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ABSTRACT 

This study presents a performance evaluation of eight Atmotube Pro sensors using US Environmental 
Protection Agency (US-EPA) guidelines. The Atmotube Pro sensors were collocated side-by-side with a 
reference-grade FIDAS monitor in an outdoor setting for a 14-week period at Leeds city centre, UK. We 20 
assessed the linearity and bias for PM1, PM2.5 and PM10. The result of the PM2.5 assessment showed the 
Atmotube Pro sensors had particularly good precision with a coefficient of variation (CoV) of 28%, 18% 
and 15% for minutes, hourly and daily PM2.5 data averages, respectively. The inter-sensor variability 
assessment showed two sensors with low bias and one sensor with a higher bias in comparison with the 
sensor average. Simple univariate analysis was sufficient to obtain good fitting quality to a FIDAS 25 
reference-grade monitor (R2 > 0.7) at hourly averages although, poorer performance was observed using 
a higher time resolution of 15 minutes averaged PM2.5 data (R2; 0.48-0.53). The average error bias, root 
mean square error (RMSE) and normalized root mean square error (NRMSE) were 3.38 µgm-3 and 0.03 
% respectively. While there were negligible influences of temperature on Atmotube Pro measured PM2.5 
values, substantial positive biases (compared to a reference instrument) occurred at relative humidity (RH) 30 
values > 80%.  The Atmotube Pro sensors correlated well with the purple air sensor (R2=0.88, RMSE=2.9 
µgm-3). In general, the Atmotube Pro sensors performed well and passed the base testing metrics as 
stipulated by recommended guidelines for low-cost PM2.5 sensors. Calibration using multiple linear 
regression model was enough to improve the performance of the PM2.5 data of the Atmotube Pro sensors. 
 35 

1.0 INTRODUCTION 

 Particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been associated 

with several harmful effects on human health (Maynard et al., 2023; WHO, 2021; Williams et al., 2014). 

The acute effects of PM include an increase in hospital admissions, early development of asthma in 

children (Khreis et al., 2019; Mansourian et al., 2011). Long-term effects of outdoor PM2.5 are associated 40 

with fatal cardiovascular and respiratory diseases and lung cancer with records of increased mortality 

rates in cities with a higher concentration of airborne PM (WHO, 2021). Another challenge is the exposure 

disparities amongst socioeconomic groups (Keswani et al., 2022). Understanding the health effects on a 

given population requires evaluation of their exposure to PM2.5, which in turn relies on an understanding 

of the atmospheric concentration of PM2.5. This is challenging as PM2.5 concentrations can vary temporally 45 

and spatially on small scales (Liu et al., 2009). Low-cost air quality sensors represent recent technologies 

which are less expensive than typical air quality monitors and allow measurement of specific air pollutants 

such as PM and other gaseous pollutants. These low-cost sensors are portable allowing ongoing 

measurements of exposure of individuals as they move around their environments, they also offer an 

appealing way of obtaining additional atmospheric measurements to better characterise the distribution 50 

of PM2.5 in a wide range of locations. 

 Several low-cost sensors ($200 - $2500) have become commercially available (Williams et al., 2014). 

These sensors are portable in size, lightweight and provide high-resolution data in near real-time 

(Morawska et al., 2018; Rai et al., 2017). The advent of these low-cost sensors has the potential to 
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change the paradigm of air pollution monitoring as it allows for the possibility of more frequent 55 

measurements, which could improve our knowledge, especially in areas where monitoring is sparse and 

lacks expensive equipment operated by the government or research agencies (Chatzidiakou et al., 2019; 

Morawska et al., 2018). In addition, these sensors can be used easily without much training, enabling 

widespread access to air quality data, and making it possible for individuals and communities to monitor 

air quality both indoors and outdoors by themselves. Recent research has demonstrated that low-cost 60 

sensors may be used to identify and apportion various pollution sources in urban environments (Bousiotis 

et al., 2023; Hagan et al., 2019; Pope et al., 2022; Westervelt et al., 2024; Yang et al., 2022). Assessing 

the performance of low-cost sensors and their behaviour relative to reference instruments is crucial, given 

the growing popularity and use of these sensors for citizen science projects, community engagement 

initiatives, personal exposure monitoring (Borghi et al., 2017), and building community sensor networks 65 

to supplement official reference-grade monitoring networks.  

 Previous studies have found that some low-cost sensors exhibit significant variation in performance, 

influenced by several factors such as environmental conditions and choice of reference instrument used. 

(Kang et al., 2022; Karaoghlanian et al., 2022). Environmental factors such as humidity and temperature 

have been reported to impact their accuracy (Hagan and Kroll, 2020; Pawar and Sinha, 2020). The 70 

results of these evaluations can help determine the suitability of low-cost sensors for measuring pollution 

in different settings and applications and guide the development of better sensor technologies in the 

future. Numerous studies have found that some low-cost sensors performed well for measuring ultrafine 

particles while others were less accurate and had higher measurement variability as reported by (Alfano 

et al., 2020; Kang et al., 2022). Overall, these studies highlight that careful evaluation of low-cost sensors 75 

for particulate pollution measurement is required.  

