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Abstract. Wildfires release large amounts of greenhouse gases into the atmosphere, exacerbating climate change and 

causing severe impacts on air quality and human health. Including carbon dioxide (CO2) emissions from wildfires in 

international assessments and national emission reduction responsibilities is crucial for global carbon reduction and 

environmental governance. In this study, based on a bottom-up approach and using satellite data, combined with emission 15 

factor and aboveground biomass data for different vegetation cover types (forest, shrub, grassland, cropland), the dynamic 

changes in CO2 emissions from wildfires in China from 2001 to 2022 were analyzed. The results showed that between 2001 

and 2022, the total CO2 emissions from wildfires in China were 693.7 Tg (1 Tg = 1012 g), with an annual average of 31.5 Tg. 

The CO2 emissions from cropland and forest fires were relatively high, accounting for 46% and 32%, respectively. The 

yearly variation in CO2 emissions from forest and shrub fires showed a significant downward trend, while emissions from 20 

grassland fires remained relatively stable. In contrast, the CO2 emissions from cropland fires showed a clear upward trend. 

High CO2 emissions from wildfires were mainly concentrated in the eastern regions of Heilongjiang and Inner Mongolia 

Provinces in China, accounting for 44% of the total annual emissions. Various factors such as daily cumulative sunshine 

hours (Spearman’s correlation coefficient, forest: -0.41, shrub:0.25; p < 0.001) and the normalized difference vegetation 

index (NDVI; Spearman’s correlation coefficient, forest: -0.35, shrub: 0.37; p < 0.001), influenced CO2 emissions from 25 

forest and shrub fires. Moreover, temperature (Spearman’s correlation coefficient, -0.45, p < 0.001) primarily affected CO2 

emissions from grassland fires. The CO2 emissions from cropland fires negatively correlated with the gross domestic product 

(GDP) (Spearman’s correlation coefficient, -0.52, p < 0.001) and population density (Spearman’s correlation coefficient, -

0.51, p < 0.001). China's policy management has been crucial in reducing CO2 emissions from wildfires. By accurately 

assessing CO2 emissions from wildfires, governments worldwide can better set CO2 reduction targets, take corresponding 30 

measures, and contribute to the global response to climate change. 

https://doi.org/10.5194/egusphere-2024-1684
Preprint. Discussion started: 27 June 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

1 Introduction 

To limit the global average surface temperature rise to 1.5 °C higher than preindustrial levels, carbon dioxide (CO2) 

emissions must reach net zero by mid-century through various pathways (Rogelj et al., 2018). Globally, wildfires reduce 

carbon storage in vegetation by approximately 10% from 2001 to 2012 (Lasslop et al., 2020). This significantly impacted the 35 

concentration of CO2 in the atmosphere (Langenfelds et al., 2002; Van Der Werf et al., 2004; Wotawa and Trainer, 2000). 

The global annual CO2 emissions from wildfires are approximately 6.5 to 11 billion tons, accounting for approximately one-

fifth of the global CO2 emissions from fossil fuels (Van Der Werf et al., 2010). However, the role of wildfires as a critical 

factor in carbon sequestration/sources is often overlooked. To mitigate climate change and fully understand the carbon 

exchange mechanisms between terrestrial ecosystems and the atmosphere, it is essential to consider the impacts of wildfire 40 

CO2 emissions on the Earth system (Chuvieco et al., 2019; Giglio et al., 2018; Kasischke et al., 1995; McGuire et al., 2001; 

Zhang et al., 2013). 

The significant differences in global wildfire CO2 emissions among countries highlight the complexity of wildfire CO2 

emissions. Extreme forest fires in several countries, such as Australia, Canada, and the United States, often release CO2 that 

exceeds the cumulative CO2 emissions of several years in the same region, significantly impacting the global climate and the 45 

environment. Boreal fires, which usually contribute 10% of global fire CO2 emissions, accounted for 23% in 2021 (0.48 

billion metric tons of carbon), marking the highest fraction since 2000 (Zhang et al., 2023). The unprecedented wildfires in 

Canada in 2023 released significant amounts of air pollutants and greenhouse gases into the atmosphere. Simulation results 

