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ABSTRACT

This study presents a performance evaluation of eight Atmotube Pro sensors using US Environmental
Protection Agency (US-EPA) guidelines. The Atmotube Pro sensors were collocated side-by-side with a
reference-grade FIDAS monitor in an outdoor setting for a 14-week period at Leeds city centre, UK. We
assessed the linearity and bias for PM1, PM2sand PMio. The result of the PM2s assessment showed the
Atmotube Pro sensors had particularly good precision with a coefficient of variation (CoV) of 28%, 18%
and 15% for minutes, hourly and daily PMzs data averages, respectively. The inter-sensor variability
assessment showed two sensors with low bias and one sensor with a higher bias in comparison with the
sensor average. Simple univariate analysis was sufficient to obtain good fitting quality to a FIDAS
reference-grade monitor (R?> 0.7) at hourly averages although, poorer performance was observed using
a higher time resolution of 15 minutes averaged PM:s data (R?; 0.48-0.53). The average error bias, root
mean square error (RMSE) and normalized root mean square error (NRMSE) were 3.38 pgm- and 0.03
% respectively. While there were negligible influences of temperature on Atmotube Pro measured PMzs
values, substantial positive biases (compared to a reference instrument) occurred at relative humidity (RH)
values > 80%. The Atmotube Pro sensors correlated well with the purple air sensor (R?=0.88, RMSE=2.9
pgm-3). In general, the Atmotube Pro sensors performed well and passed the base testing metrics as
stipulated by recommended guidelines for low-cost PMazs sensors. Calibration using multiple linear
regression model was enough to improve the performance of the PMs data of the Atmotube Pro sensors.

1.0 INTRODUCTION
Particulate matter (PM) with an aerodynamic diameter of less than 2.5 um (PM2s) has been associated
with several harmful effects on human health (Maynard et al., 2023; WHO, 2021; Williams et al., 2014).
The acute effects of PM include an increase in hospital admissions, early development of asthma in
children (Khreis et al., 2019; Mansourian et al., 2011). Long-term effects of outdoor PM2s are associated
with fatal cardiovascular and respiratory diseases and lung cancer with records of increased mortality
rates in cities with a higher concentration of airborne PM (WHO, 2021). Another challenge is the exposure
disparities amongst socioeconomic groups (Keswani et al., 2022). Understanding the health effects on a
given population requires evaluation of their exposure to PM, s, which in turn relies on an understanding

of the atmospheric concentration of PMzs, This is challenging as PM2.s concentrations can vary temporally
and spatially on small scales (Liu et al., 2009). Low-cost air quality sensors represent recent technologies
which are less expensive than typical air quality monitors and allow measurement of specific air pollutants
such as PM and other gaseous pollutants. These low-cost sensors are portable allowing ongoing
measurements of exposure of individuals as they move around their environments, they also offer an
appealing way of obtaining additional atmospheric measurements to better characterise the distribution
of PM2sin a wide range of locations.

Several low-cost sensors ($200 - $2500) have become commercially available (Williams et al., 2014).
These sensors are portable in size, lightweight and provide high-resolution data in near real-time
(Morawska et al., 2018; Rai et al., 2017). The advent of these low-cost sensors has the potential to
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change the paradigm of air pollution monitoring as it allows for the possibility of more frequent
measurements, which could improve our knowledge, especially in areas where monitoring is sparse and

lacks expensive equipment operated by the government or research agencies (Chatzidiakou et al., 2019;
Morawska et al., 2018). In addition, these sensors can be used easily without much training, enabling
widespread access to air quality data, and making it possible for individuals and communities to monitor
air quality both indoors and outdoors by themselves. Recent research has demonstrated that low-cost
sensors may be used to identify and apportion various pollution sources in urban environments (Bousiotis
et al., 2023; Hagan et al., 2019; Pope et al., 2022; Westervelt et al., 2024; Yang et al., 2022). Assessing
the performance of low-cost sensors and their behaviour relative to reference instruments is crucial, given
the growing popularity and use of these sensors for citizen science projects, community engagement
initiatives, personal exposure monitoring (Borghi et al., 2017), and building community sensor networks
to supplement official reference-grade monitoring networks.

