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Abstract. Hydrological modeling in alpine catchments poses unique challenges due to the complex interplay of meteoro-

logical, topographical, glaciological and streamflow generation factors
::::::::
geological

::::
and

:::::::::::
glaciological

::::::
drivers

:::
on

::::::::::
streamflow

:::::::::
generation. A significant issue arises from the limited availability of streamflow data due to the scarcity of high-elevation

gauging stations. Consequently, there is a pressing need to assess whether streamflow models that are calibrated with

moderate-elevation datasets
:::::::::
streamflow

:::::
data can be effectively transferred to higher-elevation catchments, notwithstand-5

ing differences in the relative importance of different streamflow-generation processes. Here, we investigate the spa-

tial transferability of hydrological
:::::::::
calibrated

::::::::::::::::
temperature-index

::::
melt

:
model parameters within a semi-lumped modeling

framework. We focus on evaluating the
::::
melt model transferability from the main catchment to nested and neighboring

subcatchments in the Arolla valley, southwestern Swiss Alps. We use the Hydrobricks modeling framework to simulate

streamflow, implementing three variants of a temperature-index snow- and ice melt model (the classical degree-day,10

aspect-related, and Hock’s temperature index). Through an analysis of streamflow simulations, benchmark metrics con-

sisting of bootstrapped discharge
:::::::::
resampled

:::
and

::::::::::::
bootstrapped

:::::::::
discharge

::::
time series, and model performance

::::::
metrics, we

demonstrate that robust parameter transferability and accurate streamflow simulation are possible across diverse spatial

scales. This finding is conditional upon the melt model applied, with melt models using more spatial information leading

to convergence of the model parameters until we observe overparametrization
::::::::::::::::::
overparameterization. We conclude that15

simple semi-lumped models , such as Hydrobricks, can be used to extend hydrological simulations to ungauged catch-

ments in alpine regions and improve high-elevation water resource management and planning efforts, which is crucial in

the face
:::::::::
especially

::
in

:::
the

::::::
context

:
of climate change.

1 Introduction

Understanding the driving factors of nivo-glacial streamflow regimes is essential for managing high alpine
:::::
Alpine

:
catch-20

ments and their water resources under global change. With ongoing warming, the long-, intermediate- and short-term stor-
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age capacities of alpine glaciers are
:::::
Alpine

::::::::::
nivo-glacial

::::::::
systems

::::
(e.g.

:::::::
storage

:::::::::
capacities

::
of

:::::::::
subglacial

::::::::
drainage

::::::::
network,

::::
snow

::::::
cover,

:::::::
glacier

:::
ice)

::::
will

:::
be impacted (Jansson et al., 2003; Huss et al., 2008), and high alpine catchments may

transition from nivo-glacial streamflow regimes to dominantly nival regimes (Horton et al., 2006). Currently, alpine
::::::
Alpine

glaciated catchments and downstream areas receive a strong surplus of meltwater from snow during spring and early25

summer (Penna et al., 2017; Engel et al., 2019; Zuecco et al., 2019), gradually switching to glacier meltwater towards

the end of summer. The timing and amount of snow- and glaciermelt water
::::::::::
glacier-melt is strongly impacted by

:::::
global

warming and related glacier retreat, making
::::::
leading

::
to

:
changes in streamflow regimes critical (e.g., Singh and Kumar,

1997; Bradley et al., 2006). These changes in streamflow regimes and runoff generation characteristics have important

consequences in terms of sediment transport, hydropower production (Gabbud et al., 2016), flood prediction and ecology30

(Tague et al., 2020).

Despite this, high alpine
::::::
Alpine

:
catchments often lack discharge monitoring stations due to their sparse population

and difficulty of access. In highly glacierized catchments (i.e. glacial cover > 50%), there are very few gauging stations

that provide reliable and long-term streamflow records. This makes attributing historical changes in streamflow regimes

to glacial sources challenging and inevitably requires recourse to modeling, not just to predict the future but also to35

understand the past.

Hydrological models are commonly classified into distributed, semi-distributed, semi-lumped and lumped models (Hor-

ton et al., 2022). Distributed models compute the storage and mobilization of water at the pixel
:
a

:::::::
grid-cell

:
scale, with

parameters that vary in space (fully distributed) or are partially kept constant (semi-distributed). Semi-lumped models

define areas of interest based on relevant physical parameters (e.g., elevation, aspect, stream network topology), and40

lumped models consider the catchment as a single unit. While
::::::
(semi-)distributed and semi-lumped models allow some

spatial variations to be taken into account and provide a more detailed representation of the processes, lumped models

have to represent the functioning of the entire system. The advantage and popularity of (semi-)lumped models should not

be reduced
::::::::
attributed

:::::
solely

:
to their computational efficiency, which enables fast and multiple model runs. They

::::::::
facilitates

:::::::
multiple

:::::
model

:::::::::::
simulations.

:::::
They

::::
also represent an optimal level of model complexity with respect to available input and45

output data from a downward model development perspective (Sivapalan et al., 2003); they furthermore operate at a

scale at which averaging of small-scale processes enables a reliable representation of dominant hydrological processes

(Clark et al., 2016).

However, one of the main drawbacks of (semi-)lumped models is that streamflow can only be modeled reliably at

the selected control points (outlets) for which the model parameters have been calibrated against observed stream-50

flow. Simulated streamflow at other locations within or near the catchment might not reliably represent the actual sys-

tem dynamics. In other words, the calibrated parameters might not be transferrable
::::::::::
transferable to other locations of

the stream network (subcatchments) within the system. This transferability issue is particularly important in high alpine

:::::
Alpine

:
catchments for snow and ice melt and storage parameters, as meltwater plays a major role for

::
in

:
streamflow

generation processes. The proportion of streamflow that is melt-derived ,
:
(either from snow or ice,

:
)
::::
and

:::
the

:::::::::
dominant55

::::::
drivers

::
of

::::
melt

::::
(i.e.

:::::::::::
components

::
of

:::
the

:::::::
energy

::::::::
balance) will change as the basin outlet

:::::::
selected

::
for

::::::::::
simulation is shifted
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upstream or downstream, which means that
::::
melt parameters need to be scale-independent. This difficulty is exacerbated

in catchments with strong process
::::::::::
topographic gradients and spatial heterogeneity, where the complex spatial averag-

ing complicates the extraction of specific process responses
:::::::::
melt-driven

::::::::::
streamflow

::::::::::
simulations

:
at smaller scales, which

is typically the case in glaciated catchments. Adding additional calibration using
:::
One

::::::::
possible

:::::::
solution

:::
to

:::::::
increase

::::
the60

:::::
spatial

::::::::::::
transferability

:::
of

:::::::::
calibrated

::::::
models

::
is
::::

the
:::
use

:::
of

:::::::::
additional

::::::::
observed

::::
data

:::
to

:::::
better

:::::::::
constrain

:::::
model

:::::::::::
parameters

::::::::::::::::::::::::::::::::
(Efstratiadis and Koutsoyiannis, 2010)

::::
and

::::::
thereby

::
to

::::::::
increase

::::
their

::::::::
reliability,

::
in

::::::::
particular

::
in

::::
view

::
of

:::::
input

::::
data

::::::::::
uncertainty

::::::::::::::::::
(van Tiel et al., 2020)

:::
and

:::
in

::::
view

::
of

:::::::::
simulating

:::::::
change

:::::::::
conditions

:::::::
(climate

:::::::
change,

:::::
land

:::
use

::::::::
change).

::
In

:::
the

::::
field

:::
of

::::
high

:::::
Alpine

::::::::::
streamflow

::::::::::
simulation,

:::
the

:::::
focus

::
is
:::
on

:::
the

:::::
value

:::
of glacier mass balance or snow data may help constrain snow

and ice melt and storage parameters, yet it remains necessary to study their transferability
::
to

::::::
ensure

::::
that

:::
the

:::::::::
calibrated65

:::::::::
streamflow

::
is
:::::

right
:::
for

:::
the

:::::
right

:::::::
reasons

:::::::::::::::
(Kirchner, 2006)

:::::
rather

:::::
than

::::
due

::
to

:::::::::::::
compensating

::::::
effects

::::
(see

::::
the

::::::
review

:::
by

:::::::::::::::::
van Tiel et al. (2020)

:
).
:::::::::
Examples

:::::::
include

:::
the

::::
work

::
of

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Parajka and Blöschl (2008); Şorman et al. (2009); Koboltschnig et al. (2008); Immerzeel et al. (2009); Konz and Seibert (2010); Griessinger et al. (2016); Gyawali and Bárdossy (2022); Tiwari et al. (2024); Ruelland (2024)

:
,
:::::
which

::
all

:::::
focus

:::
on

:::::::
different

::::::::
aspects

::
of

:::::::::
parameter

::::::::
reliability

::
as

::
a
:::::::
function

::
of
::::::
model

:::::::::
calibration

::::::::
strategy.

:::
For

:::::::::
example,

:::
the

::::
work

::
of

::::::::::::::::::::::
Griessinger et al. (2016)

::::::::
underlines

::::
that

:::
the

::::::::::::
incorporation

::
of

:::::
snow

::::
data

::
is
:::::::::
especially

:::::::::
important

::
for

:::::::::::::
high-elevation

::::::::::
catchments

::::
and

:::::::::
snow-rich

:::::
years.

:::::::::
However,

::::
this

::::::
wealth

::
of

::::::::
literature

:::::
does

::::
not

:::::::
address

::::
the

::::::::
question

::
of

::::
how

:::
to

:::::::
transfer70

::::::::
calibrated

::::::::::
parameters

:
to other catchments to predict discharge at ungauged locations

::
or

::
to

::::::::::::::
subcatchments,

::::::
which

:
is
::::

the

::::
focus

:::
of

::::::::::
hydrological

:::::::::
parameter

:::::::::::::
regionalization

::::::::
methods.

Parameter regionalization techniques (Guo et al., 2021) in hydrological modeling have been developed to facilitate the

transfer of model parameters from gauged to ungauged locations (e.g., Mosley, 1981; Abdulla and Lettenmaier, 1997;

Bardossy and Singh, 2008). Regionalization methods can be divided into two categories (Samaniego et al., 2010): post-75

regionalization and simultaneous regionalization. Postregionalization
::::::::::::::::
Post-regionalization

:
methods calibrate a model in

several basins independently and then statistically link the calibrated model parameters to basin predictors (e.g., mean

catchment elevation, stream network density, geology, areal proportion of porous aquifers) using a transfer function (e.g.,

Abdulla and Lettenmaier, 1997; Seibert, 1999; Parajka et al., 2005; Wagener and Wheater, 2006). Simultaneous region-

alizations aim to calibrate model parameters for several basins while taking into account transfer functions that link model80

parameters to catchment characteristics (e.g., Hundecha and Bárdossy, 2004; Götzinger and Bárdossy, 2007; Fernan-

dez et al., 2000; Troy et al., 2008). The second category of methods was developed to add additional spatial constraints

to parameter calibration and to avoid artifacts of the optimization algorithm. In all these methods, the need to define a

function that links catchment characteristics and model parameters is subject to additional uncertainties. The ,
::::
and

:::::
snow

::::::::::
parameters

:::
are

:::::
often

::::
kept

:::::::
constant

::
in
:::::
such

::::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::
(Götzinger and Bárdossy, 2007; Kling and Gupta, 2009).

:
85

::::::
Overall,

::::
the number of parameter regionalization studies

::
in

::::::
Alpine

:::::
areas

:
remains small (Horton et al., 2022), and the

spatial transfer of
:::
melt

:
model parameters is still a crucial topic for the prediction of streamflow in catchments without

observed streamflow (Guo et al., 2021).

Spatial parameter transfer is particularly challenging in data-sparse high-elevation catchments where glacier melt, in-

terannual snow storage
:
, and highly uncertain precipitation input and evapotranspiration output

:::
and

::::::::::::::::
evapotranspiration

:
can90

lead to considerable parameterization difficulties (Schaefli and Huss, 2011). A particular challenge in such catchments
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is the estimation of snow and glacier melt contributions, which, for practical, data reasons, is often limited to the use of

temperature-index melt models (TI) that link melt rates to air temperature (Eq. 1, Rango and Martinec, 1995):

MTI(t) =

aj(Ta(t)−TT ) : Ta(t)> TT with j ∈ snow, ice

0 : Ta(t)≤ TT

(1)

where MTI(t) is the melt rate at time step t (mm d−1), aj the degree day factor for ice or snow (mm d−1 °C−1), Ta is the95

air temperature and TT is the threshold melt temperature.