(Wang et al., 2023) have indicated that these wildfires emitted more than 1300 Tg CO2 and 140 Tg CO2 equivalent of other 

greenhouse gases, including CH4 and N2O. The greenhouse gas emissions associated with wildfires exceeded twice the 50 

planned cumulative anthropogenic emissions reductions in Canada over a decade. Shiraishi et al. (2021) used a bottom-up 

approach to estimate CO2 emissions from catastrophic fires in Australia between 2019 and 2020. The results showed that 

from March 2019 to February 2020, Australia's annual CO2 emissions were estimated to be 806 ± 69.7 Tg CO2 year-1, 

equivalent to 1.5 times its total greenhouse gas emissions (CO2 equivalent) in 2017. Phillips et al. (2022) reported that by the 

middle of this century, wildfires in northern North America could lead to a cumulative net source of approximately 12 billion 55 

tons of CO2, accounting for approximately 3% of the remaining global CO2 emissions, which is closely related to the 

temperature targets of the Paris Agreement. In the context of climate change, wildfires are becoming more frequent, and CO2 

emissions from wildfires are often influenced by human intervention. Phillips et al. (2022) found that increasing investment 

in fire management to avoid CO2 emissions is equivalent to or lower than other mitigation strategies. Therefore, changes in 

fire management may impact global atmospheric CO2 concentrations, and proactive management strategies effectively 60 

reduce CO2 emissions (Kelly et al., 2013; Phillips et al., 2022; Van Wees et al., 2021). However, CO2 emissions from 

wildfires are not included in international assessments or national emission reduction responsibilities. Including wildfire CO2 

emissions in international assessments and national emission reduction responsibilities is crucial for global carbon reduction 

and environmental governance. 

https://doi.org/10.5194/egusphere-2024-1684
Preprint. Discussion started: 27 June 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

China has released a large amount of wildfire emission inventory, but previous research on wildfire emissions in China 65 

has focused chiefly on small-scale and short-term periods (Cao et al., 2005; Huang et al., 2012; Qiu et al., 2016; Tian et al., 

2011; Wu et al., 2018). Wang et al. (2008) established an atmospheric pollutant emission inventory of cropland fires in 

China in 2006 using the emission factor method and analyzed its spatiotemporal distribution characteristics. Wu et al. (2018) 

estimated pollutant emission inventories from wildfires in central and eastern China from 2003 to 2015 using remote sensing 

images but did not include the heavily polluted northeast region. In addition, most studies have focused mainly on 70 

atmospheric pollutant emissions, with limited research on CO2 emissions (Jin et al., 2022; Wang et al., 2008; Xie et al., 2024; 

Yin et al., 2019). Xie et al. (2024) used the GEOS-Chem model to investigate the impact of cropland fires on severe haze 

events in Heilongjiang Province. They reported high uncertainty in the existing Global Fire Emissions Database (GFED) 

version 4.1 emission inventory. Van Der Werf et al. (2017) also noted substantial uncertainty in estimating wildfire 

emissions in existing emission inventories. Therefore, more work must be done to explore the long-term dynamics of 75 

wildfire emissions.  

This study estimated the CO2 emissions from wildfires, including forest, shrub, grassland, and cropland fires in China 

from 2001 to 2022. Also, it explored the factors that may affect the spatiotemporal changes in CO2 emissions from wildfires. 

The study results can provide high spatial resolution and long-term wildfire CO2 emission inventories, which can enhance 

the accuracy of models assessing the impacts of wildfires on air quality, climate, and human health. Furthermore, this study 80 

provides essential scientific support for air pollution control strategies and is a critical foundation for accurately evaluating 

CO2 emission reduction targets in various countries. 

2  Data and methods 

2.1 Study area 

China is located in the eastern part of the Eurasian continent on the west coast of the Pacific Ocean. It spans 85 

approximately 50 degrees (3-53 °N) from north to south and 60 degrees (73-135 °E) from east to west, with a land area of 

approximately 9.60 × 106 km2. There are differences in the distribution of cropland, grassland, shrubs, and forests in China. 