Previous studies have found that some low-cost sensors exhibit significant variation in performance,
influenced by several factors such as environmental conditions and choice of reference instrument used.
(Kang et al., 2022; Karaoghlanian et al., 2022). Environmental factors such as humidity and temperature
have been reported to impact their accuracy (Hagan and Kroll, 2020; Pawar and Sinha, 2020). The
results of these evaluations can help determine the suitability of low-cost sensors for measuring pollution
in different settings and applications and guide the development of better sensor technologies in the
future. Numerous studies have found that some low-cost sensors performed well for measuring ultrafine
particles while others were less accurate and had higher measurement variability as reported by (Alfano
etal., 2020; Kang et al., 2022). Overall, these studies highlight that careful evaluation of low-cost sensors
for particulate pollution measurement is required.

Studies have examined the performance of different brands of low-cost sensors in comparison with a
reference grade monitor (Bulot et al., 2019; Feenstra et al., 2019; JovaSevic¢-Stojanovi¢ et al., 2015;
Sousan et al., 2017) and several calibration methods using linear regression, multiple linear regression,
gaussian process regression, ridge regression and random forests have been used to improve the raw PMz.s
data (Badura et al., 2019; Barkjohn et al., 2021, 2022; Karaoghlanian et al., 2022; Malings et al., 2019,
2020; Raheja et al., 2023). These calibration methods allow the sensors to be better suited for
implementation as a supplement for reference monitors in smaller communities or cities. However, the use
of different methodologies developed by various research groups may impact the accuracy and reliability
of the data obtained from low-cost sensors (Alfano et al., 2020). Performance evaluation of low-cost
sensors for particulate pollution measurements thus far has focused on assessing the accuracy and
reliability of low-cost sensors used for measuring particulate matter pollution in field studies, and only a
few papers have investigated in detail inter-sensor variability of identical sensor types. Inconsistencies
among devices from the same manufacturer might emerge, leading to varying readings under similar
conditions. Sensor performance can be highly variable between different devices and end users need to
be provided with inter-sensor precision, accuracy, long-term drift, and calibration transferability to decide
on the right measurement tool for their specific application (Diez et al., 2024).

There are two ways of evaluating the performance of low-cost PM sensors; colocation with a reference
instrument and laboratory-based evaluation. The US-EPA (Environmental Protection Agency) refer to this
as base testing and enhanced testing respectively (Duvall et al., 2021). This paper focuses on the well
detailed metrics for the base testing methods for the performance assessment of Atmotube Pro sensors
and the benefits of data cleaning prior to the assessment of the PM2.s data. AQ-SPEC program is a testing
centre for low-cost air monitoring sensors to establish performance standards by which low-cost sensors
are evaluated both in the field under ambient conditions and laboratory testing under controlled
environmental conditions for sensors measuring criteria pollutants (Feenstra et al., 2019; Polidori et al.,
2017). Three Atmotube Pro units were previously used in a field evaluation by the well-known South Coast
Air Quality Management District (AQMD) which set up the AQ-SPEC (Air Quality Sensor Performance
Evaluation Centre) using the GRIMM and Met-One BAM reference instruments; R2 > 0.7 (AQMD, 2020).
The report focused on limited evaluation statistics. Following the AQ-SPEC report in 2020, a few other
studies have made use of these Atmotube Pro sensors for occupational and household PM2s exposure
monitoring, and community citizen science (Masri et al., 2022, 2023; Voultsidis et al., 2023; Wang et al.,
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2020) thus there is a need for a detailed performance assessment on these sensors to ensure confidence
in the data being collected.

In summary, low-cost sensors hold great potential to provide widespread useful air quality information for
researchers and community members. The aim of the study is to assess the inter-sensor variability and
accuracy of Atmotube Pro sensors to provide an insight on the reliability and robustness of these sensors
PM2s measurements. By demonstrating a good framework for testing the precision, accuracy, and the
reliability of sensors within a sensor network, the results will provide the users a clear understanding of
the limitations as well as the confidence in the in-situ PMzs levels measurements obtained for Atmotube
Pro sensors. In addition, we investigated the performance of the sensors at higher time resolution (15
minutes) to test the feasibility of their application in capturing short-time events that may be missed at
lower resolution.

2.0 MATERIALS AND METHODS
2.1 Sampling site and data collection

We conducted a sensor colocation exercise aimed at evaluating the performance of Atmotube Pro
(manufacturer) sensors compared to a reference monitor placed alongside them. The colocation exercise
took place in an ambient environment at Corn Exchange, Leeds city centre (next to a bus stop) where 8
Atmotube Pro sensors and 1 Purple air sensor were collocated side-by-side with a Fine Dust Analysis
System (FIDAS 200S) reference-grade air quality monitor in an urban location at the Leeds city centre
(53°47°51’N, 1°33'8'W) at a height of about 3.5 metres. The duration of the colocation exercise was done
during Autumn from September 26™, 2023, to January 15, 2024. The city centre is representative of an
ideal urban centre, which included frequent stops from public buses (vehicular emissions).

