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1 Statistical methods 

The Mann-Kendall trend test is a non-parametric statistical method widely used for analyzing trends in time series data. This 

method does not require data to follow a specific distribution, making it particularly suitable for environmental science and 

meteorology fields. The calculation formula for the Mann-Kendall trend test is as follows: 15 
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where n is the total number of data points, 𝑥𝑗  and 𝑥𝑘 are numerical values in the time series, ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘)𝑛
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sign function of the difference between 𝑥𝑗  and 𝑥𝑘. Based on the statistic S, the standardized statistic Z of Mann Kendall can 

be calculated, as follows: 

𝑍(𝑆)  =  
𝑆 −  𝐸(𝑆)

√𝑉𝐴𝑅(𝑆)
 20 

where E(S) and VAR(S) are the expected value and variance of the statistical measure S. By using the Z-value, we can 

determine the trend direction and significance in the time series. When the Z value is greater than the critical value, it indicates 

a significant upward trend; When the negative value of Z is less than the critical value, it indicates a significant downward 

trend. If the Z value is near zero, the time series has no significant trend. The significance of the trend is verified through a p-

value, which represents the probability that the observed trend is generated by a random process. Commonly used significance 25 

levels include 90%, 95%, and 99%. 

Spatial autocorrelation analysis usually uses Anselin's Moran's I index and Getis coefficient as basic measures, which can 

reflect the statistical correlation of specific attribute values in space (Anselin et al.,1995). The calculation formula is as follows: 
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where I is the Global Moran's I index, n is the total number of spatial elements. This study is calculated in units of Chinese 30 

prefecture-level cities, which is the total number of Chinese prefecture-level cities. (𝑥𝑖 − �̅�) and (𝑥𝑗 − �̅�) are the error between 

the observed values and the average values of specific attribute values on the ith and jth geographic space units, respectively. 

𝑥𝑖 is the observed value, which is the CO2 emissions of each geographic space unit. �̅� is the average value of 𝑥𝑖, 𝑤𝑖𝑗 is the 

weight matrix for the adjacency relationships between geographical units. The Moran's I index is between -1 and 1. When I>0, 

it indicates a positive correlation between spatial elements, and when I<0, it indicates a negative correlation between spatial 35 

elements; When I=0, it indicates no spatial correlation, meaning that the space is randomly distributed. Similar to Mann 

Kendall, the calculation results are tested using a z-value. 

Spearman correlation coefficient is a non-parametric statistical method used to measure the strength and direction of non-linear 

relationships between two variables. It is based on the rank of two variables rather than the specific values of the original data, 

so it has good robustness for datasets that do not meet the assumption of normal distribution or have outliers. When the 40 

correlation coefficient is 1, it indicates a perfect positive monotonic relationship between the two variables. The correlation 

coefficient of -1 signifies a perfect negative monotonic relationship. A correlation coefficient of 0 suggests no monotonic 

relationship between the two variables. Spearman correlation coefficients are commonly used to process rank data, such as 

ranking data, or for correlation analysis in small sample sizes where the assumption of normal distribution is difficult to satisfy.  

Table S1 CO2 emission factors of different vegetation cover types in China 45 

Paper Species Emission factor（g/kg） 

Akagi et al. (2011) Forest 1710 ± 39 

Burling et al. (2011) Forest 1668 ± 72 

Prichard et al. (2020) Conifer forest 1576 ± 248 

Prichard et al. (2020) Mixed forest 1650 ± 61 

Jin et al. (2022) Forest 1392.54 ± 248.53 

Prichard et al. (2020) Shrub 1708 ± 192 

Jin et al. (2022) Shrub 1487.8 ± 18.05 

Akagi et al. (2011) Savanna 1565 ± 159 

Prichard et al. (2020) Grass 1686 ± 81 

Jin et al. (2022) Grass 1465.84 ± 60.45 

Cao et al. (2008) Wheat 1377 ± 431 

Sahai et al. (2007) Wheat 1130 

Zhang et al. (2008) Wheat 791.3 

Wang et al. (2009) Wheat 911.65 ± 105 
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Cao et al. (2008) corn 1327 ± 710 

Wei et al. (2012) corn 959 

Wang et al. (2009) corn 1265.4 ± 91.2 

Cao et al. (2008) rice 1674 ± 452 

Zhang et al. (2008) rice 791 ± 12.5 

Wang et al. (2009) rice 976.8 ± 58.5 

Table S2 Main emission regions in high emission years under different vegetation cover types 

vegetation 

cover type 

year Total 

emissions(Tg) 

Main emissions 

 regions 

The proportion of major 

regions in the total emissions 

of the year 

Forest 2003 34.4 Heilongjiang, Inner 

Mongolia 

77.0% 

Forest 2008 40.3 Inner Mongolia 50.3% 

Shrub 2003 14.0 Yunnan, Inner Mongolia, 

Heilongjiang 

69.9% 

Shrub 2010 18.2 Yunnan, Guizhou 87.4% 

Grassland 2003 1.7 Inner Mongolia, 

Heilongjiang 

89.9% 

Grassland 2008 1.3 Inner Mongolia 72.0% 

Cropland 2012 25.4 Anhui 48.4% 

Cropland 2014 30.2 Heilongjiang 47.8% 

Cropland 2015 22.8 Heilongjiang 57.1% 

Cropland 2017 25.8 Heilongjiang 70.0% 
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Figure S1: Spatial distribution of monthly CO2 emissions within forest fires from 2001 to 2022 in China: (a) February, (b) March, 

(c) April, and (d) May. 
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Figure S2: Spatial distribution of monthly CO2 emissions within shrub fires from 2001 to 2022 in China: (a) February, (b) March, 

(c) April, and (d) May. 
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Figure S3: Spatial distribution of monthly CO2 emissions within grassland fires from 2001 to 2022 in China: (a) February, (b) March, 

(c) April, and (d) May. 55 
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Figure S4: Spatial distribution of annual CO2 emissions for forest fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, and 

(d) 2016 to 2022. 
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Figure S5: Spatial distribution of annual CO2 emissions for shrub fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, and 60 
(d) 2016 to 2022. 
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Figure S6: Spatial distribution of annual CO2 emissions for grassland fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, 

and (d) 2016 to 2022. 
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Figure S7: Spatial distribution of annual CO2 emissions for cropland fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, 

and (d) 2016 to 2022. 
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