
Response Letter

We would like to thank the editor and two reviewers for their insightful comments and suggestions
concerning our manuscript, Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under
high ice-shelf basal melt conditions. In the following, we respond to each of the reviewers’ comments in
detail. The reviewer summary and comments are listed in italic, while our responses are highlighted in blue
and not italicized. To aid further review, we will mark all new additions/revisions to our previous manuscript
in blue, except when we intend to add entire section/subsections. In those instances, we will indicate the
subsection heading in blue within the revised manuscript.

Response to Comments of Reviewer 1

Review summary: The manuscript discusses the calibration of the MPAS-Albany Land Ice (MALI) model
to reduce parametric uncertainties and generate more constrained future projections. Based on a perturbed
physics ensemble with 200 runs, the authors have built a GP emulator and used it for Bayesian calibration
following the framework of Kennedy and O’Hagan (2001, hereafter referred to as KOH). To propagate the
quantified parametric uncertainty in future projections, another set of emulators is used: a PCA-based em-
ulator for the entire trajectory and scalar emulators for certain future time points. The results show that,
under the high emission scenario (SSP5), the Amery sector may significantly contribute to sea level rise after
the year 2100.

Overall, the statistical approaches used for emulation and calibration are well-designed, and the scientific
results are an important contribution to the literature on the future of Antarctica. Therefore, the manuscript
is suitable for publication in The Cryosphere. I have only a few minor comments:

1. 200 ensemble members seem to be quite small given that the number of parameters being calibrated is
six. Some comments on how the number of ensemble members was determined would be useful.

The well-cited paper [1] provides guidelines for determining sample sizes in computer experiments,
recommending that, as a rule of thumb, at least 10 data points per input dimension should be used
when building an emulator. Given that we have 6 input parameters, this suggests that a minimum of 60
ensemble members would be necessary to build our Gaussian process emulators. Accordingly, in case
some had to be discarded, we chose 200 ensemble members to assure there were at least 10 members
per input dimension. When executing our study, we discarded 81 runs due to two reasons mentioned in
the manuscript: “First, filtering eliminates outliers in potentially complex regions of parameter space
that may have reduced the skill of the emulators but would be negligibly sampled based on their low
likelihood of matching observations. Second, because in some cases our prior parameter distributions
include regions of parameter space that will be negligibly sampled, eliminating runs from these regions
reduces the computational cost of the three MALI projection ensembles.” This filtering provided 119
ensemble members for RELX Gaussian process (GP) emulator fitting. However, despite discarding a
large number of runs, the cross-validation results depicted in Figures 3, 4, and 5 demonstrate that our
GP emulators fit the simulation data for each of the three observables quite well. This is supported by
the observation that the predictions are in agreement with actual values, and residuals are randomly
scattered in each case. Moreover, the emulators trained with 119 ensemble members were more accurate
than those trained with all 200 ensemble members (this comparison is not included in our manuscript
for brevity). We will include the aforementioned reference and justification on ensemble size selection
in the revised manuscript.
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2. In Section 3.4, the three observed variables are assumed to be independent when defining the likelihood
function. I think some comments or justification is needed on this point.

We assumed independence among the three observed variables due to the lack of knowledge about the
correlation structure among them. We only had a single observation per each of the three observables
during the calibration step. Our current calibration framework (and code) can easily accommodate a
scenario where observables are correlated, if such information is available. We will add a brief statement
to justify the independence assumption in our revised manuscript.

3. The covariance function for the GP emulator is defined as the Matérn with a smoothness of 2.5,
for which I commend the authors for avoiding the common mistake of using the squared exponential
function. I think it would be even better if they added a brief statement on the implication of this
choice, noting that the resulting GP is twice mean square differentiable and hence highly smooth.

We chose the Matérn kernel with a smoothness parameter of 2.5 by searching over different kernels and
their hyperparameters. Our final choice of Matérn kernel with smoothness parameter of 2.5 ensures
that the GP emulator is twice mean square differentiable, providing a high degree of smoothness while
avoiding the over-smoothness often introduced by the squared exponential kernel (which renders the
fitted GP infinitely differentiable). We will add a brief statement to highlight this implication in our
revised manuscript.

Response to Comments of Reviewer 2

Review summary: This study seeks to evaluate the future contribution to sea-level rise of the Amery Ice
Shelf catchment, and in particular this study takes a Bayesian approach and accounts for parametric uncer-
tainty of AmIS response under different climate scenarios. The authors use Gaussian process emulators to
calibrate ensembles of uncertain parameters and then use a second set of emulators to propagate this uncer-
tainty to future sea-level rise contribution. Ultimately, they find that AmIS has the potential to contribute to
sea-level rise significantly. The methodology is sensible and well-justified, the results are of great interest to
the glaciology community, and the manuscript is well-written. I have a handful of comments below:

1. Ensemble filtering: The authors seem to have removed RELX ensemble members that lie in parts
of the parameter space that the emulators may struggle with. I am curious what these parts of the
parameter space are, and whether the removal of these regions of the parameter space may affect esti-
mates of posterior uncertainty? This filtering step also seems to have removed a significant portion of
the ensemble members (resulting in only 119 members, if I’m understanding the text correctly), which
seems to be low. Is this still an appropriate number of members to conduct the calibration?

