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ABSTRACT 

This study presents a performance evaluation of eight Atmotube Pro sensors using US Environmental 

Protection Agency (US-EPA) guidelines. The Atmotube Pro sensors were collocated side-by-side with a 

reference-grade FIDAS monitor in an outdoor setting for a 14-week period. The result of the assessment 

showed the Atmotube Pro sensors had a coefficient of variation (CoV) of 23%, 15% and 13% for minutes, 20 

hourly and daily PM2.5 data averages, respectively. The PM2.5 data was cleaned prior to analysis to improve 

reproducibility between units. 6 out of 8 Atmotube Pro sensor units had particularly good precision. The 

inter-sensor variability assessment showed two sensors with low bias and one sensor with a higher bias 

in comparison with the sensor average. Simple univariate analysis was sufficient to obtain good fitting 

quality to a FIDAS reference-grade monitor (R2 > 0.7) at hourly averages although, poorer performance 25 

was observed using a higher time resolution of 15 minutes averaged PM2.5 data (R2; 0.43-0.54). The 

average error bias, root mean square error (RMSE) and normalized root mean square error (NRMSE) 

were 4.19 µgm-3 and 2.17% respectively. While there were negligible influences of temperature on 

Atmotube Pro measured PM2.5 values, substantial positive biases (compared to a reference instrument) 

occurred at relative humidity (RH) values > 80%.  The Atmotube Pro sensors correlated well with the 30 

purple air sensor (R2=0.86, RMSE=2.85 µgm-3). In general, the Atmotube Pro sensors performed well and 

passed the base testing metrics as stipulated by recommended guidelines for low-cost PM2.5 sensors. 

 

1.0 INTRODUCTION 

Particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been associated 35 

with several harmful effects on human health (Maynard et al., 2023; Williams et al., 2014; WHO, 2021). 

The acute effects of PM include an increase in hospital admissions, early development of asthma in 

children (Khreis et al., 2019; Mansourian et al., 2011). Long–term effects of outdoor PM2.5 are associated 

with fatal cardiovascular and respiratory diseases and lung cancer with records of increased mortality 

rates in cities with a higher concentration of airborne PM (WHO, 2021). Another challenge is the exposure 40 

disparities amongst socioeconomic groups (Keswani et al., 2022). Understanding the health effects on a 

given population requires evaluation of their exposure to PM2.5, which in turn relies on an understanding 

of the atmospheric concentration of PM2.5. This is challenging as PM2.5 concentrations can vary temporally 

and spatially on small scales (Liu et al., 2009). Low-cost air quality sensors represent recent technologies 

which are less expensive than typical air quality monitors and allow measurement of specific air pollutants 45 

such as PM and other gaseous pollutants. These low-cost sensors are portable allowing ongoing 

measurements of exposure of individuals as they move around their environments, they also offer an 

appealing way of obtaining additional atmospheric measurements to better characterise the distribution 

of PM2.5 in a wide range of locations. 

 Several low-cost sensors ($200 - $2500) have become commercially available (Williams et al., 2014). 50 

These sensors are portable in size, lightweight and provide high-resolution data in near real-time 

(Morawska et al., 2018; Rai et al., 2017). The advent of these low-cost sensors has the potential to 

change the paradigm of air pollution monitoring as it allows for the possibility of more frequent 
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measurements, which could improve our knowledge, especially in areas where monitoring is sparse and 

lacks expensive equipment operated by the government or research agencies (Chatzidiakou et al., 2019; 55 

Morawska et al., 2018). In addition, these sensors can be used easily without much training, enabling 

widespread access to air quality data, and making it possible for individuals and communities to monitor 

air quality both indoors and outdoors by themselves. Recent research has demonstrated that low-cost 

sensors may be used to identify and apportion various pollution sources in urban environments (Pope et 

al., 2022; Bousiotis et al., 2023).  60 

 The use of a network of low-cost sensors is increasing in low-and-middle-income countries (LMIC) 

countries where a reference-grade monitor for continuous measurement of air pollutants is sparse or 

lacking. Assessing the performance of low-cost sensors and their behaviour relative to reference 

instruments is crucial, given the growing popularity and use of these sensors for citizen science projects, 

community engagement initiatives, personal exposure monitoring (Borghi et al., 2017), and building 65 

community sensor networks to supplement official reference-grade monitoring networks.  

 Previous studies have found that some low-cost sensors exhibit significant variation in performance, 

influenced by several factors such as environmental conditions and choice of reference instrument used. 

