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Abstract. Wildfires release large amounts of greenhouse gases into the atmosphere, exacerbating climate change and causing 

severe impacts on air quality and human health. Including carbon dioxide (CO2) emissions from wildfires in international 15 

assessments and national emission reduction responsibilities is crucial for global carbon reduction and environmental 

governance. In this study, based on a bottom-up approach and using satellite data, combined with emission factor and 

aboveground biomass data for different vegetation cover types (forest, shrub, grassland, cropland), the dynamic changes in 

CO2 emissions from wildfires in China from 2001 to 2022 were analyzed. The results showed that between 2001 and 2022, 

the total CO2 emissions from wildfires in China were 937.7693.7 Tg (522.6-1516.0 Tg, 1 Tg = 1012 g), with an annual average 20 

of 42.631.5 Tg (23.8-68.9 Tg). The CO2 emissions from cropland and forest fires were relatively high, accounting for 4645% 

and 4632% of the total, respectively. The yearly variation in CO2 emissions from forest and shrub fires showed a significant 

downward trend, while emissions from grassland fires remained relatively stable. In contrast, the CO2 emissions from cropland 

fires showed an clear upward trend, primarily in Northeast China. Hotspot analysis and Geographically and Temporally 

Weighted Regression (GTWR) models revealed significant spatial heterogeneity in emissions across vegetation types. 25 

Persistent hotspots of shrub and forest fires were located in Southwest and South China, while Northeast China experienced 

sporadic but extreme fire events. The GTWR model for shrub fire CO2 emissions exhibited the highest predictive performance 

(R2 = 0.87) and climatic factors (particularly temperature and humidity) were the main influencing factors. Notably, the recent 

rise in cropland fire CO2 emissions in Northeast China is closely linked to region-specific straw burning policies. The research 

results provide valuable references for atmospheric transport models, regional fire management, and national carbon 30 

accounting frameworks in the context of climate change.High CO2 emissions from wildfires were mainly concentrated in the 

eastern regions of Heilongjiang and Inner Mongolia Provinces in China, accounting for 44% of the total annual emissions. 
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Various factors such as daily cumulative sunshine hours (Spearman’s correlation coefficient, forest: -0.41, shrub:0.25; p < 

0.001) and the normalized difference vegetation index (NDVI; Spearman’s correlation coefficient, forest: -0.35, shrub: 0.37; 

p < 0.001), influenced CO2 emissions from forest and shrub fires. Moreover, temperature (Spearman’s correlation coefficient, 35 

-0.45, p < 0.001) primarily affected CO2 emissions from grassland fires. The CO2 emissions from cropland fires negatively 

correlated with the gross domestic product (GDP) (Spearman’s correlation coefficient, -0.52, p < 0.001) and population density 

(Spearman’s correlation coefficient, -0.51, p < 0.001). China's policy management has been crucial in reducing CO2 emissions 

from wildfires. By accurately assessing CO2 emissions from wildfires, governments worldwide can better set CO2 reduction 

targets, take corresponding measures, and contribute to the global response to climate change. 40 

1 Introduction 

To limit the global average surface temperature rise to 1.5 °C higher than preindustrial levels, carbon dioxide (CO2) 

emissions must reach net zero by mid-century through various pathways (Rogelj et al., 2018). Globally, wildfires reduced 

carbon storage in vegetation by approximately 10% from 2001 to 2012 (Lasslop et al., 2020). This significantly impacted the 

concentration of CO2 in the atmosphere (Langenfelds et al., 2002; Van van Der der Werf et al., 2004; Wotawa and Trainer, 45 

2000). The global annual CO2 emissions from wildfires are approximately 6.5 to 11 billion tons, accounting for approximately 

one-fifth of the global CO2 emissions from fossil fuels (Van Der Werf et al., 2010). According to Global Wildfire Information 

System data compiled by Our World in Data (Our World in Data, 2025), global wildfire CO2 emissions have increased since 

2020, fluctuating between 5 and 7 Gt CO2 per year (1 Gt = 1015 g), with record-high levels observed in 2021 and 2023. However, 

the role of wildfires as a critical factor in carbon sinkssequestration and /sources is often overlooked. To mitigate climate 50 

change and fully understand the carbon exchange mechanisms between terrestrial ecosystems and the atmosphere, it is essential 

to consider the impacts of wildfire CO2 emissions on the Earth system (Chuvieco et al., 2019; Giglio et al., 2018; Kasischke 

et al., 1995; McGuire et al., 2001; Zhang et al., 2013). 

The significant differences in global wildfire CO2 emissions among countries highlight the complexity of wildfire CO2 

emissions. Extreme forest fires in several countries, such as Australia, Canada, and the United States, often release CO2 that 55 

exceeds the cumulative CO2 emissions of several years in the same region, significantly impacting the global climate and the 

environment. Boreal fires, which usually contribute 10% of global fire CO2 emissions, accounted for 23% in 2021 (0.48 Gt C 

billion metric tons of carbon), marking the highest fraction since 2000 (Zhang et al., 2023). The unprecedented wildfires in 

Canada in 2023 released significant amounts of air pollutants and greenhouse gases into the atmosphere. Simulation results 

(Wang et al., 2023) have indicated that these wildfires emitted more than 1.300 Tg  Gt CO2 and 0.140 GtTg CO2 equivalent of 60 

other greenhouse gases, including CH4 and N2O. The greenhouse gas emissions associated with wildfires exceeded twice the 

planned cumulative anthropogenic emissions reductions in Canada over a decade. Shiraishi et al. (2021) used a bottom-up 

approach to estimate CO2 emissions from catastrophic fires in Australia between 2019 and 2020. The results showed that from 

March 2019 to February 2020, Australia's Australia’s annual CO2 emissions were estimated to be 806 ± 69.7 Tg (1 Tg = 1012 
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g)Tg CO2 year-1, equivalent to 1.5 times its total greenhouse gas emissions (CO2 equivalent) in 2017. Phillips et al. (2022) 65 

reported that by the middle of this century, wildfires in northern North America could lead to a cumulative net source of 

approximately 12 Gtbillion tons of CO2, accounting for approximately 3% of the remaining global CO2 emissions, which is 

closely related to the temperature targets of the Paris Agreement. In the context of climate change, wildfires are becoming 

more frequent, and CO2 emissions from wildfires are often influenced by human intervention. Phillips et al. (2022) found that 

increasing investment in fire management to avoid CO2 emissions is equivalent to or lower than other mitigation strategies. 70 

Therefore, changes in fire management may impact global atmospheric CO2 concentrations, and proactive management 

strategies effectively reduce CO2 emissions (Kelly et al., 2013; Phillips et al., 2022; Van Wees et al., 2021). Despite the 

growing importance of wildfire CO2 emissions in climate change, such emissions are often excluded from international climate 

frameworks, including national inventories under the United Nations Framework Convention on Climate Change (UNFCCC), 

due to their classification as “natural disturbances” in the Intergovernmental Panel on Climate Change (IPCC) guidelines for 75 

Land-Use Change and Forestry (LULUCF) (IPCC, 2019). However, CO2 emissions from wildfires are not included in 

international assessments or national emission reduction responsibilities. Including wildfire CO2 emissions in international 

assessments and national emission reduction responsibilities is crucial for global carbon reduction and environmental 

governance. 

China has released numerous a large amount of wildfire emission inventory, but previous research on wildfire emissions 80 

in China has focused chiefly on small-scale regions and short-term periods (Cao et al., 2005; Huang et al., 2012; Qiu et al., 

2016; Tian et al., 2011; Wu et al., 2018). Wang and Zhaoet al. (2008) established an atmospheric pollutant emission inventory 

of cropland fires in China in 2006 using the emission factor method and analyzed its spatiotemporal distribution characteristics. 

Wu et al. (2018) estimated pollutant emission inventories from wildfires in central and eastern China from 2003 to 2015 using 

remote sensing images but did not include the heavily polluted northeast region. In addition, most studies have focused mainly 85 

on atmospheric pollutant emissions, with limited research on CO2 emissions (Jin et al., 2022; Wang et aland Zhao., 2008; Xie 

et al., 2024; Yin et al., 2019). Xie et al. (2024) used the GEOS-Chem model to investigate the impact of cropland fires on 

severe haze events in Heilongjiang Province. They reported high uncertainty in the existing Global Fire Emissions Database 

(GFED) version 4.1 emission inventory. Van Der der Werf et al. (2017) also noted substantial uncertainty in estimating wildfire 

emissions in existing emission inventories. Consequently, there is a critical need to quantify the long-term dynamics of wildfire 90 

CO2 emissions across diverse vegetation types.Therefore, more work must be done to explore the long-term dynamics of 

wildfire emissions.  

Traditionally, wildfire emission inventories using population or cropland area weights to allocate total emissions to grid 

cells have high uncertainties (Streets et al., 2003; Zhang et al., 2013). With the advancement of remote sensing technology, 

recent studies have shifted to satellite-based estimation methods, using active fire detection or burned area datasets to improve 95 

spatial accuracy. Inventories such as GFED (Chen et al., 2023) and the NCAR Fire Inventory (FINN) (Wiedinmyer et al., 2011) 

rely on satellite-derived fire count data (e.g., active fire product MCD14 ML) or burned area products (e.g., MCD64A1) to 

infer the timing and location of fire emissions (Giglio et al., 2016, 2018). Although satellite remote sensing has greatly 
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improved the spatial and temporal resolution of fire detection, several practical challenges remain. For example, cloud cover, 

satellite overpass intervals, fire intensity thresholds, and pixel resolution can result in the underdetection of short-duration or 100 

low-intensity fires. To mitigate these limitations, this study integrated multi-source satellite products to enhance the 

completeness of the fire signal. Additionally, many existing global inventories rely on globally aggregated vegetation data 

(such as global land cover, and biomass), which further introduces errors, especially in transition zones between cropland and 

natural vegetation (e.g., forest-agricultural mosaics), where misclassification may lead to overestimation or underestimation 

of fire emissions. 105 

To overcome these shortcomings, this study integrated China’s regionally validated vegetation cover datasets (Xu et al., 

2018) multi-source burned area satellite products, and regionally derived biomass data (Hu et al., 2006; Su et al., 2016; Yin et 

al., 2023) to develop a 500-meter resolution wildfire CO2 emission inventory for China (2001-2022). Additionally, we used 

spatially weighted regression models to explore the drivers of emission variability and analyzed the impacts of national fire 

management policies on CO2 emissions. The findings provide insights into the role of governance in shaping fire emissions 110 

and offer useful references for future wildfire management strategies. This multi-year emission inventory can also be used in 

atmospheric transport models to support the development of effective global warming mitigation strategies.This study 

estimated the CO2 emissions from wildfires, including forest, shrub, grassland, and cropland fires in China from 2001 to 2022. 