Although it is commonly admitted that TI models present a good option for extrapolation to larger scales because of

the consistency
:::::::::
persistency

:
of temperature over large areas (Frenierre and Mark, 2014), the spatial transferability of the

related parameters calibrated at the outlet of a catchment to the outlet of a neighboring catchment exhibiting different

characteristics (elevation, aspect, glacial cover) can be questioned (Gabbi et al., 2014; Samaniego et al., 2010), and has100

been rarely investigated. This challenge was exemplified for nested catchments by Comola et al. (2015), who studied

the influence of spatial decorrelation of aspect , i.e. the distance beyond which the spatial variance of aspect does not

increase anymore, on discharge simulation. They
::::::
aspect

::::
and found significant variability in the calibrated degree-day

factors for small catchments (< 7 km2) due to the spatial correlation of aspects when using a simple temperature-index

model.105

::::
One

:::::
option

::
to

::::::::::
regionalize

::::
melt

:::::
model

:::::::::::
parameters

:
is
::
to

::::::::
compute

:::::
them

::::::
directly

::::::
based

::
on

::::::
in-situ

:::::
snow

:::::::::::
observations,

::::::
which

:::
was

:::::::
already

:::::::::
presented

::
by

:::::::::::::::
Martinec (1960)

::
(for

:::
an

:::::::::
application

::
to

::::::::::
streamflow

::::::::
modelling

::::
see

:::
the

::::
work

::
of

::::::::::::::::::
Hingray et al. (2010)

:
).
::::::::
Similarly,

:::::
they

::::
can

::
be

:::::::::
computed

:::::
from

::::::::
remotely

:::::::
sensed

:::::
snow

:::::::
extents:

::::
The

:::::
work

::
of

:::::::::::::::
He et al. (2014)

:::::
shows

::::
that

:::::
such

:::::::
spatially

:::::::
variable

::::
melt

::::::
model

::::::::::
parameters

:::
can

:::::::
improve

::::::::::
streamflow

::::::::::
simulations

:::::::::
compared

::
to

:::::::
spatially

::::::::
constant

:::::::::::
parameters.

::::
Such

:::::::::::
approaches

:::
are

::::
rare

:::::::
because

:::
the

:::::
value

::
of

::::::::::::::::
temperature-index

::::
melt

::::::
models

::
is

:::::::::
inherently

:::::
linked

::
to

::::::::::
streamflow

:::::::::
simulation110

:::
and

:::::
most

::::::
studies

::::::::
therefore

::::::::
calibrate

::::
melt

::::::::::
parameters

:::::::
against

::::::::::
streamflow.

:

In this study, we investigate the transferability of the melt and runoff
:::::::::
streamflow

:
calibrated parameters between sub-

catchments and neighboring catchments considering different melt models and with respect to very high-quality dis-

charge measurements . To do this , we
:::::::
obtained

:::::
from

::
a

::::::::::
hydropower

:::::::::
company

::::
(see

:::::::
Section

::::
2.2,

::::::
Figure

:::::
H1).

::
In

:::::
view

::
of

:::
this

::::::::::
exceptional

:::::::::
discharge

:::::
data

:::
set,

:::
we

::::::
chose

::
to

::::
not

:::
use

:::::::::::::::
remotely-sensed

:::::
snow

:::::
data,

::::::::
because

:::
the

:::::::::::::
preprocessing

::
of115

::::::::::::::
remotely-sensed

:::::
snow

::::::
extents

::::
and

::::
their

:::
use

:::
for

::::::
model

:::::::::
calibration

:::::::
includes

::
its

::::
own

:::::
share

::
of

::::::::::
uncertainty

:::::::::::::::::::::::::::::
(Parajka and Blöschl, 2006, 2008)

:
,
:::::
which

:::::
would

::::::::
obscure

:::
our

::::::::
analysis.

:::
For

:::
our

::::::::
analysis,

:::
we

:
calibrate our model for seven catchments, then take the parameters of the largest catchments

:::::::::
catchment and transfer them to its three nested watersheds and three other neighboring catchments. We then analyze

the loss of accuracy linked
:::::
related

:
to the transfer of parameters. To ensure that our conclusions hold with

::
for

:
different120

commonly used objective functions and assess the sensitivity to these objective function
::::::::
functions, we use two different

metrics: the Nash-Sutcliffe (NSE; Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). These

two very common metrics do not translate into one another: the NSE measures the error variance related to the variance

of the discharge, while the KGE measures correlation, variability bias and mean bias. NSE and KGE are differently
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Table 1. Catchments used in the simulations, and their properties.

Catchment
Abbre-

viation

Area

(km2)
Elevation (m)

Mean

slope

Dominant

aspect

Glacier

covered

catchm.

Debris

covered

glacier

Type

Mean Min Max

Bertol Inférieur BI 26.0 3063 2183 3722 28.7 NW 38.5% 9.9% Main

Haut Glacier d’Arolla HGDA 13.2 3014 2582 3677 29.5 NW 32.0% 16.3% Nested

Tsijiore Nouve TN 4.8 3180 2289 3789 28.2 N 57.7% 20.4% Neigh.

Pièce PI 2.9 3046 2636 3784 27.8 NE 57.6% 17.3% Neigh.

Bertol Supérieur BS 2.6 3127 2913 3583 32.4 SW 9.2% 14.3% Nested

Vuibé VU 2.2 3036 2730 3722 24.7 NE 54.4% 1.4% Nested

Douves Blanches DB 1.5 3218 3097 3364 35.4 W 10.1% 23.9% Neigh.

sensitive to discharge errors: for example, for high variation regimes that show small errors and large bias, the NSE would125

give a very promising value while the KGE would not (Knoben et al., 2019). We carry out this transferability assessment

with three temperature-index melt models of increasing complexity, and try answering the question: Could incorporating

additional spatial information into more complex TI models increase their spatial transferability?

2 Study area: the upper Arolla river basin and its subcatchments

2.1 Presentation of the study area130

We use data (Table 3) from the Arolla river basin located in the south-western Swiss Alps (Fig. 1). A local hydropower

company provided 15-minute resolution streamflow recordings of very high quality given strict regulatory requirements

for monitoring water use (Lane and Nienow, 2019). The Bertol Inférieur (BI) gauging station is fed by water draining

from four subcatchments (Table 1): Bertol Supérieur (BS), Haut Glacier d’Arolla (HGDA), Mont Collon (MC) and Vuibé

(VU). The BI catchment, with an area of 26.0 km2, provides a good opportunity to test the transferability of hydrological135

parameters to nested catchments as there are three subcatchments that are also gauged upstream: BS (2.6 km2 area),

HGDA (13.2 km2), and VU (2.2 km2). Remaining drainage to BI comes from the MC catchment or from points located

between the BS, HGDA and VU gauges and the BI gauge (Fig. 1). Immediately to the north of the VU catchment is the

Pièce catchment (PI), draining an area of 2.9 km2; and the Tsijiore Nouve (TN) catchment with a drainage area of 4.8 km2.

On the other side of the valley, immediately to the north of the BS catchment is the Douves Blanches (DB) catchment140

with a drainage area of 1.5 km2. These catchments allow us to test the transferability of hydrological parameters to

neighboring catchments. The elevation of these basins ranges from 2112 m a.s.l. (the elevation of the BI gauging station)

to 3838 m a.s.l., the Grand Bouquetins peak, located in the Haut Glacier d’Arolla. At these elevations, it is extremely

unusual to have such high-quality streamflow data for small, highly glacier-covered catchments.
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The upper Arolla river basin presents a range
::::::
variety of aspects (Fig. 1b), and its subcatchments have different general145

orientations (Fig. 1c). The glacial cover within the Arolla basin diminished
:::::::::
decreased

:
over the years (Fig. 1d), from 66.5%

in 1850 to 38.5% in 2016 for the BI catchment (GLAMOS, 2020).
:
,
::::
while

:::::::::
remaining

:::::::::
relatively

:::::::
constant

:::::
since

::::::
2009. The

geology of the study area consists mainly of metamorphic and igneous rocks, extensively covered with till and colluvial

deposits (SwissTopo, 2024, Supplementary Figure B1). The geomorphological characteristics of the subcatchments is

:::
are generally similar. DB, BS, TN and the northern part of HGDA all feature some rock glaciers (Lambiel et al., 2016),150

although their relative area is more significant for DB and BS.

Numerous studies have been carried out in the upper Arolla basin over the years, on topics ranging from glacier dynam-

ics, subglacial hydrology, sediment transport to hydrology (Sharp et al., 1993; Brock et al., 2000; Mair et al., 2002, 2003;

Swift et al., 2002, 2005; Arnold, 2005; Pellicciotti et al., 2005; Dadic et al., 2010; Gabbud et al., 2015, 2016; Lane and

Nienow, 2019), which makes this study area optimal for a technical study on hydrological parameter transferability.155

2.2 Hydro-meteorological datasets

We use MeteoSwiss datasets for
::::
daily

:
mean precipitation (MeteoSwiss, 2019a) and

::::
daily mean temperature available at

1 km resolution for Switzerland (MeteoSwiss, 2019b).

Discharge data were provided by Grande Dixence SA (2024) at seven water intakes. In Switzerland, regulatory stan-

dards require hydroelectric power production companies to report water abstraction details to the authorities. In the upper160

Arolla river basin, discharge data was
::::
were thus provided at a 15-minute resolution since 1971.

:::::
1969. Each basin features

a calibrated water level recorder, initially utilizing a chart recorder and later upgraded to a pressure transducer with digital

data logging. Water levels are measured across a broad-crested weir, ensuring highly reliable discharge records (±0.01

m3/s for regulatory compliance). Discharge is measured in the intake. Under very high flow conditions, the intake over-

flows and only part of the water is recorded. However, as
::::
since

:
any loss of water is a financial loss, the intake has been165

designed to capture practically all the discharge. Such overflows are therefore possible, but infrequent. Furthermore, a

:::
the

::::::
current

:::::::::
ecological

:
minimum flow was only introduced in one

:
of
:

the intakes, BI, as of 2018, after the period used in

this study
:::::::::::::::::
(Tobias et al., 2023). The intakes defining the extent of each subcatchment are sometimes multiple, as with DB

and VU, which both present two intakes, and PI, which presents four (See Fig. 1). Thus, the discharge is the sum of the

corresponding intakes.170

With the exception of the BI, discharge data were already preprocessed by Lane and Nienow (2019) to eliminate

drawdown events linked to sediment removal during intake flushing. Since these drawdown periods typically last between

30 and 60 minutes, they can be visually recognized using the method outlined in the work of Lane et al. (2017). After the

removal of data portions corresponding to such drawdowns, any missing data points were linearly interpolated. However,

for the VU intake, data were unavailable from August 31 to December 31, 2011, due to intake maintenance work. In175

our study, we excluded this last period for VU and applied the same preprocessing method to the BI discharge time

series, removing drawdown events and discarding associated time periods (in blue, Fig. 2). Furthermore, the water from

the HGDA, BS and VU intakes is diverted and does not pass through the BI intake. We thus added the records of

6



Figure 1. (a) Overview of the modeled catchments and subcatchments in the upper part of the Heremence valley, in the Arolla

catchment. Changes in glacial cover through time are indicated in shades of yellow and green. The inset map shows the location

of the study catchments in the Swiss Alps. (b) Aspect of the study area. (c) Aspect variogram derived from the aspect variance of

each glacier (in blue) and each catchment (in green), normalized by the variance in the total glaciated area/total catchment (Whole),

as done by Comola et al. (2015). (d) Glacial cover fraction through time, with the study period highlighted in orange, the available

discharge period and meteorological data in blue and yellow, respectively. Topography is obtained from the SwissTopo DHM25 dataset

(Swisstopo, accessed 2023) and glacier extents from the GLAMOS inventory
:::::::::::::::::::
(GLAMOS, 2020, Table 3).

its upstream nested intakes to the BI discharge record (the actual measurements in BI is called BIrest, see Fig. 2). We

propagated to BI the intake maintenance work of VU and the drawdown removals of BIrest by discarding the affected time180

periods. The time taken by the water to reach the BI intake from the upstream intakes is approximately 15-30 minutes

depending on the days, which is negligible at the daily scale (Supplementary Figure G1). Subsequently, the 15-minutes

time step discharge datasets were summed up to daily time step datasets after the preprocessing.