Atmotube Pro is a small and lightweight sensor (0.104 kg) classified as a low-cost device ($250) and is
commercially available. Atmotube Pro device have sensirion SPS30 sensors which use laser scattering
principle to radiate and detect suspended particles in an air chamber. A micro fan draws in air through
an inlet, and the air passes through the laser beam where the scattered light reflected by the particles is
captured by a photodiode. A signal is transmitted to the micro control unit based on Mie theory where a
proprietary algorithm processes the data and supplies outputs for the concentration of the particulate
(ugm-3). Atmotube Pro sensors report the estimated mass concentration of particles with an aerodynamic
diameter of <1lum (PMi), < 2.5um (PMz2.5) and <10um (PMuo). In addition to the sensirion sensors for PM
measurements, the Atmotube device also contains BOSCH BME280 sensors for measuring temperature
and relative humidity values. The sensors also log data every second and store it in memory every minute
(Atmotube, 2023). One of the limitations of the Atmotube Pro device is the data retrieval memory with
limited history size of 10 days after which data not downloaded would be overwritten. The Atmotube Pro
came assembled and needs to be charged frequently. The sensor requires a charging time of about 2.5
hours. The battery requires daily charging when set to “always on” mode thus we left the sensor plugged
in throughout the entire duration of the study alongside the Purple Air and reference monitor.

The Purple Air sensors contain two Plantower PMS5003 sensors, which record two-minute averaged
data. The Purple Air sensor uses a similar principle to the Atmotube Pro sensors described above, based
on scattering of laser light. The Plantower sensors also estimate mass of particles with aerodynamic
diameters <1 pm, <2.5 um and <10 pum which are reported as cf_1 and cf_atm which both have channels
A and B in the Purple Air dataset. The cf_atm data is displayed on the Purple Air map (Barkjohn et al.,
2022) and this sensor input is the dataset used in this study. The Purple Air sensor was deployed at the
colocation site since June 2022.

The reference monitor used for the study was a FIDAS 200S consisting of a sampling head that also
enables representative sampling in strong wind. The control unit is integrated in an IP 65 weather
protected housing which can be set up as a standalone outdoor instrument. It uses optical light scattering
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according to Mie theory using bright and durable white LED light as a light source. It measures PMx,
PMz.s, PM4, PM1o, TSP, temperature, and relative humidity parameters. The measuring range in mass is
0-10,000 pgm- and particle size range is 0.18-18 um. The monitor records 15-minutes averages. The
FIDAS 200S are certified and developed for compliance monitoring of PM in accordance with EU and
UK legislation. The uncertainty between FIDAS devices is 0.44 uygm- (FIDAS, 2024).

The performance of the low-cost sensors will be assessed using US-EPA guidelines (Duvall et al., 2021)
for base and enhanced testing metrics. For sensor accuracy, coefficient of determination (R?), root mean
square error (RMSE), mean normalised bias (MNB), normalized root mean square error (NRMSE), slope and
intercept will be determined. The R?2 value is a metric that provides information about the proportion of
the variance in the dependent variable (Atmotube Pro sensor) that can be explained by the independent
variable (reference monitor). The RMSE helps to understand the error associated with sensor PM2s
concentration in comparison with the reference concentration. For sensor precision, the standard
deviation (SD) and coefficient of variation (CoV) will be determined. It is recommended that low-cost
sensor used for performance evaluation test should have 75% data completeness during the colocation
study period (Duvall et al., 2021; Zimmerman, 2022). Other performance metrics include detection range,
detection limit and response time.

This paper focuses on the reproducibility of the 8 Atmotube Pro sensor units (identical model) and
developing an appropriate data cleaning method for the obtained PM2s data. CoV was calculated using
one-minute, fifteen-minutes and one-hour averages. Low CoV values indicate high reproducibility in the
measurements across the Atmotube Pro sensors units. US-EPA recommends CoV of <30% between
sensors of identical models.

2.2 Atmotube Pro Quality Assurance

The Atmotube Pro also stores historical data in an onboard flash memory when not connected to a
smartphone. The historical data can be transferred to a smartphone during data synchronization each
time the sensor is connected to a smartphone. The Atmotube Pro sensors are designed for mobile
monitoring, and to protect the sensors from rain at the colocation site, a makeshift cover was used to
enclose all the sensors used in the study as shown in supplementary Fig. 1.