Also, it explored the factors that may affect the spatiotemporal changes in CO2 emissions from wildfires. The study results can 

provide high spatial resolution and long-term wildfire CO2 emission inventories, which can enhance the accuracy of models 115 

assessing the impacts of wildfires on air quality, climate, and human health. Furthermore, this study provides essential 

scientific support for air pollution control strategies and is a critical foundation for accurately evaluating CO2 emission 

reduction targets in various countries. 

2  Data and methods 

2.1 Study area 120 

China is located in the eastern part of the Eurasian continent on the west coast of the Pacific Ocean. It spans approximately 

50 degrees of latitude (3-53 °N) from north to south and 60 degrees of longitude (73-135 °E) from east to west, with a land 

area of approximately 9.60 × 106 km2. There are differences in the geographical distribution of cropland, grassland, shrubs, 

and forests in China. In this study, China was divided into seven subregions based on geographic and ecological characteristics: 

Northeast China (NE), North China (NC), Central-West China (CW), South China (SC), Southwest China (SW), Northwest 125 

China (NW), and the Tibetan Plateau (TP) (Fig. 1). Croplands are mainly located in the eastern plains and coastal areas, 

especially in NE such as Northeast ( provinces such as Heilongjiang, Jilin, and Liaoning), and NCNorth (Hebei), and East 

(provinces such as Hebei, Henan, Shandong, and Jiangsu) China, where the terrain is flat and suitable for agriculture. 

Grasslands are mainly distributed  across in the Inner Mongolia region (spanning NE and CW), the Xinjiang region of NW, 

and parts of SW. Forests and shrubs are primarily concentrated in NE (especially Heilongjiang), SW (provinces such as Yunnan, 130 
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Guizhou, and Sichuan), and SC (provinces like Jiangxi and Hunan). North (such as Inner Mongolia and Xinjiang) and 

Southwest (such as the western Sichuan Plateau) of China, forming a vast grassland ecosystem. Shrubs are mainly distributed 

in mountainous and semiarid areas. Forests are mainly distributed in Northeast (Heilongjiang, Jilin, and Liaoning) and 

Southwest (Yunnan, Guizhou) China, which have abundant forest resources.  
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Figure 1: Regional divisions and vegetation distribution in China. The seven regions include: North China (NC): 109°E to eastern 

border, 30-41°N; South China (SC): 109°E to eastern border, south border to 30°N; Southwest China (SW): 100-109°E, south border 

to 32°N; Central-West China (CW): 100–109°E, 32°N to northern border; Northeast China (NE): 109°E to eastern border, 41°N to 

northern border; Northwest China (NW): Western border to 100°E, 36°N to northern border; the Tibetan Plateau (TP): Western 140 
border to 100°E, south border to 36°N. 

2.2 Data 

The burned area data for wildfires with a spatial resolution of 500 m were sourced from MODIS-MCD64A1 burned area 

product (Giglio et al., 2018). The vegetation cover data were sourced from the China Land Use Land Cover Remote Sensing 

Monitoring Dataset (CNLUCC), with a spatial resolution of 30 m (Xu et al., 2018). A 1 km harvesting area dataset for three 145 

staple crops (e.g., corn, wheat, and rice) in China from 2000 to 2019 was obtained from Luo et al. (2020). Vegetation cover 

data were combined with fire area data to extract spatial data, including the time and geographic coordinates of fire occurrence, 

burned area, and vegetation cover types (corn, wheat, rice, grassland, shrub, and forest). The meteorological data were obtained 

from the Daily Meteorological Dataset of Essential Meteorological Elements of the China National Surface Weather Station 
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(V3.0), and the spatial distribution of the meteorological data was calculated using the Kriging interpolation method in the 150 

ArcGIS 10.8 environment. The vegetation cover fraction was sourced from China's regional 250 m fractional vegetation cover 

dataset (Gao et al., 2024a). The normalized difference vegetation index (NDVI) data were sourced from China's regional 250 

m normalized difference vegetation index dataset (Gao et al., 2024b).  

2.23 CO2 emission estimationMethods 

In this study, we employed a bottom-up approach to develop an inventory of China’s wildfire CO2 emissions. Wildfire 155 

CO2 emissions were calculated using the following formula: 

𝐸𝑖 = ∑  𝑥,𝑖 𝐵𝐴𝑥,𝑖 ⋅×⋅ 𝐴𝐺𝐵𝑥,𝑖 ⋅×⋅ 𝐶𝐸𝑖 ⋅×⋅ 𝐸𝐹𝑖                                                                    (1) 

where the subscripts 𝑥 and 𝑖 represent the grid cell and vegetation cover type (forest, shrub, grassland and cropland), 

respectively. The vegetation cover data were sourced from the China Land Use Land Cover Remote Sensing Monitoring 

Dataset (CNLUCC) (Xu et al., 2018). and a 1 km harvesting area dataset for three staple crops (e.g., corn, wheat, and rice) in 160 

China from 2000 to 2019 was obtained from Luo et al. (2020). 𝐸𝑖 represents the CO2 emissions, 𝐵𝐴𝑥,𝑖 is the burned areas (ha), 

𝐴𝐺𝐵𝑥,𝑖 is the aboveground biomass (t ha-1), and 𝐸𝐹𝑖 is the emission factor. 𝐶𝐸𝑖 is the combustion efficiency. All datasets were 

resampled to 500 m resolution to ensure spatial consistency. 

2.2.1 Burned areas 

BA for each vegetation cover type was primarily estimated using the MODIS-MCD64A1 product (Giglio et al., 2018), 165 

which provides global monthly burned area estimates. However, it is well acknowledged that MODIS-MCD64A1 tended to 

underestimate small and fragmented fires. To address this issue, we applied scaling factors (𝛼𝑖) to correct the MODIS-derived 

BA estimates. The scaling factors were derived from the comparison of MODIS-derived BA with two independent global 

burned area datasets: the FireCCI51 product (Lizundia-Loiola et al., 2020) released by ESA (http://cci.esa.int/data) and a global 

GFED500 product (Van Wees et al., 2022), with their specific values provided in Table S1. The corrected burned area for each 170 

land cover type was obtained by multiplying the MODIS-derived BA values by the corresponding scaling factor. This 

correction accounts for the known systematic underestimation of small and fragmented fires by the MODIS MCD64A1 product . 

𝐵𝐴corrected,𝑖 = 𝐵𝐴MODIS,𝑖 × 𝛼𝑖                                                                                   (2) 

where 𝑖 denotes vegetation type. 

2.2.2 Emission factors 175 

The emission factor refers to the gas released pe 
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2.3.1 Emission factors 

The emission factor refers to the gas released per unit mass of dry combustible material during combustion, typically in 

grams per kilogram (g kg-1). This is a crucial parameter for calculating gas emissions during biomass burning, such as CO2, 

methane (CH4), and carbon monoxide (CO). Emission factors are influenced by various factors, including the combustibility 180 

of tree species, differences in vegetation cover types, and the intensity of flame combustion (Andreae and Merlet, 2001; Lü et 

al., 2006). To ensure the accuracy of the wildfire emission inventory as much as possible, it is essential to choose appropriate 

emission factors. This study comprehensively analyzed many studies in the literature to summarized the emission factors of 

CO2 generated by wildfires under different vegetation cover types, as listed in Table S1S2. Finally, the average values from 

the literature were selected as the emission factors of the different vegetation cover types. 185 

2.32.2 3 Aboveground biomass 

Previous studies have mainly used the aboveground biomass data from Fang et al. (1996) for forests. Forest aboveground 

biomass data in recent years need to be updated. In this study, the aboveground biomass data of shrubs and forests from 2001 

to 2012 were obtained from Su et al. (2016). The data for 2013 to 2022 were obtained from Yan et al. (2023). For shrub, 

Chinese local biomass density data were collected in Table S3 (Hu et al., 2006).  Grassland aboveground biomass was 190 

calculated using the exponential model by Gao et al. (2012):  

𝐴𝐺𝐵𝑔𝑟𝑎𝑠𝑠 = 20.1921 × 𝑒3.2154×(𝑁𝐷𝑉𝐼)         (13) 

where 𝐴𝐺𝐵𝑔𝑟𝑎𝑠𝑠  is the aboveground biomass of grassland (g m-²) based on the average normalized difference vegetation 

index (NDVI) NDVI value of the growing season.  

The aboveground biomass of cropland was obtained by multiplying the crop-specific yield per unit area by the straw-to-195 

product ratio. NDVI data were sourced from China’s regional 250 m normalized difference vegetation index dataset (Gao et 

al., 2024b).  

To determine the aboveground biomass of cropland, we gathered the crop-specific yield per unit area of different crops 

from the China Statistical Yearbook (NBSC, 2001-2022). The aboveground biomass burned in the field of cropland from 

major crops is calculated from the crop-specific yield per unit area, the straw production rates and the dry matter content of 200 

each crop residue as follows: 

𝐴𝐺𝐵𝑖 = 𝑃𝑖 × 𝑅𝑖 × 𝐷𝑖                                                                                         (4) 

where 𝑖 represented crop type (rice, corn, wheat and other crops), 𝐴𝐺𝐵𝑖  was the aboveground biomass of cropland burned 

in the field (g m-2); 𝑃𝑖  was the crop-specific yield per unit area (g m-2), 𝑅𝑖 was the straw yield ratio for each crop type; 𝐷𝑖  is 

the dry matter content of each crop residue. The other crops were defined as the average of rice, corn, and wheat. For each 205 

crop type, data for R and D were collected from published literature (Table S4). 

The crop-specific yield per unit area (rice, corn, wheat) was derived from the China Statistical Yearbook, while the crop-

specific yield per unit area of other crops was defined as the average of rice, corn, and wheat. The straw-to-product ratios for 
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rice, wheat, corn, and other major crops were 1.323, 1.718, 1.269, and 1.5, respectively (Technical Guidelines for Compiling 

Emission Inventory of Air Pollutants from Biomass Combustion Sources, 2015). 210 

2.23.43 Combustion efficiency 

The combustion efficiency (CE) of biomass is a crucial factor determining the accuracy of wildfire CO2 emissions 

estimates. It is influenced by multiple factors, including fire intensity, wildfire type, moisture content and load of combustibles, 

as well as meteorological conditions. Hély et al. (2003) established an empirical relationship between combustion efficiency 

and vegetation cover fraction (FVC), which was applied in this study to calculate the CE for forests and grasslands. The FVC 215 

used in this study was sourced from China’s regional 250 m fractional vegetation cover dataset (Gao et al., 2024a). For regions 

with an FVC exceeding 60%, the CE values for forest and grassland were set at 0.3 and 0.9, respectively. When the FVC was 

below 40%, the CE values for forest and grassland were 0 and 0.98, respectively. In areas where the vegetation cover ranged 

from 40% to 60%, the CE for forest cover was defined as 0.3. The CE for grassland was calculated using the following formula: 

CE = e−0.13×FVC                                                                                        (5) 220 

The CE of shrub was set at 0.7, based on a China-specific literature and global biomass burning studies (Junpen et al., 

2020; Mieville et al., 2010; Ping et al., 2021; Van Leeuwen et al., 2014; Zhou et al., 2017). The CE of corn, wheat, and rice 

was obtained from He et al. (2015), with values of 0.92, 0.92, and 0.93, respectively. The CE of other crops was taken as the 

average value for corn, wheat, and rice (i.e., 0.923). 