Due to the confidentiality of the original discharge data, these datasets are shown here normalized by the same

highest observed discharge values for all catchments (see figures 2, 4, 6, 8, 9, 11 and 14). The normalized dataset is185
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called either "normalized discharge" when the discharge was expressed in m3 s−1, and "specific normalized discharge"

when the discharge was expressed in mm.
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Figure 2. Observed discharge series for all subcatchments: Comparison of the discharge series kept for calibration in Hydrobricks

(orange) with the discarded periods (blue). Discharge (unit: m3 s−1) is normalized to
::
by

:
the

::::
same

:
highest value

:::::::
observed

::::::::
discharge

:::::
values

::
for

:::
all

:::::::::
catchments.

:::
The

::
BI

::::::::
discharge

:::::::::
corresponds

::
to
:::::
BIrest

::
+
:::::
HGDA

::
+

::
BS

::
+
:::
VU.

Glacier extents for the years 2010 and 2016 were obtained from the GLAMOS inventory (Fig. 1; GLAMOS, 2020;

Linsbauer et al., 2021; Fischer et al., 2014). This inventory specifies the debris cover extent for the year 2016. To obtain

older debris cover trends, we used the algorithm developed by Shokory and Lane (2023), now available in an ArcGIS Pro190

toolbox, and computed the 2010 extents based on Landsat Level 1 imagery (for details, see the Supplementary Material,

Section D). We assumed the glacial cover of 2009 to be identical to 2010.
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We derived the topography from the SwissTopo DHM25 dataset (Swisstopo, accessed 2023) available at 25 m resolu-

tion. From this topography, we automatically extracted the catchment areas, except for VU. VU requires manual correction

of its southern extent due to the presence of thick ice cover, which complicated the identification of the drainage divide195

(Fig. 6 of Bezinge et al., 1989; Hurni, 2021).

3 Methods

3.1 Hydrological modeling with Hydrobricks

Hydrobricks (v0.7.2; Horton and Argentin, 2024) is a hydrological modeling framework that implements the semi-lumped

GSM-SOCONT model (Glacier and SnowMelt – SOil CONTribution; Schaefli et al., 2005) to simulate nivo-glacial hydrolog-200

ical regimes. The model consists of two main components: (a) the reservoir-based SOCONT model, which incorporates a

linear reservoir method to account for slow storage contribution (emulation of subsurface ground water) and a non-linear

reservoir approach to address quick runoff, and (b) the GSM model, which is specifically designed for glacier-covered

catchments. The Hydrobricks framework is based on a C++ core integrated into a Python interface, which allows for

enhanced computing performances.205

The model discretizes the catchment into hydrological response units (HRUs) by elevation, aspect and potential clear-

sky direct solar radiation. The HRUs can have fractional land cover types, here ‘glacier’ for glacier-covered areas, and

‘ground’ for non-glacier-covered areas. The distinction between debris-covered glacier areas (‘glacier_debris’) and debris-

free glacier areas (‘glacier_ice’) can also be made (Shokory and Lane, 2023). The processes occurring within the same

land cover type but in different HRUs are assigned identical parameters.210

Following GSM-SOCONT’s original structure, the model behavior differs between the glacier-covered area and the ice-

free part. For the ice-free fractional part of a given HRU, surface and subsurface runoff components, along with baseflow

from melt and rainfall (Supplementary Figure A1), are computed per HRU and summed across all HRUs to build the non-

glacier streamflow component at the outlet. For glacier-covered areas, the liquid water from melt and rainfall produced by

each HRU is fed into two lumped parallel linear reservoirs shared by all HRUs. The purpose of these reservoirs, which215

only apply to glacier surfaces, is to represent the glacier’s retention effect on water flow. For a detailed workflow, refer to

Supplementary Figure A1 and Schaefli et al. (2005).

The transition from rainfall to snowfall is defined in a fuzzy approach (Schaefli and Huss, 2011) between 0°C for the

lower end (Ts-r,min) to 2°C for the upper end (Ts-r,max). Snow and ice start melting at a threshold melt temperature TT

defined at 0°C, and ice can only melt when not covered anymore
:
it

::
is

::
no

::::::
longer

:::::::
covered

:
by snow.220

We use the SPOTPY library (Houska et al., 2015) provided with Hydrobricks for parameter optimization with the Shuf-

fled Complex Evolution algorithm of the University of Arizona (SCE-UA). The SCE-UA algorithm is designed to prevent

remaining stuck in local optima. We use it in combination with the Nash-Sutcliffe (NSE; Nash and Sutcliffe, 1970) and

Kling-Gupta efficiency (KGE; Gupta et al., 2009) performance criteria to find the best combination of parameters (Table 2),

after 10,000 simulations.225
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3.2 Hydrobricks developments

In the original version of GSM-SOCONT (Schaefli et al., 2005), precipitation type (snow or rain) is determined by a

temperature threshold and melt is calculated through a classic temperature-index melt model (TI). Two new melt models

were implemented in Hydrobricks: the aspect temperature-index model (ATI) and the temperature-index model of Hock

(HTI).230

The aspect temperature-index model (ATI) is based on the discretization of the study area by aspect (North, South,

East/West) and the use of a distinct degree day
::::::::::
degree-day factor depending on aspect. A more complex model, the

temperature-index melt model of Hock (HTI; Hock, 1999), links potential clear-sky direct solar radiation to melt rates

(Eq. 2):

MHTI(t) =

(m+ rjIpot)(Ta(t)−TT ) : Ta(t)> TT with j ∈ snow, ice

0 : Ta(t)≤ TT

(2)235

where MHTI is the melt rate (mm d−1), m is the melt factor common to both ice and snow (mm d−1 °C−1), rj is the

radiation factor for ice or snow (mm d−1 °C−1 m2 W−1), Ipot is the potential clear-sky direct solar radiation (W m−2), Ta

is the air temperature and TT is the threshold melt temperature. Thus, while the ATI model represents a first attempt at

handling spatial differences in melt rates, the HTI model has the benefit of directly taking into account irradiation, which

should make it better suited to reproduce melt rates in catchments influenced by aspect and cast shadows (e.g., Gabbi240

et al., 2014).

The HTI model requires computation of the potential clear-sky direct solar radiation Ipot, here implemented using the

definition of Hock (1999, Eq. 3):

Ipot = I0

(
Rm

R

)2

Ψ

(
P

P0cos(Z)

)
a cos(θ) (3)

where I0 is the solar constant (1368 W m−2), (Rm/R)
2 is the Earth’s orbit’s eccentricity correction factor, composed245

of R and Rm the instantaneous and mean Sun-Earth distances, Ψa is the mean atmospheric clear-sky transmissivity, P

and P0 the local and the mean sea-level atmospheric pressures, Z the local zenith angle and θ the angle of incidence

between the normal to the grid slope and the solar beam. The potential direct solar radiationI, computed on a 15-minute

interval, is set to 0 when a point is not directly irradiated by sunlight (night time and cast shading brought by surrounding

relief). ,
:::::

then
::::::::
summed

::
at

:::
the

:::::
daily

:::::
scale

::
to

::::::
obtain

:::
the

:::::
daily

:::::::
potential

::::::
direct

::::
solar

::::::::
radiation

::
I.
:::::

This
::::::
15-min

:::::::
interval

::::::
allows250

:::::::::
accounting

:::
for

::::::::
changes

::
in

:::
sun

::::::::
position,

:::
sun

:::::
rising

::::
and

::::::
setting

:::::
times

::::::
during

:::
the

:::::
year.

:

For the TI model, based on temperature only, the HRUs are evenly spaced elevation bands (Schaefli et al., 2005). For

the ATI and HTI models, the HRUs reflect the elevation variations as well as the aspect or the mean annual irradiation

variations. To avoid any HRU scaling influence on parameter transferability (Liang et al., 2004; Troy et al., 2008), we

use a spacing of 40 m for elevation, 3 categories for aspect (North, South and East-West to group by degree of sun255
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exposure) and a spacing of 65 W m−2 for potential direct solar radiation for all catchments (Supplementary Figure A2).

Furthermore, in contrast to earlier studies employing GSM-SOCONT/Hydrobricks, which relied on monitoring station data

to derive meteorological lapse rates across the different elevation bands, we needed to derive our meteorological input

from gridded datasets. Our study therefore adopts a distinct methodology, extracting meteorological input for each HRU

directly from gridded datasets. This involves quantifying how much the different cells in the gridded datasets contribute to260

each HRU. We do this by downscaling once the grid of the meteorological data (1 km) to the DEM resolution (25 m): we

compute the weights representing the contribution of each data cell to each HRU based on their spatial coverage, then

use these weights to calculate the mean values for each HRU, for each daily time step. This allows direct use of future

climate model outputs often provided as gridded datasets. The evapotranspiration is then computed at the HRU level,

from mean values of temperature, following the Hamon equation (Fig 3 Hamon, 1963)
:::::::::::::
(Hamon, 1963).265

In the case where we differentiate between debris-covered and debris-free glacier coverage, we also have to adapt the

melt models by introducing new melt parameters governing the ice melt. The TI model switches from a single parameter

(aice) to two parameters (adeb-free and adeb-cov). The ATI model goes from three parameters (aice, j with j ∈ N, S, EW)

to six parameters (adeb-free, j and adeb-cov, j with j ∈ N, S, EW). The HTI model goes from two parameters (m and rice)

to three parameters (m, rdeb-free and rdeb-cov). The new melt parameters respect the same calibration ranges, but an270

inequality constraint is added to force lower melting rates of debris-covered ice: adeb-cov < adeb-free, adeb-cov, j < adeb-free, j

with j ∈N,S,EW , or rdeb-cov < rdeb-free, depending on the chosen melt model.

Under current climate conditions, virtually all snow in our study area melts every summer, making it unnecessary to

model the firn separately.

3.3 Modeling approach275

Our study of the transferability of nivo-glacial parameters from the TI, ATI and HTI melt models to nested subcatchments

and neighboring catchments (cf. section 2) can be divided into 4 steps:

1. Calibration runs: We calibrate the model on all subcatchments and neighboring catchments independently and

compare them.

2. Transfer runs in nested catchments: We transfer the parameters calibrated on the main catchment, the Bertol280

Inférieur (BI), to its nested subcatchments (BS, HGDA and VI) to simulate their streamflow and compare the results

to observed streamflow.

3. Transfer runs in neighboring catchments: As previous step but we transfer the parameters calibrated on the main

catchment, the Bertol Inférieur (BI), to the neighboring catchments (TN, PI and DB).

4. Increased model complexity run: We repeat the three above points but calibrate and run the model with differentia-285

tion of debris-covered glacier and debris-free glacier areas.
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For the first step of our study, we calibrate the model for all catchments individually using daily observed streamflow

over the years 2009-2014. We chose this simulation period because glacier cover remains relatively stable (Fig 1d). For

performance metric assessment, the first simulation year is discarded since it is assumed to initialize the system. These

runs are called "calibration runs" as the whole period is used for calibration, and no validation is carried out.290

For the second and third steps of our study, we transfer the calibrated parameters from the calibration run of the main

catchment to nested and neighboring subcatchments. As for the calibration runs, the first year is discarded. These runs

do not include any calibration procedure and are called "transfer runs".