Croplands are mainly located in the eastern plains and coastal areas, such as Northeast (Heilongjiang, Jilin, and Liaoning), 

North (Hebei), and East (Shandong, Jiangsu) China, where the terrain is flat and suitable for agriculture. Grasslands are 

mainly distributed in North (such as Inner Mongolia and Xinjiang) and Southwest (such as the western Sichuan Plateau) of 90 

China, forming a vast grassland ecosystem. Shrubs are mainly distributed in mountainous and semiarid areas. Forests are 

mainly distributed in Northeast (Heilongjiang, Jilin, and Liaoning) and Southwest (Yunnan, Guizhou) China, which have 

abundant forest resources.  
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Figure 1: Regional divisions and vegetation distribution in China. 95 

2.2 Data 

The burned area data for wildfires with a spatial resolution of 500 m were sourced from MODIS-MCD64A1 burned 

area product (Giglio et al., 2018). The vegetation cover data were sourced from the China Land Use Land Cover Remote 

Sensing Monitoring Dataset (CNLUCC), with a spatial resolution of 30 m (Xu et al., 2018). A 1 km harvesting area dataset 

for three staple crops (e.g., corn, wheat, and rice) in China from 2000 to 2019 was obtained from Luo et al. (2020). 100 

Vegetation cover data were combined with fire area data to extract spatial data, including the time and geographic 

coordinates of fire occurrence, burned area, and vegetation cover types (corn, wheat, rice, grassland, shrub, and forest). The 

meteorological data were obtained from the Daily Meteorological Dataset of Essential Meteorological Elements of the China 

National Surface Weather Station (V3.0), and the spatial distribution of the meteorological data was calculated using the 

Kriging interpolation method in the ArcGIS 10.8 environment. The vegetation cover fraction was sourced from China's 105 
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regional 250 m fractional vegetation cover dataset (Gao et al., 2024a). The normalized difference vegetation index (NDVI) 

data were sourced from China's regional 250 m normalized difference vegetation index dataset (Gao et al., 2024b).  

2.3 Methods 

2.3.1 Emission factors 

The emission factor refers to the gas released per unit mass of dry combustible material during combustion, typically in 110 

grams per kilogram (g kg-1). This is a crucial parameter for calculating gas emissions during biomass burning, such as CO2, 

methane (CH4), and carbon monoxide (CO). Emission factors are influenced by various factors, including the combustibility 

of tree species, differences in vegetation cover types, and the intensity of flame combustion (Andreae and Merlet, 2001; Lü 

et al., 2006). To ensure the accuracy of the wildfire emission inventory as much as possible, it is essential to choose 

appropriate emission factors. This study comprehensively analyzed many studies in the literature to summarize the emission 115 

factors of CO2 generated by wildfires under different vegetation cover types, as listed in Table S1. Finally, the average 

values from the literature were selected as the emission factors of the different vegetation cover types. 

2.3.2 Aboveground biomass 

Previous studies have mainly used the aboveground biomass data from Fang et al. (1996) for forests. Forest 

aboveground biomass data in recent years need to be updated. In this study, the aboveground biomass data of shrubs and 120 

forests from 2001 to 2012 were obtained from Su et al. (2016). The data for 2013 to 2022 were obtained from Yan et al. 

(2023). Grassland aboveground biomass was calculated using the exponential model by Gao et al. (2012):  

𝐴𝐺𝐵𝑔𝑟𝑎𝑠𝑠 = 20.1921 × 𝑒
3.2154×(𝑁𝐷𝑉𝐼)         (1) 

where 𝐴𝐺𝐵𝑔𝑟𝑎𝑠𝑠 is the aboveground biomass of grassland (g m-²) based on the average NDVI value of the growing season. 

The aboveground biomass of cropland was obtained by multiplying the crop-specific yield per unit area by the straw-to-125 

product ratio. The crop-specific yield per unit area (rice, corn, wheat) was derived from the China Statistical Yearbook, 

while the crop-specific yield per unit area of other crops was defined as the average of rice, corn, and wheat. The straw-to-

product ratios for rice, wheat, corn, and other major crops were 1.323, 1.718, 1.269, and 1.5, respectively (Technical 

Guidelines for Compiling Emission Inventory of Air Pollutants from Biomass Combustion Sources, 2015). 