It is important to note that although the CE values for different vegetation types were carefully selected based on 225 

comprehensive literature reviews, CE is inherently variable and can differ significantly across various combustion phases. 

Since this study aimed to estimate emissions over extended periods (ranging from months to years), the adopted CE values 

represent average combustion conditions rather than instantaneous ones. This averaging approach may introduce uncertainties 

in the emission estimates, especially in scenarios where rapid changes in combustion efficiency occur. 

 230 

The combustion efficiency of biomass is an essential factor affecting the accuracy of wildfire CO2 emission estimates. It 

is influenced by the intensity of fires, wildfire type, moisture content and load of combustibles, and meteorological conditions. 

Hély et al. (2003) established an empirical relationship between combustion efficiency and vegetation cover fraction (FVC). 

This relationship was applied in this study to the combustion efficiency calculation for forests, shrubs, and grasslands. 

𝐶𝐹 =

{
 
 

 
 
0.98                                                       𝑖𝑓 40% ≤ 𝐹𝑉𝐶  𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 

𝑒𝑥𝑝(−0.13 × 𝐹𝑉𝐶)            𝑖𝑓 40% < 𝐹𝑉𝐶 ≤ 60% 𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑

𝑒𝑥𝑝(−1.3 ×  𝐹𝑉𝐶)                   𝑖𝑓 𝑇𝑐  ≤ 60% 𝑓𝑜𝑟 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑛𝑑 𝑠ℎ𝑟𝑢𝑏
0.25                                                               𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑓𝑜𝑟𝑒𝑠𝑡
0.3                                                                   𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑠ℎ𝑟𝑢𝑏
0.9                                                           𝑖𝑓 𝐹𝑉𝐶 > 60% 𝑓𝑜𝑟 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑

    235 

 (2) 
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where CF is the combustion efficiency, and FVC is the vegetation cover fraction. The combustion efficiencies of corn, 

wheat, and rice were obtained from Zhou et al. (2017), with values of 0.92, 0.92, and 0.93, respectively. The combustion 

efficiency of other crops was taken as the average value for corn, wheat, and rice (i.e., 0.923). 

2.3.4 CO2 emission estimation 240 

Using a bottom-up approach to estimate China's wildfire CO2 emissions inventory, the wildfire CO2 emissions are 

calculated using the following formula for forest, shrubs, and grasslands: 

𝐸𝑖 = ∑ 𝐵𝐴𝑥,𝑖  ×  𝐴𝐺𝐵𝑥,𝑖  ×  𝐶𝐹𝑖𝑥,𝑖  ×  𝐸𝐹𝑖        

 (3) 

where the subscripts x and i represent the location and vegetation cover type, respectively. 𝐸𝑖 represents the CO2 245 

emission, 𝐵𝐴𝑥,𝑖 is the burned area (ha), 𝐴𝐺𝐵𝑥,𝑖  is the aboveground biomass (t ha-1), and 𝐸𝐹𝑖 is the emission factor. 𝐶𝐹𝑖 is the 

combustion efficiency. 

For cropland fires, cropland was further divided into four categories: rice, wheat, corn, and others. The specific calculation 

formula is as follows: 

𝐸𝑗= ∑𝑥,𝑗   ×  𝐸𝐹𝑗         (4) 250 

where the subscripts x and j represent the location and type of crop, respectively. 𝐸𝑗 represents the CO2 emissions, 𝐵𝐴𝑥,𝑗 

is the burned area, 𝐵𝑥,𝑗 is the per hectare yield of crop type j at location x, 𝑁𝑗 is the straw-to-product ratio, 𝐸𝐹𝑗 is the emission 

factor, and 𝐶𝐹𝑗 is the combustion efficiency. 

2.3 Spatiotemporal analysis of wildfire CO2 emissions 

2.3.1 Global spatial autocorrelation analysis 255 

Global spatial autocorrelation is a fundamental concept in spatial statistics, used to assess the overall spatial dependence 

of a variable across a study region. Anselin’s Moran’s I index (Anselin, 1995; Moran, 1948) and the Getis-Ord Gi coefficient* 

(Getis and Ord, 1992) are commonly used to measure the degree of spatial clustering and heterogeneity. Moran’s I is a global 

spatial autocorrelation statistic that quantifies the degree to which similar attribute values are clustered or dispersed in space. 

The Moran’s I is calculated as follows: 260 

𝐼 =  
𝑛

𝑆0
 ×  

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)
𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1

                                                                                    (6) 

where I is the Global Moran’s I index, n is the total number of spatial elements; 𝑥𝑖 and 𝑥𝑗are the observed values at spatial 

units 𝑖 and 𝑗,respectively; 𝑥̅ is the mean of all observed values; 𝑤𝑖𝑗  is the weight matrix for the adjacency relationships between 

geographical units; 𝑆0 is the sum of all spatial weights.  

The Moran’s I is between -1 and 1. A value of I > 0 indicates positive spatial autocorrelation, i.e., similar values (high or 265 

low) tend to occur near each other, while I < 0 indicates dissimilar values are adjacent. I ≈ 0 suggests a random spatial pattern. 
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Statistical significance is assessed by comparing the observed Moran’s I to a null distribution generated via random 

permutations. A z-score > 2.58 and p-value < 0.01 indicates a statistically significant spatial clustering pattern at the 99% 

confidence level. In the context of this study, significantly positive Moran’s I values indicate that wildfire CO 2 emissions are 

spatially clustered, meaning that regions with high emissions tend to be adjacent to other high-emission areas, and low-270 

emission regions are likewise grouped. This justifies further localized analyses such as hotspot detection. 

2.3.2 Hot spot analysis 

While Moran’s I provides a global measure of spatial autocorrelation, it does not explicitly identify localized clusters of 

high or low values. To address this limitation, the Getis-Ord Gi* statistic (Getis and Ord, 1992) is commonly used to identify 

statistically significant hotspots and coldspots within spatial datasets. Unlike Moran’s I, which captures both positive and 275 

negative spatial autocorrelation, the Gi* statistic focuses on detecting concentration patterns of high or low values within the 

study area. The Getis-Ord Gi* statistic is defined as: 

𝐺𝑖
∗ =

∑  𝑗𝑤𝑖𝑗𝑥𝑗−𝑥̅ ∑  𝑗𝑤𝑖𝑗

𝑆√[
𝑛∑  𝑗 𝑤𝑖𝑗

2 −(∑  𝑗 𝑤𝑖𝑗)
2

𝑛−1 ]

                                                                                               (7) 

Where 𝐺𝑖
∗ is the Getis-Ord Gi* statistic for location 𝑖; 𝑥𝑗 is the observed value at location 𝑗 (e.g., CO2 emissions); 𝑥̅ is the 

global mean of the observed variable; 𝑤𝑖𝑗 is the spatial weight matrix, representing the spatial relationship between locations 280 

𝑖 and 𝑗; 𝑛 is the total number of spatial units; 𝑆 is the standard deviation of the observed values.  

The Gi* statistic is essentially a ratio that compares the local sum of a variable within a specified distance to the global 

sum, adjusted for the number of spatial units and their spatial relationships. High positive Gi* values indicate clusters of high 

values (hotspots), while low negative Gi* values indicate clusters of low values (coldspots). Locations with Gi* values near 

zero indicate random spatial patterns without significant clustering. Statistical significance is assessed using Z-scores and 285 

corresponding p-values. In this study, Gi* analysis was used to detect persistent high- and low-emission clusters of wildfire 

CO2 emissions across China from 2001 to 2022. The results provided spatially explicit insights into emission patterns. 

2.3.3 Geographically and temporally weighted regression model 

To capture the spatial and temporal variations of the drivers of wildfire CO2 emissions, the Geographically and 

Temporally Weighted Regression (GTWR) model was used (Huang et al., 2010). Unlike traditional global regression models, 290 

GTWR allows the coefficients of explanatory variables to vary across both space and time, providing a more precise estimation 

of the local influence of different driving factors. The GTWR model is defined as: 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) + ∑  𝑘 𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)𝑥𝑖𝑘 + 𝜖𝑖                                                                    (8) 

Where 𝑥𝑖  is the response variable (wildfire CO2 emissions); (𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) are the spatial coordinates and timestamp for 

location 𝑖; 𝛽0  is the intercept term; 𝛽𝑘  is the local coefficient for the 𝑘th explanatory variable; 𝑥𝑖𝑘  is the 𝑘th explanatory 295 

variable; 𝜖𝑖 is the error term. The accuracy of the GTWR model depends significantly on the choice of bandwidth and kernel 
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function, which control the spatial and temporal influence of neighboring observations. In this study, an adaptive bandwidth 

was used to ensure that each observation has a sufficient number of neighbors, while a tricube kernel was selected for its 

smooth distance decay function. The optimal bandwidth was determined using the corrected Akaike Information Criterion 

(AICc), a widely used criterion for model selection that balances model complexity and goodness of fit (Hurvich et al., 1998; 300 

Hurvich and Tsai, 1989). This approach enabled us to explore how the effects of climatic and socioeconomic variables on 

wildfire emissions vary across regions and over time. 