To analyze the effect of differentiating between bare ice melt and debris-covered glacier melt, we complete all of the

above steps twice: once assuming bare ice for the entire glacier area and once accounting for debris-cover.295

3.4 Benchmark metrics

A key challenge in model calibration is to assess how good a calibrated model actually is since the commonly used

:::::::::::::
commonly-used

:
metrics do not have an absolute meaning (Schaefli and Gupta, 2007). Here, we assess how good the

transferred runs are by assessing if they outperform
::
1)

:::::::::::
exhaustively

:::::::::
resampled

::::
and

::
2)

:
bootstrapped time series. Boot-

strapping is a statistical resampling method that generates independent samples by repeated
:::::::
random

:
draw with filling300

:::::::::::
(Efron, 1979), on the basis of which statistics can then be calculated. Since normal bootstrapping

:
In

:::::::::
hydrology,

:::::::::
bootstrap

:::::::
methods

:::::
have

::::
been

:::::
used

::::::
mostly

::
to

::::::
assess

::::::::::
uncertainty

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vogel and Shallcross, 1996; Ebtehaj et al., 2010; Clark et al., 2021)

:
,
:::::::::
sometimes

::
in

:::
the

::::::::::::
performance

::::::
metrics

:::::
used

::::::::::::::::::::::::::::::::::::::::::::::::::
(Ritter and Muñoz-Carpena, 2013; Clark and Slater, 2006)

:::
and

::
to

::::::::
simulate

::::::::
multi-site

::::::::
discharge

::::::::::
time-series

::::::::::::::::::::::::::::::::::::::::::
(Srinivas and Srinivasan, 2005; Clark et al., 2021)

:
.
:::::
Since

:::
the

::::::
original

::::::::::::
bootstrapping

:::::::::
procedure

::::::::::::
(Efron, 1979)

:::::::
assumes

:::::::::::
independent

::::
and

:::::::::
identically

:::::::::
distributed

:::::
data,

:::::
which

:
would destroy the temporal correlation of our305

discharge data, we
::::::::::
hydrologists

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Srinivas and Srinivasan, 2005; Ebtehaj et al., 2010; Clark et al., 2021)

:::::
usually

:
opt

for block boostrapping, which
:::::::::::
bootstrapping

::::::::::::::::::::::::::::
(Carlstein, 1986; Künsch, 1989),

::::::
which

:::::::::
preserves

:::
the

:::::::
internal

::::
data

::::::::
structure

:::
and

:
is typically used for time-series. Thus, we perform block bootstrapping on the discharge series during the evaluation

::
In

:::
the

::::
case

::
of
:::::::::::
hydrological

::::
data

::::::::
strongly

::::::::
impacted

::
by

:::::
snow

::::
and

::::::
glacier

:::::
melt,

:::
the

:::::
block

::::
size

::
is

:::::::
annual,

::::::
starting

::
in
::::::::
January

:::::
during

::::
low

::::
flow,

::
to

::::::::
coincide

:::
with

::::
the

::::::
annual

:::::::
periodic

::::::::
structure

::
of

:::
the

:::::::::
discharge

::::::::::::::::::
(Ebtehaj et al., 2010)

:
.
::
As

::::
the

:::::::::
evaluation

::
of310

:::
our

::::::::::
hydrological

:::::::::
simulation

:::::
takes

::::::
place

::::
over

:
4
:::::
years

:::::
only,

:::
we

::::::::
calculate

:
a
:::::::
derived

::::::
metric

::::::
where

::
we

:::::::::::
exhaustively

:::::::::
resample

:::
the

:::::
years

::
of

:::
the

:::::::::
evaluation

:
period (2010-2014) with yearly block sizes. This process is repeated 100 times, ensuring that

the streamflow data from a particular year is not used for that same year’s prediction.
:
;
::::
3125

:::::::::::::
combinations),

::::::
based

:::
on

:::
the

:::::
same

::::::::
principles

:::
as

:::::
block

::::::::::::
bootstrapping.

::::
This

::::::::::
resampling

::::
has

:::
the

:::::::::
advantage

::
of

:::
not

:::::
being

::::::::
affected

::
by

:::::::::
long-term

:::::::::
processes

::::
such

::
as

::::::
global

::::::::
warming,

::::
and

:::::
being

:::::
easily

:::::::::::
reproducible

::::::::
because

::
of

::
its

:::::::::::::::
non-stochasticity.

:::
For

:::::::::::
comparison,

:::
we

:::::::
perform

:::::
block315

:::::::::::
bootstrapping

:::
on

:::
the

::::::
entire

:::::::::
discharge

:::::
series

::::::::::::
(1969-2014),

::::::::::::
stochastically

:::::::
drawing

:::::
3125

::::::::::::
combinations.

:
We then compute

the NSE and the KGE on each
:::::::::::
exhaustively

:::::::::
resampled

::::
and bootstrapped series and average them to obtain benchmark

metrics.
::
In

:::
the

::::::::
following

::::::
article,

:::
we

::::
call

:::::::::::
"benchmark"

:::::
NSE

:::
and

:::::
KGE

:::
the

:::::::
metrics

:::::::::
computed

::::
over

::
5
::::::
years,

:::
and

::::::::::
"long-term

::::::::::
benchmark"

:::
the

:::::::
metrics

:::::::::
computed

::::
over

:::
46

::::::
years. The benchmark NSE and KGE correspond to the prediction potential

of the discharge dataset itself.320
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Table 2. Parameters used in the simulations and their a priori range of values.

Parameter

(set)
Unit Description Set value

Melt

model

Ts-r,min °C lower temperature threshold of the snow-rain fuzzy transition 0 all

Ts-r,max °C upper temperature threshold of the snow-rain fuzzy transition 2 all

TT °C threshold melt temperature 0 all

Parameter

(calibrated)
Unit Description Condition Range

Melt

model

MELT MODEL-DEPENDENT PARAMETERS

aice or

adeb-free,

adeb-cov

mm d−1 °C−1
ice degree-day factor, independent (ice) or depen-

dent on ice cover (debris-covered or debris-free)
adeb-cov < adeb-free 5 - 20 TI

asnow mm d−1 °C−1 snow degree-day factor asnow < aice or adeb-cov 2 - 12 TI

aice, j or

adeb-free, j,

adeb-cov, j with

j ∈ N, S, EW

mm d−1 °C−1

ice degree-day factor, independent (ice) or depen-

dent on ice cover (debris-covered or debris-free)

and dependent on aspect (North, South, East/West)

adeb-cov, j < adeb-free, j with j ∈ N,

S, EW

5 - 20, 0 -

20 (North)
ATI

asnow,N,

asnow,S,

asnow,EW

mm d−1 °C−1
snow degree-day factor, dependent on aspect

(North, South, East/West)

asnow, j < aice, j or adeb-cov, j with

j ∈ N, S, EW

2 - 12, 0 -

12 (North)
ATI

m mm d−1 °C−1 melt factor 0 - 12 HTI

rice or

rdeb-free,

rdeb-cov

mm d−1 °C−1 m2

W−1

ice radiation factor, independent (ice) or dependent

on ice cover (debris-covered or debris-free)
rdeb-cov < rdeb-free 0 - 1 HTI

rsnow
mm d−1 °C−1 m2

W−1
snow radiation factor rsnow < rice 0 - 1 HTI

RUNOFF TRANSFORMATION PARAMETERS

kice d−1 ice outflow coefficient

ksnow d−1 snowpack outflow coefficient ksnow < kice

kquick d−1 surface runoff outflow coefficient

A mm slow storage capacity 0 - 3000

kslow1 d−1 slow storage outflow coefficient kslow1 < kquick

kslow2 d−1 baseflow storage outflow coefficient kslow2 < kslow1

ρperc mm d−1
slow storage percolation rate to the baseflow stor-

age
0 - 10

4 Results

4.1 Calibration runs

For the calibration runs without accounting for debris-cover, the NSE and KGE values are better than those obtained

from bootstrapping
:::
the

::::::::::
benchmark

::::::
values

:
for all catchments (Fig. 3; section 3.4), implying a consistent enhancement in

streamflow modeling with Hydrobricks compared to a simple temporal transfer of observed data. This improvement is325
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Table 3. Data used in the simulations, with corresponding source.

Dataset Description Acquisition period Provider

Mean temperature daily interval, 1 km resolution gridded dataset since 1961 MeteoSwiss

Mean precipitation daily interval, 1 km resolution gridded dataset since 1961 MeteoSwiss

Discharge
15-minute sampling time interval, measured at water

intakes
since 1969 Grande Dixence SA

Topographic data 25 m resolution DEM (DHM25 dataset) - SwissTopo

Clean glacier extents shapefiles of glacier extents
1850, 1931, 1973,

2010, 2016
GLAMOS inventory

Debris-covered glacier ex-

tents
shapefiles of debris-covered glacier extents 2016 GLAMOS inventory

Landsat imagery
Level 1 Landsat 7 imagery at 30 m resolution for

debris-free ice mapping
06/09/2009 Landsat
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Figure 3. Comparison of the performance of the three melt models on the seven catchments for the period 2010-2014, quantified either

by the Nash–Sutcliffe efficiency (NSE, orange bars) or by the Kling-Gupta efficiency (KGE, blue bars). For comparison, the benchmark

NSE and KGE are computed and plotted as red and dark blue thresholds. The model is calibrated by running 10,000 times over the

years 2009 - 2014, where 2009 is discarded for model initialization. Catchments are ordered by area, from BI (largest) to DB (smallest).

:::
BI’s

:::::
nested

::::::::::
catchments

:::
are

::::::::
underlined.

more pronounced in smaller catchments, as the values of the benchmark metrics decrease with decreasing catchment

area, while the Hydrobrick simulation scores remain consistently high. This suggests that in smaller catchments, dis-

charge time-series present more variable and marked yearly signals than in bigger catchments, which can be effectively

replicated using Hydrobricks, but not with bootstrapping
:::::::::
resampling. Given that, in general, KGE values tend to be higher

than NSE values (Knoben et al., 2019), this trend is particularly apparent with the benchmark NSE and slightly less with330
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the benchmark KGE. Thus, even though the achieved NSE values are often lower than those of KGE, the improvement

they represent compared to the benchmark metric values is much bigger.
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Figure 4. Observed and simulated hydrographs for all catchments for 2010 with the a) TI and b) HTI melt models. Observed discharge

(black solid line) is compared to the calibration run using NSE (dotted orange) and KGE (dotted blue). Specific discharge (unit: mm) is

normalized to the highest value.

To illustrate how well the calibrated discharge simulations fit the observed discharge, Fig. 4 shows the corresponding

hydrographs. The calibration runs based on NSE and KGE (Fig. 4) result in globally similar hydrographs for the TI and

HTI melt models, and for the ATI model (Fig. C1). While overall discharge dynamics are well simulated,
:::::
some discharge335

peaks are smoothed and thus not adequately reproduced. This is particularly evident in the case of the "spring event"

occurring early- to mid-June. This first prominent peak during the melting season results from the melt of the supraglacial
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and hillslope snowpacks, that occurred due to an unusually strong foehn that blew on the 9th and 10th of June (Zbinden

et al., 2010). This foehn event is partially recorded
:::
only

:::::::
partially

::::::::
captured in the temperature records of the period(Fig. 14),

:
,
:::
and

:::::
none

::
of

:::
the

::::
melt

:::::::
models

:::::::
account

:::
for

:::::
wind, which is why it

:::
this

:::::
peak could not be reproduced entirely.340
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Figure 5. Calibrated ice and snow melt parameters for all simulated NSE and KGE runs for all catchments, with the three melt models

and the two performance criteria. The parameter sets achieving the best NSE and KGE scores are plotted on top with a dot. Catchments

are ordered by area, from BI (largest) to DB (smallest). The significance of the parameter distribution difference between BI and its

neighboring and nested catchments is denoted as follows: *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and ns for non-significant

(Kruskal-Wallis test).
:::
BI’s

:::::
nested

::::::::::
catchments

:::
are

:::::::::
underlined.

Depending on the model used, the calibrated parameters are more or less similar
:::
The

:::::::::
variability

::
of

::::::::
calibrated

::::::::::
parameters

between performance criteria and across catchments
:::::::
between

:::::::::::
catchments

:::::::
depends

:::
on

::::
the

::::
melt

::::::
model

::::
used

:
(Kruskal-

Wallis test; Fig. 5).
:::::
Some

::::::
models

::::::::
produce

:::::
more

:::::::::::
pronounced

:::::::::
variations,

:::::
while

::::::
others

::::::::
generate

:::::
more

::::::
limited

::::::::::
variations.

With the TI model, the calibrated parameter sets show very different values, depending on the catchment and the perfor-
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mance criterion used. With the ATI model, the degree-day factors and outflow coefficients obtained with KGE and NSE345

tend to converge to similar values, but these values still show a certain spread between the catchments. With the HTI

model, the all parameter values are more consistent both between the two performance criteria and across the seven

catchments. For example, the HGDA catchment shows high similarity with the BI catchment for both the snow radiation

factor rsnow and the ice radiation factor rice in NSE calibration (non significant distribution change - ns; Fig. 5).