(Kang et al., 2022; Karaoghlanian et al., 2022). Environmental factors such as humidity and temperature 

have been reported to impact their accuracy (Hagan and Kroll, 2020; Pawar and Sinha, 2020). The 70 

results of these evaluations can help determine the suitability of low-cost sensors for measuring pollution 

in different settings and applications and guide the development of better sensor technologies in the 

future. Numerous studies have found that some low-cost sensors performed well for measuring ultrafine 

particles while others were less accurate and had higher measurement variability as reported by Alfano 

et al., (2020) and Kang et al., (2022). Overall, these studies highlight that careful evaluation of low-cost 75 

sensors for particulate pollution measurement is required.  

 Studies have examined the performance of different brands of low-cost sensors in comparison with a 

reference grade monitor (Bulot et al., 2019; Feenstra et al., 2019; Jovašević-Stojanović et al., 2015; 

Sousan et al., 2017) and several calibration methods using linear regression, multiple linear regression, 

gaussian process regression, ridge regression and random forests have been used to improve the raw 80 

PM2.5 data (Badura et al., 2019; Barkjohn et al., 2021, 2022; Karaoghlanian et al., 2022; Malings et al., 

2019, 2020). These calibration methods allow the sensors to be better suited for implementation as a 

supplement for reference monitors in smaller communities or cities. However, the use of different 

methodologies developed by various research groups may impact the accuracy and reliability of the data 

obtained from low-cost sensors (Alfano et al., 2020). Performance evaluation of low-cost sensors for 85 

particulate pollution measurements thus far has focused on assessing the accuracy and reliability of low-

cost sensors used for measuring particulate matter pollution in field studies, and only a few papers have 

investigated in detail inter-sensor variability of identical sensor types. 

 There are two ways of evaluating the performance of low-cost PM sensors; colocation with a reference 

instrument and laboratory-based evaluation. The US-EPA (Environmental Protection Agency) refer to 90 

this as base testing and enhanced testing respectively (Duvall et al., 2021). This paper focuses on the 

well detailed metrics for the base testing methods for the performance assessment of Atmotube Pro 

sensors and the benefits of data cleaning prior to the assessment of the PM2.5 data. There are no detailed 

performance assessment studies available for this sensor model. Three Atmotube Pro units were 

previously used in a field evaluation by the well-known South Coast Air Quality Management District 95 

(AQMD) which set up the AQ-SPEC (Air Quality Sensor Performance Evaluation Centre) using the 

GRIMM and Met-One BAM reference instruments; R2 > 0.7 (AQMD, 2020). The report focused on limited 

evaluation statistics. Following the AQ-SPEC report in 2020, a few other studies have made use of these 

Atmotube Pro sensors for occupational and household PM2.5 exposure monitoring, and community 

citizen science (Masri et al., 2022, 2023; Voultsidis et al., 2023; Wang et al., 2020) thus there is a need 100 

for a detailed performance assessment on these sensors to ensure confidence in the data being 

collected. 

 In summary, low-cost sensors hold great potential to provide widespread useful air quality information for 

researchers and community members. However, at present there are only limited ways to assess the 

accuracy of these low-cost sensors due to the absence or low spatial density of reference-grade 105 

monitors, especially in LMICs. By demonstrating a good framework for testing the precision, accuracy, 
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and the likelihood of using good sensors in a network of sensors, the results will provide the users with 

some constraint on the in-situ PM2.5 levels measured. The aim of the study is to assess the inter-

sensor variability and accuracy of Atmotube Pro sensors to provide an insight on the reliability and 

robustness of these sensors PM2.5 measurements. 110 

 

2.0 MATERIALS AND METHODS 

 

2.1 Sampling site and data collection 

 115 

 We conducted a sensor colocation exercise aimed at evaluating the performance of Atmotube Pro 

(manufacturer) sensors compared to a reference monitor placed alongside them. The colocation exercise 

took place at the Leeds city centre where 8 Atmotube Pro sensors and 1 purple air sensor were collocated 

side-by-side with a Fine Dust Analysis System (FIDAS 200S) reference-grade air quality monitor (Leeds City 

Council) situated at the Corn Exchange at the city centre, Leeds, UK (53°47’51’N, 1°33’8’W). The 120 

duration of the colocation exercise was from September 26, 2023, to January 2, 2024. 