One-minute PM1, PM2.5, PM1o relative humidity and temperature data were retrieved from 8 Atmotube Pro
sensors. Data completeness as shown in equation 1 for Atmotube Pro sensors is the percentage ratio of
minute-wise data available for each sensor and the total number of minutes expected for the study period
(Polidori, et al., 2017). This ranged from 73-84% for PMz1, PM2s, PM1o. Preliminary analysis investigated
the performance of PM1, PM25s and PMio size distributions using Atmotube Pro sensors and reference
FIDAS monitor data. To understand reproducibility between Atmotube Pro sensor units, one minute, fifteen
minutes and one-hour averaged PMzs outputs were used for calculating a coefficient of correlation (r)
between Atmotube Pro sensors).

N valid data
Data recovery = m * 100 (1)
i

where ; Nvaiid data= NuMber of valid sensor data points during test period

Nstudy period= total number of data points for the study period

3.0 RESULTS AND DISCUSSION

During the colocation period, there were some data gaps, mostly due to failure to download data within
the 10-day data buffering period of the internal sensor storage. The Atmotube Pro device erases old records
to create room for new ones after storing a maximum of 14,400 data points, or 10 days. The sensors
were connected to external power continually throughout the study period. The data downloader tool allows
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fetching data from the sensor unit for a period of up to 7 days via a simple user interface (Atmotube, 2023)
and this is a limitation for long-term data collection due to limited space. This indicates that these sensors
need frequent data download to avoid data loss.

The performance of Atmotube Pro sensors for PM1, PM2s and PM1o in comparison with the reference
FIDAS monitor are shown in Figure 1. The average of all 8 sensors was computed at hourly time
resolution. PM1 had a very low error bias of 1.7 pgm= and a strong R? of 0.94. PM2s had a larger error
bias of 3.2 pgm-3and a decrease in the R2 value to 0.86 in comparison to PM1. The poorest performance
was recorded for PM1o with a larger error bias of 6.2 ugm-=and a further decline in R? of 0.49. Similar
results were recorded in the study by Molina et al., 2023 using Plantower, Sensirion and Piera low-cost
sensors. The rest of the paper will focus on particle size <2.5 um (PM2;5) as PMzs is the key standard
by WHO and other regulatory agencies for health-related research.
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We have approximately three months of observational data with PM2sin a range of 1 - 120 ug m-(using hourly
averaged data) as shown in Fig. 2(a). During this period, there are spikes in the order of ~50 ug m=and above
which is probably due to episodic events such as buses driving past, tobacco smoke and the annual Guy
Fawkes bonfire night. The sensors exhibit comparable temporal variability between the sensors, however, in
absolute terms Sensor 6 (S6) has higher concentrations in some cases. We correlated minute-wise data of
each sensor against the other and the coefficient of correlation ranged generally between 0.8 to nearly 1.0.
Sensor 5 (S5) had slightly lower values of about 0.8 - 0.9, while S6 clearly was the poorest or the outlier because
the r value was between 0.5 - 0.6. This suggests some anomalous data recorded as shown in Fig 2, highlighting
a fault in sensor S6.
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Figure 2: PM2s data of 8 Atmotube Pro sensors (a) showing the time series of each sensor (hourly average), (b)
coefficient of correlation (r) (minute-wise data)

Most air quality networks implement regular quality assurance and control measures, although outliers

can still happen because of sensor malfunctions or differences in monitoring configuration such as inlet
orientation. There are possibilities of using some of these low-cost sensors where there are no reference
monitors present, but it is imperative to check if a network of low-cost sensors have malfunctioning
sensors. Outliers pose challenges for statistical analysis. S6 was the sensor with the most erroneous
PMz.s data, which showed anomalous, data spikes (low and high) relative to the other sensors. One of the
important benefits of the performance evaluation assessment for multiple sensors is to identify less robust
individual sensors in a sample of sensors.

