (less than 7 km2,

in their study). In this case study, we have five catchments that are small enough to be affected by their dominant

aspect, but only two of them show low aspect variance also on their glaciated surfaces (DB and BS, Fig. 1c). However,

all TI and ATI calibrated melt and radiation factors are highly inconsistent across catchments, whereas we find strong

parameter overlaps between catchments for the HTI model (Fig. 5). Similar to the work of Comola et al. (2015), we
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find that taking into account solar radiation patterns using the HTI model does not fully explain the hydrological response

variability at smaller catchment scales. Indeed, BS and HGDA tend to have higher melt parameters when calibrated alone

(Fig. 5), and produce slightly underestimated discharge when transferred with BI’s parameters (Fig. 6), responsible for

their lower KGE values (Fig. 7a). The transfer results obtained from the HTI model do not demonstrate improvements in

terms of simulated hydrographs compared to the TI model (Fig. 6 and 9), suggesting that the radiation as computed by

Hock (1999) may not be enough to explain the KGE differences. However, both the TI and the HTI models show good

transferability in terms of metrics to even the smaller catchments (Fig. 7 and 10). Although Comola et al. (2015) showed

that aspect significantly influences the calibration of degree-day factors for small catchments (< 7 km2) with the TI model,

we elaborate to conclude that the hydrographs obtained through regionalization are still very good fits for smaller, nested

catchments. We find that parameter transferability to catchments below 7 km2 in the TI and HTI model is a reasonable

approximation, but that the HTI model should be preferred due to the more consistent parameter calibration.

These differences could also be due to variations in ice albedo. Indeed, the glaciers in the studied catchments are not

identical in terms of debris cover (Fig. 1). We thus tried to take the debris into account, but failed to obtain better results

in transfer runs (Fig. 13b), which hints towards a non-consistent behavior of the debris cover. This is very possible, as

debris cover is known to either shield or amplify melting (Gabbud et al., 2015). We do not have information about the

debris thicknesses in our study area, and the contribution of two processes so close as debris-free ice melt and debris-

covered ice melt would be hard to constrain from discharge data only (Pokhrel et al., 2008). Thus, debris cover related

parameters are less transferable than the global ice parameters.

5.6 Implications

Our analysis underlines the value of including potential radiation in the temperature-index model for spatial transferability

of melt model parameters, a topic that has been neglected in previous studies and is worth being pursued further. It

remains to be shown whether similar transferability of the HTI melt model can be expected in larger catchments (i.e.

>500 km2; e.g., Hingray et al., 2010; Fatichi et al., 2015), although we expect this to be true for all catchments whose

hydrological regimes are strongly influenced by snow and glaciers, provided, of course, that other geomorphological char-

acteristics are relatively constant. Most likely, the added value of potential radiation decreases for increasing catchment

sizes since the variability of aspects with increasing scale tends to a limit value that averages out the effect on melt (Co-

mola et al., 2015). In addition, future work could focus on the benefit from including snow data to jointly calibrate the melt

model parameters and other hydrological process parameters. This multi-signal calibration, on both flow and snow data,

could reduce parameter equifinality (though not eliminate it (Finger et al., 2011)) and reduce parameter interdependency,

as shown in the work by Ruelland (2024). This could further enhance the transferability of glacio-hydrological models

(Carenzo et al., 2009). This only holds if the melt model gives an adequate representation of the melt processes for a

streamflow simulation model: A large body of literature on temperature-index modelling focuses on how to further improve

such models, e.g. by analyzing how degree-day factors or melt factors vary along the melt season (Ismail et al., 2023,

and references therein), by improving the parameterisation of sub-daily melt dynamics (Tobin et al., 2013), or by linking
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melt to other variables rather than average daily air temperature (Follum et al., 2019; Nasab and Chu, 2021). For all these

interesting developments, the question of how melt model improvements increase (or decrease!) the spatial transferability

of the model should receive much more attention than in the past.

6 Conclusions

In this study, we tested the spatial transferability of melt models incorporating progressively more spatial information: a

classical temperature-index melt model (TI), a temperature-index melt model based on aspect (ATI) and the temperature-

index melt model of Hock (HTI). To do so, we calibrated each melt model over seven different catchments, then transferred

the calibrated parameters of the main catchment to the three nested catchments, and the three neighboring catchments.

The results show that for high Alpine catchments, it is possible to spatially transfer relatively simple semi-lumped

glacio-hydrological models. We have demonstrated that our semi-lumped model (Hydrobricks) can successfully simulate

discharge at several upstream points of the catchment after calibration to a single downstream observed discharge time

series. This makes multi-point discharge simulation possible.

Although the best results in terms of transferability are achieved with the TI and HTI models, the highest consistency

between parameters is achieved with the HTI model. This better convergence of parameters is witnessed both between

the two performance metrics, as is also the case for the ATI model, but also between the seven catchments. The inclusion

of debris cover on glaciers does not produce better results, and leads to model overparameterization. The NSE metric

gives better calibration results than KGE when trying to fit the discharge peaks, but the benchmark KGE shows to be a

harder, thus more significant, criterion to meet, and reproduces better the observed peaks. Thus, we find that the best

framework to transfer parameters calibrated in the biggest local catchment to subcatchments and neighboring ones is by

using the HTI model without debris cover.

Our simulations highlighted the possible influence of catchment and glaciated slopes, as well as debris cover percent-

age on the overestimation and underestimation of discharge in transfer runs. Since the inclusion of debris cover led to

overparametrization, future research should focus on the integration of these characteristics in more spatially-informed

ways.
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