 Atmotube Pro is a small and lightweight sensor (0.104 kg) classified as a low-cost device ($250) and is 

commercially available. Atmotube Pro uses a laser scattering principle to radiate suspended particles in 

an air chamber. A micro fan draws in air through an inlet, and the air passes through the laser where the 

scattered light reflected off the particles is captured by a photodiode. A signal is transmitted to the micro 125 

control unit based on MIE theory where a proprietary algorithm processes the data and supplies outputs 

for the concentration of the particulate (µgm-3). Atmotube Pro sensors report the estimated mass 

concentration of particles with an aerodynamic diameter of <1µm (PM1), < 2.5µm (PM2.5) and <10µm 

(PM10). The sensors also log data every second and store it in memory every minute (Atmotube, 2023). 

The reference monitor used for the study was a FIDAS 200S consisting of a sampling head that also 130 

enables representative sampling in strong wind. The control unit is integrated in an IP 65 weather 

protected housing which can be set up as a standalone outdoor instrument. It uses optical light scattering 

according to MIE theory using bright and durable white LED light as a light source. It measures PM1, 

PM2.5, PM4, PM10, TSP, temperature, and relative humidity parameters. The measuring range in mass is 

0-10,000 µgm-3 and particle size range is 0.18-18 µm. The monitor records 15-minutes averages. The 135 

FIDAS 200S are certified and developed for compliance monitoring of PM in accordance with EU and 

UK legislation. The uncertainty between FIDAS devices is 0.44 µgm-3 (FIDAS, 2024). 

 The performance of the low-cost sensors will be assessed using US-EPA guidelines (Duvall et al., 2021) 

for base and enhanced testing metrics. For sensor accuracy, coefficient of determination (R2), root mean 

square error (RMSE), mean normalised bias (MNB), normalized root mean square error (NRMSE), slope and 140 

intercept will be determined. The R2 value is a metric that provides information about the proportion of 

the variance in the dependent variable (Atmotube Pro sensor) that can be explained by the independent 

variable (reference monitor). The RMSE helps to understand the error associated with sensor PM2.5 

concentration in comparison with the reference concentration. For sensor precision, the standard 

deviation (SD) and coefficient of variation (CoV) will be determined. It is recommended that low-cost 145 

sensor used for performance evaluation test should have 75% data completeness during the colocation 

study period (Duvall et al., 2021; Zimmerman, 2022). Other performance metrics include detection range, 

detection limit and response time 

 This paper focuses on the reproducibility of the 8 Atmotube Pro sensor units (identical model) and 

developing an appropriate data cleaning method for the obtained PM2.5 data. CoV was calculated using 150 

one-minute, fifteen-minutes and one-hour averages. Low CoV values indicate high reproducibility in the 

measurements across the Atmotube Pro sensors units. US-EPA recommends CoV of <30% between 

sensors of identical models. 

 

2.2 Atmotube Pro Quality Assurance and Data Cleaning 155 

 

 One-minute PM2.5, relative humidity and temperature data were retrieved from 8 Atmotube Pro sensors. 

Preliminary analysis focused on the reproducibility between Atmotube Pro sensor units. One minute, 
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fifteen minutes and one-hour averaged PM2.5 outputs were used for calculating a coefficient of 

correlation (r) between Atmotube Pro sensors for the raw PM2.5 data (Fig. 1). PM2.5 data filtering was 160 

achieved by eliminating all data at each time stamp where 4 or more sensors had missing data. Where 

there were sufficient sensor measurements, the sample PM2.5 mean and SD values were derived to 

calculate the CoV (as in Equation 1). Where there were large CoV values (e.g. > 100%), it indicates 

large variability between the sensors (i.e. one or more sensors had anomalously large PM2.5 values). If 

the CoV values tend towards zero, it indicates low variability between the sensors and a more 165 

homogeneous sample.  There is no standard for this method of data cleaning, however by utilising the 

CoV method, using minute-wise data, it allowed for the removal of major anomalies in the sensor data, 

while retaining a good degree of data coverage.  

CoV =  
𝑆𝐷𝑚𝑖

µ𝑚𝑖
 ∗  100 (1) 

Where; SDmi = Standard deviation of PM2.5 concentration for Atmotube Pro sensors for each minute (µgm-3) 170 
 µmi = Mean of PM2.5 concentration for 8 Atmotube Pro sensors for each minute (µgm-3) 

 

 The CoV ranged from 0 to 244% and a threshold <50% was used to filter the PM2.5 data. Lower CoV 

values indicate higher reproducibility between sensor units. Applying this filter resulted in a PM2.5 data 

loss of 3.8% temporally. 175 

3.0 RESULTS AND DISCUSSION 

 

 During the colocation period, there were some data gaps, mostly due to failure to download data within 

the 10-day data buffering period of the internal sensor storage. The Atmotube Pro device erases old records 

to create room for new ones after storing a maximum of 14,400 data points, or 10 days. The sensors 180 

were connected to external power continually throughout the study period. The data downloader tool allows 

fetching data from the sensor unit for a period of up to 7 days via a simple user interface (Atmotube, 2023) 

and this is a limitation for long-term data collection due to limited space. This indicates that these sensors 

need frequent data download to avoid data loss. 