2.3.3 Combustion efficiency 130 

The combustion efficiency of biomass is an essential factor affecting the accuracy of wildfire CO2 emission estimates. It 

is influenced by the intensity of fires, wildfire type, moisture content and load of combustibles, and meteorological 

conditions. Hély et al. (2003) established an empirical relationship between combustion efficiency and vegetation cover 

fraction (FVC). This relationship was applied in this study to the combustion efficiency calculation for forests, shrubs, and 

grasslands. 135 
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𝐶𝐹 =

{
 
 

 
 
0.98                                                       𝑖𝑓 40% ≤ 𝐹𝑉𝐶  𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 

𝑒𝑥𝑝(−0.13 × 𝐹𝑉𝐶)            𝑖𝑓 40% < 𝐹𝑉𝐶 ≤ 60% 𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑

𝑒𝑥𝑝(−1.3 ×  𝐹𝑉𝐶)                   𝑖𝑓 𝑇𝑐  ≤ 60% 𝑓𝑜𝑟 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑛𝑑 𝑠ℎ𝑟𝑢𝑏
0.25                                                               𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑓𝑜𝑟𝑒𝑠𝑡
0.3                                                                   𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑠ℎ𝑟𝑢𝑏
0.9                                                           𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑

     (2) 

where CF is the combustion efficiency, and FVC is the vegetation cover fraction. The combustion efficiencies of corn, wheat, 

and rice were obtained from Zhou et al. (2017), with values of 0.92, 0.92, and 0.93, respectively. The combustion efficiency 

of other crops was taken as the average value for corn, wheat, and rice (i.e., 0.923). 

2.3.4 CO2 emission estimation 140 

Using a bottom-up approach to estimate China's wildfire CO2 emissions inventory, the wildfire CO2 emissions are 

calculated using the following formula for forest, shrubs, and grasslands: 

𝐸𝑖 = ∑ 𝐵𝐴𝑥,𝑖  × 𝐴𝐺𝐵𝑥,𝑖  × 𝐶𝐹𝑖𝑥,𝑖  × 𝐸𝐹𝑖         (3) 

where the subscripts x and i represent the location and vegetation cover type, respectively. 𝐸𝑖 represents the CO2 emission, 

𝐵𝐴𝑥,𝑖 is the burned area (ha), 𝐴𝐺𝐵𝑥,𝑖  is the aboveground biomass (t ha-1), and 𝐸𝐹𝑖 is the emission factor. 𝐶𝐹𝑖 is the 145 

combustion efficiency. 

For cropland fires, cropland was further divided into four categories: rice, wheat, corn, and others. The specific 

calculation formula is as follows: 

𝐸𝑗= ∑ 𝐵𝐴𝑥,𝑗  ×  𝐵𝑥,𝑗  × 𝑁𝑗 × 𝐶𝐹𝑗𝑥,𝑗   × 𝐸𝐹𝑗          (4) 

where the subscripts x and j represent the location and type of crop, respectively. 𝐸𝑗  represents the CO2 emissions, 𝐵𝐴𝑥,𝑗 is 150 

the burned area, 𝐵𝑥,𝑗  is the per hectare yield of crop type j at location x, 𝑁𝑗 is the straw-to-product ratio, 𝐸𝐹𝑗  is the emission 

factor, and 𝐶𝐹𝑗  is the combustion efficiency. 

3 Results and discussion 

3.1 Interannual Variation in CO2 Emissions 

The total CO2 emissions from wildfires in China from 2001 to 2022 were 693.7 Tg, with an average annual value of 155 

31.5 Tg, accounting for 0.46% of the total global emission of All fire types (GFED4, all fire types mean of 7140 Tg from 

2001 to 2022, Van Der Werf et al., 2017), and 0.52% of China's fossil fuel emission (approximately 6400 Tg, Shan et al., 

2017). CO2 emissions from wildfires in China were relatively low, decreasing slowly by 0.43 Tg per year (Fig. 2a). CO2 

emissions from cropland and forest fires were relatively high, accounting for 46% and 32%, respectively; shrub fires 

emissions account for 20%, while grassland fire emissions were the lowest, accounting for only 2% (Fig. 2b). 160 
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Figure 2: (a) Annual CO2 emissions within specific vegetation cover types from 2001 to 2022 in China; (b) Contribution of 

different vegetation cover types to the total CO2 emissions from 2001 to 2022 in China. 