3.1 Inter-sensor variability

Using methods stated in the US-EPA guidelines for low-cost performance metrics, results showed that
the SD metrics in this study just exceeded the US-EPA recommended limit of <5 pgm- while the CoV
was below recommended limit of <30% as shown in Table 1. For this section, the CoV for determining inter-
sensor variability is calculated as described by (Duvall et al., 2021; Zimmerman, 2022). This indicates
reasonable variability in sensors of identical models and the high SD values can be attributed to high
concentration short events such as Christmas market barbeques, smoking next to the sensors. Although
the CoV values are within the recommended limits the values are higher than values seen in the report
made by the South Coast AQMD (AQMD, 2020) where the relative inter-sensor variability (CoV) was 6.7%
and the standard deviation was also reported to be 0.57 ugm- for PM2s values using 5 minutes
averages of 3 Atmotube Pro sensors. There is a difference in the environment, duration of the study
and the PM2s concentrations. For the AQ-SPEC, the collocation was for done for a 2-week period and
the 5-minutes averages had a maximum of 50 pgm=3. This suggests the Atmotube Pro inter-sensor
variability is less at lower PM2s concentrations. Previous studies have reported CoV <10% for Plantower
sensors (Badura et al., 2019; Zimmerman, 2022) while other models of low-cost sensors have also
reported a higher CoV > 25% for Dylos (Carvlin et al., 2017), Plantower and Syhitech (indoor colocation)
had CoV > 30% (Zamora et al., 2020).
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Raw data 1 minute 27.8 12.2

1 hour 17.7 8.8

1 day 15.0 6.0

The CoV reduced further when Atmotube Pro sensor “S6” was removed from the analysis; CoV=20%,
11% and 10% for minute, hourly and daily averages, respectively. This compares well with the range of
CoV values from field evaluation results of different low-cost sensors of 0.9 to 31.0% with an average of
12.8% for 24-hour averages as described by (Duvall et al., 2021) using resources from AQ-SPEC sensor
evaluation, US-EPA sensor evaluations and peer reviewed literature. Atmotube Pro sensors sit well within
this range for both lower and higher resolution PM:z s data of ~28%, 18% and 15% for minute, hourly and
daily averaged data respectively. Our results indicate one anomalous sensor can drive an increased
inter-sensor variability in the measurements for the Atmotube Pro sensors. More research is required to
identify the minimum number of sensors needed for a performance evaluation assessment. There were
inconsistencies observed among Atmotube Pro sensors leading to varying readings under same
conditions thus contributing to high CoV. There is also the possibility of environmental factors such as
relative humidity and temperature measurements, which may have influenced the PMzs values of these
sensors differently.

To further investigate reproducibility of the sensors, hourly time-step of the PMzs average (Avgn) of all 8
sensors was derived over the study period. For each sensor, the ratio between the sensor value (per
hour time step) and the multi-sensor mean was calculated as in Eq. (2). The temporal distribution of
these ratios for each sensor was illustrated using box and whisker diagrams as in Fig. 3 to provide an
indication of the sensor-sensor precision.

Sensor/Average Ratio = i—': (2)

Where; xni = Atmotube Pro PMz.s hourly data (ugm-3) for sensor (i) where i=1,8;
Hh = Mean PM2.5 ugm-3 concentration hour (for all 8 sensors).
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Figure 3: Sensor-sensor precision comparing the ratio of sensor hourly PM2s values to the 8 Atmotube Pro multi-
sensor average as a reference. The whiskers represent the 5" and the 95" percentile. Red dashed line indicates
sensor/average ratio of 1 where <1 represents low bias and vice versa.

Although there is no standard on what the sensor precision should be, this investigation makes it clear
that sensor S6 can be termed to have large deviation from the average. S6 had a median ratio of ~1.25
and 25"-75M range of 1.2-1.3. Sensors S1 and S3 have a small deviation from the average PM2s values
(that is, median of ~0.8 and 25"-75% range of 0.7-0.95). Note that the hourly time averages were used
for Fig. 3. For inter-sensor quality assurance check where a reference grade instrument is far away or
totally lacking, comparing against the mean PM:s value for all the sensors may prove useful to identify
faulty sensors within a network of sensors as shown in Eq. (2). Where the sensor PM2.s median ratio
value tends to 1.0, it indicates the sensor measurements are consistent with the majority of the other
sensors in the network (Figure 3). Sensors (S2, S4, S5, S7 and S8) may be used as a “supplementary
reference” to identify potential anomalous sensors. In summary, 62.5% of the sensors used for the study
exhibited greater precision in their measurements.

3.2 Comparison with a reference-grade monitor

Sensor performance was investigated further by comparing the PM2s Atmotube Pro sensor data to
measurements from the Local Authority reference monitor data at the Leeds city centre air quality
monitoring site. Atmotube 15-minute averaged data were used for this comparison as the reference
monitor logs PMzs data at this temporal resolution.
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Figure 4: Time series of PMz.s concentration reported by Purple Air, average Atmotube Pro sensors and the
reference monitor. The data has been averaged to daily data.