3 Results and discussion 

3.1 Interannual Variation variation in CO2 Emissionsemissions 

The total CO2 emissions from wildfires in China from 2001 to 2022 were 937.7 (522.6-1516.0 Tg)693.7 Tg, with an 305 

average annual value of 42.6 (23.8-68.9)31.5 Tg, accounting for 0.46% of the total global emission of All fire types (GFED4, 

all fire types mean of 7140 Tg from 2001 to 2022, Van Der Werf et al., 2017), and 0.52% of China's fossil fuel emission 

(approximately 6400 Tg, Shan et al., 2017). CO2 emissions from wildfires in China were relatively low, decreasing slowly by 

0.60.43 Tg per year (Fig. 2a). CO2 emissions from cropland and forest fires were relatively high, accounting for 4546% and 

4632% of the total wildfire emissions in China, respectively; shrub fires emissions account for 820% of the total wildfire 310 

emissions in China, while grassland fire emissions were the lowest, accounting for only 2% of the total wildfire emissions in 

China (Fig. 2b). 
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Figure 2: (a) Annual CO2 emissions within specific vegetation cover types from 2001 to 2022 in China; (b) Contribution of different 315 
vegetation cover types to the total CO2 emissions from 2001 to 2022 in China. (c-f) Time series of CO2 emissions for forest, shrub, 

grassland and cropland, respectively; the red dashed line is the linear trend and the grey shaded envelope represents the 5th-95th 

percentile confidence interval from Monte Carlo uncertainty analysis; the p-values are derived from the Mann-Kendall trend test, 

a non-parametric statistical method used to assess the presence of a monotonic (increasing or decreasing) trend in a time series 

without assuming any specific data distribution. A p-value < 0.05 indicates a statistically significant trend at the 95% confidence 320 
level. 

The annual CO2 emissions from different types of fires showed varying temporal trends. The downward trend for forest 

and shrub emissions was significant, with a decrease of 1.10.63 and 0.233 Tg per year, respectively (Fig. 3a 2c and 3b2d). 

Such a decline may reflect effective forestry management strategies for forest and shrub fires (Fig. 12). In contrast, cropland 

emissions showed a clear upward trend, with an annual increase of 0.63 Tg  (Fig. 3c2f). This may be attributed to the increased 325 
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agricultural intensity and straw production in major grain-producing regions, particularly in northeastern China. Additionally, 

shifts in local open-field burning management strategies, such as the introduction of temporally concentrated burning windows, 

may have enhanced the detectability of agricultural fires via remote sensing.This may be related to an increase in agricultural 

activities, changes in land use, or an increase in cultivation intensity. The emission trend for grassland was relatively stable 

(Fig. 3d2e), which might be influenced by a combination of ecological and anthropogenic factors. 330 

 

Figure 3: Time series of CO2 emissions for different vegetation cover types from 2001 to 2022 in China: (a) Forest, (b) Shrub, (c) 

Grassland, (d) Cropland. 

33.2 Monthly Variation variation in CO2 Emissionsemissions 

The CO2 emissions from different vegetation cover types showed significant seasonal fluctuations, with certain months 335 

showing higher emissions than others (Fig.3a). Wildfires had lower CO2 emissions in July and August, which may correspond 

to the respective wet seasons (Fig. 3a). Wet conditions usually reduce the occurrence rate of fires (Fig. 4). Forest, shrub, and 
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grassland fire CO2 emissionss had higher emissions in February, March, and April, possibly related to the dry weather and 

accumulation of combustible materials in spring, increasing the risk of fires (Fig. 3b-d). The extreme fire CO2 emissions 

observed in 2003 and 2008 were both associated with prolonged drought conditions during the spring season.  Cropland fire 340 

sCO2 emissions showed significant emission peaks in April, May, and June (Fig. 3e). This pattern may be related to specific 

agricultural activitiesy (such as plowing, sowing, and harvesting) cycles, as cropland fires often occur after harvest when crop 

residues are burned to prepare for the next planting season. The spatial distribution of forest, shrub, and grassland fire emissions 

were was relatively similar among the different months (Figs. S1-S3). In contrast, the spatial distribution of CO2 emissions 

from cropland fires varied significantly across different months and was likely influenced by policy management (Fig. 54). 345 

High emissions in March and April were concentrated in NE region, while emissions in May and June were primarily 

associated with the NC region. The regional difference in peak emission months can be attributed to distinct cropping systems 

and climatic conditions. In the NE region (e.g., Heilongjiang and Jilin), cold winters and delayed spring thaw often push straw 

burning activities into March-April, following the autumn harvest. In contrast, the NC region (e.g., Anhui, Henan, Jiangsu) 

practices a double-cropping system of winter wheat and summer maize, where wheat is harvested in May-June, and burning 350 

of straw residues is typically observed during this transition period.The high emissions of cropland fires in March and April 

mainly originated from Heilongjiang and Jilin Provinces. The high emissions of cropland fires in May and June mainly came 

from the Anhui, Henan, and Jiangsu Provinces. 
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 355 

Figure 4: Box plots of CO2 emissions for specific vegetation cover types per month from 2001 to 2022 in China, showing the median 

(black line), mean (box), and the range within 1.5 times the interquartile range (IQR): (a) Forest, (b) Shrub, (c) Grassland, (d) 

Cropland.Figure 3: (a)Heatmap of monthly total wildfires CO2 emissions in China from 2001 to 2022; box plots of CO2 emissions 

for specific vegetation cover types per month from 2001 to 2022 in China, showing the median (black line), mean (box), and the 

range within 1.5 times the interquartile range (IQR): (b) Forest, (c) Shrub, (d) Grassland, (e) Cropland. 360 
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Figure 54: Spatial distribution of monthly CO2 emissions within cropland fires from 2001 to 2022 in China: (a) March, (b) April, (c) 

May, and (d) June. The original emission data at 500 m resolution were resampled to 0.25° grid to enhance visual clarity. 

3.3 Spatiotemporal Variations variations in CO2 Emissionsemissions 365 

Due to differences in geographical location, climate conditions, and population density, the spatiotemporal distribution 

of CO2 emissions in each region exhibits heterogeneity (Fig. 56). emissions in NW, CW, and TP regions were relatively low, 

accounting for only 3% of China’s annual average emissions from 2001 to 2022. In contrast, regions with high emissions were 

mainly concentrated in NE, NC, SC, and SW regions (Fig. 5a). 

To assess whether wildfire CO2 emissions exhibit statistically significant spatial clustering patterns at the national scale, 370 

we first applied Moran’s I. This step was crucial because it determined the necessity of subsequent local cluster analyses (such 

as hotspot analysis).Overall, the emissions in the northwestern region of China were relatively low. The significant areas with 

higher emissions were mainly concentrated in China's eastern and central regions (Fig. 6a). The areas with high CO2 emissions 

from forest fires were mainly in the northeast and southwest regions (Fig. 6b). The distribution of high CO2 emissions from 

shrub fires was relatively scattered. However, there were some concentrated high-emission areas in the western and 375 

northeastern regions (Fig. 6c). The emissions from grassland fires were generally low and were mainly concentrated in 
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Northeastern China (Fig. 6d). The high-value areas of CO2 emissions from cropland fires were mainly concentrated in eastern 

China (Fig. 6e). 

 The results (Table 1) showed significantly positive Moran’s I values for fire emissions across all vegetation types (I > 0, 

p < 0.01; Z > 2.58), indicating non-random spatial distributions and strong global spatial autocorrelation. These findings 380 

supported the use of the Getis-Ord Gi* statistic to identify statistically significant hotspots and coldspots of wildfire emissions. 

Additionally, the presence of spatial autocorrelation implies the need for spatially explicit regression models (e.g., 

Geographically and Temporally Weighted Regression), as global models such as Ordinary Least Squares (OLS) may not 

adequately capture the spatial heterogeneity in emission-driver relationships.The results of the global spatial autocorrelation 

analysis of CO2 emissions from wildfires are shown in Table 1. Under different wildfires, the p values were all less than 0.01, 385 

with a confidence level of 99%; the Moran's I values were all positive, with a Z score greater than 2.58, indicating a significant 

positive spatial autocorrelation of CO2 emissions from wildfires, exhibiting an aggregation pattern in spatial distribution. 

Table 1. Global spatial autocorrelation statistics of CO2 emissions 

Vegetation cover type Moran’s I Z pP Clustering pattern 

Forest 0.680.052 64.905.072 0.000 Cluster 

Shrub 0.990.118 91.508.961 0.000 Cluster 

Grassland 0.600.064 58.956.632 0.000 Cluster 

Cropland 0.890.281 106.5020.414 0.000 Cluster 

All 0.600.110 83.158.894 0.000 Cluster 
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390 

 

Figure 56: Average annual spatial distribution of CO2 emissions in China from 2001 to 2022: (a) all fire types, (b) Forest, (c) Shrub, 

(d) Grassland, and (e) Cropland. The original emission data at 500 m resolution were resampled to 0.25° grid to enhance visual 

clarity. 

Based on the Getis-Ord Gi* analysis (Fig. 6), we identified clear spatial clusters of persistent high (hotspots) and low 395 

(coldspots) wildfire CO2 emissions (Fig. 6). Among different vegetation types, CO2 emissions from forest fires are mainly 
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distributed in NE, SW, and SC regions, with the NE region accounting for 56% of China’s annual average emissions from 

2001 to 2022 (Fig. 5b). The NE region (e.g., the Greater and Lesser Khingan Mountains) is a typical coniferous forest belt 

with abundant fuel accumulation, dry and windy spring conditions, and makes it highly prone to intense but infrequent wildfires 

(Lian et al., 2024a). However, despite the high forest fire emissions in NE, no significant hotspots were detected by the Getis-400 

Ord Gi* analysis (Fig. 6b), indicating that its high emissions mainly stem from sporadic extreme events rather than persistent 

clustering (Fig. 7a). For example, in 2003 and 2008, extreme wildfires in NE China contributed 73% and 56% of the national 

forest fire CO2 emissions in 2003 and 2008, respectively (Fig. 7a). In contrast to NE, SW and SC exhibited significant spatial 

clustering in forest fire CO2 emissions. Forest fires in these regions are prone to occurring in late winter and early spring each 

year, with relatively small fire scales but high frequency (Qin et al., 2014; Zhang et al., 2023a).The hotspot analysis of wildfire 405 

CO2 emissions investigated the specific spatial clustering of CO2 emissions, as shown in Figure 7. In general, the high values 

of CO2 emissions were mainly concentrated in the eastern regions of Heilongjiang and Inner Mongolia Provinces in China 

from 2001 to 2022, with annual emissions accounting for 44% of the total annual emissions (Fig. 7a). There was only one 

high-value aggregation area for forest fires and grassland fires, which is similar to the spatial distribution of total emissions 

(Fig. 7b and Fig. 7d). The average annual emissions of high-value aggregation areas accounted for 53% and 64% of the total 410 

annual emissions, respectively. There were two high-value clusters of shrub fires, one in the eastern regions of Heilongjiang 

and Inner Mongolia Provinces and the other in the southwestern forest areas, with annual emissions accounting for 25.82% 

and 40% of the total emissions, respectively (Fig. 7c). There were also two high-risk areas for cropland fires, one in the eastern 

regions of Heilongjiang and Inner Mongolia Provinces and the other in the eastern and central regions of China, mainly 

including Shandong, Henan, Anhui, and Jiangsu (Fig. 7e). The average annual emissions accounted for 43% and 48% of the 415 

total emissions, respectively. It is worth noting that northeastern China is marked as a high-confidence hotspot area among all 

fire types, which may indicate the long-term existence of high CO2 emissions in the region. 
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Figure 76: Spatial Clustering of CO2 emissions at 0.25° resolution in China (Gi* Hot Spot Analysis)Spatial distribution of CO2 420 
emission hotspots from 2001 to 2022 in China: (a) all fire types, (b) Forest, (c) Shrub, (d) Grassland, and (e) Cropland. Red areas 

represent statistically significant clusters of high emission values (hot spots), while blue areas indicate significant low-value clusters 