The annual CO2 emissions from different types of fires showed varying temporal trends. The downward trend for forest 

and shrub emissions was significant, with a decrease of 0.63 and 0.33 Tg per year, respectively (Fig. 3a and 3b). Such a 165 

decline may reflect effective forestry management strategies for forest and shrub fires. In contrast, cropland emissions 

showed a clear upward trend, with an annual increase of 0.63 Tg (Fig. 3c). This may be related to an increase in agricultural 

activities, changes in land use, or an increase in cultivation intensity. The emission trend for grassland was relatively stable 

(Fig. 3d), which might be influenced by a combination of ecological and anthropogenic factors. 
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 170 

Figure 3: Time series of CO2 emissions for different vegetation cover types from 2001 to 2022 in China: (a) Forest, (b) Shrub, (c) 

Grassland, (d) Cropland. 

3.2 Monthly Variation in CO2 Emissions 

The CO2 emissions from different vegetation cover types showed significant seasonal fluctuations, with certain months 

showing higher emissions than others. Wildfires had lower CO2 emissions in July and August, which may correspond to the 175 

respective wet seasons. Wet conditions usually reduce the occurrence rate of fires (Fig. 4). Forest, shrub, and grassland fires 

had higher emissions in February, March, and April, possibly related to the dry weather and accumulation of combustible 

materials in spring, increasing the risk of fires. Cropland fires showed significant emission peaks in April, May, and June. 

This pattern may be related to specific agricultural activity (such as plowing, sowing, and harvesting) cycles, as cropland 

fires often occur after harvest when crop residues are burned to prepare for the next planting season. The spatial distribution 180 

of forest, shrub, and grassland fire emissions were relatively similar among the different months (Figs. S1-S3). In contrast, 
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the spatial distribution of emissions from cropland fires varied significantly across different months and was likely 

influenced by policy management (Fig. 5). The high emissions of cropland fires in March and April mainly originated from 

Heilongjiang and Jilin Provinces. The high emissions of cropland fires in May and June mainly came from the Anhui, Henan, 

and Jiangsu Provinces. 185 

 

Figure 4: Box plots of CO2 emissions for specific vegetation cover types per month from 2001 to 2022 in China, showing the 

median (black line), mean (box), and the range within 1.5 times the interquartile range (IQR): (a) Forest, (b) Shrub, (c) Grassland, 

(d) Cropland. 
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 190 

Figure 5: Spatial distribution of monthly CO2 emissions within cropland fires from 2001 to 2022 in China: (a) March, (b) April, (c) 

May, and (d) June. 

3.3 Spatiotemporal Variations in CO2 Emissions 

Due to differences in geographical location, climate conditions, and population density, the spatiotemporal distribution 

of CO2 emissions in each region exhibits heterogeneity (Fig. 6). Overall, the emissions in the northwestern region of China 195 

were relatively low. The significant areas with higher emissions were mainly concentrated in China's eastern and central 

regions (Fig. 6a). The areas with high CO2 emissions from forest fires were mainly in the northeast and southwest regions 

(Fig. 6b). The distribution of high CO2 emissions from shrub fires was relatively scattered. However, there were some 

concentrated high-emission areas in the western and northeastern regions (Fig. 6c). The emissions from grassland fires were 
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generally low and were mainly concentrated in Northeastern China (Fig. 6d). The high-value areas of CO2 emissions from 200 

cropland fires were mainly concentrated in eastern China (Fig. 6e). 

The results of the global spatial autocorrelation analysis of CO2 emissions from wildfires are shown in Table 1. Under 

different wildfires, the p values were all less than 0.01, with a confidence level of 99%; the Moran's I values were all positive, 

with a Z score greater than 2.58, indicating a significant positive spatial autocorrelation of CO2 emissions from wildfires, 

exhibiting an aggregation pattern in spatial distribution. 205 

Table 1. Global spatial autocorrelation statistics of CO2 emissions 

Vegetation cover type Moran’s I Z P Clustering pattern 

Forest 0.052 5.072 0.000 Cluster 

Shrub 0.118 8.961 0.000 Cluster 

Grassland 0.064 6.632 0.000 Cluster 

Cropland 0.281 20.414 0.000 Cluster 

All 0.110 8.894 0.000 Cluster 

 

 

Figure 6: Average annual spatial distribution of CO2 emissions in China from 2001 to 2022: (a) all fire types, (b) Forest, (c) Shrub, 