The time series in Fig. 4. shows the Atmotube Pro sensors and the purple air sensor captured the
reference monitor PM2.s temporal variability and the low-cost sensor PM:zs values are of the same order
of magnitude. However, during some high concentration episodes, the Purple Air sensors typically
overestimated PMzs values in comparison with the reference. We calculated the R2, RMSE, NRMSE,
MNB, slope and intercept of the relationship between the Atmotube Pro sensor data and the reference
monitor. The results for fifteen minutes and hourly averages are summarized in Table 2. For the coarser
time resolution, Atmotube Pro sensors had R? (>0.7) and RMSE (< 7 ugm-3) in comparison to the fifteen
minutes averages where R? (0.48-0.53) and RMSE (> 7 ugm-2). Using hourly PM2s averages, the
Atmotube Pro and purple air sensors performed well with evaluation metrics within the US-EPA
guideline values, with RMSE values of 3.4 ugm and 4.8 ugm=, respectively. Results show that the
hourly averaged data of the Atmotube Pro sensors performed better than the higher time resolution
data. In comparison with the AQ-SPEC evaluation, Atmotube Pro sensors had R2 ~0.79 and 0.89 using
BAM and GRIMM reference monitors respectively (AQMD, 2020). The R? values can be further
improved by calibration methods as reported in the literature with different calibration and correction
methods (Badura et al., 2019; Giordano et al., 2021; Hong et al., 2021; Pawar and Sinha, 2020) to
improve the PM2s data quality of different low- cost sensor models.
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15-minutes Average PMzs ugm- Hourly Averaged PMz s pgm-3
R2 RMSE NRMSE a b R2 RMSE NRMSE a b
Hogm=3 (%) Hgms (%)

S1 0.51 6.05 0.02 0.65 0.92 0.85 2.94 0.02 0.85 -1.01
S2 0.51 7.02 0.02 0.75 1.13 0.85 3.42 0.02 0.97 -1.08
S3 0.50 591 0.02 0.64 1.23 0.85 2.85 0.02 0.83 -0.63
S4 0.53 6.86 0.02 0.78 1.35 0.87 3.23 0.02 1.01 -0.91
S5 0.51 7.45 0.02 0.81 1.27 0.85 3.63 0.02 1.05 -1.11
S6 0.48 9.73 0.02 0.99 1.42 0.77 5.20 0.03 1.15 -0.15
S7 0.52 7.11 0.02 0.79 1.27 0.86 3.42 0.02 1.03 -1.04
S8 0.51 7.56 0.02 0.82 1.22 0.85 3.64 0.02 1.07 -1.21
Mean 0.54 6.74 0.02 0.78 1.23 0.86 3.38 0.02 0.99 -1.63
PA 0.58 8.46 0.03 1.07 -0.45 0.85 4.79 0.03 1.37 -3.47

A measure of correlation is necessary when assessing performance of low-cost sensors, but alone is
not sufficient as the error bias should also be reported (Giordano et al., 2021). The AQ-SPEC, however,
did not mention the error bias of the Atmotube Pro sensors in its report. The RMSE describes the
difference between sensors PMzs measurements and the true value (reference instruments). The
NRMSE accounts for testing in conditions where high PM2s concentrations were recorded and the
RMSE is normalized using the average of the reference PMzs measurements over the testing period
(Duvall et al., 2021; Zimmerman, 2022). The RMSE and NRMSE values as shown in Table 2 were
within the recommended US-EPA guidelines of RMSE <7 ugm- and <30% respectively using hourly
averaged PMzs data. The MNB is a model evaluation metric which helps to quantify the accuracy of the
measurements over the collocation period (Giordano et al., 2021). The MNB values for the 15-minute
average Atmotube Pro and the purple air sensors were -0.17 and -2.7 respectively. For one-hour
averages, MNB for the average Atmotube Pro and the purple air sensors were 0.01 and -0.29
respectively.

The US-EPA guideline also recommends a target slope and intercept range 1.0+0.35 and -5 to +5,
respectively. The slope and intercept of the Atmotube Pro sensors had an average of 0.99 and -1.63
respectively while the values for the purple air sensor were 1.37 and -3.47, respectively. The overall
performance of the 8 Atmotube Pro sensors is summarized in Table 3. The Atmotube Pro sensors met
the USEPA base testing criteria (precision, bias, linearity, and error) at coarser resolution averages
(one-hour). However, the linearity and the error did not meet these criteria at lower resolution averages
(fifteen-minute). Also, at PM2s concentration below 100 pgm-2 for lower resolution averages, the criteria
were met for these metrics indicating the Atmotube sensors perform better at lower concentrations.