As it also addresses this point, please refer to our response to the first comment made by the first
reviewer. The filtering process removes 81 ensemble members with low likelihood, specifically those
with observable values falling outside the 4-standard-deviation interval. Consequently, excluding these
members when constructing the Gaussian process (GP) emulators should have minimal effect on the
posterior distributions of input parameters calibrated using GP emulators. While this filtering reduces
the emulator’s training set, it enhances the fit by eliminating the identified outlier ensemble members.
As mentioned in our response to the first reviewer’s initial comment, a general rule of thumb often
cited in existing literature states that a GP should be built with at least 10 ensemble members per
input parameter. We have ∼ 20 members per input parameter after filtering. Moreover, to not exceed
our computational budget, we had to restrict ourselves to 200 member ensembles (before filtering).
Nonetheless, the emulator cross-validation plots (Figures 3, 4, and 5) show a good fit for all three GP
emulators of the observables.

2. Effect of parametric uncertainty: the authors study the bulk effect of all parametric uncertainty
(listed in Table 1) on projections of glacier behavior. Are the authors able to say anything about
the contributions of uncertainty in individual parameters on sea-level rise contribution? Does one
parameter contribute more than others? If the existing simulations cannot provide this detail, I don’t
believe the authors need to include it, as there is already quite a bit in this manuscript and the focus is

2



on quantifying overall uncertainty and SLR contribution, but if the existing runs can provide this, this
would be useful detail to include.

Leveraging the independence of the prior distribution of the model parameters, we performed Sobol’
global sensitivity analysis on the joint prior to identify how uncertainty in each parameter contributes to
sea-level contribution uncertainty in the Year 2300 using scalar GP emulator of volume above flotation
(VAF) change for the SSP5 projection ensemble. The first order and total order Sobol’ indices for
the six input parameters are presented in Figure 1. We observed that the uncertainties in the basal
slip exponent (q), basal friction scaling factor (Cµ), ice stiffness scaling factor (Cϕ), and ice-shelf melt
exponent (γ0) have nontrivial contributions to the sea-level contribution uncertainty in descending
order. Uncertainties in the calving yield stress (σmax) and ice-shelf basal melt rate (m) parameters
have negligible contribution to the sea-level contribution uncertainty.
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Figure 1: Sobol’ global sensitivity analysis on the joint prior.
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Figure 2: Shapley global sensitivity analysis on the joint posterior and prior.

In contrast, Figure 2 presents the sensitivity of the model parameters when using the observationally
constrained and correlated posterior. Specifically, we present the Shapley indices for each of the input
parameters. Sobol’ indices cannot be used with correlated variables. We observed that the uncertainties
in q, Cµ, Cϕ, and γ0 affect the sea-level contribution uncertainties significantly in descending order.
The remaining two parameters have negligible contribution to sea-level contribution uncertainty. In
comparison to the Shapely indices computed using the prior distribution of the parameters (also shown
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in Figure 2), we observed Bayesian calibration increases the influence of q while reducing the influence
of Cϕ uncertainties compared to their prior uncertainties on sea-level contribution.

The aforementioned analysis led to additional interesting findings. First, the σmax parameter that
was significantly constrained by the Bayesian calibration does not affect sea-level contribution of the
ice sheet. Second, the q parameter, which was not constrained by the Bayesian calibration, affects
the sea-level contribution the most. To support these statements, the sea-level contribution with their
68% and 95% credible intervals are plotted in Figure 3. These intervals were estimated by uniformly
varying each input parameter over their range and drawing samples of the remaining input parameters
from their conditional joint prior distribution. These samples then were propagated through our
scalar GP emulator for VAF change in Year 2300 for the SSP5 ensemble then sampled from the
emulator’s predictive distribution. We observed that q affects the sea-level contribution the most as
higher values lead to lower sea-level contribution with compact uncertainty bounds, while lower values
lead to higher sea-level contribution with larger uncertainty bounds. Similar trends are observed for Cµ

parameter. The Cϕ parameter affects the sea-level contribution with higher values leading to lower sea-
level contribution. Meanwhile, lower values lead to higher sea-level contribution, but the uncertainty
bounds stay similar throughout the parameter range. On the contrary, for the γ0 parameter, lower
values lead to decreased sea-level contribution, while higher values lead to slightly elevated sea-level
contribution with uncertainty bounds slightly rising with increasing values for log(γ0). Finally, varying
the σmax and m parameters has negligible impact on the sea-level contribution. This analysis further
supports the findings gleaned from the Sobol’ and Shapley analyses.
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Figure 3: Individual input parameter effect on sea-level contribution (mm SLE) with uncertainty bounds.

We will include the above analyses and results in a new appendix within the revised manuscript.

3. In general, the axes labels on the figures are faint, making it difficult to read. If possible, it would be
good to bold the text to make it clearer.

We will increase the font size to have the axis labels match the text in the manuscript. Other labels
(such as axis tick and legend labels) also will be proportionately increased in size. This will improve
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the letter thickness so the text will be easily visible without zooming beyond actual A4 page size.

4. Figure 8: I did not quite understand what subplot c added to this figure – is it showing the same
information as subplot b?

The subplot c in Figure 8 was included to indicate how a random sample from the posterior distribution
of the six input parameters leads to future sea-level contribution trajectory until Year 2300 when passed
through the PCA GP emulator. The 30 trajectories are shown to highlight that the GP produces
trajectories similar to those actually simulated in the SSP5 projection ensemble (depicted in red in
Figure C3). We will add a brief statement about this in the manuscript.

5. Figure 11: the colorbar labels in subplots b and c are very small and hard to read.

We will modify the colorbar labels in Figure 11 to improve their legibility.
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