(d) Grassland, and (e) Cropland. 210 

The hotspot analysis of wildfire CO2 emissions investigated the specific spatial clustering of CO2 emissions, as shown 

in Figure 7. In general, the high values of CO2 emissions were mainly concentrated in the eastern regions of Heilongjiang 

and Inner Mongolia Provinces in China from 2001 to 2022, with annual emissions accounting for 44% of the total annual 
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emissions (Fig. 7a). There was only one high-value aggregation area for forest fires and grassland fires, which is similar to 

the spatial distribution of total emissions (Fig. 7b and Fig. 7d). The average annual emissions of high-value aggregation 215 

areas accounted for 53% and 64% of the total annual emissions, respectively. There were two high-value clusters of shrub 

fires, one in the eastern regions of Heilongjiang and Inner Mongolia Provinces and the other in the southwestern forest areas, 

with annual emissions accounting for 25.82% and 40% of the total emissions, respectively (Fig. 7c). There were also two 

high-risk areas for cropland fires, one in the eastern regions of Heilongjiang and Inner Mongolia Provinces and the other in 

the eastern and central regions of China, mainly including Shandong, Henan, Anhui, and Jiangsu (Fig. 7e). The average 220 

annual emissions accounted for 43% and 48% of the total emissions, respectively. It is worth noting that northeastern China 

is marked as a high-confidence hotspot area among all fire types, which may indicate the long-term existence of high CO2 

emissions in the region. 

 

Figure 7: Spatial distribution of CO2 emission hotspots from 2001 to 2022 in China: (a) all fire types, (b) Forest, (c) Shrub, (d) 225 
Grassland, and (e) Cropland. 

For emissions from different vegetation cover types, some years and regions exhibit unexpectedly high emissions, 

potentially caused by special events such as abnormal climate conditions, human activities, and fire management. Figure 8 

shows the time series of high-emission regions under the different vegetation cover types from 2001 to 2022. Extreme forest 

fires occurred in Heilongjiang and Inner Mongolia Provinces in 2003, and the total emissions of these two provinces 230 

accounted for 73% of the total emissions in 2003 (Fig. 8a). The high emissions in 2008 were due to forest fires in Inner 

Mongolia, which accounted for 47% of the total emissions in 2008. Shrub fire emissions peaked in 2003 and 2010 (Fig. 8b). 
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The emissions in 2003 occurred mainly in Yunnan, Inner Mongolia, and Heilongjiang, with the total emissions from these 

three provinces accounting for 63% of the total emissions. The emissions in 2010 occurred mainly in Yunnan and Guizhou, 

accounting for 78% of the total emissions in 2010. Grassland fire emissions also peaked in 2003 and 2008, with the 2003 235 

main emission areas being Inner Mongolia and Heilongjiang, accounting for 85% of the total emissions for that year. Inner 

Mongolia was the central emission region in 2008, accounting for 62% of the total emissions for that year (Fig. 8c). Human 

activities and fire management may affect cropland fire emissions more significantly, resulting in more significant variability 

in CO2 emissions across provinces (Fig. 8d). Heilongjiang Province had relatively low emissions from 2001 to 2013, with 

emissions increasing and trending upward from 2014, where the annual average emissions from 2014 to 2022 were five 240 

times greater than the annual average emissions from 2001 to 2013. The primary emission years for the Anhui and Henan 

Provinces were between 2006 and 2014, with emissions decreasing after 2015. The emission trend in Jilin Province was 

similar to that in Heilongjiang Province, with higher emissions in recent years. In other regions, CO2 emissions from 

cropland fires were relatively high before 2012. After the implementation of China's strict ban on open-air biomass burning 

in 2012, emissions decreased, showing an overall downward trend. 245 
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Figure 8: Time series of CO2 emissions in major regions under different vegetation cover types from 2001 to 2022 in China: (a) 

Forest, (b) Shrub, (c) Grassland, and (d) Cropland. 

The spatial distribution of CO2 emissions changes over different periods from 2001 to 2022 (Fig. 9). The average 

annual CO2 emission from 2001 to 2005 was 28.7 Tg, with CO2 emission mainly concentrated in the eastern region of China 250 

(Fig. 9a). The average annual emissions from Heilongjiang and Inner Mongolia accounted for 42% of the total annual 

emissions. Compared with 2001-2005, the average annual CO2 emissions increased from 2006 to 2010 (39.8 Tg), and the 

high-emission areas increased (Fig. 9b). High emissions still existed in Heilongjiang and Inner Mongolia in the east. 