 185 

 

3.1 Data Cleaning 

 We have approximately three months of observational data with PM2.5 in a range of 1 - 500 µg m-3 as shown 

in Fig. 1(a). During this period, there are spikes in the order of ~200 µg m-3 and above which is probably due to 

episodic events such as buses driving past, tobacco smoke and the annual Guy Fawkes bonfire night. The 190 

sensors exhibit comparable temporal variability between the sensors, however, in absolute terms Sensor 6 

(S6) has higher concentrations in some cases. We correlated data of each sensor against the other and the 

coefficient of correlation ranged generally between 0.8 to nearly 1.0. Sensor 5 (S5) had slightly lower values of 

about 0.8 - 0.9, while S6 clearly was the poorest or the outlier because the r value was between 0.5 - 0.6. This 

suggests some anomalous data recorded, thus requiring a data filtering method as shown in Eq. (1). Fig. 1 195 

demonstrates the usefulness in removing the erroneous spikes, particularly in S6, where other sensors did not 

exhibit these, strongly suggesting that the high values S6 had recorded were erroneous. After the data cleaning, 

we can clearly see in Fig 1 (c) that removing the erroneous data marked an improvement in the agreement 

between the sensors. S6 is clearly the outlier but the r value was improved by 0.2 with r >0.74. S5 is much 

more closely aligned with the other sensors of r > 0.89, indicating an increase in the r value by 0.05. There is 200 

an overall benefit of applying the filtering and the filtered data was used for the scientific analysis. 

 
 

 

 205 
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Figure 1: PM2.5 data of 8 Atmotube Pro sensors (a) showing the time series of each sensor, (b) coefficient of correlation (r) for raw 

PM2.5 data indicating inferior performance of S6 in comparison to others and (c) improved r values for all sensors after data cleaning. 

 Most air quality networks implement regular quality assurance and control measures, although outliers 

can still happen because of sensor malfunctions or differences in monitoring configuration such as inlet 210 

orientation. There are possibilities of using some of these low-cost sensors where there are no reference 

monitors present, but it is imperative to check if a network of low-cost sensors have malfunctioning 

sensors. Outliers pose challenges for statistical analysis. S6 was the sensor with the most erroneous 

PM2.5 data, which showed anomalous, data spikes (low and high) relative to the other sensors. The 

importance of data cleaning is illustrated in Fig. 2 and the time series focused on data from November 215 

2023 to January 2024, highlighting the comparison between raw and filtered PM2.5 data. Figure 2 shows 

how data cleaning has improved the time series for the filtered data among all sensors in comparison to 

the original data where there were differences in the concentrations reported by S6 in comparison with 

others. S6 had PM2.5 values as high as 400 µg m-3 while other sensors had values less than 200 µg m-3 

on the 29th of November. There were other instances such as 15th December where S6 misses large 220 

concentrations while other sensors recorded high values as high as 600 µg m-3.  
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 225 
 

Figure 2: Comparison of raw and filtered data highlighting the effectiveness of anomalous spike removal, most evident in Sensor 6 

(S6) 

 

 The effectiveness of the data cleaning was evaluated using a coefficient of correlation between the 230 

sensor before and after data cleaning. The coefficient of correlation for the raw PM2.5 data showed r 

value that ranged from 0.57-0.96 as shown in Fig. 1(b) while that of the filtered method (CoV using 

threshold of <50%) improved the coefficient of correlation (r) to 0.74-0.98. One of the important benefits 

of the performance evaluation assessment for multiple sensors is to identify less robust individual 

sensors in a sample of sensors. 235 

3.2 Inter-sensor variability 

 