(cold spots), with confidence levels of 90%, 95%, and 99%. 
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Shrub fire CO2 emissions were concentrated in the SW and SC regions, accounting for 47% and 27% of China’s annual 

average emissions from 2001 to 2022, respectively (Fig. 5c). Secondary vegetation such as shrubs and bamboo forests are 425 

common in these areas, resulting from land use changes (e.g., farmland abandonment, forest degradation), which facilitates 

the accumulation of combustibles (Han et al., 2018). Meanwhile, complex terrain and high biomass also amplify the risk of 

fire spread (He et al., 2024). Additionally, seasonal drought (low humidity) combined with human activities such as fuelwood 

collection and traditional burning practices (Ying et al., 2021) exacerbate fire occurrences, forming persistent spatial clustering 

that has been clearly identified as hotspot areas (Fig. 6c). 430 

Grassland fire emissions were mainly concentrated in the NE region, accounting for 70% of the China’s annual mean 

during 2001- 2022 (Fig. 5d), with hotspot areas focusing on the grasslands of Inner Mongolia (e.g., Hulunbuir, Xilingol) (Fig. 

6d). In this region, dry herbaceous vegetation, strong winds, and low humidity in spring make grassland fires extremely prone 

to ignition (Chang et al., 2023). Additionally, there is a close relationship between land use and grassland fire occurrence (Li 

et al., 2017). Li et al. (2017) explored the relationship between land use and the spatial distribution of grassland fires, and the 435 

results showed that land use has a significant impact on grassland fires. 

High CO2 emissions from cropland fires were concentrated in NC and NE regions, accounting for 51% and 42% of the 

China’s annual mean emissions, respectively, during 2001-2022 (Fig. 5e). Spatiotemporally, from 2003 to 2012, the main 

emission sources were agricultural provinces in NC (e.g., Hebei, Shandong, Henan, Anhui), while after 2012, agricultural 

regions in NE (e.g., Heilongjiang, Jilin, Liaoning) became the primary sources of emissions (Fig. 6e and Fig. 7d). These areas 440 

have high crop straw yields and long-standing traditional burning practices, making them typical hotspots of agricultural fires 

(Li et al., 2024a; Wu et al., 2018).For emissions from different vegetation cover types, some years and regions exhibit 

unexpectedly high emissions, potentially caused by special events such as abnormal climate conditions, human activities, and 

fire management. Figure 8 shows the time series of high-emission regions under the different vegetation cover types from 

2001 to 2022. Extreme forest fires occurred in Heilongjiang and Inner Mongolia Provinces in 2003, and the total emissions of 445 

these two provinces accounted for 73% of the total emissions in 2003 (Fig. 8a). The high emissions in 2008 were due to forest 

fires in Inner Mongolia, which accounted for 47% of the total emissions in 2008. Shrub fire emissions peaked in 2003 and 

2010 (Fig. 8b). The emissions in 2003 occurred mainly in Yunnan, Inner Mongolia, and Heilongjiang, with the total emissions 

from these three provinces accounting for 63% of the total emissions. The emissions in 2010 occurred mainly in Yunnan and 

Guizhou, accounting for 78% of the total emissions in 2010. Grassland fire emissions also peaked in 2003 and 2008, with the 450 

2003 main emission areas being Inner Mongolia and Heilongjiang, accounting for 85% of the total emissions for that year. 

Inner Mongolia was the central emission region in 2008, accounting for 62% of the total emissions for that year (Fig. 8c). 

Human activities and fire management may affect cropland fire emissions more significantly, resulting in more significant 

variability in CO2 emissions across provinces (Fig. 8d). Heilongjiang Province had relatively low emissions from 2001 to 2013, 

with emissions increasing and trending upward from 2014, where the annual average emissions from 2014 to 2022 were five 455 

times greater than the annual average emissions from 2001 to 2013. The primary emission years for the Anhui and Henan 

Provinces were between 2006 and 2014, with emissions decreasing after 2015. The emission trend in Jilin Province was similar 
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to that in Heilongjiang Province, with higher emissions in recent years. In other regions, CO2 emissions from cropland fires 

were relatively high before 2012. After the implementation of China's strict ban on open-air biomass burning in 2012, 

emissions decreased, showing an overall downward trend. 460 



27 

 



28 

 

 

Figure 78: Time series of CO2 emissions in major regions under different vegetation cover types from 2001 to 2022 in China: (a) 

Forest, (b) Shrub, (c) Grassland, and (d) Cropland. 

The spatial distribution of CO2 emissions changes over different periods from 2001 to 2022 (Fig. 9). The average 465 

annual CO2 emission from 2001 to 2005 was 28.7 Tg, with CO2 emission mainly concentrated in the eastern region of China 

(Fig. 9a). The average annual emissions from Heilongjiang and Inner Mongolia accounted for 42% of the total annual 

emissions. Compared with 2001-2005, the average annual CO2 emissions increased from 2006 to 2010 (39.8 Tg), and the 

high-emission areas increased (Fig. 9b). High emissions still existed in Heilongjiang and Inner Mongolia in the east. 

However, other provinces, such as Anhui and Henan, began to show higher emissions, mainly due to an increase in cropland 470 

fires in these provinces (Figs. S4-S7). The average annual CO2 emissions decreased from 2011 to 2015 (34.9 Tg). Forest fire 

emissions in Heilongjiang and Inner Mongolia decreased, while cropland fire emissions increased (Figs. S4-S7). High CO2 

emissions from cropland fires still occurred in provinces such as Anhui and Henan (Fig. 9c). The average annual CO2 

emissions from 2016 to 2022 were the lowest of the four time periods (24.4 Tg), with an overall decrease in CO2 emissions 
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from forest, shrub, and grassland fires (Fig. 9d). CO2 emissions from cropland fires in various provinces, such as Anhui and 475 

Henan, decreased, while high emissions from cropland fires in the eastern regions of Heilongjiang, Inner Mongolia, and Jilin 

still existed. The average annual emissions from Heilongjiang, Jilin, and Inner Mongolia accounted for 80% of the total 

annual emissions. 

 

Figure 9: Spatial distribution of annual CO2 emissions for all types of fires from (a) 2001 to 2005, (b) 2005 to 2010, (c) 2011 to 2015, 480 
and (d) 2016 to 2022. 

3.4 The impact of factors on wildfires in China 

Wildfires in China exhibit distinct spatial clustering patterns. To investigate the climatic and socio-economic drivers of 

wildfire CO2 emissions and to characterize their spatiotemporal heterogeneity, we applied three regression models—OLS, 
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Geographically Weighted Regression (GWR), and GTWR—to four types of fires (forest, shrub, grassland, and cropland). We 485 

compared model performance using R2 and the AICc. Explanatory variables were selected based on theoretical relevance and 

data availability for the period 2001-2019. As shown in Table 2, these variables include five climatic factors—punctual 

temperature (TMP, °C), accumulated precipitation (PRE, mm), relative humidity (RH, %), wind speed at 2m (WIN, m/s), and 

daily cumulative sunshine hours (SSD, h)—and two socio-economic indicators: gross domestic product (GDP, millions/km2) 

and population density (POP_DEN, people/grid). These factors are widely recognized as influencing wildfire emissions (Lan 490 

et al., 2021; Ma et al., 2020; Zeng et al., 2024). TMP and SSD affect fuel flammability and combustion efficiency, PRE and 

RH regulate fuel moisture, and WIN promotes fire spread. Socio-economic factors reflected anthropogenic influences on fire 

ignition, suppression, and land-use. To ensure model parsimony and statistical robustness, variables that were not statistically 

significant (p > 0.05) in the global OLS model were excluded from subsequent GWR and GTWR analyses. All retained 

variables were normalized or Box-Cox transformed prior to modeling to ensure comparability. 495 

Table 2 Driving factors and sources 

Driving factors Abbreviation Source 

Punctual temperature TMP  

Daily meteorological dataset of essential 

meteorological elements of China National 

Surface Weather Station (V3.0) 

 

Relative humidity RH 

Accumulated precipitation  PRE 

Wind speed (2 m) WIN 

Daily cumulative sunshine hours SSD 

Gross domestic product GDP Chen et al. (2022) 

Population density POP_DEN LandScan Global (Bright et al., 2001-2022) 

 

Across all fire types, both GWR and GTWR models outperformed the global OLS model. For forest fires, GTWR 

achieved the best performance (R2 = 0.58; AICc = 128,909), while OLS explained only 6% of the variance, indicating strong 

spatiotemporal heterogeneity. For cropland fires, GTWR also performed well (R2 = 0.52; AICc = 141,335), highlighting the 500 

influence of cropping cycles and regional factors. In shrub fires, the performance of GWR and GTWR models was nearly 

identical (both with R2 = 0.87), and GTWR showed a slightly higher AICc (worse model fit), indicating that incorporating 

temporal weights did not lead to a substantial improvement. This suggests that shrub fire emissions are primarily driven by 

spatial heterogeneity, with limited temporal variability. For grassland fires, GTWR improved R2 from 0.27 to 0.31 compared 

to GWR, but overall model fit remained low, indicating that other drivers—such as land use change, grazing, or local policies—505 

play a critical role in grassland ecosystems. 

Table 3. Comparison of regression results for different fire types using OLS, GWR, and GTWR models. 

Fire type Model Intercept PRE TEP RH WIN SSD GDP POP_DEN R2 AICc 

 OLS 2698 49 727* -259* -864* -100* -2321* -110* 0.06 135428 
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Forest GWR 3260 - -436 -145 -200 91 -1983 -186 0.49 130508 

GTWR 3204 
 

-524 -205 -161 126 -469 -888 0.58 128909 

 

Shrub 

OLS 385 -303* 583* 246* -162* -384* 11* 20* 0.27 104143 

GWR 733 -31 111 100 5 -61 -10 -1 0.87 90837 

GTWR 733 -31 110 101 3 -57 -11 0 0.87 91034 

 

Grassland 

OLS 144 10 -69* 23* -3* -20* -4* 1* 0.10 81654 

GWR 130 - -40 18 -6 -5 -6 -4 0.27 79908 

GTWR 131 - -40 19 -5 -4 -20 -4 0.31 79702 

 

Cropland 

OLS 239 25 -12* -44* 14* 80* 2* 0* 0.10 149703 

GWR 230 - 11 -31 16 2 50 3 0.42 143770 

GTWR 228 - 16 -29 16 2 36 4 0.52 141335 

Note: * An asterisk next to a number indicates a statistically significant p-value (p < 0.01).  