 Studies have examined the performance of different brands of low-cost sensors in comparison with a 

reference grade monitor (Bulot et al., 2019; Feenstra et al., 2019; Jovašević-Stojanović et al., 2015; 

Sousan et al., 2017) and several calibration methods using linear regression, multiple linear regression, 

gaussian process regression, ridge regression and random forests have been used to improve the raw PM2.5 80 

data (Badura et al., 2019; Barkjohn et al., 2021, 2022; Karaoghlanian et al., 2022; Malings et al., 2019, 

2020; Raheja et al., 2023). These calibration methods allow the sensors to be better suited for 

implementation as a supplement for reference monitors in smaller communities or cities. However, the use 

of different methodologies developed by various research groups may impact the accuracy and reliability 

of the data obtained from low-cost sensors (Alfano et al., 2020). Performance evaluation of low-cost 85 

sensors for particulate pollution measurements thus far has focused on assessing the accuracy and 

reliability of low-cost sensors used for measuring particulate matter pollution in field studies, and only a 

few papers have investigated in detail inter-sensor variability of identical sensor types. Inconsistencies 

among devices from the same manufacturer might emerge, leading to varying readings under similar 

conditions. Sensor performance can be highly variable between different devices and end users need to 90 

be provided with inter-sensor precision, accuracy, long-term drift, and calibration transferability to decide 

on the right measurement tool for their specific application (Diez et al., 2024). 

 There are two ways of evaluating the performance of low-cost PM sensors; colocation with a reference 

instrument and laboratory-based evaluation. The US-EPA (Environmental Protection Agency) refer to this 

as base testing and enhanced testing respectively (Duvall et al., 2021). This paper focuses on the well 95 

detailed metrics for the base testing methods for the performance assessment of Atmotube Pro sensors 

and the benefits of data cleaning prior to the assessment of the PM2.5 data. AQ-SPEC program is a testing 

centre for low-cost air monitoring sensors to establish performance standards by which low-cost sensors 

are evaluated both in the field under ambient conditions and laboratory testing under controlled 

environmental conditions for sensors measuring criteria pollutants (Feenstra et al., 2019; Polidori et al., 100 

2017). Three Atmotube Pro units were previously used in a field evaluation by the well-known South Coast 

Air Quality Management District (AQMD) which set up the AQ-SPEC (Air Quality Sensor Performance 

Evaluation Centre) using the GRIMM and Met-One BAM reference instruments; R2 > 0.7 (AQMD, 2020). 

The report focused on limited evaluation statistics. Following the AQ-SPEC report in 2020, a few other 

studies have made use of these Atmotube Pro sensors for occupational and household PM2.5 exposure 105 

monitoring, and community citizen science (Masri et al., 2022, 2023; Voultsidis et al., 2023; Wang et al., 
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2020) thus there is a need for a detailed performance assessment on these sensors to ensure confidence 

in the data being collected. 

 In summary, low-cost sensors hold great potential to provide widespread useful air quality information for 

researchers and community members. The aim of the study is to assess the inter-sensor variability and 110 

accuracy of Atmotube Pro sensors to provide an insight on the reliability and robustness of these sensors 

PM2.5 measurements. By demonstrating a good framework for testing the precision, accuracy, and the 

reliability of sensors within a sensor network, the results will provide the users a clear understanding of 

the limitations as well as the confidence in the in-situ PM2.5 levels measurements obtained for Atmotube 

Pro sensors. In addition, we investigated the performance of the sensors at higher time resolution (15 115 

minutes) to test the feasibility of their application in capturing short-time events that may be missed at 

lower resolution. 

 

2.0 MATERIALS AND METHODS 

 120 

2.1 Sampling site and data collection 

 

 We conducted a sensor colocation exercise aimed at evaluating the performance of Atmotube Pro 

(manufacturer) sensors compared to a reference monitor placed alongside them. The colocation exercise 

took place in an ambient environment at Corn Exchange, Leeds city centre (next to a bus stop) where 8 125 

Atmotube Pro sensors and 1 Purple air sensor were collocated side-by-side with a Fine Dust Analysis 

System (FIDAS 200S) reference-grade air quality monitor in an urban location at the Leeds city centre 

(53°47’51’N, 1°33’8’W) at a height of about 3.5 metres. The duration of the colocation exercise was done 

during Autumn from September 26th, 2023, to January 1st, 2024. The city centre is representative of an 

ideal urban centre, which included frequent stops from public buses (vehicular emissions). 130 

 