Thus, refining the representation of the melt process leads to increased spatial coherence of the melt parameters.350

The parameters showing no significant distribution changes between catchments could be assumed to be transferable

between these catchments without calibration. The HTI model can thus be assumed to be suitable to model the melt

processes occurring in neighboring or nested catchments.

4.2 Transfer runs in nested catchments: spatial parameter transferability

To assess the spatial parameter transferability to nested subcatchments, we apply, for all melt models, the calibrated355

parameter set obtained for the BI catchment to model the discharge of its nested subcatchments BS, HGDA and VI. The

results for the TI and HTI model
::::::
models are shown in Fig. 6, and the ATI model in Fig. C2; the transfer runs

::::::
closely

:
match

the observed discharge closely for the TI and HTI models. For both models, the simulated discharges of the HGDA and BS

catchments show slightly underestimated low flow periods and peaks. While this can be observed for HGDA throughout

the summer, it is especially true for BS in the late summer. VU, on the contrary, shows slightly overestimated discharge in360

the low flows and the peaks, starting July, and overall, its discharge is best reproduced by the TI model. Close inspection

reveals some differences between the transfer runs based on NSE versus KGE calibration, but no systematic differences.

As expected, the transfer runs reproduce the observed discharge less closely than the calibration runs for each of the

catchments. The performance metric values of the transfer runs (Fig. 7) are, nevertheless, high compared to the bench-

mark values. Globally, the performance drop is bigger
:::::
larger for KGE than for NSE but given the different sensitivities of365

the two metrics, they cannot be directly compared (see Section 4.1). Although all subcatchments and models experience

a drop in KGE values, VU is the only catchment whose results drop
:::
just

:
below the KGE benchmark value with the ATI

model
::
all

:::::::
models. With the exception of the BS catchment, the best results are obtained with the TI and the HTI models.

We tested the conservativity
::::::::::
consistency of the model

:::::
across

:::::::
scales by checking whether the simulated discharges

of the subcatchments (VU, HGDA and BS) were coherent across subcatchments and with the discharge of the main370

catchment (BI) (Fig. 8). This test is partial, as the discharge generated by the Mont Collon (MC) area is not monitored,

and thus the added discharges of VU, HGDA and BS do not account for all of BI’s discharge. We thus expect the sum

of the three subcatchments’ discharges to always be
::::::
(dotted

:::::
black

::::
line,

::::
Fig.

::
8)

::
to

:::
be

::::::
always

:
lower than the discharge of

the main catchment BI
::::::
(dotted

::::::
purple), and to have a consistent overestimation/underestimation of the flow across the

different subcatchments. This is true for the high flow event trigered by the 9th-10th June 2010 foehn event (Zbinden375

et al., 2010), which is consistently underestimated in all catchments. Similarly, we find that for the low flow periods end of

June and early September, which are slightly overestimated in BI, the stacked discharges (dotted black) are consistent

and stay below the BI discharge (dotted purple).
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Figure 6. Observed and simulated hydrographs of the BI catchment and its nested subcatchments for 2010 with a) TI and b) HTI

melt models. Observed discharge (solid black line) is compared to the calibration runs and to the transfer runs with the calibrated

parameters of BI: Shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs, solid lines show the

transfer runs. For BI, the calibration and transfer runs are identical. Specific discharge (unit: mm) is normalized to the highest value.

4.3 Transfer runs in neighboring catchments: spatial parameter transferability

The results of transferring the calibrated parameters of BI to neighboring catchments (Fig. 9t, C3) demonstrate for 2010380

high accuracy in discharge simulation, both with the TI and HTI models, with minimal performance loss compared to

calibration runs. The simulated discharge changes resulting from this forcing are more pronounced for the TI model than

for the HTI model. Again, the discharge dynamics are relatively well reproduced
::::::::::::::
well-reproduced but with a significant

underestimation of the initial June discharge peak for all catchments and the July ones for the TN and PI catchments.
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NSE values (orange) and KGE values (blue), along with the benchmark NSE value (red line) and KGE value (dark blue line) values. The

performance values for the corresponding calibration run are shown in more transparent color.
:::
BI’s

::::::
nested

:::::::::
catchments

:::
are

:::::::::
underlined.
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Figure 8. Observed and simulated hydrographs with the HTI model for the Bertol Inférieur (BI) and its subcatchments (VU, HGDA and

BS) for the summer of 2010. For the subcatchments, the simulations (dotted lines) are the NSE-transfer runs, for the main catchment,

BI, the dotted line corresponds to the calibration run. The solid lines are the observed hydrographs. The dotted black line shows the sum

of the transfer runs of the three subcatchments. Discharge (unit: m3 s−1) is normalized to the highest value.
:::
BI’s

:::::
nested

::::::::::
catchments

::
are

:::::::::
underlined.

Interestingly, the July peaks are absent in the observed discharge of the DB catchment (as they are absent in the observed385

discharge of the BS catchment, see Figure 6). As seen in the nested forcing results (Figure 6), the NSE calibration run

fits the discharge peak sometimes better than the KGE calibration run, such as in catchment DB in early July with the TI

model.
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Figure 9. Observed and simulated hydrographs of the BI catchment and its neighboring catchments for 2010 with a) TI and b) HTI melt

models. Observed discharge (solid black line) is compared to the calibration run and to the transfer runs with the calibrated parameters

of BI: Shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs, solid lines show the transfer runs.

For BI, the calibration and transfer runs are identical. Specific discharge (unit: mm) is normalized to the highest value.

We observe similar drops in NSE and KGE values when applying the BI parameters to the neighboring catchments

as for the transfer runs in the BI subcatchments (compare Figs. 7 and 10). Nevertheless, with the exception of the DB390

catchment using the ATI melt model, the performance decreases are less pronounced compared to the nested catch-

ments. In all neighboring catchments, the simulations exhibit NSE and KGE values that surpass those obtained through

bootstrapping
:::::::
exceed

:::::
those

::
of

:::
the

::::::::::
benchmark. Thus, the catchments whose discharges are the least well simulated with

BI’s calibrated parameters are the BI’s nested subcatchments: VU, BS and HGDA.
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Figure 10. As Figure 7 but comparing calibration and transfer runs for the neighboring catchments of BI for the period 2010-2014.

Shown are NSE values (orange) and KGE values (blue), along with the benchmark NSE value (red line) and KGE value (dark blue

line) values. The performance values for the corresponding calibration runs are shown in more transparent color.

Analyzing monthly discharge hydrographs (Fig. 11) can yield additional insights into KGE performance, since this metric395

is by construction more sensitive to model biases than NSE, and such biases can become more apparent in monthly

values compared to daily values. The monthly hydrographs (Fig. 11) clearly show the monthly discharge patterns that

contribute to decreases in KGE, especially notable in 2012: In the VU catchment, discharge is overestimated, whereas in

the HGDA and BS catchments, underestimations are observed.

4.4 Increased model complexity run: accounting for debris-cover400

In an attempt to investigate if
:::::::
whether the melt model could be missing an important driving factor, we thus tried to attribute

the performance decrease between calibration and transfer simulations to catchment characteristics. We chose to focus

on the nested catchments, which show the biggest
::::::
largest drop in performance (Fig. 12). The catchment area and mean

catchment elevation do not show any obvious relations to performance decreases. However, the percentage of glacier

debris cover and the mean catchment and glacier slopes show more consistent relations. When the slope is steeper than405

in BI, discharge is underestimated, whereas when the slope is flatter, discharge is overestimated. In a similar way, when

the debris coverage of the glacier is smaller than in BI, discharge is underestimated. Accordingly, in a
::::::::::::
Consequently,

::
in

:::
the next step, we tested the transferability of model versions that differentiate between debris-covered and debris-free

glacier areas.

With model versions that apply different melt and radiation factors to simulate melt from debris-covered and debris-free410

glacier areas, we obtain better model performances in the calibration phase (see Supplementary Material, Figure E).

However, for the transfer runs, the performances are lower than for model versions that do not account for debris cover
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Figure 11. Observed and simulated monthly hydrographs for the HTI melt model on the seven catchments, calibrated or transferred

with the calibrated parameter set of BI. Observed discharge (solid black line) is compared to the calibration run and to the transfer runs

with the calibrated parameters of BI: shown are the results for NSE (orange) and KGE (blue); dotted lines show the calibration runs,

solid lines show the transfer runs. For BI, the calibration and transfer runs are identical. Observed monthly discharges with missing

values are not shown. Specific discharge (unit: mm) is normalized to the highest value.

(Fig. 13b), i.e. the transferability of the model parameters decreases. This is especially noticeable for the VU and TN

catchments.

4.5 Regionalization of the melt model415

We showed that with the TI and HTI models it is possible to simulate the discharge of nested and neighboring catch-

ments with parameters calibrated at the main local outlet (BI), albeit with a small decrease in performance. The ensuing

question is to know whether or not these parameters can be used to infer conclusions about the physical processes

and dynamics occurring in the neighboring and subcatchments. In our simulations, the studied catchments have very

similar meteorological drivers, in terms of precipitation (Fig. 14a) and temperature (Fig. 14b). The meteorological data is420
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Figure 12. Comparison of selected physiographic characteristics of the nested catchments with the relative performance change

between the calibration and transfer discharge simulations. The relative performance change is the relative drop in KGE and NSE

performance criterion, calculated as follow: (calibration run− transfer run)/calibration run× c with c a visually assessed coefficient

reflecting the overestimation (1; VU) or the underestimation of simulated discharge (-1; HGDA and BS). The relative differences are

calculated as follow, with the catchment are as example: (BI catchment area− catchment area)/BI catchment area. The point showing

performance changes and relative differences of 0 is BI.

interpolated based on the ground-based observations from a few rather low elevation measuring stations, with the only

station in our study area being that of Arolla at 2005 m a.s.l. (Fig. 1a) and the highest station in the bigger
::::::::::
surrounding

area being located
:::
29

:::
km

:::
SW

:
at Col du Grand St-Bernard, at 2472 m a.s.l.. Thus, the actual weather patterns may be

more different between the studied subcatchments than what is suggested by the interpolated weather data. Indeed, the

studied catchments’ discharge patterns show clear differences between DB and BS and the other catchments. DB and425

BS show for all years on record a single melt-induced discharge peak in early summer, followed by low discharge. All

other catchments show the same discharge peak in June, followed by even higher discharges in the subsequent summer

months (Fig. 14c).
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Figure 13. As Figure 3 but comparing calibration and transfer runs for all seven catchments, a) without and b) with debris cover

separation, for the period 2010-2014. Shown are NSE values (orange) and KGE values (blue), along with the benchmark NSE value

(red line) and KGE value (dark blue line) values. The performance values for the corresponding calibration runs are shown in more

transparent color.
::
BI’s

::::::
nested

:::::::::
catchments

:::
are

:::::::::
underlined.

To assess the quality and uncertainty of the precipitation inputs fed into the model, we compared the mean precipitation

for each catchment with the measured precipitation from four weather stations: the Arolla station (2005 m a.s.l., since end430

of 2011 only), the Orzival (2640 m a.s.l.) and Tracuit (2590 m a.s.l.) stations from the Anniviers valley just to the East,

and the Col du Grand St-Bernard station (2472 m a.s.l.) farther to the west. The precipitation inputs of our catchments

globally fall within the same range as the measured precipitation of the Arolla station (Supplementary Figure F1c) in

terms of annual precipitation amounts. The modeled interannual trend also matches the interannual trend observed

in the neighboring Anniviers valley. At the daily scale, the peaks are globally well reproduced in terms of timing, but are435

sometimes more uncertain in terms of amount (July 2012 peak; Supplementary Figure F1b). This discrepancy is explained

by the high variability of precipitation in high alpine areas, which is well illustrated by the precipitation differences at large

spatial scale
::::::
scales between the Col du Grand St-Bernard and the Anniviers stations (Supplementary Figure F1a, c),

and at smaller spatial scale
::::::
scales between the two Anniviers stations (April 2012 peak; Supplementary Figure F1b).
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Figure 14. Patterns of a) precipitation, b) temperature, c) observed discharges, d) simulated glacier snowpack thickness and e)

potential clear-sky direct solar radiation for the different catchments during the summer 2010. The values are mean values computed

over the entire catchments from the RhiresD and TabsD MeteoSwiss datasets. The mean elevation of the catchment is indicated in the

legend. Specific discharge (unit: mm) is normalized to the highest value.