To explore the temporal dynamics of individual variables, Figure 8 presented annual average GTWR regression 

coefficients for 2001-2019, revealing significant differences in how climatic and socioeconomic drivers influenced wildfire 510 

CO2 emissions across vegetation cover types. Except for SSD, all other factors exhibited negative effects on forest fire CO 2 

emissions (Fig. 8a). Temporally, regression coefficients for key variables such as POP_DEN, TMP, and GDP showed 

weakened negative effects after 2012, suggesting reduced sensitivity of forest fire emissions to these drivers in recent years. 

This change likely reflects strengthened forest fire prevention policies and management measures implemented in China after 

2012 (Fig. 12), which significantly reduced fire occurrences. Spatially, regression coefficients showed significant north-south 515 

disparities (Fig. 9). TMP and RH had a dual effect on forest fire emissions. In NE and NC regions, TMP, and RH positively 

correlated with forest fire emissions, indicating that warming and drying conditions may promote fire activity in temperate 

forests (Fang et al., 2021; Lian et al., 2024b) (Fig. 9a and 9b). In contrast, in SW and SC regions, TMP and RH exhibited 

negative coefficients (Fig. 9a and 9b). This may occur because, while high temperatures can increase plant evapotranspiration 

and reduce fuel moisture content (Chuvieco et al., 2004), China’s monsoon climate typically links high temperatures with high 520 

relative humidity, creating a threshold effect on forest fires (Ma et al., 2020). Additionally, during high-temperature periods, 

forest fire prevention authorities implement strict fire control measures, limiting fire occurrences (Abatzoglou et al., 2018; Hu 

and Zhou, 2014). GDP (Fig. 9e) showed positive effects in the NE region, but negative effects in SC and SW regions. Similarly, 

POP_DEN (Fig. 9f) generally displayed negative effects, especially in SW and SC regions, highlighting the role of human 

presence in fire suppression. 525 
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Figure 8: Temporal evolution of GTWR regression coefficients for wildfires CO2 emissions across four vegetation cover types in 

China (2001–2019). Positive and negative values indicate the direction and magnitude of each variable’s influence on CO2 emissions. 
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Figure 9: Spatial distribution of GTWR regression coefficients for forest fire CO2 emissions and their driving factors across China. 530 
The maps illustrate GTWR coefficients of six environmental and socioeconomic variables: (a) temperature, (b) relative humidity, 

(c) wind speed, (d) daily cumulative sunshine hours, (e) gross domestic product (GDP), and (f) population density. Grey regions 

represent areas where the intercept was zero (i.e., no valid model fit), and black × symbols mark locations where the regression 

coefficients did not pass the significance test (p ≥ 0.05). Figure (g) and (h) show the model residuals and predicted shrubland CO2 

emissions. 535 

Shrub fires CO2 emissions were well-captured by GWR and GTWR, dominated by spatial heterogeneity with minimal 

temporal variation (Table 3). GTWR showed that TMP and RH were consistent positive drivers throughout the study period, 

while GDP and WIN had negative effects, with other variables exerting minor influences (Fig. 8b). Spatially, TMP showed a 

positive effect across most regions (Fig. 10a). RH showed significant positive local effects in NC region, reflecting that humid 

climates promoted shrub growth and fuel accumulation (Fig. 10c) (Lian et al., 2024b; Liu et al., 2024). Once ignited by human 540 

activity or spring droughts, abundant fuel intensified fire severity and CO2 emissions. In contrast, WIN and GDP exerted strong 

negative effects in parts of NC, likely due to effective fire control practices (Fig. 10d and 10f). Notably, a considerable number 

of grid cells along the northeastern border failed significance tests for at least one explanatory variable (marked as black dots 

in Fig. 10a-g). This may be due to limited shrub coverage or mixed land types, leading to low fire frequency and weak emission 

signals (Lin et al., 2024; Yang and Jiang, 2022). Additionally, many of these non-significant grids are located near international 545 
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borders, particularly adjacent to Russia. Since the GTWR model is limited to Chinese territory, therefore, it lacks information 

on cross-border fire activity, land use, and policy context (Li et al., 2024b; Lin et al., 2024; Quan et al., 2022). In northeastern 

China, transboundary fire spread is a known ignition source and may contribute to CO2 emissions that are not well explained 

within national data coverage. 

 550 

Figure 10: Spatial distribution of GTWR regression coefficients for shrub fire CO2 emissions and their driving factors across China. 

The maps illustrate GTWR coefficients of seven environmental and socioeconomic variables: (a) temperature, (b) precipitation, (c) 

relative humidity, (d) wind speed, (e) daily cumulative sunshine hours, (f) gross domestic product (GDP), and (g) population density. 

Grey regions represent areas where the intercept was zero (i.e., no valid model fit), and black × symbols mark locations where the 

regression coefficients did not pass the significance test (p ≥ 0.05). Figure (h) and (i) show the model residuals and predicted 555 
shrubland CO2 emissions. 

From a temporal perspective, the GTWR results for cropland fires CO2 emissions showed that RH had a negative effect, 

and this negative influence gradually strengthened (Fig. 8d). GDP primarily exhibited a positive effect, but its positive 

influence gradually weakened. The impact of TMP shifted from negative to positive, with its effect gradually increasing. WIN 

mainly exerted a positive effect, while other factors had weak influences. Spatially, TMP showed strong positive coefficients 560 

in eastern and central China (Fig. 11a). Straw burning activities in these regions peaked in spring and autumn, a pattern closely 

linked to rising temperatures. In contrast, negative temperature coefficients in southern and southwestern China suggest that 
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higher temperatures in these regions, often accompanied by high humidity or stricter fire regulations, may suppress fire activity. 

RH exhibited a significant negative effect across most parts of China, likely due to increased moisture content in agricultural 

residues, which hinders ignition and combustion (Fig. 11b). WIN showed a positive influence in CW, NC and SC regions, 565 

where expansive cropland areas may enable wind to accelerate fire spread during burning events (Fig. 11c). GDP mainly 

showed positive effects, but after 2010, this gradually weakened (Fig. 11e and Fig. 8d). This trend may be attributed to 

increased straw production driven by agricultural expansion in economically developed regions, where straw utilization 

infrastructure had not yet caught up, resulting in elevated emissions. Early GDP growth likely brought more crop yields and 

straw generation, thereby enhancing CO2 emissions(Ren et al., 2019). However, after 2012, this trend reversed as nationwide 570 

straw burning bans were introduced. Regions with higher economic development began to demonstrate stronger emission 

control capacity, leading to a gradual weakening of GDP’s positive effect on emissions (Zeng et al., 2024). 

 

Figure 11: Spatial distribution of GTWR regression coefficients for cropland fire CO2 emissions and their driving factors across 

China. The maps illustrate GTWR coefficients of six environmental and socioeconomic variables: (a) temperature, (b) relative 575 
humidity, (c) wind speed, (d) daily cumulative sunshine hours, (e) gross domestic product (GDP), and (f) population density. Grey 

regions represent areas where the intercept was zero (i.e., no valid model fit), and black × symbols mark locations where the 

regression coefficients did not pass the significance test (p ≥ 0.05). Figure (g) and (h) show the model residuals and predicted 

shrubland CO2 emissions. 
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Although the GTWR model indicated that climatic and socioeconomic variables such as TMP, RH, and GDP explained 580 

the spatial variation in wildfire CO2 emissions, the overall model performance remains moderate for forest and shrub fires, 

with particularly low explanatory ability for grassland fires (R2 = 0.31). This gap suggests that, beyond natural and 

socioeconomic factors, other key drivers may have been omitted. Multiple studies (Gao et al., 2023; Kelly et al., 2013; Phillips 

et al., 2022; Xie et al., 2020) highlight the substantial impact of fire management policies on CO2 emissions. For instance, 

Phillips et al. (2022) showed that the marginal abatement cost of avoiding fire-related CO2 emissions through fire management 585 

is comparable to or even lower than that of many other climate mitigation strategies. 

In China, the role of policy is particularly significant. Wu et al. (2018) reviewed 51 crop straw management regulations 

issued between 1965 and 2015, with 34 implemented after 2008. The timing of these intensive regulatory efforts closely aligns 

with key turning points in emission trends (Fig. 12). For cropland fires, annual CO2 emissions increased from 8.2 Tg/year 

during 2001-2005 to 26.2 Tg/year during 2010-2016, but began to decline following the revision of the Air Pollution 590 

Prevention and Control Law in 2015 and the launch of the Air Pollution Action Plan in 2013. Similarly, after the 

implementation of the National Forest Fire Prevention Plans in 2009 and 2016, CO2 emissions from forest, shrub and grassland 

fires dropped from 38.1 Tg/year (2006–2009) to 13.3 Tg/year (2017–2022). Jin et al. (2022) further estimated that over 80% 

of wildfire-related CO2 emissions could be avoided under effective fire management. These findings strongly indicate that 

policy management plays a critical role in wildfire CO2 emissions. 595 

Notably, northeastern China is the only region where cropland burning has increased in recent years, highlighting the 

need for adaptive rather than restrictive policies. As one of China’s major grain-producing regions, Northeast China generates 

large volumes of straw. Harsh winters and short windows for straw return or removal, combined with long-established farming 

practices, have made complete bans on straw burning particularly challenging. Prior to strict open-burning prohibitions, 

farmers often burned straw in a dispersed, low-intensity manner, making detection by satellite-based fire products difficult, 600 

potentially resulting in systematic underestimation of early emissions. After the implementation of strict bans, facing growing 

pressure from unprocessed straw accumulation, therefore, some local governments adopted more adaptive fire management 

policies, such as designating burning windows under favorable meteorological conditions. These “limited and concentrated 

burning periods” led to spatiotemporally clustered fire events that were more easily captured by remote sensing. In recent 

years, the Chinese government has also promoted the scientific incorporation of straw into soils, off-field collection, and the 605 

industrial utilization of crop residues in Northeast China. These efforts highlight the significant role of policy in shaping 

emission trends from agricultural burning, particularly in regions where environmental constraints and traditional farming 

practices pose unique challenges. 