 Atmotube Pro is a small and lightweight sensor (0.104 kg) classified as a low-cost device ($250) and is 

commercially available. Atmotube Pro device have sensirion SPS30 sensors which use laser scattering 

principle to radiate and detect suspended particles in an air chamber. A micro fan draws in air through 

an inlet, and the air passes through the laser beam where the scattered light reflected by the particles is 135 

captured by a photodiode. A signal is transmitted to the micro control unit based on Mie theory where a 

proprietary algorithm processes the data and supplies outputs for the concentration of the particulate 

(µgm-3). Atmotube Pro sensors report the estimated mass concentration of particles with an aerodynamic 

diameter of <1µm (PM1), < 2.5µm (PM2.5) and <10µm (PM10). In addition to the sensirion sensors for PM 

measurements, the Atmotube device also contains BOSCH BME280 sensors for measuring temperature 140 

and relative humidity values. The sensors also log data every second and store it in memory every minute 

(Atmotube, 2023). One of the limitations of the Atmotube Pro device is the data retrieval memory with 

limited history size of 10 days after which data not downloaded would be overwritten. The Atmotube Pro 

came assembled and needs to be charged frequently. The sensor requires a charging time of about 2.5 

hours. The battery requires daily charging when set to “always on” mode thus we left the sensor plugged 145 

in throughout the entire duration of the study alongside the Purple Air and reference monitor.  

 

The Purple Air sensors contain two Plantower PMS5003 sensors, which record two-minute averaged 

data. The Purple Air sensor uses a similar principle to the Atmotube Pro sensors described above, based 

on scattering of laser light. The Plantower sensors also estimate mass of particles with aerodynamic 150 

diameters <1 µm, <2.5 µm and <10 µm which are reported as cf_1 and cf_atm which both have channels 

A and B in the Purple Air dataset. The cf_atm data is displayed on the Purple Air map (Barkjohn et al., 

2022) and this sensor input is the dataset used in this study. The Purple Air sensor was deployed at the 

colocation site since June 2022. 

The reference monitor used for the study was a FIDAS 200S consisting of a sampling head that also 155 

enables representative sampling in strong wind. The control unit is integrated in an IP 65 weather 

protected housing which can be set up as a standalone outdoor instrument. It uses optical light scattering 
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according to Mie theory using bright and durable white LED light as a light source. It measures PM1, 

PM2.5, PM4, PM10, TSP, temperature, and relative humidity parameters. The measuring range in mass is 

0-10,000 µgm-3 and particle size range is 0.18-18 µm. The monitor records 15-minutes averages. The 160 

FIDAS 200S are certified and developed for compliance monitoring of PM in accordance with EU and 

UK legislation. The uncertainty between FIDAS devices is 0.44 µgm-3 (FIDAS, 2024). 

 The performance of the low-cost sensors will be assessed using US-EPA guidelines (Duvall et al., 2021) 

for base and enhanced testing metrics. For sensor accuracy, coefficient of determination (R2), root mean 

square error (RMSE), mean normalised bias (MNB), normalized root mean square error (NRMSE), slope and 165 

intercept will be determined. The R2 value is a metric that provides information about the proportion of 

the variance in the dependent variable (Atmotube Pro sensor) that can be explained by the independent 

variable (reference monitor). The RMSE helps to understand the error associated with sensor PM2.5 

concentration in comparison with the reference concentration. For sensor precision, the standard 

deviation (SD) and coefficient of variation (CoV) will be determined. It is recommended that low-cost 170 

sensor used for performance evaluation test should have 75% data completeness during the colocation 

study period (Duvall et al., 2021; Zimmerman, 2022). Other performance metrics include detection range, 

detection limit and response time. 

 This paper focuses on the reproducibility of the 8 Atmotube Pro sensor units (identical model) and 

developing an appropriate data cleaning method for the obtained PM2.5 data. CoV was calculated using 175 

one-minute, fifteen-minutes and one-hour averages. Low CoV values indicate high reproducibility in the 

measurements across the Atmotube Pro sensors units. US-EPA recommends CoV of <30% between 

sensors of identical models. 

 

2.2 Atmotube Pro Quality Assurance  180 

 

 The Atmotube Pro also stores historical data in an onboard flash memory when not connected to a 

smartphone. The historical data can be transferred to a smartphone during data synchronization each 

time the sensor is connected to a smartphone. The Atmotube Pro sensors are designed for mobile 

monitoring, and to protect the sensors from rain at the colocation site, a makeshift cover was used to 185 

enclose all the sensors used in the study as shown in supplementary Fig. 1. 

One-minute PM1, PM2.5, PM10 relative humidity and temperature data were retrieved from 8 Atmotube Pro 

sensors. Data completeness as shown in equation 1 for Atmotube Pro sensors is the percentage ratio of 

minute-wise data available for each sensor and the total number of minutes expected for the study period 

(Polidori, et al., 2017). This ranged from 73-84% for PM1, PM2.5, PM10. Preliminary analysis investigated 190 

the performance of PM1, PM2.5 and PM10 size distributions using Atmotube Pro sensors and reference 

FIDAS monitor data. To understand reproducibility between Atmotube Pro sensor units, one minute, fifteen 

minutes and one-hour averaged PM2.5 outputs were used for calculating a coefficient of correlation (r) 

between Atmotube Pro sensors).  