However, other provinces, such as Anhui and Henan, began to show higher emissions, mainly due to an increase in cropland 

fires in these provinces (Figs. S4-S7). The average annual CO2 emissions decreased from 2011 to 2015 (34.9 Tg). Forest fire 255 
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emissions in Heilongjiang and Inner Mongolia decreased, while cropland fire emissions increased (Figs. S4-S7). High CO2 

emissions from cropland fires still occurred in provinces such as Anhui and Henan (Fig. 9c). The average annual CO2 

emissions from 2016 to 2022 were the lowest of the four time periods (24.4 Tg), with an overall decrease in CO2 emissions 

from forest, shrub, and grassland fires (Fig. 9d). CO2 emissions from cropland fires in various provinces, such as Anhui and 

Henan, decreased, while high emissions from cropland fires in the eastern regions of Heilongjiang, Inner Mongolia, and Jilin 260 

still existed. The average annual emissions from Heilongjiang, Jilin, and Inner Mongolia accounted for 80% of the total 

annual emissions. 

 

Figure 9: Spatial distribution of annual CO2 emissions for all types of fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, 

and (d) 2016 to 2022. 265 
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3.4 The impact of factors on wildfires in China 

The factors influencing CO2 emissions from wildfires are numerous and complex. The Spearman correlation coefficient 

method was utilized to analyze the connection between CO2 emissions from wildfires in China and various climate factors, 

such as temperature, precipitation, relative humidity, wind speed, sunshine, and vegetation factors, including vegetation 

primary productivity and the NDVI. Additionally, the gross domestic product (GDP) and population density were taken into 270 

account (Fig. 10). The main factors influencing CO2 emissions from forest and shrub fires were daily cumulative sunshine 

hours (forest:-0.41, shrub:0.25; p < 0.001) and NDVI (forest:-0.35, shrub:0.37; p < 0.001), while the main factor affecting 

CO2 emissions from grassland fires was temperature (-0.45, p < 0.001) (Fig. 10a-c). Cropland fires, influenced by human 

activities, showed a specific negative correlation with GDP (-0.52, p < 0.001) and population density (-0.51, p < 0.001). At 

the same time, other factors had relatively small impacts (Fig. 10d). An increase in GDP and population density was often 275 

accompanied by better agricultural technology and management practices, including more effective management alternatives 

to straw burning. Furthermore, changes in fire management may impact CO2 emissions from wildfires (Gao et al., 2023; Jin 

et al., 2022; Kelly et al., 2013; Phillips et al., 2022; Van Wees et al., 2021; Xie et al., 2024). Phillips et al. (2022) found that 

the cost of avoiding CO2 emissions by increasing investment in fire management is comparable to or lower than that of other 

mitigation strategies. China's policies have also significantly reduced CO2 emissions from opening biomass burning fires. 280 

Since the forest fire broke out in the Greater Khingan Mountains region of China on May 6, 1987, China has implemented a 

forest fire prevention and control policy of "prevention first, active elimination." Subsequently, local governments have 

introduced specific policies on forest, shrub, and grassland fire prevention, successfully reducing the occurrence of forest 

and shrub fires in China. The research in this paper also showed that the trend in CO2 emissions from forest and shrub fires 

had decreased significantly since 2001 (Fig. 3a and 3b). Moreover, Jin et al. (2022) reported that from 2001 to 2019, 285 

compared with those of natural wildfires (without strict wildfire management), the average CO2 emissions generated by 

wildfires (forest, shrub, and grassland fires) under management policies decreased by more than 80%.  

Table 2 Driving factors and sources 

Driving factors Abbreviation Source 

Punctual temperature tmp  

Daily meteorological dataset of essential 

meteorological elements of China National 

Surface Weather Station (V3.0) 

 

Relative humidity rh 

Accumulated precipitation  pre 

Wind speed (2 m) win 

Daily cumulative sunshine hours ssd 

Vegetation primary productivity NPP MODIS MOD17A3 

Normalized Difference Vegetation 

Index 

NDVI National Qinghai Tibet Plateau Science 

Data Center 

Gross domestic product GDP Chen et al. (2022) 
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Population density Pop_den LandScan 

Global(https://landscan.ornl.gov/) 

 

Figure 10: Heatmap of Spearman’s correlation coefficients between pairs of variables: (a)forest; (b) shrub; (c) grassland; (d) 290 
cropland) See Table 2 for variable descriptions. 