The factors influencing CO2 emissions from wildfires are numerous and complex. The Spearman correlation coefficient 

method was utilized to analyze the connection between CO2 emissions from wildfires in China and various climate factors, 610 

such as temperature, precipitation, relative humidity, wind speed, sunshine, and vegetation factors, including vegetation 

primary productivity and the NDVI. Additionally, the gross domestic product (GDP) and population density were taken into 

account (Fig. 10). The main factors influencing CO2 emissions from forest and shrub fires were daily cumulative sunshine 
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hours (forest:-0.41, shrub:0.25; p < 0.001) and NDVI (forest:-0.35, shrub:0.37; p < 0.001), while the main factor affecting 

CO2 emissions from grassland fires was temperature (-0.45, p < 0.001) (Fig. 10a-c). Cropland fires, influenced by human 615 

activities, showed a specific negative correlation with GDP (-0.52, p < 0.001) and population density (-0.51, p < 0.001). At 

the same time, other factors had relatively small impacts (Fig. 10d). An increase in GDP and population density was often 

accompanied by better agricultural technology and management practices, including more effective management alternatives 

to straw burning. Furthermore, changes in fire management may impact CO2 emissions from wildfires (Gao et al., 2023; Jin 

et al., 2022; Kelly et al., 2013; Phillips et al., 2022; Van Wees et al., 2021; Xie et al., 2024). Phillips et al. (2022) found that 620 

the cost of avoiding CO2 emissions by increasing investment in fire management is comparable to or lower than that of other 

mitigation strategies. China's policies have also significantly reduced CO2 emissions from opening biomass burning fires. 

Since the forest fire broke out in the Greater Khingan Mountains region of China on May 6, 1987, China has implemented a 

forest fire prevention and control policy of "prevention first, active elimination." Subsequently, local governments have 

introduced specific policies on forest, shrub, and grassland fire prevention, successfully reducing the occurrence of forest 625 

and shrub fires in China. The research in this paper also showed that the trend in CO2 emissions from forest and shrub fires 

had decreased significantly since 2001 (Fig. 3a and 3b). Moreover, Jin et al. (2022) reported that from 2001 to 2019, 

compared with those of natural wildfires (without strict wildfire management), the average CO2 emissions generated by 

wildfires (forest, shrub, and grassland fires) under management policies decreased by more than 80%.  

Table 2 Driving factors and sources 630 

Driving factors Abbreviation Source 

Punctual temperature tmp  

Daily meteorological dataset of essential 

meteorological elements of China National 

Surface Weather Station (V3.0) 

 

Relative humidity rh 

Accumulated precipitation  pre 

Wind speed (2 m) win 

Daily cumulative sunshine hours ssd 

Vegetation primary productivity NPP MODIS MOD17A3 

Normalized Difference Vegetation 

Index 

NDVI National Qinghai Tibet Plateau Science 

Data Center 

Gross domestic product GDP Chen et al. (2022) 

Population density Pop_den LandScan 

Global(https://landscan.ornl.gov/) 
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Figure 12. Temporal trends in annual CO2 emissions from cropland burning and forest, shrub, and grassland fires in China (2001–

2022), and key national policy milestones related to fire and air pollution control.Figure 10: Heatmap of Spearman’s correlation 635 
coefficients between pairs of variables: (a)forest; (b) shrub; (c) grassland; (d) cropland) See Table 2 for variable descriptions. 

3.5 ImplicationsUncertainty analysis 

A Monte Carlo simulation (100,000 iterations) was conducted to assess the uncertainty in the estimated wildfire CO2 

emissions. Monte Carlo simulation is a probabilistic method that generates a large number of possible outcomes based on 

random sampling from the input parameter distributions, thereby providing a comprehensive assessment of model uncertainty. 640 

The uncertainties in emission estimates in this study mainly originated from satellite-derived BA products, AGB, CE, and EF. 

All parameters, except CE, were assumed to follow normal distributions, as suggested by Zhao et al. (2011). CE values were 
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assigned triangular distributions based on vegetation types, with parameter ranges derived from empirical data and literature 

sources (Junpen et al., 2020; Mieville et al., 2010; Ping et al., 2021; Van Leeuwen et al., 2014; Zhou et al., 2017). For forest 

and grassland fires, CE was parameterized the FVC-based empirical relationship proposed by Hély et al. (2003), while fixed 645 

CE values were applied to shrub and cropland fires. The coefficients of variation (CV) of EF were estimated based on the 

mean and variability summarized from multiple published sources. Monte Carlo simulations showed that CE and EF 

contributed less to total emission variability compared to BA and AGB. 

Among all parameters, BA emerged as the dominant source of uncertainty. However ,the uncertainty in retrieved from 

satellite products is difficult to quantify (Hoelzemann et al., 2004; Wu et al., 2018). The MCD64A1 product performs reliably 650 

in detecting large fires (Giglio et al., 2018), and its CV was adopted from Giglio et al. (2010). While we also recognize that 

the MODIS MCD64A1 product tends to underestimate small, fragmented, or low-intensity fires. To evaluate and adjust for 

this underestimation, we conducted a comprehensive comparison using FireCCI51 (250 m resolution), GFED (500 m 

resolution), the novel 30-m resolution Global annual Burned Area Map (GABAM, 30 m resolution) (Long et al., 2019), and 

FINN datasets for the year 2015 (Table S5). The comparison showed that MODIS systematically underestimated burned areas. 655 

Despite its higher spatial resolution, GABAM reported smaller cropland fire areas, likely due to its limited temporal resolution. 

The FINN dataset differed significantly from all other products, with its burned areas generally higher than other data products. 

Based on these comparisons, we derived a scaling factor (𝛼𝑖) using the FireCCI51 and GFED datasets and applied them to 

MODIS burned area estimates. On average, this adjustment increased MODIS-based BA estimates by approximately 1.5 times. 

To further evaluate the representativeness of our correction method, we compared the standard FINN dataset with a revised 660 

version, FINN_VIIR, which incorporates VIIRS active fire detection data (375 m resolution). VIIRS is known to better capture 

small and short-duration fires often missed by MODIS. Our analysis showed that the burned area in FINN_VIIR was 

approximately 40% higher than in the standard FINN dataset, which closely aligns with the scaling factor applied in our 

MODIS-based correction. This consistency provides further support for the effectiveness of our BA adjustment strategy. 

AGB is another major contributor to emissions uncertainty. To reflect interannual changes in biomass, we employed the 665 

AGB dataset from Su et al. (2016) for the period 2001-2012 and that from Yin et al. (2023) for 2013-2022 for calculating 

forest fire CO2 emissions. The mean difference between the two datasets was approximately 7% (100 t/ha vs. 107 t/ha), well 

within the ±50% uncertainty range reported by Yin et al. (2023), confirming their compatibility for long-term analysis. For 

shrub fire CO2 emissions, we employed localized biomass density values from Hu et al. (2006), enhancing the regional 

representativeness of AGB inputs. For grassland fire CO2 emissions, we used the index model based on the NDVI developed 670 

by Gao et al. (2006). We acknowledge that NDVI-based models may underestimate AGB in dense vegetation due to saturation. 

To address this, we compared the exponential model by Gao et al. (2012) with the saturation-corrected model by Hu et al. 

(2024) for alpine meadows in China. The mean AGB estimates were 210 g/m2 (Gao et al., 2012) and 214 g/m2 (Hu et al., 

2024), with a small difference of 1.9%, well within the reported uncertainty bounds of both models (±62.5 g/m2 for Gao et al., 

2012; ±85 g/m2 for Hu et al., 2024). Given the broader applicability of Gao’s model across diverse grassland types (e.g., arid 675 

steppe, wetlands, meadow grasslands), we adopted it for national-scale grassland AGB estimation. For forest, shrub and 
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grassland fire CO2 emissions, the uncertainty in AGB was derived from values reported in the literature. For cropland fire CO2 

emissions, AGB was derived from national statistical records, with CV set at 20% (Zhou et al., 2017). 

Table 4 presented the total wildfire CO2 emissions and their associated uncertainty ranges across different vegetation 

cover types. On average, the estimated uncertainties in CO2 emissions were (-39%, +76%) for forest fires, (-37%, +20%) for 680 

shrub fires, (-26%, +58%) for grassland fires, and (-50%, +51%) for cropland fires. The large uncertainties in forest, shrub, 

and grassland fire CO2 emissions were mainly due to uncertainties in AGB and BA estimates. The uncertainty in cropland fire 

CO2 emissions uncertainty primarily reflected possible under-detection of BA. Despite these uncertainties, this study 

incorporated multiple BA datasets, multi-temporal vegetation cover datasets, regionally validated AGB estimates, and a 

comprehensive set of EF, resulting in a spatially representative characterization of wildfire CO2 emissions and their temporal 685 

evolution in China. 

Table 4 The uncertainty estimation of wildfires CO2 emissions from 2001 to 2022. 

Year Forest Shrub Grassland Cropland All types 

2001 (-38%, 72%) (-35%, 18%) (-28%, 62%) (-49%, 39%) (-39%, 62%) 

2002 (-35%, 68%) (-34%, 16%) (-24%, 47%) (-49%, 34%) (-39%, 54%) 

2003 (-39%, 74%) (-34%, 15%) (-35%, 65%) (-51%, 47%) (-39%, 66%) 

2004 (-36%, 69%) (-37%, 22%) (-15%, 58%) (-50%, 40%) (-39%, 57%) 

2005 (-31%, 58%) (-33%, 14%) (-18%, 57%) (-54%, 45%) (-41%, 47%) 

2006 (-30%, 56%) (-32%, 12%) (-18%, 62%) (-56%, 47%) (-46%, 48%) 

2007 (-29%, 54%) (-32%, 13%) (-13%, 48%) (-53%, 34%) (-40%, 41%) 

2008 (-50%, 106%) (-42%, 29%) (-39%, 67%) (-52%, 43%) (-50%, 93%) 

2009 (-38%, 74%) (-39%, 26%) (-20%, 56%) (-51%, 35%) (-42%, 54%) 

2010 (-37%, 73%) (-45%, 34%) (-15%, 82%) (-59%, 50%) (-48%, 56%) 

2011 (-36%, 68%) (-36%, 19%) (-23%, 53%) (-51%, 42%) (-44%, 52%) 

2012 (-35%, 66%) (-36%, 18%) (-27%, 57%) (-58%, 44%) (-52%, 47%) 

2013 (-35%, 69%) (-33%, 14%) (-19%, 44%) (-48%, 34%) (-43%, 42%) 

2014 (-40%, 79%) (-36%, 19%) (-26%, 68%) (-43%, 39%) (-41%, 50%) 

2015 (-40%, 76%) (-39%, 25%) (-35%, 53%) (-44%, 43%) (-42%, 53%) 

2016 (-44%, 91%) (-42%, 29%) (-24%, 54%) (-46%, 56%) (-44%, 70%) 

2017 (-40%, 76%) (-37%, 21%) (-37%, 57%) (-45%, 59%) (-43%, 62%) 