Data recovery =  
𝑁 𝑣𝑎𝑙𝑖𝑑 𝑑𝑎𝑡𝑎

𝑁 𝑠𝑡𝑢𝑑𝑦 𝑝𝑒𝑟𝑖𝑜𝑑
 ∗  100 (1) 195 

where ; Nvalid data= number of valid sensor data points during test period 

Nstudy period= total number of data points for the study period 

 

3.0  RESULTS AND DISCUSSION 

 200 

 During the colocation period, there were some data gaps, mostly due to failure to download data within 

the 10-day data buffering period of the internal sensor storage. The Atmotube Pro device erases old records 

to create room for new ones after storing a maximum of 14,400 data points, or 10 days. The sensors 

were connected to external power continually throughout the study period. The data downloader tool allows 
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fetching data from the sensor unit for a period of up to 7 days via a simple user interface (Atmotube, 2023) 205 

and this is a limitation for long-term data collection due to limited space. This indicates that these sensors 

need frequent data download to avoid data loss. 

The performance of Atmotube Pro sensors for PM1, PM2.5 and PM10 in comparison with the reference 

FIDAS monitor are shown in Figure 1. The average of all 8 sensors was computed at hourly time 

resolution. PM1 had a very low error bias of 1.7 µgm-3 and a strong R2 of 0.94. PM2.5 had a larger error 210 

bias of 3.2 µgm-3 and a decrease in the R2 value to 0.86 in comparison to PM1. The poorest performance 

was recorded for PM10 with a larger error bias of 6.2 µgm-3 and a further decline in R2 of 0.49. Similar 

results were recorded in the study by Molina et al., 2023 using Plantower, Sensirion and Piera low-cost 

sensors. The rest of the paper will focus on particle size <2.5 µm (PM2.5) as PM2.5 is the key standard 

by WHO and other regulatory agencies for health-related research. 215 

 

Figure 1: Comparison of Atmotube Pro and FIDAS reference monitor data for PM1, PM2.5 and PM10 (hourly averaged data). 

 

We have approximately three months of observational data with PM2.5 in a range of 1 - 120 µg m-3 (using hourly 220 

averaged data) as shown in Fig. 2(a). During this period, there are spikes in the order of ~50 µg m-3 and above 

which is probably due to episodic events such as buses driving past, tobacco smoke and the annual Guy 

Fawkes bonfire night. The sensors exhibit comparable temporal variability between the sensors, however, in 

absolute terms Sensor 6 (S6) has higher concentrations in some cases. We correlated minute-wise data of 

each sensor against the other and the coefficient of correlation ranged generally between 0.8 to nearly 1.0. 225 

Sensor 5 (S5) had slightly lower values of about 0.8 - 0.9, while S6 clearly was the poorest or the outlier because 

the r value was between 0.5 - 0.6. This suggests some anomalous data recorded as shown in Fig 2, highlighting 

a fault in sensor S6.  

 

 230 
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Figure 2: PM2.5 data of 8 Atmotube Pro sensors (a) showing the time series of each sensor (hourly average), (b) 235 
coefficient of correlation (r) (minute-wise data) 

 

 Most air quality networks implement regular quality assurance and control measures, although outliers 

can still happen because of sensor malfunctions or differences in monitoring configuration such as inlet 

orientation. There are possibilities of using some of these low-cost sensors where there are no reference 240 

monitors present, but it is imperative to check if a network of low-cost sensors have malfunctioning 

sensors. Outliers pose challenges for statistical analysis. S6 was the sensor with the most erroneous 

PM2.5 data, which showed anomalous, data spikes (low and high) relative to the other sensors. One of the 

important benefits of the performance evaluation assessment for multiple sensors is to identify less robust 

individual sensors in a sample of sensors. 245 

3.1 Inter-sensor variability 

 

 Using methods stated in the US-EPA guidelines for low-cost performance metrics, results showed that 

the SD metrics in this study just exceeded the US-EPA recommended limit of <5 µgm-3 while the CoV 

was below recommended limit of <30% as shown in Table 1. For this section, the CoV for determining inter-250 

sensor variability is calculated as described by (Duvall et al., 2021; Zimmerman, 2022). This indicates 

reasonable variability in sensors of identical models and the high SD values can be attributed to high 

concentration short events such as Christmas market barbeques, smoking next to the sensors. Although 

the CoV values are within the recommended limits the values are higher than values seen in the report 

made by the  South Coast AQMD (AQMD, 2020) where the relative inter-sensor variability (CoV) was 6.7% 255 

and the standard deviation was also reported to be 0.57 µgm-3 for PM2.5 values using 5 minutes 

averages of 3 Atmotube Pro sensors. There is a difference in the environment, duration of the study 

and the PM2.5 concentrations. For the AQ-SPEC, the collocation was for done for a 2-week period and 

the 5-minutes averages had a maximum of 50 µgm-3. This suggests the Atmotube Pro inter-sensor 

variability is less at lower PM2.5 concentrations. Previous studies have reported CoV <10% for Plantower 260 

sensors (Badura et al., 2019; Zimmerman, 2022) while other models of low-cost sensors have also 

reported a higher CoV > 25% for Dylos (Carvlin et al., 2017), Plantower and Syhitech (indoor colocation) 

had CoV > 30% (Zamora et al., 2020). 