 Using methods stated in the US-EPA guidelines for low-cost performance metrics, results showed that 

the SD metrics in this study just exceeded the US-EPA recommended limit of <5 µgm-3 while the CoV 

was below recommended limit of <30% as shown in Table 1. For this section, the CoV for determining inter-240 

sensor variability is calculated as described by Duvall et al., (2021) and Zimmerman, (2022). This indicates 

reasonable variability in sensors of identical models and the high SD values can be attributed to high 

concentration short events such as Christmas market barbeques, smoking next to the sensors. Although 

the CoV values are within the recommended limits the values are higher than values seen in the report 

made by the  South Coast AQMD (AQMD, 2020) where the relative inter-sensor variability (CoV) was 6.7% 245 

and the standard deviation was also reported to be 0.57 µgm-3 for PM2.5 values using 5 minutes 

averages of 3 Atmotube Pro sensors. There is a difference in the environment, duration of the study 

and the PM2.5 concentrations. For the AQ-SPEC, the collocation was for done for a 2-week period and 

the 5-minutes averages had a maximum of 50 µgm-3. This suggests the Atmotube Pro inter-sensor 

variability is less at lower PM2.5 concentrations. Previous studies have reported CoV <10% for Purple 250 

Air (Zimmerman, 2022) and Plantower (Badura et al., 2019). Others models of low-cost sensors have 

reported a higher CoV >25% for Dylos (Carvlin et al., 2017), Plantower and Syhitech (indoor colocation) 

had CoV > 30% (Zamora et al., 2020). 

 

 255 

 
 

Table 1: Coefficient of variation and standard deviation between 8 Atmotube Pro sensors 
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PM2.5 data CoV (%) SD (µgm-3) 

Raw data 1 minute 27.8 12.2 

1 hour 17.7 8.8 

1 day 15.0 6.0 

Filtered data 1 minute 22.7 11.3 

1 hour 14.8 9.1 

1 day 13.3 5.8 

 

 For the filtered data, the CoV reduced further when Atmotube Pro sensor “S6” was removed from the 260 

analysis; CoV=18%, 11% and 10% for minute, hourly and daily averages, respectively. This compares 

well with the range of CoV values from field evaluation results of different low-cost sensors of 0.9 to 

31.0% with an average of 12.8% for 24-hour averages as described by Duvall et al., (2021) using 

resources from AQ-SPEC sensor evaluation, US-EPA sensor evaluations and peer reviewed literature. 

Atmotube Pro sensors sit well within this range for both raw and filtered PM2.5 24-hour averaged data of 265 

15.0% and 13.3% respectively. 

 Our results indicate one anomalous sensor can drive an increased inter-sensor variability in the 

measurements for the Atmotube Pro sensors. More research is required to identify the minimum number 

of sensors needed for a performance evaluation assessment. These commercially available Atmotube 

Pro sensors are factory calibrated and it is possible that some sensors were not calibrated as precisely 270 

as others resulting in the variation in their measurements and contributing to high CoV. There is also the 

possibility of environmental factors such as relative humidity and temperature measurements, which may 

have influenced the PM2.5 values of these sensors differently. 

 To further investigate reproducibility of the sensors, hourly time-step of the PM2.5 average (Avgh) of all 8 

sensors was derived over the study period. For each sensor, the ratio between the sensor value (per 275 

hour time step) and the multi-sensor mean was calculated as in Eq. (2). The temporal distribution of 

these ratios for each sensor was illustrated using box and whisker diagrams as in Fig. 3 to provide an 

indication of the sensor-sensor precision. 

Sensor/Average Ratio =  
𝑥ℎ𝑖

µℎ
                (2) 

Where; xhi = Atmotube Pro PM2.5 hourly data (µgm-3) for sensor (i) where i=1,8; 280 

µh = Mean PM2.5 µgm-3 concentration hour (for all 8 sensors).  
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Figure 3: Sensor-sensor precision comparing the ratio of sensor hourly PM2.5 values to the 8 Atmotube Pro multi-sensor average 

as a reference. The whiskers represent the 5th and the 95th percentile. Red dashed line indicates sensor/average ratio of 1 where 

<1 represents low bias and vice versa. 285 

 Although there is no standard on what the sensor precision should be, this investigation makes it clear 

that sensor S6 can be termed to have large deviation from the average. S6 had a median ratio of ~1.25 

and 25th-75th range of 1.2-1.3. Sensors S1 and S3 have a small deviation from the average PM2.5 values 

(that is, median of ~0.8 and 25th-75th range of 0.7-0.95). Note that the hourly time averages were used 

for Fig. 3. For inter-sensor quality assurance check where a reference grade instrument is far away or 290 

totally lacking, comparing against the mean PM2.5 value for all the sensors may prove useful to identify 

faulty sensors within a network of sensors as shown in Eq. (2). Where the sensor PM2.5 median ratio 

value tends to 1.0, it indicates the sensor measurements are consistent with the majority of the other 

sensors in the network (Figure 3). Sensors (S2, S4, S5, S7 and S8) may be used as a “supplementary 

reference” to identify potential anomalous sensors. In summary, 62.5% of the sensors used for the study 295 

exhibited greater precision in their measurements. 