3.5 Implications 

The burning of agricultural straw in China is a long-standing phenomenon, where burning straw is a traditional method 

for farmers to deal with waste straw after harvest. In recent years, the frequent occurrence of haze weather has seriously 

impacted people's production and life. Consequently, the government has introduced multiple policies to strengthen air 295 

quality and straw management. Since 2012, following the implementation of policies for air pollution prevention and control, 
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CO2 emissions from cropland fires have decreased (Fig. 7d). However, some provinces, such as Heilongjiang and Jilin, have 

had higher emissions since 2012 and are on an upward trend (Fig. 7d). In the northeastern region, a large amount of straw is 

used as the primary non-commercial energy source, leading to serious straw burning issues. Cropland fires in Northeast 

China mainly occur during the harvest and crop sowing seasons, with peak burning periods in October-November and 300 

March-April. Although China has recently prohibited open-air straw burning, this phenomenon persists, indicating that crop 

straw remains the primary fuel and waste of rural residents. More research is needed to develop new solutions for the 

sustainable utilization of crop straw in the northeast region, which may help achieve the dual goals of improving air quality 

and mitigating climate change. 

This study holds great significance for atmospheric pollution control management. First, the high spatial resolution and 305 

long time series of wildfire CO2 emissions provide accurate input data for simulating the effects of wildfires on air quality, 

climate, and human health. This helps to gain a deeper understanding of the impact mechanism of wildfires on the 

atmospheric environment, providing a reliable foundation for related research. Second, this research has a direct impact on 

global climate governance. The natural process of carbon emissions from wildfires is essential to the global carbon cycle, 

with prominent human intervention and control properties. Reducing wildfire carbon emissions is also a potential means of 310 

reducing global carbon emissions. However, the current international assessment and national emission reduction 

responsibilities do not include wildfire carbon emissions or consider measures such as reducing wildfire frequency and 

intensity through wildfire management. By accurately assessing CO2 emissions from wildfires, governments worldwide can 

better set CO2 reduction targets, take corresponding response measures, and contribute to the global response to climate 

change. 315 

4 Conclusion 

Based on a bottom-up approach and using MODIS fire products combined with emission factors of different wildfires 

(forest, shrub, grassland, cropland), the dynamic changes in CO2 emissions in China from 2001 to 2022 were analyzed. 

Overall, during this period, the total CO2 emissions from wildfires in China amounted to 693.7 Tg, with average annual 

emissions of 31.5 Tg. The CO2 emissions from cropland and forest fires were relatively high, accounting for 46% and 32%, 320 

respectively; Shrub fire emissions accounted for 20%, while grassland fire emissions were the lowest, accounting for only 

2%. The study revealed that emissions from forest and shrub fires exhibited a significant downward trend. In contrast, 

emissions from grassland fires remained relatively stable, and cropland fire emissions showed a noticeable upward trend. 

The emissions also showed different characteristics in different months, with generally lower emissions from all types of 

fires in July and August. Forest, shrub, and grassland fires had higher emissions in February, March, and April, and cropland 325 

fire emissions peaked in April, May, and June, possibly correlated with specific agricultural activities. Spatially, high CO2 

emissions were primarily concentrated in the eastern regions of Heilongjiang and Inner Mongolia, accounting for 44% of the 

annual average total emissions. Northeast China was also identified as a high-confidence hotspot, indicating long-term high 
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CO2 emissions. Human activities significantly influence CO2 emissions from cropland fires. Emissions negatively correlated 

with GDP (-0.52) and population density (-0.51). Various factors, such as accumulated sunshine hours (-0.41, p < 0.001) and 330 

the NDVI (-0.35, p < 0.001), mainly influenced emissions from forest and shrub fires, while temperature (-0.45, p < 0.001) 

primarily affected emissions from grassland fires. China's policy management has been crucial in reducing CO2 emissions 

from wildfires. By accurately assessing CO2 emissions from wildfires, governments worldwide can better set CO2 reduction 

targets, take corresponding response measures, and contribute to the global response to climate change. 
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