10



380

385

390

395

Performance metrics (US-EPA)

Base Testing

Target values

Atmotube Pro sensors (PMzsvalues)

15-minutes

1-hour average

Precision
Bias

Linearity

SD

CoV
Slope
Intercept
RZ

<5 pgm3
<30%
1+0.35
-5<bs+5
=207

Failed

Passed

Passed

Passed

Failed using full

Failed

Passed
Passed
Passed
Passed

dataset (R? 0.48-
0.53)

Passed at PMzs
values <100 pgm-
(R20.72 - 0.75)
Failed using full
dataset (RMSE 5.9-
9.7 ugm-3)

Passed at PMzs
values <100 pgm-3
(RMSE 3.3-4.6
Hgm-3

Passed

Error RMSE <7 ugm-=3 Passed

NRMSE < 30% Passed

3.2.1 Separating high concentration events.

The performance of the 8 Atmotube Pros showed the R?using 15-minute averaged PMzs data were well
correlated at PM2s concentration below 100 ugm-=. R2 > 0.7 for all 8 Atmotube Pro sensors and the
purple air sensor as shown in Fig. 5. Although, correlation was low using the full dataset (R? range 0.42
to 0.56) for 15—minute averaged as seen in Table 2, this is indicative of poorer performance at higher
concentrations above 100 pugm=3. At higher averaging time the R? improved significantly, and this is in
line with areport by (Hong et al., 2021) using Sensirion, Plantower and Honeywell sensors.

Comparing the error bias in the regression analysis of the 15-minutes averaged data of the full PM2s
dataset (1-300 pgm-3) and PM2s dataset below 100 pgm- only, the RMSE range was 7.6-9.5 pgm-and
3.56-4.83 pgm-2 respectively. This shows a general lower bias in error at lower concentrations between
the Atmotube Pro sensors and the reference. The same applies to the PA sensor, as there was also a
reduction in RMSE values from 8.8 to 6.2 pgm-3. The plot in Fig. 5. was coloured by individual RH data
logged by each sensor. Section 3.4 highlights the influence of RH and temperature on the sensor data.
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Figure 5: Summary of comparison metrics of each Atmotube Pro sensor, Atmotube Pro Average, Purple Air sensor
and reference (15 minutes averaged data) showing PM2.s concentration below 100 pgm-3.

3.3 Influence of Temperature and Relative Humidity

The ratio of the average of all 8 Atmotube Pro sensors and the Reference PM2.s data for hourly averages

were calculated. Scatter plots of the PMzs ratio (defined as Average Atmotube Pro sensor PMzs /
Reference PMz2s) as calculated in Eqg. (32) were plotted as a function of RH and temperature reported by
a nearby weather station as shown in Fig. 6. Data were collected from a local weather station rather than
from the Atmotube Pro sensor themselves, since, Zimmerman, (2022) reported that RH and temperature
sensors in the low-cost devices can be influenced by sensor heating when connected to power. The
nearest meteorological station set up on the rooftop of the School of Earth and Environment building at
the University of Leeds (53049’ 38” N, 1034’ 19” W) about 0.6 miles away from where the colocation
experiment of the Atmotube Pro sensors, purple air sensor and reference monitors took place (53° 47’
51" N, 1033’ 8" W).

PMRatio = & (3)
Rp
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Where; pun = Mean PM2s concentration hourly average for hour (h) (for all 8 sensors) (ugm-)

Rn = Reference PM2.s concentration hourly average for hour (h) (ugm-)
For RH, there is a clear relationship with the PM2.s sensor/reference ratio, which increases sharply at
RH>80% while at low RH the ratio was below 1.0 indicating the sensors were underestimating PMz.s
value relative to the reference monitor. There was no clear influence observed for the PMzsratio relative
to the temperature, however, there was a general low bias at all temperatures apart from mid-
temperature range of 5-15°C. This agrees with results as reported by (Zimmerman, 2022) using Purple
Air sensors where a clear influence at 80% RH was also observed and no influence from temperature.
Implementing a statistical correction using RH values for these sensors could improve the accuracy of
the measured PMzs values. We recommend further exploration on correction methods using RH in future
research investigation.