 

 265 
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Table 1: Coefficient of variation (CoV) and standard deviation (SD) between 8 Atmotube Pro sensors 

 270 

PM2.5 data CoV (%) SD (µgm-3) 

Raw data 1 minute 27.8 12.2 

1 hour 17.7 8.8 

1 day 15.0 6.0 

    

   

   

The CoV reduced further when Atmotube Pro sensor “S6” was removed from the analysis; CoV=20%, 

11% and 10% for minute, hourly and daily averages, respectively. This compares well with the range of 

CoV values from field evaluation results of different low-cost sensors of 0.9 to 31.0% with an average of 

12.8% for 24-hour averages as described by (Duvall et al., 2021) using resources from AQ-SPEC sensor 

evaluation, US-EPA sensor evaluations and peer reviewed literature. Atmotube Pro sensors sit well within 275 

this range for both lower and higher resolution PM2.5 data of ~28%, 18% and 15% for minute, hourly and 

daily averaged data respectively. Our results indicate one anomalous sensor can drive an increased 

inter-sensor variability in the measurements for the Atmotube Pro sensors. More research is required to 

identify the minimum number of sensors needed for a performance evaluation assessment. There were 

inconsistencies observed among Atmotube Pro sensors leading to varying readings under same 280 

conditions thus contributing to high CoV. There is also the possibility of environmental factors such as 

relative humidity and temperature measurements, which may have influenced the PM2.5 values of these 

sensors differently. 

 To further investigate reproducibility of the sensors, hourly time-step of the PM2.5 average (Avgh) of all 8 

sensors was derived over the study period. For each sensor, the ratio between the sensor value (per 285 

hour time step) and the multi-sensor mean was calculated as in Eq. (2). The temporal distribution of 

these ratios for each sensor was illustrated using box and whisker diagrams as in Fig. 3 to provide an 

indication of the sensor-sensor precision. 

Sensor/Average Ratio =  
𝑥ℎ𝑖

µℎ
                (2) 

Where; xhi = Atmotube Pro PM2.5 hourly data (µgm-3) for sensor (i) where i=1,8; 290 

µh = Mean PM2.5 µgm-3 concentration hour (for all 8 sensors).  
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Figure 3: Sensor-sensor precision comparing the ratio of sensor hourly PM2.5 values to the 8 Atmotube Pro multi-295 
sensor average as a reference. The whiskers represent the 5th and the 95th percentile. Red dashed line indicates 

sensor/average ratio of 1 where <1 represents low bias and vice versa. 

 

 Although there is no standard on what the sensor precision should be, this investigation makes it clear 

that sensor S6 can be termed to have large deviation from the average. S6 had a median ratio of ~1.25 300 

and 25th-75th range of 1.2-1.3. Sensors S1 and S3 have a small deviation from the average PM2.5 values 

(that is, median of ~0.8 and 25th-75th range of 0.7-0.95). Note that the hourly time averages were used 

for Fig. 3. For inter-sensor quality assurance check where a reference grade instrument is far away or 

totally lacking, comparing against the mean PM2.5 value for all the sensors may prove useful to identify 

faulty sensors within a network of sensors as shown in Eq. (2). Where the sensor PM2.5 median ratio 305 

value tends to 1.0, it indicates the sensor measurements are consistent with the majority of the other 

sensors in the network (Figure 3). Sensors (S2, S4, S5, S7 and S8) may be used as a “supplementary 

reference” to identify potential anomalous sensors. In summary, 62.5% of the sensors used for the study 

exhibited greater precision in their measurements. 

3.2 Comparison with a reference-grade monitor 310 

 

Sensor performance was investigated further by comparing the PM2.5 Atmotube Pro sensor data to 

measurements from the Local Authority reference monitor data at the Leeds city centre air quality 

monitoring site. Atmotube 15-minute averaged data were used for this comparison as the reference 

monitor logs PM2.5 data at this temporal resolution. 315 
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Figure 4: Time series of PM2.5 concentration reported by Purple Air, average Atmotube Pro sensors and the 320 
reference monitor. The data has been averaged to daily data. 