2018 (-53%, 114%) (-41%, 27%) (-30%, 59%) (-45%, 62%) (-49%, 90%) 

2019 (-43%, 83%) (-34%, 16%) (-36%, 50%) (-49%, 72%) (-45%, 74%) 

2020 (-48%, 95%) (-40%, 24%) (-39%, 62%) (-53%, 86%) (-50%, 85%) 
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2021 (-45%, 89%) (-38%, 21%) (-28%, 53%) (-57%, 98%) (-53%, 92%) 

2022 (-35%, 66%) (-34%, 16%) (-24%, 56%) (-45%, 66%) (-42%, 63%) 

3.6 Comparison with other studies 

We compared the wildfire CO2 emissions estimates in this study with several global biomass burning inventories, 

including the Fire Inventory from NCAR (FINN2.5, FINN_VIIRS2.5) (Wiedinmyer et al., 2023); GFED5 (van der Werf et al., 690 

2017), the Global Fire Assimilation System (GFAS version 1.2) (Kaiser et al., 2012), and the Quick Fire Emissions Dataset 

(QFED version 2.5) (Koster and Darmenov, 2015), as shown in Figure 13. While all inventories exhibited consistent 

interannual variability, the total emission magnitudes varied substantially. Our estimates were systematically lower than those 

from most global datasets and were closest to GFASv1.2. FINN2.5 reported the highest values among all inventories, likely 

due to its use of larger burned area inputs. By incorporating VIIRS active fire detections, FINN_VIIRS2.5 showed 695 

approximately 25% higher emissions than FINN2.5. We applied GFED5 burned area data to adjust MCD64A1 burned area 

estimates; however, our emissions remain lower than those from GFED, which may be attributed to differences in biomass 

assumptions. Biomass input remains a dominant source of uncertainty in fire emissions estimates. QFED2.5 adopted a top-

down approach based on fire radiative energy (FRE), and typically yields higher emission estimates (Wiedinmyer et al., 2023; 

Yin et al., 2019). 700 

We further compared our estimates with other studies in China (Table 5). For forest, shrub, and grassland fires, our CO2 

estimates were comparable to those reported by Zhou et al. (2017) and Li et al. (2024a), slightly higher than those of Jin et al. 

(2022), and lower than Yin et al. (2019). The lower values in Jin et al. (2022) may result from exclusive reliance on MODIS 

burned area data, whereas the higher values in Yin et al. (2019) stem from the use of the FRE-based method. Regarding 

cropland fires, remote sensing often fails to detect small-scale agricultural burning. Consequently, many studies have used 705 

statistical data to estimate emissions, based on assumed field residue burning percentages ranging from 10% to 80% (Gao et 

al., 2002; Huang et al., 2012; Li et al., 2024b; Wang and Zhao, 2008; Yan et al., 2006; Yang et al., 2008; Zhou et al., 2017). 

The cropland fire CO2 emissions estimated by the method based on burning proportion are generally higher than those 

calculated by the satellite remote sensing monitoring method adopted in this study. 
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 710 

Figure 13: Comparison of wildfires CO2 emissions in China from multiple global inventories (2001–2022). 

Table 5 Comparison of wildfires CO2 emissions estimates in China from previous studies(Tg). 

Reference year region Forest Shrubland Grassland Cropland All types 

Wang and Zhao. 

(2008) 

2006 China - - - 154.5 - 

Huang et al. 

(2012) 

2006 China - - - 68 - 

This study 2006 China - - - 26.3 - 

Zhou et al. (2017) 2012 China 10.1 0.7 207.3 - 

This study 2012 China 8.0 2.4 35.9 - 

Yin et al.(2019) 2003-2017 

(mean) 

China 40.8 1.2 14.1 35.3 91.4 

This study 2003-2017 

(mean) 

China 23.1 4.0 0.9 21.7 49.7 
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Jin et al.(2022) 2001-2019 

(mean) 

China 15.2 - - 

This study 2001-2019 

(mean) 

China 22.2 - - 

Li et al.(2024a) 2001-2020 

(mean) 

Heilongjiang 3.9 - 0.07 13.2 - 

This study 2001-2020 

(mean) 

Heilongjiang 4.7 0.3 0.3 5.0 - 

The burning of agricultural straw in China is a long-standing phenomenon, where burning straw is a traditional method for 

farmers to deal with waste straw after harvest. In recent years, the frequent occurrence of haze weather has seriously impacted 

people's production and life. Consequently, the government has introduced multiple policies to strengthen air quality and straw 715 

management. Since 2012, following the implementation of policies for air pollution prevention and control,  CO2 emissions 

from cropland fires have decreased (Fig. 7d). However, some provinces, such as Heilongjiang and Jilin, have had higher 

emissions since 2012 and are on an upward trend (Fig. 7d). In the northeastern region, a large amount of straw is used as the 

primary non-commercial energy source, leading to serious straw burning issues. Cropland fires in Northeast China mainly 

occur during the harvest and crop sowing seasons, with peak burning periods in October-November and March-April. Although 720 

China has recently prohibited open-air straw burning, this phenomenon persists, indicating that crop straw remains the primary 

fuel and waste of rural residents. More research is needed to develop new solutions for the sustainable utilization of crop straw 

in the northeast region, which may help achieve the dual goals of improving air quality and mitigating climate change. 

This study holds great significance for atmospheric pollution control management. First, the high spatial resolution and long 

time series of wildfire CO2 emissions provide accurate input data for simulating the effects of wildfires on air quality, climate, 725 

and human health. This helps to gain a deeper understanding of the impact mechanism of wildfires on the atmospheric 

environment, providing a reliable foundation for related research. Second, this research has a direct impact on global climate 

governance. The natural process of carbon emissions from wildfires is essential to the global carbon cycle, with prominent 

human intervention and control properties. Reducing wildfire carbon emissions is also a potential means of  reducing global 

carbon emissions. However, the current international assessment and national emission reduction responsibilities do not 730 

include wildfire carbon emissions or consider measures such as reducing wildfire frequency and intensity through wildfire 

management. By accurately assessing CO2 emissions from wildfires, governments worldwide can better set CO2 reduction 

targets, take corresponding response measures, and contribute to the global response to climate change. 

4 Conclusion 

This study developed a comprehensive inventory of wildfire CO2 emissions across China from 2001 to 2022, capturing 735 

significant spatiotemporal variations among different vegetation types. Results showed that cropland and forest fires were the 
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primary contributors to national wildfire emissions. Forest and shrub fire CO2 emissions exhibited a declining trend, grassland 

fire CO2 emissions remained relatively stable, and cropland fire CO2 emissions showed an increasing trend. GTWR analysis 

revealed that shrub fire CO2 emissions exhibited the highest predictive performance (R2 = 0.87), with climatic factors 

(particularly temperature and humidity) being the main influencing factors, and limited temporal variation. In contrast, fore st 740 

and cropland fire CO2 emissions were significantly influenced by the spatiotemporal heterogeneity of both climatic and 

socioeconomic factors. Grassland fire CO2 emissions exhibited the lowest model explanatory power (R2 = 0.31), suggesting 

that their emissions may largely depend on drivers not included in the current model. 

Our findings underscore the critical role of policy interventions in shaping wildfire emissions in China. The observed 

declines in most regions aligned with the implementation of national fire control and air pollution reduction programs. 745 

However, northeastern China remained an exception, with cropland fire CO2 emissions continuing to increase in recent years. 

This trend highlighted the limitations of blanket burning bans and the necessity of adaptive fire management. Although forest 

fire CO2 emissions had been reduced through strengthened fire prevention measures, northeastern China remained vulnerable 

to extreme fire events triggered by drought or lightning. Shrub fire CO2 emissions, primarily driven by climatic factors, 

underscore the importance of strengthening early-warning systems. 750 

Although wildfire emissions are classified as “natural disturbances” under IPCC guidelines for LULUCF and are often 

excluded from national emission inventories, the results demonstrated that these emissions were substantial and closely tied to 

policy and land management practices. The pronounced interannual variability and spatial heterogeneity suggested that future 

climate extremes, land-use changes, or fire policy adjustments could significantly alter regional carbon dynamics. 

Compared with global emission inventories (GFED, FINN, QFED, GFAS), the estimates in this study were generally 755 

lower. Although remote sensing data might underestimate some cropland fires, this study characterized wildfire CO2 emissions 

patterns in China by integrating multi-source burned area products, localized biomass data, and high-resolution land cover 

classifications. Future research should further refine burned area identification, optimize parameters such as emission factors 

and combustion efficiency, bridge observational gaps, and incorporate transboundary fire dynamics to ensure more 

comprehensive and accurate regional emission accounting. 760 

Based on a bottom-up approach and using MODIS fire products combined with emission factors of different wildfires 

(forest, shrub, grassland, cropland), the dynamic changes in CO2 emissions in China from 2001 to 2022 were analyzed. Overall, 

during this period, the total CO2 emissions from wildfires in China amounted to 693.7 Tg, with average annual emissions of 

31.5 Tg. The CO2 emissions from cropland and forest fires were relatively high, accounting for 46% and 32%, respectively; 

Shrub fire emissions accounted for 20%, while grassland fire emissions were the lowest, accounting for only 2%. The study 765 

revealed that emissions from forest and shrub fires exhibited a significant downward trend. In contrast, emissions from 

grassland fires remained relatively stable, and cropland fire emissions showed a noticeable upward trend. The emissions also 

showed different characteristics in different months, with generally lower emissions from all types of fires in July and August. 

Forest, shrub, and grassland fires had higher emissions in February, March, and April, and cropland fire emissions peaked in 

April, May, and June, possibly correlated with specific agricultural activities. Spatially, high CO2 emissions were primarily 770 

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

设置了格式: 上标

设置了格式: 下标

设置了格式: 下标

设置了格式: 上标

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标



46 

 

concentrated in the eastern regions of Heilongjiang and Inner Mongolia, accounting for 44% of the annual average total 

emissions. Northeast China was also identified as a high-confidence hotspot, indicating long-term high CO2 emissions. Human 

activities significantly influence CO2 emissions from cropland fires. Emissions negatively correlated with GDP (-0.52) and 

population density (-0.51). Various factors, such as accumulated sunshine hours (-0.41, p < 0.001) and the NDVI (-0.35, p < 

0.001), mainly influenced emissions from forest and shrub fires, while temperature (-0.45, p < 0.001) primarily affected 775 

emissions from grassland fires. China's policy management has been crucial in reducing CO2 emissions from wildfires. By 

accurately assessing CO2 emissions from wildfires, governments worldwide can better set CO2 reduction targets, take 

corresponding response measures, and contribute to the global response to climate change. 
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