PMz. 5 Ratio
PM-. 5 Ratio

0 5 10 15 20 25
Relative Humidity (%) Temperature (°C)

Figure 6: Relationships between (a) relative humidity (RH) and (b) temperature (T) and average Atmotube Pro
Sensor/Reference PMzs ratio.

3.4 Correction factor development

Many studies have used multiple linear regression (MLR) calibration models that include temperature,
RH and dew point to improve the PMz.s data recorded by low-cost sensors (Badura et al., 2019; Barkjohn
et al., 2021; Karaoghlanian et al., 2022; Malings et al., 2019; Raheja et al., 2023). In this section we
explored the use of MLR using RH and temperature values to improve Atmotube Pro PM2s data. We
tested using 15 minutes and 1-hour time resolution for the calibration model and assessed the model
performance using R? and RMSE. Given the results of investigating performance of PMzs
concentrations < 100 ugm-3 for the 15 minutes average data, we got improved performance as shown
in Fig.5.
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Equation R2 RMSE
Hourly averaged (full dataset)
Linear S=zai1 x PMas+i 0.86 3.38
+RH S=ai1 X PMz2s+az X RH + i 0.88* 3.05*
+T SzaiXxPMos+axxT+i 0.87 3.20
15 minutes average (PM2s <100 pgm-3)
Linear S=zai1 X PMas+i 0.73 3.97
+RH Szai X PM2s+a2x RH +i 0.79* 3.48*
+T S=a1 X PMzs+azx T +i 0.78 3.53

The addition RH and temperature values to the model improved the R? value and decreased the RMSE
value. However, the addition of T values only resulted in smaller improvement in the R? and RMSE
relative to using RH values. Similar improvement was also gained in higher resolution data at
concentrations < 100 ug/m-=3. We note that this result cannot be generalised, since the calibration is
done at a single location in an urban background during the winter months. It is possible that warmer
seasons or different influences on aerosol composition would require different calibration factors.

4.0 CONCLUSION

We have conducted comprehensive inter-sensor and reference data comparisons for a set of 8 Atmotube
Pro sensors in order to characterise their precision and bias at different levels of PM2s exposure. The
research also explored the potential of identifying underperforming sensors within a network of low-cost
sensors, particularly in situations where no reference-grade monitors are available. The study revealed
the PMzs values from the Atmotube Pro sensors had reasonably good precision (CoV of 18%) indicating
low inter-sensor variability of the sensors. The data cleaning method was successful in improving the inter-
sensor variability among the Atmotube Pro sensors. The sensor measurements also replicated
measurements from a reference monitor well, with accuracy metrics ranging from; R? (0.77-0.87), Slope
(0.99 to 1.15), Intercept (-1.2 to -0.15) and error biases ranged below the recommended limits for low-cost
sensors; RMSE (2.85to 5.2 ugm-=) and NRMSE (0.02 to 0.03%) based on the routinely used US-EPA
guidelines. The sensors also showed a strong correlation with purple air sensor where R? average value
was 0.88 and an error bias (RMSE) of 2.9 ugm-3. Performance of Atmotube Pro sensors was also observed
to have deteriorated at higher PM2.s concentrations and improved at a coarser temporal resolution. Out of
the 8 Atmotube Pro sensors used for the assessment, one sensor showed poorer performance with an r
value range of 0.57-0.59 while the other sensors reported values above 0.9. The overall performance of
the 8 Atmotube Pros used for the colocation study is summarized in Table 3. This study observed a
precision uncertainty (SD) of 8.8 ugm= and an accuracy (RMSE) error of 3.7 + 0.8 ugm= for hourly
Atmotube Pro PM2s data and the chance of having a less reliable sensor in a group of sensors is ~10%
(12.5% as the case in this study) and overall gives a useful information for local monitoring or citizen
science use. Calibration using multiple linear regression model improved the performance of Atmotube
Pro sensors. R? improved from 0.86 t00.88 and RMSE decreased from 3.38 to 3.05 pg/m3 when
accounting for RH values. Future work may look at using multiple models in a longer-term colocation study
and in multiple colocation sites to achieve a more robust calibration. It is worthwhile to note that Atmotube
Pro sensors (used for both static and non-static PM2s measurements) are not “plug-and-play” as they
require close monitoring and frequent data download to achieve good data recovery.

14



500

505

510

515

520

525

530

535

Data Availability

The data downloaded from the Atmotube Pro sensors, data from the FIDAS sensor (reference) and Purple
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