3.3 Comparison with a reference-grade monitor 

 

Sensor performance was investigated further by comparing the PM2.5 Atmotube Pro sensor data to 

measurements from the Local Authority reference monitor data at the Leeds city centre air quality 300 

monitoring site. Atmotube 15-minute averaged data were used for this comparison as the reference 

monitor logs PM2.5 data at this temporal resolution. 
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Figure 4: Time series of PM2.5 concentration reported by Purple Air, average Atmotube Pro sensors and the reference monitor. The 305 
data has been averaged to 15 minutes. 

The time series in Fig. 4. shows the Atmotube Pro sensors and the purple air sensor captured the 

reference monitor PM2.5 temporal variability and the low-cost sensor PM2.5 values are of the same order 

of magnitude at lower concentrations (<50 µgm-3). However, during some high concentration episodes, 

the Atmotube Pro sensors typically overestimated PM2.5 values in comparison with the reference.  310 

We calculated the R2, RMSE, NRMSE, MNB, slope and intercept of the relationship between the 

Atmotube Pro sensor data and the reference monitor. The results for fifteen minutes and hourly 

averages are summarized in Table 2. For the coarser time resolution, Atmotube Pro sensors had R2 

(>0.7) and RMSE (< 7 µgm-3) in comparison to the fifteen minutes averages where R2 (0.42-0.54) and 

RMSE (> 7 µgm-3). Using hourly PM2.5 averages, the Atmotube Pro and purple air sensors performed 315 

well with evaluation metrics within the US-EPA guideline values, with RMSE values of 4.19 µgm-3 and 

4.86 µgm-3, respectively.  

Results show that the hourly averaged data of the Atmotube Pro sensors performed better than the 

higher time resolution data. In comparison with the AQ-SPEC evaluation, Atmotube Pro sensors had 

R2 ~0.79 and 0.89 using BAM and GRIMM reference monitors respectively (AQMD, 2020). 320 

The R2 values can be further improved by calibration methods as reported in the literature with different 

calibration and correction methods (Badura et al., 2019; Giordano et al., 2021; Hong et al., 2021; Pawar 

and Sinha, 2020) to improve the PM2.5 data quality of different low- cost sensor models. The focus of 

this paper is not to investigate correction or calibration as this has been well established in other similar 

low-cost sensors, but to show the overall skill of the Atmotube Pro sensors. 325 

 

 

 

 

 330 
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Table 2: Accuracy metrics using Atmotube Pro and Purple Air sensors in comparison with reference data at 15-minutes and hourly 

averaging time. R2 = correlation of determination, “RMSE” = root mean square error; “NRMSE” = normalized root mean square 

error, “a” = slope; “b” = intercept, “S1-S8” = Atmotube Pro sensors, “Mean” = Atmotube Pro sensor average, “PA” = Purple Air sensor. 

 

 15-minutes Average PM2.5 µgm-3 Hourly Averaged PM2.5 µgm-3 

 R2 RMSE 

µgm-3 

NRMSE 
(%) 

a b R2 RMSE 

µgm-3 

NRMSE 
(%) 

a b 

S1 0.43 7.93 2.54 0.72 0.31 0.74 4.1 2.19 0.94 -1.86 

S2 0.42 9.31 2.46 0.83 0.4 0.78 4.78 2.16 1.08 -2.13 

S3 0.43 7.69 2.55 0.7 0.64 0.79 3.89 2.14 0.91 -1.48 

S4 0.46 8.76 2,57 0.85 0.7 0.82 4.29 2.09 1.1 -1.87 

S5 0.44 9.32 2.78 0.87 0.81 0.8 4.7 2.33 1.13 -1.89 

S6 0.54 7.62 2.57 0.87 2.23 0.79 4.52 3.45 1.07 0.19 

S7 0.48 8.45 2.36 0.63 0.63 0.83 4.18 2.02 1.11 1.88 

S8 0.44 9.54 2.37 0.89 0.58 0.8 4.86 2.10 1.16 -2.15 

Mean 0.47 8.31 2.55 0.82 0.79 0.82 4.19 2.17 1.06 -1.63 

PA 0.56 8.78 3.43 1.05 -0.11 0.85 4.86 3.25 1.37 -3.49 

 A measure of correlation is necessary when assessing performance of low-cost sensors, but alone is 335 

not sufficient as the error bias should also be reported (Giordano et al., 2021). The AQ-SPEC, however, 

did not mention the error bias of the Atmotube Pro sensors in its report. The RMSE describes the 

difference between sensors PM2.5 measurements and the true value (reference instruments). The 