This small spatial scale variability, however, has no impact on the global interannual trends (Supplementary Figure F1c).440

There is little variation in the amount of precipitation between our catchments (Supplementary Figure F1b), which leads

us to believe that the spatial variability of our precipitation input is probably underestimated. This minimized variability

of the input precipitation might explain the model’s difficulty in reproducing specific discharge peaks, and the distinctive

hydrological regimes exhibited by DB and BS. However, we argue that as the discharge is calibrated on the whole

2010-2014 period, this underestimation of variability has a minimal impact on global spatial transferability of our model445

to sub- and neighboring catchments
:::::
Thus,

:::::
some

::::::
effects

:::::
from

::::::
rainfall

::::::::
variability

::::
that

:::
are

:::
not

::::::::
captured

::
in
::::
the

::::
input

::::
data

::::
are

:::::::
possible.

A further
:::::::
Another

:
reason may relate to the glacial coverage of the DB and BS catchments. Based on the simulated

snow water content, we find that the lower discharges exhibited by BS and DB in July-August cannot be explained entirely

::::::
entirely

:::::::::
explained by snow exhaustion, as BS and DB still show more than 10 cm of mean simulated snow depth at the450

beginning of July. However, it can
::::
they

::::
may be explained by the intra-annual pattern of snow and ice melt - when snow

melt slows due to depletion, glaciers become snow-free and ice melt begins. DB and BS show the lowest glacial coverage

(< 10.1%; Table 1), so when the snow has disappeared, very little ice melt ensues
:::::
occurs. In other catchments, ice cover
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is much greater (> 32.0%), and in late July and early August, discharge is at its highest due to high rates of ice melt. We

also note that TN is the only catchment for which the
::::::::
simulated snow cover did not melt completely during summer 2010455

(Fig. 14d).

5 Discussion

5.1 A new
::
An

::::::::::
exhaustive

::::::
block

:::::::::::
resampling benchmark

In this study, we have introduced a new benchmark based on the bootstrapping method, where we use
:::::::::::
exhaustively

::::::::
resample

:
discharge data from the 5 years 2010-2014 to simulate 100

::
in

::::::
yearly

::::::
blocks

:::
to

:::::::
simulate

::::::
3125 discharge460

time-series, calculate the NSE and KGE objective functions for each of these 100 time-series and average them. This

bootstrapping
:::::::::
resampling

:
method was retained because it is an easy metric to compute and it gives a good idea of the

model fit in comparison to a sample of discharge with the same hydrologic regime. If the sampled years exhibit significantly

different dynamics, this bootstrapping method is less meaningful. However, our
:::
Our catchments are all dominated by re-

current summer snowmelt and icemelt dynamics (Supplement Figure ??
:
I5), albeit with some temporal variability. By465

taking a large number of boostrapped combinations, we compensate for outlier years . We decided against averaging

the discharges for the day of the year, as done by Schaefli and Gupta (2007), because we compute the benchmark over

a relatively short 5-year period. Averaging discharges is particularly interesting for long time periods where it gives a

robust representation of the average seasonal signal. In our case, the modeling period is short and
::
To

:::::::
ensure

:::
that

::::
our

:::::::::
benchmark

::
is
:::
not

:::::::
affected

:::
by

:::::
outlier

:::::
years

:::::::::
exhibiting

::::::::::
significantly

:::::::
different

:::::::::
dynamics,

:::
we

:::::::::
computed

:
a
:::::::::
long-term

::::::::::
benchmark470

::::
over the resulting average of the day of the year could be strongly influenced by a single year, which can be avoided with

the retained bootstrapping method.
::::
whole

:::::::::
available

::::::
dataset

::::
(46

::::::
years;

:::::
Table

:::
I1),

::::::
which

:::::
show

:::::
lower

::::::
values

::
of

:::::
NSE

::::
and

::::
KGE

::::
than

:::
the

::::::
5-year

:::::::::::
benchmark,

::::::::::::
demonstrating

:::
the

:::::::
relative

::::::::::
consistency

::
of

:::
the

:::::::::
dynamics

::
in

:::::
recent

::::::
years.

:
We heuristically

choose 100 combinations, as motivated by the origin of the bootstrapping method, that has a strong random component

to it.475

5.2 Discharge predictability: catchment size matters

We first discuss the influence of catchment size on discharge predictability, notably on our benchmark metrics. The

benchmark metrics show that the predictability of discharge from past discharge signals alone is less high for small

catchments than for larger ones (Fig. 3). However, Hydrobricks shows similarly high model performances for small and

larger catchments, highlighting the added value of a hydrological model in small catchments. This outcome can be di-480

rectly explained by spatial relations. Large catchments exert a stronger averaging effect on spatio-temporal processes

than small catchments. Indeed, the discharge in small catchments is driven by a localized and likely uniform meteoro-

logical patterns, while larger catchments draw from multiple local meteorological patterns, leading to a certain averaging.

This is well illustrated by the precipitation events in the Anniviers valley (Supplement Figure F1b), which are not always

recorded by both stations. This complexity obscures the correlation between meteorology and discharge in larger catch-485
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ments, but not in smaller ones. Furthermore, the difference in catchment areas is here closely linked to differences in

stream order, which results in a different balance between water travel times in unchanneled states (hillslopes, surface

runoff) and in channeled states (in-stream) (Rinaldo et al., 2006; Michelon et al., 2021). Longer in-stream flow paths lead

hereby to a stronger dampening effect of hillslope- and glacier-scale runoff variability. This geomorphological dispersion

of the discharge waves traveling downstream (Rinaldo et al., 1991) can also be observed when comparing the discharge490

patterns recorded in the BI, VU and HGDA intakes (Supplementary G1): the smaller catchments (VU and HGDA) are

relatively much more affected by the precipitation event than BI, even though they are hydrologically similar. Given the

inherent year-to-year variability in meteorological patterns, and the close link between meteorology and discharge, it en-

sues that in small catchments, the discharge patterns from previous years are poor predictors of the current discharge. In

contrast, even simple meteorology-based hydrological models
::::
such

::
as

:::::::::::
Hydrobricks deliver much better results. An ideal495

benchmark should not depend on scale; however, we do not see at this stage how to construct such a benchmark.

Additionally, we note that the NSE benchmark metric values tends to decrease much more strongly than the KGE

benchmark metric values with decreasing catchment size (from 0.52 to 0.05
:::
0.62

::
to
:::::
0.22 for NSE and from 0.75 to 0.50

::::
0.80

::
to

::::
0.60

:
for KGE; Fig. 3). This difference in decrease is explained by the bootstrapping

::::::::::
resampling approach used to

produce the discharge data.500

The NSE assesses the fit of one series to another solely based on the squared difference between the two time series.

The KGE, on the other hand, uses a linear combination of correlation between the two series, variability error (ratio

of the standard deviations), and bias error (ratio of the means). Given the definition of KGE and NSE, the correlation

term is linearly related to NSE, while
:::::
whilst

:
the variability term and the bias term have a quadratic relation to NSE

::::::::::::::::
(Clark et al., 2021). As a result, the NSE is much more sensitive to changes in bias, changes in variability or shifted yearly505

patterns than the KGE (see Supplementary Material, I1; Knoben et al., 2019).
:::::::::::
Furthermore,

:::::
since

:::
the

:::::
KGE

::::::::
evaluates

:::::
bias,

::::::::
variability,

::::
and

::::::::::
correlation

::::::::::::
independently,

::::
two

:::::
good

:::::::::::
components

:::::
(e.g.,

::::
bias

::::
and

:::::::::
variability)

::::
can

:::::
offset

::
a

:::::::::
suboptimal

:::::
third

:::::::::
component

:::::
(e.g.,

:::::::::::
correlation).

:::::
This

::
is

:::
not

::::
the

::::
case

:::
in

:::
the

:::::
NSE.

:
Thus, the benchmark KGE is

:::::
values

:::::
past

::::::::::
discharges

:::::
much

::::
more

::::::
highly

::::
than

:::
the

:::::
NSE,

:::::
which

::::::
makes

::
it a much harder criteria

:::::::
criterion to meet for simulated discharges than the

benchmark NSE. We thus expect the simulated hydrographs to outperform the benchmark NSE and match the benchmark510

KGE.

5.3 Satisfactory hydrograph predictions across nested and neighboring catchments

As discussed previously, we expect the simulated hydrographs to outperform the benchmark NSE and match the bench-

mark KGE. When transferring the parameters calibrated for the largest subcatchment (BI) to model the discharge in all

other nested (Fig. 7) and neighboring catchments (Fig. 10), we observe that despite exhibiting slightly inferior perfor-515

mance compared to the direct calibration, most catchments still show satisfactory results, even for the smallest ones. For

all catchments, the transfer simulations with transferred parameters match both the benchmark KGE and NSE, at the

exception of VUwith the ATI model. The decreases in KGE for the HGDA, BS and VU observed in all melt models is not

accompanied by a similar NSE decrease, which hints toward an amplitude change in the discharge signal (Supp. Mat.
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I1). This amplitude change is produced by the underestimation (HGDA, BS) and overestimation (VU) in discharges that520

we observed in Figure 6.

The lowest NSE score obtained through a HTI transfer run is 0.76, and the biggest decrease with respect to the

calibration run reaches 0.05. As a comparison, the best fits achieved by Parajka et al. (2005) for regionalization over

Austrian catchments yielded a NSE decrease from 0.72 to 0.67, and globally, the mean and maximum NSE in European

catchments reach 0.72 and 0.91, respectively (Guo et al., 2021). Furthermore, the discharges in nested catchments are525

consistent with each other (Fig. 8), as the sum of the nested discharges does not exceed the main catchment’s discharge.

The performance decrease between calibration and transfer simulations in nested catchments could be attributed

to the slope of the terrain and the debris coverage of the glacier (Fig. 12). When the catchment and glaciated slopes

are steeper, the models tend to underestimate discharge, maybe because steeper slopes lead to faster runoff and higher

discharge rates that are not fully captured by the model. Conversely, for flatter slopes, the models overestimate discharge,530

possibly due to slower runoff and more significant water retention. Additionally, lower debris coverage on glaciers leads

to underestimated discharge, potentially because debris cover, in our case, increases rather than decreases melt rates.

By taking into account these relations between discharge and physiography explicitly in the model, we could potentially

improve its transferability.

5.4 Possible explanations for slightly over- and underestimated discharges535

Several factors could contribute to the overestimation of the VU discharge and to the underestimation of the HGDA

and BS discharges observed in the monthly hydrographs (Fig. 11). Firstly, the meteorological forcing could be incorrect,

as it is highly variable in such alpine environments, difficult to observe, and available at a coarse resolution (1 km).

Calibrated parameters are known to compensate for such input error effects (Bárdossy and Das, 2008) and transferred

parameters might thus induce biases. Secondly, the delineation of some of the catchments is uncertain, considering540

the uncertainty of water flow paths beneath glaciers. This might in particular be the case for VU, where Bezinge et al.

(1989) suggest a potentially smaller catchment area to the north. Thirdly, the melt model could be missing an important

driving factor. Temperature-index based methods are known to yield good results in environments where melt is mainly

driven by incoming longwave radiation and sensible heat flux (Ohmura, 2001), which is typically the case in alpine
::::::
Alpine

catchments (Thibert et al., 2018).545

We also observe a worsened result when accounting for debris cover on glaciers. The following reasons might explain

this result: i) an overfitting of local specificities of the model, ii) a spatially inconsistent effect of debris cover on ice-melt

or iii) difficulties making the high number of parameters converge given the amount of reference information contained

in observed discharge (which does not provide enough constraints on the parameters). These reasons are linked. The

inconsistent effect of debris (ii) when the “local specificity” is, for example, a strong melting or protective effect of the debris550

cover, which is not shared by other catchments is a specific example of model overfitting (i). Convergence difficulties (iii)

lead to the difficulty of finding a single set of parameters to explain the results, which in turn can lead to an overfitting of

local specificities if a solution is slightly better (i). All these reasons fall under the overparametrisation problem.
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We observe that in both the cases of the ATI and the debris cover in TI or HTI, we introduce differential melt rates that

cannot be independently calibrated as we only use the discharge to calibrate against. Compared to the simple TI model555

(without accounting for debris), the introduction of debris cover within the TI model results in a greater drop in goodness

of fit than using the simple ATI model. Thus, we can conclude that this decrease in goodness of fit is probably due to the

differential behavior of debris coverage
::::
cover.