The time series in Fig. 4. shows the Atmotube Pro sensors and the purple air sensor captured the 

reference monitor PM2.5 temporal variability and the low-cost sensor PM2.5 values are of the same order 

of magnitude. However, during some high concentration episodes, the Purple Air sensors typically 

overestimated PM2.5 values in comparison with the reference. We calculated the R2, RMSE, NRMSE, 325 

MNB, slope and intercept of the relationship between the Atmotube Pro sensor data and the reference 

monitor. The results for fifteen minutes and hourly averages are summarized in Table 2. For the coarser 

time resolution, Atmotube Pro sensors had R2 (>0.7) and RMSE (< 7 µgm-3) in comparison to the fifteen 

minutes averages where R2 (0.48-0.53) and RMSE (> 7 µgm-3). Using hourly PM2.5 averages, the 

Atmotube Pro and purple air sensors performed well with evaluation metrics within the US-EPA 330 

guideline values, with RMSE values of 3.4 µgm-3 and 4.8 µgm-3, respectively. Results show that the 

hourly averaged data of the Atmotube Pro sensors performed better than the higher time resolution 

data. In comparison with the AQ-SPEC evaluation, Atmotube Pro sensors had R2 ~0.79 and 0.89 using 

BAM and GRIMM reference monitors respectively (AQMD, 2020). The R2 values can be further 

improved by calibration methods as reported in the literature with different calibration and correction 335 

methods (Badura et al., 2019; Giordano et al., 2021; Hong et al., 2021; Pawar and Sinha, 2020) to 

improve the PM2.5 data quality of different low- cost sensor models.  

 

 

 340 
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 345 

Table 2: Accuracy metrics using Atmotube Pro and Purple Air sensors in comparison with reference data at 15-minutes 

and hourly averaging time. R2 = correlation of determination, “RMSE” = root mean square error; “NRMSE” = 

normalized root mean square error, “a” = slope; “b” = intercept, “S1-S8” = Atmotube Pro sensors, “Mean” = Atmotube 

Pro sensor average, “PA” = Purple Air sensor. 

 350 

 15-minutes Average PM2.5 µgm-3 Hourly Averaged PM2.5 µgm-3 

 R2 RMSE 
µgm-3 

NRMSE 
(%) 

a b R2 RMSE 
µgm-3 

NRMSE 
(%) 

a b 

S1 0.51 6.05 0.02 0.65 0.92 0.85 2.94 0.02 0.85 -1.01 

S2 0.51 7.02 0.02 0.75 1.13 0.85 3.42 0.02 0.97 -1.08 

S3 0.50 5.91 0.02 0.64 1.23 0.85 2.85 0.02 0.83 -0.63 

S4 0.53 6.86 0.02 0.78 1.35 0.87 3.23 0.02 1.01 -0.91 

S5 0.51 7.45 0.02 0.81 1.27 0.85 3.63 0.02 1.05 -1.11 

S6 0.48 9.73 0.02 0.99 1.42 0.77 5.20 0.03 1.15 -0.15 

S7 0.52 7.11 0.02 0.79 1.27 0.86 3.42 0.02 1.03 -1.04 

S8 0.51 7.56 0.02 0.82 1.22 0.85 3.64 0.02 1.07 -1.21 

Mean 0.54 6.74 0.02 0.78 1.23 0.86 3.38 0.02 0.99 -1.63 

PA 0.58 8.46 0.03 1.07 -0.45 0.85 4.79 0.03 1.37 -3.47 
 

A measure of correlation is necessary when assessing performance of low-cost sensors, but alone is 

not sufficient as the error bias should also be reported (Giordano et al., 2021). The AQ-SPEC, however, 

did not mention the error bias of the Atmotube Pro sensors in its report. The RMSE describes the 

difference between sensors PM2.5 measurements and the true value (reference instruments). The 

NRMSE accounts for testing in conditions where high PM2.5 concentrations were recorded and the 355 

RMSE is normalized using the average of the reference PM2.5 measurements over the testing period 

(Duvall et al., 2021; Zimmerman, 2022). The RMSE and NRMSE values as shown in Table 2 were 

within the recommended US-EPA guidelines of RMSE <7 µgm-3 and <30% respectively using hourly 

averaged PM2.5 data. The MNB is a model evaluation metric which helps to quantify the accuracy of the 

measurements over the collocation period (Giordano et al., 2021). The MNB values for the 15-minute 360 

average Atmotube Pro and the purple air sensors were -0.17 and -2.7 respectively. For one-hour 

averages, MNB for the average Atmotube Pro and the purple air sensors were 0.01 and -0.29 

respectively. 

 The US-EPA guideline also recommends a target slope and intercept range 1.0±0.35 and -5 to +5, 

respectively. The slope and intercept of the Atmotube Pro sensors had an average of 0.99 and -1.63 365 

respectively while the values for the purple air sensor were 1.37 and -3.47, respectively. The overall 

performance of the 8 Atmotube Pro sensors is summarized in Table 3. The Atmotube Pro sensors met 

the USEPA base testing criteria (precision, bias, linearity, and error) at coarser resolution averages 

(one-hour). However, the linearity and the error did not meet these criteria at lower resolution averages 

(fifteen-minute). Also, at PM2.5 concentration below 100 µgm-3 for lower resolution averages, the criteria 370 

were met for these metrics indicating the Atmotube sensors perform better at lower concentrations.  