NRMSE accounts for testing in conditions where high PM2.5 concentrations were recorded and the 

RMSE is normalized using the average of the reference PM2.5 measurements over the testing period 340 

(Duvall et al., 2021; Zimmerman, 2022). The RMSE and NRMSE values as shown in Table 2 were 

within the recommended US-EPA guidelines of RMSE <7 µgm-3 and <30% respectively using hourly 

averaged PM2.5 data. The MNB is a model evaluation metric which helps to quantify the accuracy of the 

measurements over the collocation period (Giordano et al., 2021). The MNB values for the 15-minute 

average Atmotube Pro and the purple air sensors were -0.02 and 0.56 respectively. For one-hour 345 

averages, MNB for the average Atmotube Pro and the purple air sensors were 0.17 and 2.73 

respectively. 

 The US-EPA guideline also recommends a target slope and intercept range 1.0±0.35 and -5 to +5, 

respectively. The slope and intercept of the Atmotube Pro sensors had an average of 1.06 and -1.63 

respectively while the values for the purple air sensor were 1.37 and -3.49, respectively. The overall 350 

performance of the 8 Atmotube Pro sensors is summarized in Table 3. The Atmotube Pro sensors met 

the USEPA base testing criteria (precision, bias, linearity, and error) at coarser resolution averages 

(one-hour). However, the linearity and the error did not meet these criteria at lower resolution averages 

(fifteen-minute). Also, at PM2.5 concentration below 100 µgm-3 for lower resolution averages, the criteria 

were met for these metrics indicating the Atmotube sensors perform better at lower concentrations.  355 

 

 

 

 

 360 
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Table 3: Overview Performance Summary of reproducibility and accuracy among identical Atmotube Pro sensors using US-EPA 

guidelines. 365 
Performance metrics (US-EPA) Target values Atmotube Pro sensors (PM2.5 values) 

Base Testing 15-minutes 1-hour average 

Precision SD <5 µgm-3 Failed Failed 

CoV <30%  Passed Passed 

Bias Slope 1 ± 0.35 Passed Passed 

Intercept -5 ≤ b ≤ +5 Passed Passed 

Linearity R2 ≥ 0.7 Failed using full 

dataset (R2 0.44-

0.56) 

 

Passed at PM2.5 

values <100 µgm-3 

(R2 0.72 - 0.75) 

Passed 

Error RMSE ≤7 µgm-3 Failed using full 

dataset (RMSE 7.6-

9.2 µgm-3) 

 

Passed at PM2.5 

values <100 µgm-3 

(RMSE 3.3 - 4.6 

µgm-3 

Passed 

NRMSE ≤ 30% Passed Passed 

 

 

3.3.1 Separating high concentration events. 

 The performance of the 8 Atmotube Pros showed the R2 using 15-minute averaged PM2.5 data were well 

correlated at PM2.5 concentration below 100 µgm-3. R2 > 0.7 for all 8 Atmotube Pro sensors and the 370 

purple air sensor as shown in Fig. 5. Although, correlation was low using the full dataset (R
2 range 0.42 

to 0.56) for 15–minute averaged as seen in Table 2, this is indicative of poorer performance at higher 

concentrations above 100 µgm-3. At higher averaging time the R2 improved significantly, and this is in line 

with a report by (Hong et al., 2021) using Sensirion, Plantower and Honeywell sensors. 

Comparing the error bias in the regression analysis of the 15-minutes averaged data of the full PM2.5 375 

dataset (1-300 µgm-3) and PM2.5 dataset below 100 µgm-3 only, the RMSE range was 7.6-9.5 µgm-3 and 

3.56-4.83 µgm-3 respectively. This shows a general lower bias in error at lower concentrations between 

the Atmotube Pro sensors and the reference. The same applies to the PA sensor, as there was also a 

reduction in RMSE values from 8.8 to 6.2 µgm-3. The plot in Fig. 5. was coloured by individual RH data 

logged by each sensor. Section 3.4 highlights the influence of RH and temperature on the sensor data.  380 
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Figure 5: Summary of comparison metrics of each Atmotube Pro sensor, Atmotube Pro Average, Purple Air sensor and reference 

(15 minutes averaged data) showing PM2.5 concentration below 100 µgm-3. 