5.5 Enhanced parameter transferability through improved melt model
::::::::::
accounting

:::
for

:::::::::
potential

:::::
solar

::::::::
radiation

Melt rates per positive degree-day are sensitive to a number of characteristics that influence the surface energy balance,560

and which include elevation, direct solar radiation input, albedo, wind speed and seasonality (Hock, 2003; Ismail et al.,

2023). These explain
:::::
imply

:
that for a given glacier, the degree-day factors of ice and snow are different, with ice, being

less reflective than snow, melting more per positive degree-day. This variability of the link between positive air temperature

and melt can also be found at a local-scale, within snow and ice patches (Gabbud et al., 2015). This sensitivity of melt

rates tends to limit the transferability of melt parameters from one catchment to a neighboring or nested catchment for565

the basic TI model .

By discretizing the study catchment by aspect and solar radiation and implementing the ATI and HTI models
:::
and

::::::::
motivated

:::
the

:::::::::::
computation

::
of

:::::::
spatially

:::::::
variable

::::::::::
degree-day

::::::
factors

::::
from

:::::
snow

::::
data

::
in

::::::::
previous

::::
work

::::::::::::::::::::::::::::::::
(He et al., 2014; Hingray et al., 2010)

:
.
::::
Here, we tested the influence of aspect and radiation on melt model parameter transferability

::
by

::::::::::
discretizing

::::
the

:::::
study

:::::::::
catchment

:::::::::
according

::
to

::::::
aspect

::::
and

:::::
solar

:::::::
radiation

::::
and

::::::::::::
implementing

:::
the

::::
ATI

:::
and

::::
HTI

:::::::
models. According to the work of570

Comola et al. (2015), local-scale degree-day factors become stable (and therefore transferable) at scales at which the

variability of local hillslopes’ orientation does not further increase (less than 7 km2, in their study). In this case study, we

have five catchments that are small enough to be affected by their dominant aspect, but only two of them show low aspect

variance also on their glaciated surfaces (DB and BS, Fig. 1c). However, all TI and ATI calibrated melt and radiation factors

are highly inconsistent across catchments, whereas we find strong parameter overlap
:::::::
overlaps

:
between catchments for575

the HTI model (Fig. 5). Similar to the work of Comola et al. (2015), we find that taking into account solar radiation patterns

using the HTI model does not fully explain the hydrological response variability at smaller catchment scales. Indeed, BS

and HGDA tend to have higher melt parameters when calibrated alone (Fig. 5), and produce slightly underestimated

discharge when transferred with BI’s parameters (Fig. 6), responsible for their lower KGE values (Fig. 7a). The transfer

results obtained from the HTI model do not demonstrate improvements in terms of simulated hydrographs compared to580

the TI model (Fig. 6 and 9), suggesting that the radiation as computed by Hock (1999) may not be enough to explain

the KGE differences. However, both the TI and the HTI models show good transferability in terms of metrics to even the

smaller catchments (Fig. 7 and 10). We elaborate on Comola et al. (2015)
::::::::
Although

::::::::::::::::::
Comola et al. (2015)

:::::::
showed

::::
that

::::::
aspect

::::::::::
significantly

:::::::::
influences

:::
the

:::::::::
calibration

::
of
::::::::::
degree-day

:::::::
factors

::
for

:::::
small

::::::::::
catchments

:::
(<

::
7

::::
km2)

::::
with

:::
the

:::
TI

::::::
model,

:::
we

::::::::
elaborate to conclude that the obtained hydrographs

:::::::::::
hydrographs

::::::::
obtained

:::::::
through

::::::::::::
regionalization

:
are still very good fits585

for smaller, nested catchments, and .
:::
We

::::
find

:
that parameter transferability to catchments below 7 km2 in the TI and HTI
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model is a reasonable approximation, but that the HTI model should be preferred due to the more consistent parameter

calibration.

These differences could also be due to variations in ice albedo. Indeed, the glaciers in the studied catchments are not

identical in terms of debris cover (Fig. 1). We thus tried to take the debris into account, but failed to obtain better results590

in transfer runs (Fig. 13b), which hints towards a non-consistent behavior of the debris cover. This is very possible, as

debris cover is known to either shield or amplify melting (Gabbud et al., 2015). We do not have information about the

debris thicknesses in our study area, and the contribution of two processes so close as debris-free ice melt and debris-

covered ice melt would be hard to constrain from discharge data only (Pokhrel et al., 2008). Thus, debris cover related

parameters are less transferable than the global ice parameters.595

5.6 Implications

:::
Our

::::::::
analysis

:::::::::
underlines

:::
the

:::::
value

::
of

::::::::
including

::::::::
potential

::::::::
radiation

::
in

:::
the

::::::::::::::::
temperature-index

:::::
model

:::
for

::::::
spatial

::::::::::::
transferability

::
of

::::
melt

::::::
model

:::::::::::
parameters,

::
a
:::::
topic

::::
that

::::
has

:::::
been

:::::::::
neglected

::
in

::::::::
previous

:::::::
studies

::::
and

::
is

::::::
worth

:::::
being

::::::::
pursued

:::::::
further.

It remains to be seen
:::::
shown

:
whether similar transferability of the

:::
HTI

:
melt model can be expected in larger catch-

ments
::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e. >500 km2; e.g., Hingray et al., 2010; Fatichi et al., 2015), although we expect this to be true for all catchments600

whose hydrological regimes are strongly influenced by
:::::
snow

:::
and

:
glaciers, provided, of course, that other geomorpho-

logical characteristics are relatively constant. These results are conditioned by the melt models tested here and it

would be good practice to subject any new models to such transferability tests to see whether they perform better or

worse than the HTI model before being transferred.
::::
Most

:::::
likely,

:::
the

:::::::
added

:::::
value

::
of

::::::::
potential

::::::::
radiation

::::::::::
decreases

:::
for

:::::::::
increasing

:::::::::
catchment

:::::
sizes

:::::
since

:::
the

:::::::::
variability

::
of

:::::::
aspects

::::
with

:::::::::
increasing

:::::
scale

::::::
tends

::
to

:
a
::::
limit

:::::
value

::::
that

::::::::
averages

::::
out605

:::
the

:::::
effect

:::
on

::::
melt

::::::::::::::::::
(Comola et al., 2015)

:
.
::
In

::::::::
addition,

:::::
future

:::::
work

:::::
could

:::::
focus

:::
on

:::
the

:::::::
benefit

::::
from

::::::::
including

:::::
snow

:::::
data

::
to

:::::
jointly

::::::::
calibrate

:::
the

::::
melt

::::::
model

::::::::::
parameters

::::
and

:::::
other

:::::::::::
hydrological

:::::::
process

:::::::::::
parameters.

::::
This

::::::::::
multi-signal

::::::::::
calibration,

:::
on

::::
both

::::
flow

::::
and

:::::
snow

:::::
data,

:::::
could

::::::
reduce

::::::::::
parameter

:::::::::
equifinality

:::::::
(though

::::
not

::::::::
eliminate

::
it

:::::::::::::::::
(Finger et al., 2011))

::::
and

:::::::
reduce

:::::::::
parameter

:::::::::::::::
interdependency,

::
as

::::::
shown

:::
in

:::
the

::::
work

:::
by

::::::::::::::
Ruelland (2024)

:
.
::::
This

:::::
could

::::::
further

::::::::
enhance

::::
the

:::::::::::
transferability

:::
of

::::::::::::::::
glacio-hydrological

:::::::
models

:::::::::::::::::::
(Carenzo et al., 2009).

::::
This

:::::
only

:::::
holds

::
if

:::
the

::::
melt

::::::
model

:::::
gives

:::
an

:::::::::
adequate

:::::::::::::
representation610

::
of

:::
the

:::::
melt

:::::::::
processes

:::
for

::
a
::::::::::
streamflow

:::::::::
simulation

:::::::
model:

::
A

:::::
large

:::::
body

::
of
:::::::::

literature
:::
on

::::::::::::::::
temperature-index

:::::::::
modelling

::::::
focuses

:::
on

::::
how

::
to

::::::
further

::::::::
improve

::::
such

:::::::
models,

::::
e.g.

:::
by

::::::::
analyzing

::::
how

::::::::::
degree-day

:::::::
factors

::
or

::::
melt

::::::
factors

::::
vary

::::::
along

:::
the

::::
melt

::::::
season

:::::::::::::::::::::::::::::::::::::
(Ismail et al., 2023, and references therein)

:
,
::
by

:::::::::
improving

:::
the

:::::::::::::::
parameterisation

:::
of

::::::::
sub-daily

::::
melt

:::::::::
dynamics

::::::::::::::::
(Tobin et al., 2013),

::
or

:::
by

:::::
linking

::::
melt

::
to
:::::
other

::::::::
variables

::::::
rather

::::
than

:::::::
average

::::
daily

:::
air

::::::::::
temperature

:::::::::::::::::::::::::::::::::::::
(Follum et al., 2019; Nasab and Chu, 2021)

:
.
:::
For

::
all

:::::
these

:::::::::
interesting

:::::::::::::
developments,

:::
the

::::::::
question

::
of

::::
how

::::
melt

::::::
model

::::::::::::
improvements

:::::::
increase

:::
(or

::::::::::
decrease!)

:::
the

::::::
spatial615

:::::::::::
transferability

::
of

:::
the

::::::
model

::::::
should

:::::::
receive

:::::
much

:::::
more

::::::::
attention

::::
than

::
in

:::
the

:::::
past.
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6 Conclusions

In this study, we tested the spatial transferability of melt models incorporating progressively more spatial information: a

classical temperature-index melt model (TI), a temperature-index melt model based on aspect (ATI) and the temperature-

index melt model of Hock (HTI). To do so, we calibrated each melt model over seven different catchments, then transferred620

the calibrated parameters of the main catchment to the three nested catchments, and the three neighboring catchments.

The results show that for high alpine
:::::
Alpine catchments, it is possible to spatially transfer relatively simple semi-lumped

glacio-hydrological models. We have demonstrated that our semi-lumped model (Hydrobricks) can successfully simulate

discharge at several upstream points of the catchment after calibration to a single downstream observed discharge time

series. This makes multi-point discharge simulation possible.625

Although the best results in terms of transferability are achieved with the TI and HTI models, the highest consistency

between parameters is achieved with the HTI model. This better convergence of parameters is witnessed both between

the two performance metrics, as is also the case for the ATI model, but also between the seven catchments. The inclusion

of debris cover on glaciers does not produce better results, and leads to model overparameterization. The NSE metric

gives better calibration results than KGE when trying to fit the discharge peaks, but the benchmark KGE shows to be a630

harder, thus more significant, criterion to meet, and reproduces better the observed peaks. Thus, we find that the best

framework to transfer parameters calibrated in the biggest local catchment to subcatchments and neighboring ones is by

using the HTI model without debris cover.

Our simulations highlighted the possible influence of catchment and glaciated slopes, as well as debris cover percent-

age on the overestimation and underestimation of discharge in transfer runs. Since the inclusion of debris cover led to635

overparametrization, future research should focus on the integration of these characteristics in more spatially-informed

ways.

Code availability. The software used to carry out this study is available at Horton and Argentin (2024).
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Appendix A: Model structure of Hydrobricks and study area discretization

yes

Data interpolation

TemperaturePrecipitation Potential ET

Elevation bands Model setup

Model structure

Model run

Rain/snow separation

SnowRain

Land cover?

Glacier-covered

Snowpack

Snowmelt

Glacier

Snow free?

Ice melt

Ice-free

Snowpack

Snowmelt

Liquid water

Slow reservoir

Percolation

Baseflow reservoir

Evapotranspiration

Quick reservoir

Glacier area 
ice melt 
reservoir

Outlet discharge

Glacier area 
rain/snowmelt 

reservoir

Figure A1. Illustration of the Hydrobricks model workflow used in this study. The glacier-covered part illustrates the behavior of both

the bare ice and debris-covered glaciers. Orange reservoirs are distributed over all elevation bands and red reservoirs are lumped over

the catchment. Figure taken from Shokory et al. (2023).
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Figure A2. Hydrobricks’ hydrological units for the whole catchment, discretized (a) according to elevation to use in the classic

temperature-index (TI) model, (b) according to aspect to use in combination with elevation discretization in the aspect temperature-

index (ATI) model (c) according to mean annual potential clear-sky direct solar radiation with cast shadows to use in combination with

elevation in the Hock temperature-index (HTI) model.