 

 

 

 375 
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Table 3: Overview Performance Summary of reproducibility and accuracy among identical Atmotube Pro sensors 

using US-EPA guidelines. 380 
Performance metrics (US-EPA) Target values Atmotube Pro sensors (PM2.5 values) 

Base Testing 15-minutes 1-hour average 

Precision SD <5 µgm-3 Failed Failed 
CoV <30%  Passed Passed 

Bias Slope 1 ± 0.35 Passed Passed 
Intercept -5 ≤ b ≤ +5 Passed Passed 

Linearity R2 ≥ 0.7 Failed using full 
dataset (R2 0.48-
0.53) 
Passed at PM2.5 
values <100 µgm-3 
(R2 0.72 - 0.75) 

Passed 

Error RMSE ≤7 µgm-3 Failed using full 
dataset (RMSE 5.9-
9.7 µgm-3) 
Passed at PM2.5 
values <100 µgm-3 
(RMSE 3.3 - 4.6 
µgm-3 

Passed 

NRMSE ≤ 30% Passed Passed 

 

 

3.2.1 Separating high concentration events. 

 The performance of the 8 Atmotube Pros showed the R2 using 15-minute averaged PM2.5 data were well 

correlated at PM2.5 concentration below 100 µgm-3. R2 > 0.7 for all 8 Atmotube Pro sensors and the 385 

purple air sensor as shown in Fig. 5. Although, correlation was low using the full dataset (R2 range 0.42 

to 0.56) for 15–minute averaged as seen in Table 2, this is indicative of poorer performance at higher 

concentrations above 100 µgm-3. At higher averaging time the R2 improved significantly, and this is in 

line with a report by (Hong et al., 2021) using Sensirion, Plantower and Honeywell sensors. 

Comparing the error bias in the regression analysis of the 15-minutes averaged data of the full PM2.5 390 

dataset (1-300 µgm-3) and PM2.5 dataset below 100 µgm-3 only, the RMSE range was 7.6-9.5 µgm-3 and 

3.56-4.83 µgm-3 respectively. This shows a general lower bias in error at lower concentrations between 

the Atmotube Pro sensors and the reference. The same applies to the PA sensor, as there was also a 

reduction in RMSE values from 8.8 to 6.2 µgm-3. The plot in Fig. 5. was coloured by individual RH data 

logged by each sensor. Section 3.4 highlights the influence of RH and temperature on the sensor data.  395 
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Figure 5: Summary of comparison metrics of each Atmotube Pro sensor, Atmotube Pro Average, Purple Air sensor 400 
and reference (15 minutes averaged data) showing PM2.5 concentration below 100 µgm-3. 

 

3.3 Influence of Temperature and Relative Humidity 

 

 The ratio of the average of all 8 Atmotube Pro sensors and the Reference PM2.5 data for hourly averages 405 

were calculated. Scatter plots of the PM2.5 ratio (defined as Average Atmotube Pro sensor PM2.5 / 

Reference PM2.5) as calculated in Eq. (32) were plotted as a function of RH and temperature reported by 

a nearby weather station as shown in Fig. 6. Data were collected from a local weather station rather than 

from the Atmotube Pro sensor themselves, since, Zimmerman, (2022) reported that RH and temperature 

sensors in the  low-cost devices can be influenced by sensor heating when connected to power. The 410 
nearest meteorological station set up on the rooftop of the School of Earth and Environment building at 

the University of Leeds (530 49’ 38’’ N, 10 34’ 19’’ W) about 0.6 miles away from where the colocation 

experiment of the Atmotube Pro sensors, purple air sensor and reference monitors took place (530 47’ 

51’’ N, 10 33’ 8’’ W). 

PMRatio =  
µℎ

𝑅ℎ
                                (3) 415 
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Where; µh = Mean PM2.5 concentration hourly average for hour (h) (for all 8 sensors) (µgm-3) 

 Rh = Reference PM2.5 concentration hourly average for hour (h) (µgm-3) 

 For RH, there is a clear relationship with the PM2.5 sensor/reference ratio, which increases sharply at 

RH>80% while at low RH the ratio was below 1.0 indicating the sensors were underestimating PM2.5 

value relative to the reference monitor. There was no clear influence observed for the PM2.5 ratio relative 420 

to the temperature, however, there was a general low bias at all temperatures apart from mid-

temperature range of 5-15°C.  This agrees with results as reported by (Zimmerman, 2022) using Purple 

Air sensors where a clear influence at 80% RH was also observed and no influence from temperature. 