 385 
3.4 Influence of Temperature and Relative Humidity 

 

 The ratio of the average of all 8 Atmotube Pro sensors and the Reference PM2.5 data for hourly averages 

were calculated. Scatter plots of the PM2.5 ratio (defined as Average Atmotube Pro sensor PM2.5 / 

Reference PM2.5) as calculated in Eq. (3) were plotted as a function of RH and temperature reported by 390 

a nearby weather station as shown in Fig. 6. Data were collected from a local weather station rather than 

from the Atmotube Pros because the RH and temperature sensors in the Atmotube Pro sensors can be 

influenced by sensor heating when connected to power. The nearest meteorological station set up on 

the rooftop of the School of Earth and Environment building at the University of Leeds (530 49’ 38’’ N, 10 

34’ 19’’ W) about 0.6 miles away from where the colocation experiment of the Atmotube Pro sensors, 395 
purple air sensor and reference monitors took place (530 47’ 51’’ N, 10 33’ 8’’ W). 

PMRatio =  
µℎ

𝑅ℎ
                                (3) 

Where; µh = Mean PM2.5 concentration hourly average for hour (h) (for all 8 sensors) (µgm-3) 

 Rh = Reference PM2.5 concentration hourly average for hour (h) (µgm-3) 

 For RH, there is a clear relationship with the PM2.5 sensor/reference ratio, which increases sharply at 400 

RH>80% while at low RH the ratio was below 1.0 indicating the sensors were underestimating PM2.5 

value relative to the reference monitor. There was no clear influence observed for the PM2.5 ratio relative 

to the temperature, however, there was a general low bias at all temperatures apart from mid-

temperature range of 5-15°C.  This agrees with results as reported by (Zimmerman, 2022) using purple 

air sensors where a clear influence at 80% RH was also observed and no influence from temperature. 405 

Implementing a statistical correction using RH values for these sensors could improve the accuracy of 
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the measured PM2.5 values. We recommend further exploration on correction methods using RH in future 

research investigation. 

 

 410 

 
 

Figure 6: Relationships between (a) relative humidity (RH) and (b) temperature (T) and average Atmotube Pro Sensor/Reference 

PM2.5 ratio.  

 415 
4.0 CONCLUSION 

 

 We have conducted comprehensive inter-sensor and reference data comparisons for a set of 8 Atmotube 

Pro sensors in order to characterise their precision and bias at different levels of PM2.5 exposure. The 

research also explored the potential of identifying underperforming sensors within a network of low-cost 420 

sensors, particularly in situations where no reference-grade monitors are available. The study revealed 

the PM2.5 values from the Atmotube Pro sensors had reasonably good precision (CoV of 15%) indicating 

low inter-sensor variability of the sensors. The data cleaning method was successful in improving the inter-

sensor variability among the Atmotube Pro sensors. The sensor measurements also replicated 

measurements from a reference monitor well, with accuracy metrics ranging from; R2 (0.74 to 0.83), Slope 425 

(0.9 to 1.2), Intercept (-2.2 to +0.19) and error biases ranged below the recommended limits for low-cost 

sensors; RMSE (3.9 to 4.9 µgm-3) and NRMSE (2.0 to 3.5%) based on the routinely used US-EPA 

guidelines. The sensors also showed a strong correlation with purple air sensor where R2 average value 

was 0.86 and an error bias (RMSE) of 2.9 µgm-3. Performance of Atmotube Pro sensors was also observed 

to have deteriorated at higher PM2.5 concentrations and improved at a coarser temporal resolution. 430 

 Out of the 8 Atmotube Pro sensors used for the assessment, one sensor showed poorer performance 

with an r value range of 0.57-0.59 while the other sensors reported values above 0.9. The poor sensor 

had improved the r value range of 0.74-0.77 after applying a data filtering threshold. The overall 

performance of the 8 Atmotube Pros used for the colocation study is summarized in Table 3. This study 

observed a precision uncertainty (SD) of 9.1 µgm-3 and an accuracy (RMSE) error of 4.4±0.4 µgm-3 for 435 

hourly Atmotube Pro PM2.5 data and the chance of having a less reliable sensor in a group of sensors is 

~10% (12.5% as the case in this study) and overall gives a useful information for local monitoring or citizen 

science use. It is worthwhile to note that Atmotube Pro sensors (used for both static and non-static PM2.5 

measurements) are not “plug-and-play” as they require close monitoring and frequent data download to 

achieve good data recovery.  440 
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