Appendix B: Geology of the study area and characteristics of the catchments640
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Figure B1. Geological cover of the study area, and of the different subcatchments, extracted from the GeoCover V2 product (Swis-

sTopo, 2024).
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Catchment
Minimum ele-

vation (m)

Maximum ele-

vation (m)

Mean eleva-

tion (m)

Standard devi-

ation elevation

(m)

Mean

catch.

slope

Whole 2183 3789 3085 289 29.3

BI 2183 3722 3063 229 28.7

HGDA 2582 3677 3014 191 29.5

TN 2289 3789 3180 443 28.2

PI 2636 3784 3046 266 27.8

BS 2913 3583 3127 117 32.4

VU 2730 3722 3036 152 24.7

DB 3097 3364 3218 58 35.4
Table B1. Basic statistics on the topography of the glaciated areas (2016) of each catchment.

Catchment Mean (glaciated) SD (glaciated) Mean (catchment) SD (catchment)

Whole 356.3 60.6 341.1 93.7

BI 347.9 59.1 323.4 95.4

HGDA 343.1 56.0 304.3 97.7

TN 12.6 57.1 15.4 64.5

PI 24.7 53.5 28.7 61.5

BS 238.9 43.5 237.7 72.4

VU 38.4 63.0 64.9 72.2

DB 249.7 23.4 259.2 48.9
Table B2. Circular means and standard deviations of the aspect over the glaciated areas (2016) and total areas of each catchment,

computed with the zonal statistics of ArcGIS. SD: Standard deviation.

Catchment Debris cover area (km2) Glacier area (km2) Debris coverage percentage

BI 1.00 10.04 9.9%

HGDA 0.69 4.22 16.3%

TN 0.56 2.76 20.4%

PI 0.29 1.66 17.3%

BS 0.03 0.24 14.3%

VU 0.02 1.21 1.4%

DB 0.04 0.15 23.9%
Table B3. Debris cover areas, glaciated areas and debris cover percentage for each catchment for the year 2016.
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Appendix C: Additional results with the ATI melt model
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Figure C1. Same as figure 4, but with the a) TI and b) ATI melt models.
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Figure C2. Same as figure 6, but with a) TI and b) ATI melt models.
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Figure C3. Same as figure 9, but with a) TI and b) ATI melt models.
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Appendix D: Debris cover mapping

The GLAMOS dataset offers both debris-free ice extent and glacier extent for 2016, but only glacier extent for 2010 and

previous years (Linsbauer et al., 2021; Fischer et al., 2014). To obtain the debris-free ice extent trend since 2010, we

relied on the debris-free ice detection algorithm from (Shokory and Lane, 2023), now available under ArcGIS Pro. We645

applied it to compute the corresponding debris-free ice extents for the 2010 GLAMOS dataset, thus allowing us to infer

the debris cover evolution from 2010 to 2016. No estimates of debris cover thicknesses were available.

Given the suboptimal conditions of Landsat 7 images in 2010 for mapping, we opted for an image from 2009. Two

images, dated 06/09/2009 and 22/09/2009, displayed minimal cloud cover and limited snow patches. Between the two,

the 06/09/2009 image displayed the smallest swath gaps. We corrected the Landsat 7 Level 1 near infrared (NIR)-B4 and650

shortwave Infrared (SWIR)-B5 bands, both available at 30m resolution, for top of atmosphere reflectance with solar angle

correction. To do so, we applied the radiometric rescaling coefficients given in the associated metadata files provided with

the Landsat Level-1 NIR and SWIR bands. We then applied the methodology of Shokory and Lane (2023) that uses the

condition NIR
SWIR ≥ t, with NIR representing the Near Infrared band, SWIR the Shortwave Infrared band, and t denoting

the threshold condition for debris-free ice delineation. We tested incremental thresholds with steps of 0.05 between 1.00655

and 3.00 and determined that a threshold value t of 2.00 provided the best results in the transition areas between debris-

free ice and debris-covered ice (in brown, Fig. D1). We nonetheless had to manually correct for the influence of the swath

gaps (in red, Fig. D1).
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Figure D1. The mapped 2010 debris cover extent is indicated in brown, and the GLAMOS 2010 glacier extent in blue (Fischer et al.,

2014). The manually removed debris linked to the swath gaps are indicated in red.
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Appendix E: Additional results with debris cover
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Figure E1. Comparison of the performance of the three melt models on the seven catchments, quantified either by the Nash–Sutcliffe

efficiency (NSE, orange bars) or by the Kling-Gupta efficiency (KGE, blue bars) performance criteria of observed and simulated

discharges for the period 2009-2014
:::::::::
2010-2014. For comparison, the benchmark NSE and KGE are computed and plotted as red and

dark blue thresholds, respectively. The simulations are run 10000 times over the years 2009 - 2014, with 2009 the calibration year.

Catchments are ordered by area, from BI (largest) to DB (smallest). All performance criteria are computed on the 2010-2014 time

period.
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Figure E2. Obtained ice and snow parameters for the best 5% NSE and KGE scores for all catchments, with the three melt models

and the two performance criteria.
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Figure E3. Obtained ground parameters for the best 5% NSE and KGE scores for all catchments, with the three melt models and the

two performance criteria. The parameter set values achieving the best NSE and KGE scores are plotted on top with a dot. Catchments

are ordered by area, from BI (largest) to DB (smallest).
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Figure E4. Monthly water hydrographs for the TI melt model on the seven catchments, calibrated or transferred through the application

of the parameter set of BI. The original observed dataset (black) is compared to the calibration run using the NSE (dotted orange) and

the KGE (dotted blue), and with the transfer run with the calibrated parameters found in the BI catchment with the NSE (orange) and

the KGE (blue). Observed monthly yields with missing discharge values are not computed. Specific discharge (unit: mm) is normalized

to the highest value.
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Appendix F: Precipitation patterns660
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Figure F1. Comparison of the precipitation patterns at the Arolla station with the daily mean precipitation patterns for each catchment.

Comparison at the daily scale (a) over the model time period, with the Arolla station data only becoming available end of 2011, (b) over

the year 2012, and (c) at the annual scale, over the model time period.
:::::
Orzival

::::::
station:

:::
20

:::
km

::::
NNE

::
of

:::::
Arolla

::::::
station.

::::::
Tracuit

::::::
station:

::
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:::
km

:::
NE

:
of
:::::
Arolla

::::::
station.

:::
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:::
du

:::::
Grand

:::::::::
St-Bernard

::::::
station:

::
29

:::
km

:::
SW

::
of

:::::
Arolla

::::::
station.
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Appendix G: Discharge patterns
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Figure G1. Comparison of (a) the 10-minute precipitation patterns at the Arolla station with (b) the 15-minute normalized specific

discharge patterns for the BI intake (called BIrest) and its upstream intakes: VU, HGDA and BS. The vertical lines indicate the time of

maximum discharge for the BI intake for each day
:
,
:::
and

:::::::
highlight

:::
that

:::
the

:::::
water

::::
takes

::::::
around

:::::
15-30

::::::
minutes

::
to

:::::
reach

:::
the

::
BI

:::::
intake

::::
from

::
the

::::::::
upstream

::::::
intakes.

Comparison of bootstrapped discharge time-series with observed discharge time-series for all catchments. Bootstrapped

time-series are obtained by randomly replacing each year’s discharge with the discharge observed in another year of the

2010-2014 period in the same catchment.
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Appendix H: Patterns of water fluxes and retention665
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Figure H1. Comparison of the discharge series kept for calibration in Hydrobricks (orange) with the discarded periods (blue), over the

summer 2010. Analysis according to Swift et al. (2005) leads to the interpretation that glacial snowpack was removed from mid-June

on, allowing diurnal discharge patterns to take on a peaked shape. Discharge (unit: m3 s−1) is normalized to the highest value.
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Figure H2. Water
:::::::
Modeled

:::::
water content heights in the a) ground, b) slow storage and c) baseflow reservoir, and

::::::
modeled

:
snow

water equivalent on the d) ground, e) glacier and f) ground and glacier during the summer 2010. Water heights are computed on their

respective areas.
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Figure H3. Water
::::::
Modeled

:::::
water fluxes rates due to a) outflow of the glacier area rain/snowmelt storage, b) glacier melt rate, c) ground

snowpack melt rate, d) glacier snowpack melt rate and e) global snow melt rate during the summer 2010. Melt rates are computed on

their respective areas.
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Figure H4. Water
::::::
Modeled

:::::
water fluxes rates due to a) ground infiltration into the slow storage, b) evapotranspiration and c) runoff out

of the slow storage, d) percolation from the slow storage, into the baseflow storage and e) runoff out of the baseflow storage during the

summer 2010. All these rates are computed on the ground areas only.
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Appendix I: Aid to understand NSE and KGE behavior
:::::::
metrics

I1
::::
Aid

::
to

:::::::::::
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NSE
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and
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KGE
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behavior
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Figure I1. a) Vertical shift between the observed and simulated discharges, and b) the associated changes in NSE and KGE.
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Figure I2. a) Horizontal shift between the observed and simulated discharges, and b) the associated changes in NSE and KGE.
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Figure I3. a) Amplitude change between the observed and simulated discharges, and b) the associated changes in NSE and KGE.
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Figure I4. Comparison of the performance of the two NSE and KGE performance criteria in finding the calibrated parameters that are

then transferred onto the different catchments. In x the NSE/KGE score when transferred with parameters obtained through NSE/KGE,

rep. calibration, and in y the opposite.
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I3
:::::::::::
Resampling

::::
and

:::::::::::::
bootstrapping
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Figure I5.
:::::::::
Comparison

::
of
:::::::::

resampled
::::::::

discharge
::::::::::

time-series
::::
with

:::::::
observed

:::::::::
discharge

:::::::::
time-series

:::
for

::
all

::::::::::
catchments.

::::::::::
Resampled

::::::::
time-series

:::
are

:::::::
obtained

::
by

::::::::::
exhaustively

:::::::
replacing

::::
each

:::::
year’s

::::::::
discharge

::::
with

::
the

::::::::
discharge

::::::::
observed

:::::
during

:::
one

::::
year

:
of
:::
the

:::::::::
2010-2014

:::::
period

::
in

::
the

:::::
same

:::::::::
catchment.
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I4
::::::::::::
Comparison

::
of

::::::::
different

:::::::::::
benchmark

:::::::
metrics670

NSE KGE

:::::::::
Catchment

: :::::
5-year

:::::::::
resample

::::::
46-year

:::::::::
bootstrap

:::::
5-year

:::::::::
resample

::::::
46-year

:::::::::
bootstrap

::
BI

:::::
0.619

:::::
0.516

:::::
0.801

:::::
0.759

:::::
HGDA

: :::::
0.597

:::::
0.578

:::::
0.794

:::::
0.731

::
TN

: :::::
0.576

:::::
0.531

:::::
0.783

:::::
0.701

::
PI

:::::
0.502

:::::
0.474

:::::
0.746

:::::
0.689

::
BS

: :::::
0.406

:::::
0.405

:::::
0.697

:::::
0.670

:::
VU

: :::::
0.429

:::::
0.372

:::::
0.710

:::::
0.662

:::
DB

: :::::
0.220

:::::
0.193

:::::
0.603

:::::
0.422

Table I1.
:::::
Results

::
of
:::

the
:::::::

different
::::::::::::
benchmarking

:::::::
methods

::
for

::::
the

::::
NSE

:::
and

:::
the

:::::
KGE.

::::
The

:::::
5-year

:::::::::
exhaustive

:::::::::
resampling

::
is

::::
done

:::
by

::::
using

::
all

:::::::
possible

::::::::::
combinations

::
of
:::
the

::::::::
simulated

:::::
years

::::::::
2010-2014

::
(5

:::::
years:

:::::
3125

:::::::::::
combinations).

::::
The

::::::
46-year

:::::::::::
bootstrapping

:
is
::::
done

:::
by

:::::::
randomly

:::::::
selecting

:::::
3125

::::::::::
combinations

::::
from

:::
the

::::::::
1969-2014

::::::::
discharge

:::::
data.
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