Implementing a statistical correction using RH values for these sensors could improve the accuracy of 

the measured PM2.5 values. We recommend further exploration on correction methods using RH in future 425 

research investigation. 

 

 
 

Figure 6: Relationships between (a) relative humidity (RH) and (b) temperature (T) and average Atmotube Pro 430 
Sensor/Reference PM2.5 ratio.  

 

 

3.4 Correction factor development 

 435 

Many studies have used multiple linear regression (MLR) calibration models that include temperature, 

RH and dew point to improve the PM2.5 data recorded by low-cost sensors (Badura et al., 2019; Barkjohn 

et al., 2021; Karaoghlanian et al., 2022; Malings et al., 2019; Raheja et al., 2023). In this section we 

explored the use of MLR using RH and temperature values to improve Atmotube Pro PM2.5 data. We 

tested using 15 minutes and 1-hour time resolution for the calibration model and assessed the model 440 

performance using R2 and RMSE. Given the results of investigating performance of PM2.5 

concentrations < 100 µgm-3 for the 15 minutes average data, we got improved performance as shown 

in Fig.5. 

 

 445 

 

 

 

 

 450 
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Table 4: Correction equation forms, the R2 and the RMSE. Best performing calibration equation is indicated as (*) 

a = slope; i = intercept.  455 
 

 Equation R2 RMSE 

Hourly averaged (full dataset) 
Linear S= a1 x PM2.5 + i 0.86 3.38 

+RH S= a1 x PM2.5 + a2 x RH + i 0.88* 3.05* 

+T S= a1 x PM2.5 + a2 x T + i 0.87 3.20 

15 minutes average (PM2.5 <100 µgm-3) 
Linear S= a1 x PM2.5 + i 0.73 3.97 

+RH S= a1 x PM2.5 + a2 x RH + i 0.79* 3.48* 

+T S= a1 x PM2.5 + a2 x T + i 0.78 3.53 

 

 

The addition RH and temperature values to the model improved the R2 value and decreased the RMSE 

value. However, the addition of T values only resulted in smaller improvement in the R2 and RMSE 460 

relative to using RH values. Similar improvement was also gained in higher resolution data at 

concentrations < 100 µg/m-3. We note that this result cannot be generalised, since the calibration is 

done at a single location in an urban background during the winter months. It is possible that warmer 

seasons or different influences on aerosol composition would require different calibration factors. 

 465 

4.0 CONCLUSION 

 

 We have conducted comprehensive inter-sensor and reference data comparisons for a set of 8 Atmotube 

Pro sensors in order to characterise their precision and bias at different levels of PM2.5 exposure. The 

research also explored the potential of identifying underperforming sensors within a network of low-cost 470 

sensors, particularly in situations where no reference-grade monitors are available. The study revealed 

the PM2.5 values from the Atmotube Pro sensors had reasonably good precision (CoV of 18%) indicating 

low inter-sensor variability of the sensors. The data cleaning method was successful in improving the inter-

sensor variability among the Atmotube Pro sensors. The sensor measurements also replicated 

measurements from a reference monitor well, with accuracy metrics ranging from; R2 (0.77-0.87), Slope 475 

(0.99 to 1.15), Intercept (-1.2 to -0.15) and error biases ranged below the recommended limits for low-cost 

sensors; RMSE (2.85to 5.2 µgm-3) and NRMSE (0.02 to 0.03%) based on the routinely used US-EPA 

guidelines. The sensors also showed a strong correlation with purple air sensor where R2 average value 

was 0.88 and an error bias (RMSE) of 2.9 µgm-3. Performance of Atmotube Pro sensors was also observed 

to have deteriorated at higher PM2.5 concentrations and improved at a coarser temporal resolution. Out of 480 

the 8 Atmotube Pro sensors used for the assessment, one sensor showed poorer performance with an r 

value range of 0.57-0.59 while the other sensors reported values above 0.9. The overall performance of 

the 8 Atmotube Pros used for the colocation study is summarized in Table 3. This study observed a 

precision uncertainty (SD) of 8.8 µgm-3 and an accuracy (RMSE) error of 3.7 ± 0.8 µgm-3 for hourly 

Atmotube Pro PM2.5 data and the chance of having a less reliable sensor in a group of sensors is ~10% 485 

(12.5% as the case in this study) and overall gives a useful information for local monitoring or citizen 

science use. Calibration using multiple linear regression model improved the performance of Atmotube 

Pro sensors. R2 improved from 0.86 to0.88 and RMSE decreased from 3.38 to 3.05 µg/m-3 when 

accounting for RH values. Future work may look at using multiple models in a longer-term colocation study 

and in multiple colocation sites to achieve a more robust calibration. It is worthwhile to note that Atmotube 490 

Pro sensors (used for both static and non-static PM2.5 measurements) are not “plug-and-play” as they 

require close monitoring and frequent data download to achieve good data recovery.  

  

 

 495 
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